
File: 643J 256801 . By:MB . Date:06:08:96 . Time:18:01 LOP8M. V8.0. Page 01:01
Codes: 7079 Signs: 5104 . Length: 60 pic 11 pts, 257 mm

Information and Computation � IC2568

information and computation 127, 66�90 (1996)

Relational Properties of Domains*

Andrew M. Pitts
-

Cambridge University Computer Laboratory, Pembroke Street, Cambridge CB2 3QG, England

New tools are presented for reasoning about properties of recursively
defined domains. We work within a general, category-theoretic
framework for various notions of ``relation'' on domains and for actions
of domain constructors on relations. Freyd's analysis of recursive types
in terms of a property of mixed initiality�finality is transferred to a corre-
sponding property of invariant relations. The existence of invariant rela-
tions is proved under completeness assumptions about the notion of
relation. We show how this leads to simpler proofs of the computa-
tional adequacy of denotational semantics for functional program-
ming languages with user-declared datatypes. We show how the
initiality�finality property of invariant relations can be specialized to
yield an induction principle for admissible subsets of recursively
defined domains, generalizing the principle of structural induction for
inductively defined sets. We also show how the initiality�finality
property gives rise to the co-induction principle studied by the author.
[Theoret. Comput. Sci. 124, 195�219 (1994)], by which equalities
between elements of recursively defined domains may be proved via an
appropriate notion of ``bisimulation.''] 1996 Academic Press, Inc.

1. INTRODUCTION

A characteristic feature of higher-order functional
languages such as Standard ML (Milner et al., 1990) or
Haskell (Hudak et al., 1991) is the facilities they provide for
``user-declared'' recursive datatypes. However, this powerful
feature comes at a price: because few syntactic restrictions
are placed upon the form of a datatype declaration, in
general it can be hard to understand what the values of
such a datatype denote, and correspondingly hard to reason
about the observable behaviour under evaluation of
expressions involving such datatypes. One way round this
problem is to consider only restricted forms of datatype
declaration, for example just those giving rise to inductively
defined sets of finitely constructible data values (lists, trees,
etc.), for which there are well understood reasoning techni-
ques such as the principle of structural induction. This is too
restrictive since it cuts out ``lazy'' datatypes (containing par-
tial and potentially infinite data values), which are an
important functional programming tool and unavoidable
by design in non-strict languages such as Haskell. Whilst

properties of lazy datatypes have been considered on a case-
by-case basis (see Thompson, 1989, for example), there are
remarkably few reasoning principles in the literature that
apply uniformly to all recursive datatypes including ones
whose definitions contain negative occurrences of the
declared type. This paper attempts to improve this situa-
tion by studying properties of (abstract) relations on the
recursively defined domains that arise in the denotational
semantics of such datatypes.

The key idea which is explored in this paper, and which
goes back at least to (Milne, 1973; Plotkin, 1973; Reynolds
1974), is to take account of the fact that various domain
constructors can be extended to corresponding constructors
for relations on domains. Traditionally one considers only
certain kinds of relation on domains��ones that are suf-
ficiently complete, or ``admissible.'' This is appropriate for
various inductive properties of domains; but as (Pitts, 1992)
shows, one should go beyond this to arbitrary set-theoretic
relations in order to capture fully the co-inductive proper-
ties of recursively defined domains. In fact we need
remarkably few properties of a general notion of ``relation''
in order to establish our main results. These properties can
be conveniently axiomatized using a framework adapted
from the work of O'Hearn and Tennent (1993) on applying
Reynolds' notion of relational parametricity to the seman-
tics of local-variable declarations. Accordingly, results in
this paper about relational properties of recursively defined
domains are parameterized by the particular notion of
``relation'' being used and by the particular way domain
constructors act on these relations.

A preliminary version of the results in this paper
appeared in the extended abstract (Pitts, 1993). I would like
to thank one of the referees, whose comments helped to
improve the exposition of this paper.

2. OVERVIEW

The purpose of this section is not just to provide the busy
reader with some understanding of what is in this paper
without having to read the rest of it. As well as summarising
the main results and applications, it attempts to highlight
the key ideas and techniques used, which might otherwise

article no. 0052

660890-5401�96 �18.00

Copyright � 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

* Revised version of Cambridge Univ. Computer Laboratory Tech.
Report No. 321.

- Research supported by UK SERC Grant GR�G53279 and EC ESPRIT
Basic Research Project CLICS-II.

File: 643J 256802 . By:MB . Date:06:08:96 . Time:18:01 LOP8M. V8.0. Page 01:01
Codes: 6514 Signs: 5260 . Length: 56 pic 0 pts, 236 mm

get obscured by the detailed development of the subsequent
sections. Throughout this section let

:=8(:) (1)

be a fixed domain equation. Here 8 is some domain con-
structor involving some of the standard constructions on
domains that are used in the denotational semantics of
deterministic programming languages (such as various
kinds of product, sum and function space, lifting, etc.) and
which are reviewed at the beginning of Section 3.

Techniques

Minimal Invariant Property of rec : .8(:). That a
domain equation (1) has a solution at all, i.e. that there is a
domain D isomorphic to 8(D), was Scott's remarkable dis-
covery of the late 1960s which initiated domain theory as a
subject. However, the fact is that in general there may be
many non-isomorphic solutions to (1) and usually one is
interested in a particular solution that is minimal in a
suitable sense and which we will denote by rec : .8(:).
Although there are several ways to express this minimality
property, we shall see in this paper that an extremely simple,
but nonetheless convenient way is in terms of the so-called
minimal invariant property of rec : .8(:). This states that
the identity function on D=

def rec : .8(:) is the least fixed
point of the continuous operator on the domain of strict
continuous functions, D wb D, mapping e to

$8 (e) =
def

(D$8(D) ww�8(e) 8(D)$D),

where e [8(e) is a (continuous) action of the domain con-
structor on strict continuous endofunctions that can be
defined according to the structure of 8. Of course the least
fixed point of $8 can be calculated as the least upper bound
of =, $8(=), $2

8 (=), So the minimal invariant property
amounts to the fact that there is a uniform expression
for elements d # D as least upper bounds of chains of
``projected'' elements

d= '
n<|

?n(d), where {?0(d)=
def

=

?n+1(d)=
def $8 (?n)(d).

See Section 3 for more details. Of course the minimal
invariant property has to be proved by examining the
detailed construction of rec : .8(:) (and was known since
Scott's first work on solving domain equations); see
Theorem 3.3. But once established, a remarkable number of
properties of recursively defined domains follow from it in
an elementary fashion. The relational properties presented
in this paper are an illustration of this, since they derive
directly from the minimal invariant property. In Exam-
ple 3.6, we give another illustration��a pleasingly simple

proof, due to Plotkin (private communication), that the
Curry fixed point combinator coincides with the least fixed
point operator in the canonical domain model of the lazy
lambda calculus studied in (Abramsky, 1990; Abramsky
and Ong, 1993).

