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ON PRODUCT AND CHANGE OF BASE FOR TOPOSES

by Andrews PITTS

CAHIERS DE TOPOLOGIE

ET GÉOMÉTRIE DIFFTRENTI-ELLE
CATTGORIQUES

Vol. xxvi-i (1985)

ABSTRACT. Le produit de deux S-topos born6s coincide avec

leur produit tensoriel comme categories cocomplbtes S-index6es.
De plus, la cat6gorie index6e cocomplete sous-jacente au produit
fibr6 d’un S-topos born6 le long d’un morphisme g6om6trique est
obtenue en consid6rant le topos comme une cat6gorie index6e co-

complbte, puis en appliquant un certain foncteur adjoint associe. au
morphisme g6om6trique. Un corollaire montre la stabilite des

morphismes essentiels et localement connexes par changement de
base.

0. INTRODUCTION.

In this paper we prove some results about Grothendieck toposes
and geometric morphisms that derive from regarding a Grothendieck

topos (resp., the inverse image part of a geometric morphism) as a

cocomplete category (resp., cocontinuous functor) with additional pro-
perties. Specifically, if S is an elementary topos with natural number

object, then the product of two Grothendieck S -toposes coincides with
their "tensor product" as cocomplete S -indexed categories. Moreover if

p : E-&#x3E;S is a geometric morphism between elementary toposes
(with natural number objects), then the pullback of a Grothendieck S -

topos F along p coincides with the cocomplete S -indexed category
obtained from F (regarded as a cocomplete S -indexed category)
by "changing base along p". An immediate corollary of the latter fact
is a result about essential geometric morphisms which generalises a
theorem of Tierney on the pullback of locally connected geometric mor-
phisms (unpublished, but see [12J, V).

These results are seen as favourable evidence for the speculation
that one may be able to describe Grothendieck toposes in terms

of cocomplete categories in a way analogous to that in which Joyal
and Tierney have recently described the theory of locales as part of
the "commutative algebra" of complete lattices and arbitrary sup
preserving maps : see [8]. Thus replacing locales by Grothendieck

toposes and sups by colimits, Theorems 2.3 and 3.6 below are the

analogues of the results in III.2 and VI.1 of [8]. However the proofs
are not analogous : this is because in the one case they are immediate
corollaries of the characterization of a locale as a certain kind of
commutative monoid in the monoidal category of complete lattices
and sup-preserving maps equipped with its tensor product (the monoid
multplication giving binary meet in the locale and the unit giving the
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top element), whilst we do not know of an analogous characterization
of a Grothendieck topos over the 2-category of cocomplete categories
equipped with its tensor product (and possibly other, more complicated
things). One of the fruitful results of Joyal and Tierney’s characterization
of locales is the ease with which one can deal with locale homomorph-
isms that have left adjoints (and in particular with open continuous

maps), simply because these left adjoints necessarily preserve sups.
Correspondingly here we obtain results about essential geometric mor-
phisms, since the left adjoint of the inverse image part of such a geom-
etric morphisms preserves colimits. A good test of the workability of
any description of Grothendieck toposes over cocomplete categories
would be whether it yielded more results along these lines. We have in
mind for instance, the speculation that if

is a comma square of Grothendieck toposes and geometric morphisms,
then f essential implies k essential (and k1 h*= g*f1 ). Such conjectures
(and their application to proving results about coherent logic) were the
original motivation for the considerations in this paper, but they were
also influenced by Lawvere’s lectures on "extensive and intensive quant-
ities" at Aarhus in June 1983.