Separation of Positive and Negative Occurrences of
Variables. This is a key aspect of Freyd's recent work on
recursive types via his notion of ``algebraic compactness''
(Freyd, 1991, 1992). Let 8� (:&, :+) denote the result of
replacing all positive occurrences of : in 8 by a new variable
:+, and replacing all negative occurrences by a different
variable :&. An occurrence of : in 8 is positive (respec-
tively, negative) if it is hereditarily to the left of an even
(respectively, odd) number of function space constructors.
For example, if 8(:)=(: � :)= , then 8� (:&, :+)=
(:& � :+)= . The original domain constructor can be
recovered by diagonalization: 8(:)=8� (:, :). However,
8� (:&, :+) has better functoriality properties than 8(:).
For example, the action of 8 on strict continuous endo-
functions used in the definition of the minimal invariant
property can now be seen as the diagonalization of a con-
tinuous, binary action mapping (e&, e+) # (E & wb D&)_
(D+ wb E +) to 8� (e&, e+) # (8� (D&, D+) wb 8� (E&, E +)),
which preserves identity functions and composition (con-
travariantly in the left-hand argument and covariantly in
the right-hand one). This elaboration of domain construc-
tors as functors of mixed variance enables Freyd to establish
a very powerful mixed initial-algebra�final-coalgebra
property of rec : .8(:) (Theorem 3.4), which amongst other
things shows that a minimal invariant for 8(:) is unique
up to isomorphism. In this paper not only do we make
use of Freyd's initial-algebra�final-coalgebra property of
rec : .8(:), but also we apply the separation of variables
trick at the level of actions of domain constructors on
relations.

Action of Domain Constructions on Relations. As men-
tioned in the Introduction, the key technique used in this
paper is to take account of the fact that for various notions
of relation, the various domain constructors can be
extended to act on relations on domains. This observation
is developed at length in Section 4 and applied in Sections 5
and 6. Here we wish to emphasise two general points.

First, by taking a fairly abstract view of what constitutes
a ``relation'' we can deduce a variety of results from a few
theorems about invariant relations in general. Thus for the
induction principle for rec : .8(:) (Theorem 6.5) we need to
consider admissible (i.e., chain-complete and bottom-
containing) subsets of a domain D as relations; for the
co-induction principle (Theorem 6.12) we need to consider
arbitrary subsets of D_D as relations on D; and for the
computational adequacy result of Section 5 we need to
consider a notion of relation on D that mixes syntax and
semantics.

67RELATIONAL PROPERTIES OF DOMAINS

File: 643J 256803 . By:MB . Date:06:08:96 . Time:18:01 LOP8M. V8.0. Page 01:01
Codes: 6746 Signs: 5279 . Length: 56 pic 0 pts, 236 mm

Secondly, even for a fixed notion of relation it may be that
a given domain constructor can usefully be considered
to have more than one kind of action on relations. For
example, consider the continuous function space construc-
tion 8� (:&, :+)=(:& � :+). For fixed n, taking a relation
on a domain D to mean a subset of the n-fold product Dn,
it is natural to consider an action of 8� on relations defined
by:

(R&, R+) [[(f1 , ..., fn) # (D& � D+)n |

\(d1 , ..., dn) # R&.(f1(d1), ..., fn(dn)) # R+].

This action is characteristic of many uses of ``logical rela-
tions'' and (in the case n=2) is the one used in our general
co-induction principle. However, for the induction principle
we consider the n=1 case of a simpler action that throws
away R&:

(R&, R+) [[(f1 , ..., fn) # (D& � D+)n |

\(d1 , ..., dn) # (D&)n . (f1(d1), ..., fn(dn)) # R+].

Results

Invariant Relations. The main technical results of the
paper concern the existence (Theorem 4.16) and properties
(Corollary 4.10) of certain recursively specified relations on
recursively defined domains. For the purposes of this Over-
view, it will simplify matters slightly if we suppose that
D=rec : .8(:) is a (minimal) solution of (1) up to equality
rather than just up to isomorphism, i.e., that D=8(D).
(This is always possible, using Scott's ``information
systems''; see Winskel and Larsen (1984).) For various
notions of relation, the construction D [8(D) on domains
extends to a corresponding action on relations, sending a
relation R on a domain D to a relation 8(R) on the domain
8(D). When D=

def rec : .8(:)=8(rec : .8(:)), it makes
sense to ask whether there is an invariant relation 2 on
rec : .8(:), i.e., one satisfying 2=8(2). For particular
choices of the notion of relation, these invariant relations lie
at the heart of some proofs of correspondence between
denotational and operational semantics (as in (Plotkin,
1985), or (Meyer and Cosmodakis, 1988, Appendix), for
example), or between two denotational semantics (as in
(Reynolds, 1974) for example). The existence of such an
invariant relation 2 for (1) is not straightforward in the case
that 8(:) contains negative occurrences of :. For then
R [8(R) is not a monotone operator on relations; so even
though the collection of relations on rec : .8(:) may form a
complete lattice, we cannot simply appeal to the Tarski�
Knaster fixed point theorem to construct 2.

The various constructions of particular invariant rela-
tions that occur in the literature rely upon the quite heavy
technical machinery used to establish the existence of solu-
tions to (1) in the first place. By contrast, we get by here

with quite elementary tools: the minimal invariant property
of rec : .8(:) mentioned above, the Tarski�Knaster fixed
point theorem, and Scott's principle of induction for least
fixed points of continuous endofunctions of a domain. To be
in a position to apply Scott induction, we first have to
develop a suitable notion of admissibility within our general
framework for relations, generalising the usual definition of
admissible subset of a domain as a chain-closed subset con-
taining the least element. Typically, a particular notion of
relation will have the properties that the admissible rela-
tions on a domain D form a complete lattice Radm(D) (for
a suitable notion of inclusion between relations) and that
the action R [8(R) of 8 preserves admissibility. More
precisely, 8� (R&, R+) should be admissible whenever R+ is,
where 8� (:&, :+) is the constructor obtained from 8 by
separating positive and negative occurrences of :. Although
R [8(R) need not be monotone, by construction
(R&, R+) [8� (R&, R+) is order-reversing in its left-hand
argument and order-preserving in its left-hand one. Thus

(R&, R+) [(8� (R+, R&), 8� (R&, R+)) (2)

is a monotone operator on the complete lattice
Radm(D)op_Radm(D) and hence has a least (pre)fixed point,
(2&, 2+) say. It then suffices to prove that 2&=2+, for
then this relation will be the required invariant relation for
the the diagonalization, 8, of 8� . That 2+ is contained in
2& follows immediately from the symmetry properties of
the operator (2). For the reverse containment, we exploit
the minimal invariant property of D. One checks that if
e # (D wb D) maps 2& into 2+, then so does $8(e). The
admissibility of 2+ means that the collection of such maps
e is a chain-closed subset of D wb D containing bottom,
and hence by Scott induction this collection also contains
the least fixed point of $8 , which is idD . Thus the identity
function maps 2& into 2+, which is just to say that 2& is
contained in 2+, as required. This, in outline, is the proof of
the existence theorem (4.16) for invariant relations.