Evidently both the statement and the proofs of the results in
this paper necessitate working in "category theory over an element-

ary topos S". The "small" part of this theory is contained within the
internal mathematics of the topos (cf. [7]) and thus can be presented
in an easily digestible form "as though S were the category of sets", or
more precisely, using the language of type theory. The "large" part of
’ category theory over S (and its interplay with the internal logic of S)
requires the use of fibrations aver S , or S -indexed categories ;
its study was initiated about a decade ago by B6nabou-Celeyrette and
Paré-Schumacher (cf. [4, 5, 6, 13]) and is still under development. In
particular an appropriate formal language and metatheorems that would
allow automatic transfer of suitably constructive arguments in ordinary
category theory to the S -indexed cas has not been worked out in full

generality. (We have in mind here the analogues of the Mitchell-Benabou
language, Kripke-Joyal semantics, etc. in topos theory.) So we cannot

refer the reader to a description of the formal language of category
theory over an arbitrary base topos S . Nevertheless for ease of

comprehension, the arguments of the first two sections of this paper
are given in an informal version of such a language, i.e. given "as though
S were the category of (constant) sets" (without of course using
any of the non-constructive properties that it has). In the last section,
where we consider category theory over different base toposes and the
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connections induced by a geometric morphism between the toposes, of
necessity the use of indexed categories (or fibrations) is more overt.

The author wishes to acknowledge the support of St. John’s College
Cambridge and FCAC Quebec.

1. COCONTINUOUS FUNCTORS.

Let S be an elementary topos with natural number object. In this
and the next section we are going to be working in "category theory
over S ". Within this context we need to recall some basic facts about

categories with small colimits and functors preserving those colimits,
which follow from the calculus of coends and left Kan extensions (cf.
[9] and 110 J, Chapters IX § X). As noted in the Introduction, the develop-
ment will be given as though S were the category of sets, and we
make the following

Convention. In Sections 1 and 2, "category", "functor", "natural transfor-
mation", etc. will mean S--indexed category, functor, natural transforma-
tion, etc. Similarly "small" will mean S-internal . (See the references
cited in the Introduction for an explanation of these concepts.)

Let COCTSS denote the 2-category whose 0-cells are locally small
categories with all small colimits, whose 1-cells are functors preserving
these colimits and whose 2-cells are all natural transformations between
such functors.

If C is a small category and A E COCTSS , then the category of
diagrams of type C in A , denoted [ C, A] , is again in COCTSS and we
have :

(1.1) Lemma. For C a smail category and A E COCTS S , [Cop, A] (resp.
[C, A]) is the tensor (resp. the cotensor) of A by C in the 2-category
COCTSS , i.e. there is an equivalence

(resp. an isomorphism

which is natural in B.

(To be precise, since the first of the above is an equivalence rather .

than an isomorphism, we mean "tensor" in the "up to isomorphism"
sense appropriate to COCTSS regarded as a bicategory ; cf [14].)

Proof. For IES and A E A, let I.A E A be the copower of A by I,
i.e. the coproduct of I copies of A. Thus if H : C-&#x3E; [COP, S] denotes
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the Yoneda embedding, then for U E C and A E A we have

Then given F

by defining

Conversely given G E [C, COCTSS (A , B)], the coend

defines a functor G E COCTS 5 ([G°p, A], B ).

The assignments F l-&#x3E; F and G l-&#x3E;G7 are functorial and define the

required natural equivalence

The natural isomorphism

is sirnpy the restriction of that for the full functor categories

For A E COCTSS and A E A , sending I E S to the copower I.A of
A by I gives a functor (-).A : S -&#x3E; A which preserves colimits. Conversely
any F E COCTS S(S , A) is determined by F(l) E A, since

The assignments A l-&#x3E; (-).A and F )+ F(l) are functorial and set up an

equivalence of categories :

(1.2) Lemma. There is an equivalence A - COCTS S (S, A), which is
natural in A E COCTSS . 0

Combining (1.1) and (1.2) we have :

(1.3) Corollary. [CJP, S J is the free locally small cocomplete category on
the small category C in the sense that restriction along the Yoneda

embedding H : C-&#x3E; [C 31:3, S] induces an equivalence

for any A E COCTSS .
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Given a functor f : C -&#x3E; A , the corresponding colimit-preserving
functor [Cop, S ] -&#x3E; A is colimHf , the left extension of f along H :

As usual, let S2 E [Cop S] denote the subobject classifier of the

topos of presheaves on the small category C. Thus for U E C, n(U)
is the set of sieves on U (i.e. the set of subobjects R &#x3E;-&#x3E; Hu in

Cop, SI).