Computational Adequacy. Section 5 illustrates the appli-
cation of invariant relations to proofs of correspondence
between operation and denotational semantics of a pro-
gramming language. We consider a simple, but non-trivial
fragment of Standard ML (Milner, Tofte and Harper, 1990)
containing a datatype declaration

datatype ty=In1 of _1 | } } } | Inn of _n , (3)

where the types _1 , ..., _n are built up from basic types
(booleans, integers, characters, etc.) and the type variable
ty, using any combination of the product (V) and function
space (�) constructors. Using standard techniques of
denotational semantics, each type _ can be modelled by a

68 ANDREW M. PITTS

File: 643J 256804 . By:MB . Date:06:08:96 . Time:18:01 LOP8M. V8.0. Page 01:01
Codes: 6804 Signs: 5988 . Length: 56 pic 0 pts, 236 mm

domain �_�, with �ty�=rec : .8(:) for a suitable choice of
8; and then each (closed) expression e of the language can
be assigned a denotation as an element �e� of the domain
�_�, where _ is the type of e. The denotational semantics
induces a notion of equivalence between expression (of
equal type), via equality �e�=�e$� of denotations.

Our example language, being equivalent to a fragment of
Standard ML, comes equipped with an operational seman-
tics via the definition in (Milner et al., 1990). This deter-
mines a notion of contextual equivalence between language
expressions (of equal type): two expressions are con-
textually equivalent if occurrences of one can be inter-
changed with occurrences of the other in any expression
without affecting the observable results of expression
evaluation. A denotational semantics of the language is
computationally adequate if the equality of the denotations
of any two expressions implies their contextual equivalence.
Thus a computationally adequate denotational semantics
provides a sound method for establishing instances of con-
textual equivalence. It is notoriously difficult to devise
denotational semantics for which equality of denotations
actually coincides with contextual equivalence��this is the
so-called ``full abstraction'' problem for the language.
However, it is well-known that the standard, domain-
theoretic semantics of the language is indeed computa-
tionally adequate. The proof of this reduces to showing that
any closed expression e, of type _ say, evaluates to a value
(rather than diverging) if its denotation �e� is not equal to
the least element of the domain �_�. Following Plotkin
(1985), this property can be deduced from the existence of
a certain ``logical'' relation between language expressions
and domain elements. The presence in the language of
recursive types ty imposes requirements on the logical rela-
tion that make proving its existence a non-trivial task. We
show in Section 5 that for a suitable choice of notion of rela-
tion and of action of domain constructors on relations,
these requirements are just those of an invariant relation, so
that the computational adequacy of the denotational
semantics of the language can be derived from our general
existence theorem (4.16) for invariant relations.

Induction and Co-induction. Although an invariant rela-
tion 2 for 8 is defined simply as some fixed point of a cer-
tain operator induced by 8, it is in fact the unique fixed
point. This follows from the fact that Freyd's mixed initial-
algebra�final-coalgebra property of rec : .8(:) (Theorem 3.4)
induces a corresponding universal property of 2 (Proposi-
tion 4.9).

Now many notions of relation possess distinguished
``identity'' relations at each domain that are admissible and
that are preserved by the action of domain constructors.
(Definition 6.1 gives our abstract requirements for such
identity relations.) In such cases the identity relation is
necessarily a fixed point of the operator defining 2 and

hence by the uniqueness property, the invariant relation on
a recursively defined domain is just this identity relation. In
this situation, the universal property of 2 gives rise to a rule
of inference of mixed inductive�co-inductive character.
Section 6 demonstrates that by varying the notion of rela-
tion and the choice of action of the domain constructors on
relations, this rule gives rise to induction and co-induction
principles for a wide class of recursively defined domains.

The induction principle (Theorem 6.5) coincides with
structural induction when the recursively defined domain is
the lift of an inductively defined set. More generally, if the
recursively defined domain is given by a type constructor in
which the defined type only occurs positively, then the
induction property coincides with an initial algebra induc-
tion principle in the sense of Lehmann and Smyth (1981). In
particular it includes the induction principle for the fixed
point object of the lifting monad, studied by Crole and Pitts
(1992). Scott's principle of induction for admissible proper-
ties of least fixed points of continuous functions is a conse-
quence of this case. We show that the induction property
can yield a non-trivial proof principle even for problematic
recursively defined domains, such as those that model
untyped lambda calculus; see Example 6.8.

The co-induction principle (Theorem 6.12) is the one
which the author established in (Pitts, 1992). It takes the
form of an extensionality property: two elements d, d $ of
a recursively defined domain satisfy d C= d $ (respectively
d=d $) if and only if there is a ``simulation'' (respectively a
``bisimulation'') relating them. In contrast to the induction
principle, the co-induction principle deals with arbitrary
(binary) relations rather than just admissible ones. The
proof of it that we give here as a corollary of the general
theory developed in Section 4 is simpler than that given in
(Pitts, 1992). However, the method of loc. cit. can deal with
recursively defined domains involving powerdomain con-
structors, whereas there are difficulties with defining the
action on relations of such constructors needed for the
theory developed here; see Remark 6.14.

Parameterized Domain Equations. For simplicity of
exposition, most of the theory developed in this paper
applies to domains recursively defined by a single equation
(1). The extension of the theory to simultaneous domain
equations is straightforward. However, the important case
of domain equations with free parameters (needed to treat
domain constructors that are themselves recursively
defined) introduces some extra complications in connection
with the technique of separating positive and negative
occurrences. This extension is considered briefly in the final
section of the paper.

3. MINIMAL SOLUTIONS OF DOMAIN EQUATIONS

This section reviews as much of the theory of recursively
defined domains as we need. We draw upon the category-

69RELATIONAL PROPERTIES OF DOMAINS

File: 643J 256805 . By:MB . Date:06:08:96 . Time:18:01 LOP8M. V8.0. Page 01:01
Codes: 6742 Signs: 4390 . Length: 56 pic 0 pts, 236 mm

theoretic approach of Smyth and Plotkin (1982), revised in
the light of the recent work of Freyd on ``algebraically com-
pact'' categories (Freyd, 1991, 1992).