(1.4) Definition. Let P be any collection of sieves on C. Say that a func-
tor f : C -&#x3E; A ( A e COCTSS ) is P-cocontinuous if the corresponding
colimit-preserving functor 

sends each R&#x3E;-&#x3E; H in P to an isomorphism in A . Let P-cocts(C, A )
denote the full subcategory of [C, A] whose objects are such functors.
Remark. It is not hard to see that colim 1-/ feR &#x3E;-&#x3E; H ) is an isomorphism
in A iff, regarding R as a full subcategory of C/U, the diagram

(sending a: V -&#x3E; U to f(V)) has

as colimiting cone.

Now suppose that P is a subpresheaf of Q in [COP, S], i.e. that the
collection P of sieves on C is closed under taking pullbacks. Let P &#x3E;-&#x3E;n

denote the Grothendieck topology generated by PP Q . So we have

Shs (C, P), the Grothendieck S -topos of sheaves on the site (C, P)
and an associated sheaf functor

which since it is left adjoint to the inclusion Sh S(C, P) -&#x3E; [COP, S] is
a morphism in COCTSS for which the induced functor

is full and faithful (any A e COCTSS ).

We need the following mild generalization (from the case P = P)
of the kind of result to be found in [1], Exp. 111.1 : -

(1.5) Proposltion. The equivalence of Corollary (..3) restricts along the
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the full and faithful functors a* and along the inclusion

to an equivalence

Proof. We must show that a functor f : C -&#x3E; A is P-cocontinuous
iff the corresponding morphisrn

in COCTS S , factors up to isomorphism through a . Since [CP,S J
and Sh s(C, P) have small dense subcategories, colimit-preserving func-
tors from them to A E COCTSS have right adjoints. In particular, the
right adjoint of F = colim H f : IC’P, S]-&#x3E;A is

Consequently for any factorization of F through a in COCTSS :

there is a corresponding diagram of right adjoints :

It follows that F factors through a in COCTSS iff for each A E A , FA
is a P-sheaf. But since P is a pullback stable collection of sieves, a
presheaf is in Sh S(C, P) just in case it satisfies the sheaf condition
for sieves in P. (For a proof of this fact see for example [12], Theorem
24.) So F factors through a iff for all A E A and all m : R &#x3E;-&#x3E; Hum
P we have

i.e. iff for all R, (Fm )* : A(FHUg A) -&#x3E; A (FR, A) is bijective, all A E A ;
i.e. iff for all R F Hu in P, F(R-&#x3E; H 0 is an isomorphism in A ; i.e. iff
F is P-cocontinuous. 0
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2. PRODUCT AND TENSOR PRODUCT.

For A, B, C E COCTSS, call a functor F : AxB-&#x3E;C a bimor-

phism if it preserves small colimits in each variable separately ; let
BIM(A, B ; C) denote the category of such functors. Similarly for
small categories C, D and collections P, Q of sieves in C and D

respectively, call a functor C x D -&#x3E; A P, Q- cocontinuous iff for
all (U, V) E C x D

and

let P,Q-cocts(C, D ; A ) denote the full subcategory of [ C x D, A]
whose objects are such functors.

Note that since Q-cocts(D, A) is locally small and the inclusion

Q-cocts(D, A) -&#x3E; [D, A] creates small colimits, we have that

and the exponential adjointness

restricts to

(2.1) Proposition. Suppose that P and Q are pullback stable collections
of sieves in C and D respectlvely ; let P , Q denote the Grothendieck

topologies generated by them and put E = ShS(C, P), F = Sh S(D, Q ).
Then com position with 

gives an equivalence

Proof. Evidently the exponential equivalence

(cf. [11], p. 35) restricts to one between BIM(E, F ; A) and the

category of colimit-preserving functors from E to the category of
colimit-preserving functors F-&#x3E; A . So by repeatedly using Proposition
(1.5) and by the Remark above, we have
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and this composite equivalence is induced by (a x a) o (H x H). 0

(2.2) Definition. The tensor product A !8) B of A and B in COCTSS if it

exists is the domain of the universal bimorphism from A x B , i.e. there

should be a bimorphism O:AxB-&#x3E;AOS B, composition with which

gives an equivalence 

(all C E COCTSS). 