We use the term cpo to mean a partially ordered set pos-
sessing least upper bounds of all countable chains, but not
necessarily possessing a least element. A pointed cpo, or
cppo for short, is a cpo D that does possess a least element,
denoted =D (or just =). Let Cpo= denote the category
whose objects are cppos and whose morphisms are
monotone functions that are both continuous (preserve
least upper bounds of countable chains) and strict (preserve
the least element). We will use the notation f : D b� E to
indicate that f is such a function between cppos. Our
domain theoretic terminology generally follows that of the
survey article of Gunter and Scott (1990). To fix notation
we recall the following standard constructions on cpos and
cppos.

Definition 3.1. (i) Lifting and ``unlifting.'' Recall that
each cpo X gives rise to a cppo

X= =def X _ [=]

called its lift, by adjoining an element = � X and extending
the partial order by making = least.

If D is a cppo, we denote by Da the cpo obtained by
removing the least element of D. Thus

Da =def [x # D | x{=D].

(ii) Discrete cpos and flat cppos. Each set X gives rise
to a discrete cpo via the partial order: x C=X x$ if and only if
x=x$. The flat cppos are the lifts of discrete cpos.

(iii) Cartesian and smash products. The cartesian
product of two cpos X and Y is the cpo with underlying set

X_Y =def [(x, y) | x # X and y # Y]

partially ordered componentwise: (x, y) C=X_Y (x$, y$) if
and only if x C=X x$ and y C=Y y$. Clearly X_Y is pointed
when X and Y are, with least element (=X , =Y). The smash
product of two cppos D and E is the cppo

D�E =def (Da_Ea)=.

(iv) Disjoint union and coalesced sum. The disjoint
union of finitely many cpos X1 ..., Xn is the cpo with under-
lying set

X1 _+ } } } _+ Xn =def [ini (x) | i=1, ..., n 7 x # Xi],

where x [ini (x) (i=1, ..., n) are injective functions with
disjoint images. The partial order on X _+ } } } _+ Xn is:

z C=X1 _+ } } } _+ Xn z$ if and only if z=in i (x) and z$=ini (x$) for
some i and x, x$ # Xi with x C=Xi x$.

The coalesced sum of cppos D1 , ..., Dn is the cppo

D1 � } } } �Dn =def ((D1)a _+ } } } _+ (Dn)a)=.

The insertion functions ini : (Di)a � (D1)a _+ } } } _+ (Dn)a

extend to injective, strict continuous functions Di b�
D1 � } } } �Dn which we also denote by ini .

(v) Function spaces. If X and Y are cpos, their con-
tinuous function space is the cpo X � Y with underlying set
all continuous functions from X to Y, partially ordered
pointwise from Y: f C=X � Y f $ if and only if for all x # X,
f (x) C=Y f $(x). Clearly if Y is pointed then so is X � Y, with
least element the constant function *x # X .=Y .

The strict continuous function space of two cppos D and E
is the cppo whose underlying set is

D wb E =def [f # (D � E) | f (=D)==E]

and whose partial order and least element are inherited
from those of D � E.

As is well known, these constructions on cppos are
functorial for strict continuous functions. Thus lifting deter-
mines a functor Cpo= � Cpo=, the cartesian and smash
products and the binary coalesced sum determine functors
Cpo=_Cpo= � Cpo=, and the strict and non-strict con-
tinuous function spaces determine functors Cpoop

= _Cpo=

� Cpo=. Moreover, all these functors are locally con-
tinuous, in the sense that their action on morphisms
preserves least upper bounds of countable chains.

Consider a domain equation of the form

:=8(:), (4)

where 8 is a formal expression built up from the variable :
and constants ranging over cppos, using the constructors
(&)= , _, �, �, �, and wb A solution to (4) is specified
by a cppo D together with an isomorphism D$8(D). Here
8(D) denotes the cppo that results from interpreting the
variable : as the cppo D in 8. The seminal work of Scott,
Plotkin and several others shows that such solutions always
exist: there is the category-theoretic construction in terms of
the colimit of a chain of embedding-projection pairs which
was Scott$s original method and whose full ramifications are
presented in (Smyth and Plotkin, 1982); there is the set-
theoretic construction in terms of Scott$s notion of ``infor-
mation system'' (Scott, 1982; Winskel and Larsen, 1984),
which has the advantage of yielding solutions up to equality
rather than just up to isomorphism; and there is the related
approach using least fixed points of continuous operators
on universal domains, described in (Gunter and Scott,
1990).

70 ANDREW M. PITTS

File: 643J 256806 . By:MB . Date:06:08:96 . Time:18:01 LOP8M. V8.0. Page 01:01
Codes: 6690 Signs: 5209 . Length: 56 pic 0 pts, 236 mm

These various constructions serve not only to prove the
existence of some solution to a domain equation, but in fact
produce a solution that is minimal, in a sense which we
review in this section. The minimality property is important
for at least two reasons. First, such minimal solutions to
domain equations turn out to be unique up to isomorphism.
Thus all the methods mentioned above construct essentially
the same cppo, which we will write as rec : .8(:) and refer
to as the cppo recursively defined by (4). Secondly, such min-
imal solutions are needed to ensure denotational semantics
of programming language expressions are computationally
adequate (in the technical sense described in the survey
(Meyer and Cosmodakis, 1988)) for their operational
behaviour. We give a concrete example of this in Section 5.

In order to express a minimality condition on solutions of
(4), one needs some notion of comparison between cppos that
is preserved by the action of the constructor 8. The more
liberal the notion of comparison, the stronger will be the
minimality property. In view of the functoriality of the relevant
constructors noted above, one might hope to compare two
cppos via the morphisms between them in the category Cpo= .
The problem is that because of the function space constructors,
8(:) may well contain both positive and negative occurrences
of the variable :. (Recall that an occurrence of : in 8 is
negative if one passes through an odd number of left-hand
branches of (strict or non-strict) function space constructors
between the occurrence and the root of the parse tree; the
occurrence is positive otherwise.) If 8 only contains positive
occurrences of :, then it determines a covariant locally
continuous functor 8(&): Cpo= � Cpo= . If it only contains
negative occurrences, then it determines a contravariant
locally continuous functor, 8(&): Cpoop

= � Cpo=. However,
in the general case the assignment D [8(D) may not be the
object part of either a co- or a contravariant functor on Cpo=.
The traditional way round this problem is to restrict the class
of morphism that can act as valid ``comparisons'' between
cppos. For example by using embeddings, which come with
associated projections in the reverse direction, one achieves
functoriality by using the embedding part at positive occurren-
ces of : and the projection part at negative ones.

Instead of complicating the notion of comparison, one
can elaborate the constructor 8(:) by separating out the
two types of occurrence of :. Let 8� (:&, :+) denote the
result of replacing all positive occurrences of : in 8 by a new
variable :+, and replacing all negative occurrences by a dif-
ferent variable :&. Since the occurrences of :+ (respectively
:&) in 8� are all positive (respectively negative), it is now
possible to build up, by induction on the structure of 8, a
locally continuous functor

8� (&, +): Cpoop
= _Cpo= � Cpo= .

For example, when 8 is 81 wb 82 , then the action of 8�
on objects sends a pair of cppos (D, E) to the cppo

8� 1(E, D) wb 8� 2(D, E), and sends a pair of strict continuous
functions (f : D$ b�D, g: E b� E$) to the strict continuous
function 8� 1(g, f) wb 8� 2(f, g): 8� (D, E) b� 8� (D$, E$) given
by

*h # 8� (D, E) .8� 2(f, g) b h b 8� 1(g, f).

Note that the original construction on cppos, D [8(D),
can be recaptured by diagonalizing 8� , since clearly
8� (D, D)=8(D). So the study of solutions to domain equa-
tions (4) can be subsumed in the study of invariant objects
for locally continuous functors F : Cpoop

= _Cpo= � Cpo=,
where by an invariant object for F we mean a cppo D
equipped with an isomorphism i: F(D, D)$D.

Definition 3.2. Let F: Cpoop
= _Cpo= � Cpo= be a

locally continuous functor. An invariant i : F(D, D)$D is
minimal if the least fixed point fix($) of the continuous func-
tion $: (D wb D) � (D wb D) given by $(e)=iF(e, e) i &1 is
the identity function idD : D b� D.

Theorem 3.3 (Existence of Minimal Invariants). Any
locally continuous functor F: Cpoop

= _Cpo= � Cpo= pos-
sesses a minimal invariant.

Proof. The existence of a minimal invariant for a locally
continuous functor follows from Scott's original construc-
tion of recursively defined domains via colimits of chains of
embedding-projection pairs, combined with the charac-
terization of such colimits given by Smyth and Plotkin
(1982, Theorem 2). For completeness, we review the details.

Recall that an embedding between cppos is a continuous
function f : D � E for which there exists a continuous func-
tion f %: E � D satisfying idD= f %f and ff % C= idE . Note that
f % is uniquely determined by these conditions; it is called the
projection corresponding to the embedding f. Note that
embeddings and projections are necessarily strict functions,
so that we can apply F to them. Since F is locally continuous
it is in particular locally monotone and hence F(f %, f):
F(D, D) � F(E, E) is an embedding, with corresponding
projection F(f, f %). The one-element cppo <==[=] is
initial for embeddings: for each cppo E, there is a unique
embedding to it from <= , given by the least element of
<= � E, i.e., the constant function with value =. So starting
from <= and iterating F(&, +) we can build up an |-chain
of embeddings;

D0 w�
i0 D1 w�

i1 D2 w�
i2 } } } (5)

where

{D0=<=

Dn+1=F(Dn , Dn)
and {i0==<= � D1

in+1=F(in% , in).

71RELATIONAL PROPERTIES OF DOMAINS

File: 643J 256807 . By:MB . Date:06:08:96 . Time:18:02 LOP8M. V8.0. Page 01:01
Codes: 6385 Signs: 3544 . Length: 56 pic 0 pts, 236 mm

Let D be the cppo with underlying set

D =def {x # `
n<|

Dn | xn=in%(xn+1), all n<|=
partially ordered componentwise. This is the limit in Cpo=

of the |op-chain (i n% | n<|). The projection functions
x # D [xn # Dn are indeed the projection parts of embed-
dings jn : Dn � D, where for all y # Dn and all m<|

(jn(y))m =def {
i%m, n(y)
y
in, m(y)

if m<n
if m=n
if m>n.

and where the embedding im, n : Dm � Dn (m<n) is the com-
position in&1 } } } im . The morphisms (jn | n<|) form a
colimit for the |-chain (5) in the category of cppos and
embeddings. (Indeed, they form a colimit in the category of
cpos and continuous functions.) The limit property of
(j n% | n<|) and the colimit property of (jn | n<|) in fact
follow from some simple order-theoretic properties, namely,

jn+1 in=jn , idDn=j n% jn , idD= '
n<|

jn j n%.

Since these properties are preserved under the application of
F(&, +), the embeddings F(j n% , jn): F(Dn , Dn) � F(D, D)
form a colimit for the |-chain

F(D0 , D0) ww
F(i0% , i0)

F(D1 , D1) ww�
F(i0% , i0)

F(D2 , D2) ww�
F(i 2% , i2)

} } } .

Since this is just the chain (Dn | n�1) whose colimit is
again D, there is an isomorphism i: F(D, D)$D with
iF(j n% , jn)=jn+1 for all n<|. Since i is an isomorphism,
i%=i &1. Recall from above that for any embedding f,
F(f %, f)%=F(f, f %). Combining these facts, we have

jn+1 j %n+1=(iF(j n% , jn))(iF(j n% , jn))%

=iF(j n% , jn) F(jn , j n%) i&1

=iF(jn j n% , jn jn%) i&1.

Since j0 j 0%==, it follows by induction on n that
jn j n%=$n(=), where $ is the function defined in Defini-
tion 3.2. Thus idD=�n<| jn j n%=�n<| $ n(=)=fix($).
Therefore i : F(D, D)$D is indeed a minimal invariant
for F. K

The concept of minimal invariant given by Freyd (1991)
is apparently stronger than that given in Definition 3.2, in

that he requires idD to be the unique fixed point of $.
However, for locally continuous functors this strengthening
is a corollary of the following result, which provides a very
useful ``universal property'' for recursively defined domains.

Theorem 3.4 (Freyd). Let F, D and i be as in Defini-
tion 3.2. For each pair of cppos A, B and each pair of strict
continuous functions

f : A b� F(B, A) g: F(A, B) b� B

there are unique strict continuous functions h : A b� D and
k: D b� B making the following squares of strict continuous
functions commute:

D ww�i&1

F(D, D) F(D, D) ww�i D

h F(k, h)
F(h, k) k (6)

A ww�
f

F(B, A) F(A, B) ww�
g

B.

The mapping (f, g) [(h, k) determines a continuous func-
tion

(A wb F(B, A))_(F(A, B) wb B) � (A wb D)_(D wb B).

Proof. Since we are considering locally continuous
functors rather than arbitrary ones as in (Freyd, 1991), we
can give a more elementary proof than that in loc. cit.,
simply relying upon the uniformity property enjoyed by
least fixed points of continuous functions. This property is
often called ``Plotkin's axiom'' for least fixed points and
states that

if f :D b� E is a strict continuous function between
cppos, and d :D � D and e:E � E are continuous
functions satisfying e b f=f b d, then fix(e)=
f (fix(d)).

The property can be established via a simple fixed point
induction: see (Gunter and Scott, 1990, Theorem 2.3).