Without imposing further conditions on A and B, it is not clear

that A 03 B always exists. (Recall that we require objects in COCTSS
not only to have small colimits, but also to be locally small.) However
by (1.1) and (1.2) we have

so that A OS. [C, sJ is lc, AJ. In particular [C, S] OS [D, S] is

The universal bimorphism

sends (X, Y) E [C, S] x D, S] to X O Y E [CxD, S] where

Note that

is also the product [C, SJxS[D, S] of [C, S] and [ D, S] in the 2-category

GTOPS of Grothendieck (= bounded) S-toposes and geometric morphisms
(cf. [7J, Cor. 4.36). More generally we have :

(2.3) Theorem. For Grothendieck S-toposes E, F, the tensor product
E 0 F of E and F regarded as objects in COCTS s is given by their

product E xS F in GTOP S.
Proof. Suppose E = SHS(C, J), F = Sh S (D, K) for small sites (C, J),
(D, K). Then the product E x F can be constructed as the sheaf sub-

topos of the product [(Cx D)OP, sJ of [Cop , S] and I DOP, sJ given by
the smallest Grothendieck topology on C x D that makes both
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dense. Here

are the product projections (so that P1* is given by precomposition with
the projection functor (C x D?P + COP and similarly for p*2 ) and

d: 1 &#x3E;-&#x3E; J, d : 1 &#x3E;-&#x3E; K are the generic dense monomorphisms in [Cop, S]
and [D °p, 5 J.

The image of the map pf J -+ S¿ classifying pl (d) : 1 &#x3E;-&#x3E; p*J in

[(C x Dpp, S] consists exactly of sieves of the form

Similarly for pl(d): 1 &#x3E;-&#x3E; p*K. Thus with notation as in Section 1,

where P is the (pullback stable) collection

of sieves in C x D. Hence by Proposition (1.5)

naturally in A e COCTSS . The result will then follow by Proposition
(2.1) if we can show that

But given f : C x D-&#x3E;A, employing the "Fubini" property for iterated
coends (cf. [10], IX.8) we have for any V E D and X E [Cop, S] that

naturally in X and V. Similarly for U J E C

naturally in Y E [DOP, 5] and U E C. Thus f E P-cocts(CxD, S ) iff for
all U E C, V E D, R E J(U) and S E K(V)

and
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are isomorphisms in A , i.e.

are isomorphisms, i.e. iff f E J,K-cocts(C, D ; A ).

Remark. Letting

be the product projections in GTOP 5’ then the universal bimorphism

simply sends (

3. CHANGE OF BASE.

Suppose that p : E -&#x3E; S is a geometric morphism between element-
ary toposes (with natural number object). It induces a 2-functor

where for B E COCTS F , Plt B is the S-indexed category whose fibre
over I E S is

and similarly for morphisms in S . By definition of diagram categories
of the form [C, A] , the above equality extends to

for any category C in 5 . 

(3.2) Definition. For A E COCTS, p #A E COCTSE will denote the

left adjoint of p# at If (if it exists), in the sense that there is a

morphism n : A -&#x3E; pjjp A in COCTSS such that for each B E COCT SE 
the functor

is an equivalence. As usual, the universal property ensures that p
is a bicategory homomorphism where defined.

#
As in the case of the tensor product OS, whilst it is not clear that

p is always defined, it is on the free objects of COCTSS . Indeed by
Corollary (1.3) and (3.1), we have equivalences
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which are natural in B E COCTSS . So we can take p"[C, S ] to be

[p* C, E]. Now recall ([7], Cor. 4.35) that

is a pullback square of toposes and geometric morphisms, where

is the functor p* applied to prepheaves (= discrete fibrations). Thus for
the presheaf topos [C°p, S], p" [Cop, S] coincides with the pullback of
[Oop, S] E GTOPS along p ; indeed the unit

is given by p* regarded as an 5-indeed functor. We shall see that this
holds for all Grothendieck S -toposes.

(3.4) Definition. Call a diagram of the form

in COCTSS a coinverter diagram if Q is universal with the property that

Q(p is an isomorphism, in the sense that for any D E COCTSS ,

is full and faithful and has essential image those H: B -+ D for

which Hcp is an isomorphism.