Turning to the proof of the theorem, consider the func-
tion ,: (A wb D)_(D wb B) � (A wb D)_(D wb B) given
by ,(h, k)=(iF(k, h) f, gF(h, k) i &1). This is a continuous
function because F is locally continuous; taking its least
fixed point yields a pair of strict continuous functions (h, k)
with the required property. To see that this is the only
such pair, suppose (h$, k$) is another and consider the
function =: (D wb D) � (A wb D)_(D wb B) defined by
=(e)=(eh$, k$e). Clearly = is continuous, and it is strict
because k$ is strict; moreover the assumption that h$ and k$
satisfy (6) together with the functoriality of F imply that the

72 ANDREW M. PITTS

File: 643J 256808 . By:MB . Date:06:08:96 . Time:18:02 LOP8M. V8.0. Page 01:01
Codes: 6521 Signs: 4566 . Length: 56 pic 0 pts, 236 mm

following diagram commutes, where $ was defined in
Definition 3.2:

(D wb D) ww�= (A wb D)_(D wb B)

$,

(D wb D) ww�
=

(A wb D)_(D wb B).

Since the above square commutes and = is strict, we can
apply the uniformity property of least fixed points to con-
clude that fix(,)== b fix($). But by minimality of D,
fix($)=idD wb D . Hence (h, k)=

def fix(,)== (id)=(h$, k$), as
required.

The last sentence of the theorem follows from the con-
tinuity of the least fixed point operator, since the function
referred to is

(f, g) . fix((h, k) . (iF(k, h) f, gF(h, k) i &1)). K

Remark 3.5. One can paraphrase the above theorem in
more categorical terms: if D is a minimal invariant, then the
object (D, D) of Cpoop

= _Cpo= is simultaneously an initial
algebra and a final coalgebra for the endofunctor (F(+, &),
F(&, +)): Cpoop

= _Cpo= � Cpoop
= _Cpo= (the structure

isomorphism for the initial algebra being (i &1, i) and for the
final coalgebra being its inverse). This coincidence of initial
algebra with final coalgebra is the concept of free algebra of
an endofunctor that lies at the heart of Freyd's categorical
analysis of recursive types. While it is true that all the
ingredients of the proofs of Theorems 3.3 and 3.4 have been
present for some time��they can certainly be found in
(Smyth and Plotkin, 1982)��Freyd has abstracted from
them what appears to be a very powerful property. Note
also that since initial algebras (and final coalgebras) are
unique up to isomorphism by virtue of the ``universal
property'' they enjoy, we have in particular that any two
minimal invariants for F are isomorphic.

When F is the locally continuous functor 8� (&, +):
Cpoop

= _Cpo= � Cpo= obtained by separating positive and
negative occurrences of : in a domain constructor 8(:) as
in (4), then the minimal invariant of F constructed in the
proof of Theorem 3.3 is precisely the recursively defined
cppo rec : .8(:) constructed via Scott's method as a co-
limit of embeddings. The minimal invariant property of
Definition 3.2 provides a very powerful tool for reasoning
about rec : .8(:) without having to delve into the details of
its construction. The relational properties presented in this
paper are an illustration of this, since they derive directly
from the minimal invariant property. Here is another
illustration��a pleasingly simple proof that the Curry fixed
point combinator coincides with the least fixed point
operator in a certain domain model of the untyped lambda

calculus. The argument is due to Plotkin (private com-
munication) and should be compared with the proofs of
similar results in (Barendregt, 1984, Exercise 18.4.20) and
(Winskel, 1993, Section 13.10.2).

Example 3.6. Let D be rec : . (: � :)= , the canonical
domain model of the lazy lambda calculus studied in
(Abramsky, 1990; Abramsky and Ong, 1993). Thus D is the
minimal invariant of the locally continuous functor

((&) � (+))= : Cpoop
= _Cpo= � Cpo=

and comes equipped with an isomorphism i: (D � D)=$D.
In this case the minimal invariant property says that idD is
the least fixed point of the function mapping e # (D wb D)
to $(e) # (D wb D), where for each x # D

$(e)(x) =def {i(e b f b e)
=

if i&1(x)= f # (D � D)
if i&1(x)==.

Let x, y [x } y denote the application function on D:
when x==, then x } y==; and when x{=, then
x } y= f (y) where f # (D � D) is the unique element such
that x=i(f). For each f # (D � D) the Curry fixed point of
f is given by Yf=2f } 2f # D, where

2f =def i(*x # D . f (x } x)).

We wish to prove that Yf= fix(f), the least fixed point of f.
Certainly fix(f) C= Yf , since Yf is a fixed point of f. So it

suffices to show that Yf C= fix(f). Consider the subset of
D wb D given by

E =def [e | e C= idD 7 e(2f) } 2f C= fix(f)].

We have to show that idD , i.e., fix($), lies in E. Note that E
is chain-complete and contains =. So by fixed point induc-
tion it suffices to show that $ maps E into itself. This is a
straightforward calculation using the definitions of $ and
2f , together with the fact that elements of E satisfy e C= idD .

4. RELATIONAL STRUCTURES

One would like reasoning principles for recursively
defined domains that apply to as wide a class of properties
of domains as possible. For this reason we will employ a
rather general axiomatic framework for relations on
domains. The framework is surprisingly simple��remarkably
few properties of a general notion of ``relation'' are needed to
establish quite powerful results. Accordingly there is a diver-
sity of examples which fit into this framework. The structure
for relations we use is based on that used by O'Hearn and
Tennent (1993) in their work on applying relational
parametricity to the study of local-variable declarations. To

73RELATIONAL PROPERTIES OF DOMAINS

File: 643J 256809 . By:MB . Date:06:08:96 . Time:18:02 LOP8M. V8.0. Page 01:01
Codes: 6395 Signs: 5149 . Length: 56 pic 0 pts, 236 mm

it we add a treatment of the crucial property of relations
that in LCF (Gordon et al., 1979) is called admissibility
(meaning ``admitting induction'').

Definition 4.1. A relational structure, R, on a category
C is specified by the following data:

v For each C-object D, a set R(D) (of ``R-relations
on D'').

v For each C-morphism f : D � E, a binary relation
between elements R # R(D) and elements S # R(E), written
f : R/R S (or just f : R/S). These binary relations are
required to satisfy the following properties:

(a) idD : R/R, for all R # R(D);

(b) if f and g are composable, f : R/S and g: S/T,
then gf : R/T.