Note that for the, above .coinverter diagram, if pit A and p#B
exist (then so do p F, p G, pl) and if

is a coinverter diagram in COCTSE, then we can take p#C to be D .
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To apply this when A and B are free on small categories, we need
to examine more closely the morphisms between such free objects in
COCTSS. Up to equivalence these are just B6nabou’s profunctors
(or "distributeurs" or "modules" ; cf. [3] and 171, 2.4) ; for by (l.l) and
(1.3) we have

We shall take a profunctor froin C to D to be a diagram f E I DopxC, S I
and denote it f : C-&#x3E; D. Let Profs denote the bicategory of internal
categories profunctors and natural transformations in S: the composition
of f : C+-&#x3E; D and g : D +-&#x3E;E in Prof is given by the usual coend
formula :

Now denoting the- presheaf category [ C9P, S] by C, the assignment
C /+C extends to a homomorphism of bicategories

which is full and faithful in the sense that

is an equivalence. Indeed this equivalence is given by (1.1) and (1.3) :
for f E Prof S(C, D) = [Dop xC, S], f : C-&#x3E; D in COCTSS is given by

(Thus (:)= Profs (1, -) where 1 is the terminal category in S .)

Given a profunctor
uces

and this corresponds to a profunctor p*C+-&#x3E;p*D in E. Tracing through
the equivalence (3.3), one finds that this profunctor is just
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commutes up to isomorphism.

(3.5) Proposition. Suppose X E [COP, S] : thus X is given by a discrete
fibration over C in S, which we denote by 7 : X -&#x3E;C. Let 7T. denote the

profunctor X+-&#x3E;C induced by 7 viz

(i) Subobjects A &#x3E;-&#x3E; X in [C°P, S] correspond to subobjects D &#x3E;-&#x3E; tt
in Prof S(X, C) which are strict in the sense that for each f : x + y in X

is a pullback square in [Cop,S]. Moreover this correspondence is pre-
served under change of base : if m : A &#x3E;-&#x3E; X corresponds to 1 : D &#x3E;-&#x3E; tt.

then p*m : p* A &#x3E;-&#x3E; p*X corresponds to

(ii) If D &#x3E;-&#x3E; 7, corresponds to A &#x3E;-&#x3E; X as in 0), then

is a coinverter diagram in COCTS S , where J is the least topology
on C making A &#x3E;-&#x3E; X dense, and a is the associated sheaf functor. (So in
particular every Grothendieck S-topos has a "free presentation"
in COCTSS by a coinverter of the above form.)

Proof. (i) Given A &#x3E;-&#x3E; X, define D &#x3E;-&#x3E; 7, by letting, for each x E X,

be given by the pullback



56

in [Cop, S] (where x, corresponds to x under the Yoneda isomorphism

Evidently D(-, x ) &#x3E;-&#x3E;HttX is natural in x and gives a strict monomorphism
D&#x3E;-&#x3E;tt. 

Conversely given a strict monomorphism D &#x3E;-&#x3E;tt. for each

x E X, let XX: H &#x3E;-&#x3E;n classify D(-, x) &#x3E;-*7. (-, x) = HttX : 

Since D F iT. is strict, the maps (Xx l x E X) form a cone under

But the colimit of this diagram is just X E [Cop S] ; so on taking co-
limits over X, the above pullback squares yield another pullback
square

and hence A = colimxD(-, x) &#x3E;-&#x3E; X is a monomorphism and determines a
subobject of X.

That the above two constructions are mutually inverse is immediate ’
.from their definitions and the usual properties of finite limits and (int-
ernal) colimits in a topos. Moreover p* perserves such limits and co-
limits : so if i : D P TT. is a strict monomorphism in Prof Sex, C), then

is again one in ProfE (p*X, p*C) and
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commutes. The last part of (i) follows from this.