This notion of relational structure is weaker than that
employed by O'Hearn and Tennent (1993, Sect. 2) in that
we do not require R to possess distinguished ``identity'' rela-
tions ID # R(D) satisfying f : ID/IE , for any f : D � E. This
level of generality is needed for the application to proofs
of computational adequacy that we give in Section 5.
However, identity relations will play a key role in formulat-
ing the induction and coinduction principles considered in
Section 6. For all these applications we only need to con-
sider ``unary'' relational structures, whereas O'Hearn and
Tennent need binary ones in order to use Reynolds' notion
of relational parametricity (Reynolds, 1983). In general, an
n-ary relational structure would be specified by sets
R(D1 , ..., Dn) for each n-tuple of objects, and by relations
f1 , ..., fn : R/S (where fi : Di � Ei , for i=1, ..., n), satisfying
analogues of conditions (a) and (b).

As will be seen from the examples of relational structures
given below, the assertion ``f : R/S '' abstracts the notion of
a function mapping related elements to related elements.
Making this the fundamental notion contrasts with the
usual axiomatic approach to predicates in categorical logic
where, beginning with Lawvere's work on ``hyperdoctrines''
(Lawvere, 1970), the notion of the inverse image of a
predicate along a map is fundamental. There are close
connections between the two notions (see Remark 4.15).
The principle reason for starting with relational structures
rather than hyperdoctrines is that we will be concerned with
actions of functors on relations that do preserve the
``f : R/S '' relationship, but do not preserve the operation of
taking inverse images of relations. Similarly, the notion of
composition of (binary) relations is fundamental to much
work on categories of relations (see Freyd and Scedrov,
1990, for example), but plays little role here because it is not
preserved by the functors we need to consider.

Here are some examples of relational structures on the
category Cpo= of cppos and strict continuous functions that
will be relevant to this paper.

Example 4.2. (i) ``Strict '' relations. Fix a natural
number n�1. For each cppo D let R(D) consist of all sub-
sets of the n-fold smash product D� } } } �D containing =.
The relation f : R/S is defined to hold if and only if for all
u # R, (f � } } } � f)(u) # S. We will use this example, for the
case n=1, to derive an induction principle for recursively
defined domains in Section 6.

(ii) ``Non-strict'' relations. Fix a natural number n�1,
and for each cppo D let R(D) consist of all subsets of the
n-fold product D_} } }_D. The relation f : R/S is defined
to hold if and only if for all u # R, (f_} } }_ f)(u) # S. We
will use this example, for the case n=2, to derive a co-induc-
tion principle for recursively defined domains in Section 6.

(iii) Let I be a set. In Section 5 we will make use of a
relational structure R that is the I-fold power of the n=1
case of example (i). This can be described more explicitly as
follows. For each cppo D let R(D) consist of all subsets of
D a _I. (Recall that D a =D"[=].) The relation f : R/S is
defined to hold if and only if for all (d, i) # R, if f (d){=

then (f (d), i) # S.

Given a relational structure R on a category C, the binary
relation / on each set R(D) defined by

R/R$ � idD : R/R$

is a preorder (by virtue of properties (a) and (b) in the
definition). We say that R is normal if these preorders are all
partial orders, i.e., if R/R$ and R$/R imply R=R$. The
examples of relational structures above are all normal.
Moreover, an arbitrary relational structure can be turned
into an equivalent normal one by quotienting by the equiv-
alence relation associated with the preorders /. From now
on we will assume that all relational structures we deal with
are normal.

Definition 4.3. Let R be a relational structure on
Cpo=. An R-relation R # R(D) is called admissible if for all
other R-relations S # R(E) the subset

[S, R] =def [f | f : S/R]

of the strict function space cppo E wb D contains = and is
closed under taking least upper bounds of countable chains.
We let Radm(D) denote the subset of admissible R-relations
on D.

Remark 4.4. Although we have defined admissibility in
terms of the concrete structure of cppos, the definition can
in fact be phrased purely in terms of the monoidal closed
structure (1= , �, wb) on the category Cpo=. (See
MacLane, 1971, Chap. VII, for an introduction to this
categorical notion.) Here 1= is the lift of a one-element set:
it is a unit for the smash product operation on cppos. Using
the adjunction between (&)�E and E wb (&), morphisms

74 ANDREW M. PITTS

File: 643J 256810 . By:MB . Date:06:08:96 . Time:18:02 LOP8M. V8.0. Page 01:01
Codes: 6659 Signs: 4722 . Length: 56 pic 0 pts, 236 mm

1= b� (E wb D) correspond naturally to morphisms
E$(1= �E) b� D. Then R # R(D) is admissible if and
only if for each S # R(E) there is a morphism m: [S, R] b�
(E wb D) with the property that composition with m
induces a bijection between morphisms 1= b� [S, R] and
morphisms f : E b� D for which f : S/R holds. (Such an m
is necessarily a monomorphism, hence determines a sub-
cppo of (E wb D)��namely the one given in Definition 4.3.)

Example 4.5. When R is the relational structure of
Example 4.2(i), R # R(D) is admissible if and only if the sub-
set R�D� } } } �D is chain-complete. Since R contains =

by definition of R, this condition is easily seen to be suf-
ficient. To see that it is also necessary, suppose that
(xm | m<|) is a countable chain in R and that x is its
least upper bound in D� } } } �D. For each m<|, let
fm : n= wb D be the strict continuous function mapping each
j # n=[0, 1, ..., n&1] to the j th component of xm . Taking S
to be [(0, 1, ..., n&1), =] # R(n=), note that fm : S/R. The
functions fm form a countable chain whose least upper
bound f is the strict continuous function mapping each j # n
to the j th component of x. Since R is admissible, we have
f : S/R, and hence x # R, as required.

A similar argument shows that for Example 4.2(ii)
R # R(D) is admissible if and only if it is a chain-complete
subset of D_} } }_D containing (=, ..., =). For Exam-
ple 4.2(iii), R # R(D) is admissible if and only if for each
i # I, [d | (d, i) # R] is a chain-complete subset of D a .

Given a particular relational structure R on Cpo=, we are
interested in lifting functorial constructions on cppos to
constructions on R-relations. The basic requirement is that
the construction on R-relations respects the relation
&: &/R &. However, in some important examples such
actions may be subject to certain admissibility conditions.
The following definition sums up exactly what we require
of a general, mixed variance functor on Cpo=,
F : (Cpoop

=)m_(Cpo=)n � Cpo= (m, n�0). Note that by
taking one or other of m and n to be 0, this includes the
case of functors that are purely covariant or purely con-
travariant.

Definition 4.6. Let R be a relational structure on
Cpo= and let

F : (Cpoop
=)m_(Cpo=)n � Cpo=

be a functor (where m, n�0). An admissible action of F on
R-relations is an operation mapping tuples of R-relations
R # >m

i=1 R(Di) and S # >n
j=1 R(Ej) to an R-relation

F(R, S) # R(F(D1 , ..., Dm , E1 , ..., En)), satisfying:

(i) if each Sj is admissible then so is F(R, S), for any R;

(ii) if fi : Ri$/Ri and gj : Sj /Sj$ with each Sj$ admissible,
then

F(f1 , ..., fm , g1 , ..., gn): F(R, S)/F(R$, S$).