(ii) Let X: X -n classify A &#x3E;-&#x3E; X in [C°p, S], and let P &#x3E;-&#x3E;n be

the image of X. Thus P consists precisely of the sieves D(-, x) -&#x3E; H x
(x E X) where D &#x3E;-&#x3E; 1T. is defined from A&#x3E;-&#x3E; X as in (i). So given 

ttX

in COCTS S’ F i is an isomorphism in

iff Fi H is an isomorphism in [X, A], i.e. iff for all x E X,

is an isomorphism in A , i.e. iff F o H : C -&#x3E; A is P-cocontinuous. The
result now follows from proposition (1.5) and the fact ([7], 3.59 (ii))
that P, the least Grothendieck topology containing P, is indeed the
least topology making A &#x3E;-&#x3E; X dense. &#x3E;

(3.6) Theorem. Let p : E -+ S be a geometric morphism between element-
ary toposes with natural number objects. Then for any bounded S-topos
F -&#x3E;S, regarding F as an object of COCTSS , p F exists and coincides

with the pullback (in the bicategory of toposes and geometric morphisms)
of F-&#x3E; S along p.

Proof. Suppose F = ShS (C, J), (C, J) a site in S . To the generic J-
dense monomorphism d : 1 FJ in [C°p, S ] there corresponds by
(3.5) (i) a strict monomorphism 1 : D P tt. in Profs (J, C) ; and by
(3.5) (ii) 

S

is a coinverter diagram in COCTS . Applying p# to r: D &#x3E;-&#x3E; Ti. we get

and since by (3.5) (i), P*l : p*D &#x3E;-&#x3E;p*tt. is the strict monomorphism
corresponding to p#(d) : 1 P p-&#x3E;J in [p* Cop, E] , the above diagram has
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as its coinverter, where K is the least Grothendieck topology making
p*(d) : 1 -&#x3E; p*J dense. By the remarks after definition (3.4), it follows

that we can take p F to be Sh E( p*C, K). But K is precisely the "pull-
back topology" (cf. [7], 3.59 (iii)), i.e.

are pullback squares of toposes and geometric morphisms.

(3.7) Remark. If FE GTOP 5 and

is a pullback square, then the unit 11: F-&#x3E;p#p#F is given by q* as

an S-indexed functor.

By an S - essential morphism in GTOPS we mean one f : G -&#x3E; F
for which f *: F-&#x3E; G has an S-indexed left adjoint, denoted f! : C - F.
Thus for F e GTOPS , F -&#x3E; S is S -essential precisely wheri F is a
molecular Grothendieck S -topos (or : when F -&#x3E; S is bounded and loc-

ally connected ) ; cf. [2]. Tierney (unpublished) proved that the

property of being molecular is stable under pullback along a geometric
morphism and that the resulting pullback square

satisfies a Beck-Chevalley condition for objects, i.e. the canonical

map f*p* -&#x3E; q*g* is an isomorphism, or equivalently, the canonical map
g,q* -&#x3E; p*f, is an isomorphism. (See [12], V, for a proof of the symmetric
case : p b6unded, f locally connected.) More generally, we have :

(3.8) Corollary. S-essential morphisms in GTOPS are stable under change
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)f base, i.e. given f : G - F in GTOPS, forming pullback squares :

we have : if f is S-essential, then g is E-essential. In this case the can-

onical map g’r*-&#x3E; q*f, is an isomorphism. Moreover if f is also connected

(which happens iff f’ is full and faithful, iff the unit of f, -i f*is an

isomorphism), then so is g. 

Proof. p# is a homomorphism of bicategories where defined. So

f1 -I f* in COCTSS (with counit an isomorphism if f connected)

gives 

In particular, p#(f*) is the inverse image of an E -essential geometric
morphism g : p#G -&#x3E;p#F over E, which is connected if f is. Further-

more since the unit of pll--1 p# is natural, in the fibre over 1 E S

we have that

commutes up to (canonical) isomorphism, i.e. by (3.7) that

commutes up to (canonical) isomorphism. Thus g is indeed the (essentially
unique) factorization of the pullback square
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through the pullback square

Applying the naturality of II to ft : G - F in COCTS 5’ we have (in
the fibre over 1 e S) that 

’

commutes up to (canonical) isomorphism, i.e. (by (3.7)) g,r* = q*f, as
required. ’ 

’ 

0
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