Example 4.7. Examples of admissible actions will be
given in Sections 5 and 6. In many cases condition (ii) of the
definition holds without the admissibility restriction on Sj$.
One example where it is needed occurs when we derive the
co-induction principle introduced in (Pitts, 1994) by mak-
ing use of actions of the familiar domain constructors on
binary relations on cppos. The relational structure involved
is the n=2 case of Example 4.2(ii): R-relations on a cppo D
are subsets of D_D, and f : R/S holds if f_ f maps R
into S. The action of the function space constructors
�, wb : Cpoop

= _Cpo= � Cpo= on R-relations that will be
needed is an ``intensional'' one (relating two functions if
they give related results on any argument) rather than an
``extensional'' one (relating two functions if they map related
arguments to related results). In particular the action of
wb on R�D_D and S�E_E is the subset of
(D wb E)_(D wb E) defined by

R wb S =def [(f1 , f2) | \x # D(x{= O (f1(x), f2(x)) # S)].

Given f : R$/R and g: S/S$, in general one does not have
f wb g: (R wb S)/(R$ wb S$), but this does hold if
(=, =) # S$. We noted above that for this relational struc-
ture, S # R(D) is admissible if and only if it is chain-com-
plete and contains (=, =). So the mapping R, S [R wb S
does indeed satisfy conditions (i) and (ii) of the definition.

Note that this action is different from the one which arises
in connection with ``logical relations'', where one defines

R wb S =def [(f1 , f2) | \(x1 , x2) # R . (f1(x1), f2(x2)) # S].

This illustrates the fact that a domain constructor may have
several different actions on the same relational structure.

The following definition contains the key notion of this
paper.

Definition 4.8 (Invariant R-Relations). Let R be a
relational structure on Cpo=. Let F : Cpoop

= _Cpo= � Cpo=

be a locally continuous functor equipped with an admissible
action on R-relations and let i: F(D, D)$D be the
minimal invariant for F whose existence is guaranteed by
Theorem 3.3. An invariant R-relation for F is an admis-
sible R-relation 2 on D satisfying i &1: 2/F(2, 2) and
i: F(2, 2)/2.

Proposition 4.9. Let R, F, (D, i) and 2 be as in the
above definition. For any f : A b� F(B, A), g: F(A, B) b� B,
R # R(A), and S # Radm(B), if

f : R/F(S, R) and g: F(R, S)/S

then

h: R/2 and k: 2/S,

75RELATIONAL PROPERTIES OF DOMAINS

File: 643J 256811 . By:MB . Date:06:08:96 . Time:18:02 LOP8M. V8.0. Page 01:01
Codes: 6165 Signs: 3656 . Length: 56 pic 0 pts, 236 mm

where h: A b� D and k: D b� B are the strict continuous
functions determined by f and g as in Theorem 3.4.

Proof. For any (u, v) # (A wb D)_(D wb B), if u: R/2
and v: 2/S, then since 2 and S are admissible, we have

F(v, u): F(S, R)/F(2, 2) and F(u, v): F(2, 2)/F(R, S)

and hence

iF(v, u) f : R/2 and gF(u, v) i &1: 2/S.

Thus the function ,=*(u, v) . (iF(v, u) f, gF(u, v) i &1) maps
the set

[R, 2]_[2, S]=[(h, k) | h : R/2 7 k: 2/S]

into itself. Since 2 and S are admissible R-relations, this is
a chain-complete subset of (A wb D)_(D wb B) containing
=. Hence by fixed point induction, fix(,) # [R, 2]_[2, S].
But from the proof of Theorem 3.4 we have that
fix(,)=(h, k). Hence h: R/2 and k: 2/S, as required. K

Corollary 4.10. The invariant R-relation 2 satisfies
the following rule for all R&, R+ # R(D):

i &1: R&/F(R+, R&) i: F(R&, R+)/R+

R&/2/R+

(R+ admissible). (7)

In particular, 2 is unique if it exists.

Proof. Take A=B=D, f =i&1, g=i, R=R&, and
S=R+ in the proposition. In this case h=k=idD , since
idD satisfies the commutative squares (6) that determine
(h, k) uniquely. So the conclusion of the proposition is
idD :R&/2 and idD :2/R+, as required. If 2$ is another
invariant R-relation, we can apply (7) with R&=R+=2$
to conclude that 2$/2 and 2/2$ and hence that 2$=2
(since we are assuming that R is normal). K

What is the significance of this notion of invariant R-rela-
tion? We will see in the next section that the existence of
such a relation lies at the heart of proofs of ``computational
adequacy'' for denotational semantics involving recursively
defined domains. Then in Section 6 we will see that the
property of 2 given in the above corollary gives rise to
various reasoning principles for recursively defined domains,
including a general form of induction for admissible proper-
ties and the co-induction principle introduced in (Pitts,
1994).

Remark 4.11. Proposition 4.9 can be viewed as a result
about Freyd's notion of ``free algebra'' (cf. Remark 3.5.).
First note that each relational structure R on Cpo= gives
rise to a new (cpo enriched) category Cpo=[R] of cppos

equipped with admissible R-relations. The objects are pairs,
written [D | R], where D is a cppo and R # Radm(D);
morphisms from [D | R] to [E | S] are morphisms
f : D b� E in Cpo= for which f : R/S holds; composi-
tion and identities are those of Cpo=. Clearly there is a
forgetful functor U: Cpo=[R] � Cpo= which is faithful.
If F: Cpoop

= _Cpo= � Cpo= has an admissible action on
R-relations, it lifts to a functor F� whose action on objects is
given by

F� ([D | R], [E | S]) =def [F(D, E) | F(R, S)]

and which makes the following diagram commute:

Cpo=[R]op_Cpo=[R] ww�F� Cpo=[R]
U_U U

Cpoop
= _Cpo= F�

Cpo= .

Then Proposition 4.9 implies that [D | 2] is simultane-
ously an initial algebra and a final coalgebra for the
functor (F� (+,&), F� (&, +)): Cpo=[R]op_Cpo=[R] �
Cpo=[R]op_Cpo=[R].

We will show that invariant R-relations exist when the
relational structure R has certain completeness properties,
summed up by the following definition.

Definition 4.12. Let R be a relational structure on a
category C.

(i) R has inverse images if for all f : D � E and
S # R(E), there is an R-relation f *S on D satisfying

g : R/ f *S � fg: R/S

for all g and R.

(ii) R has intersections if for all S�R(E), there is an
R-relation � S on E satisfying

g : R/, S � \S # S(g: R/S)

for all g and R.

Note that f &1S and � S are determined by the above
properties uniquely (up to equivalence in general, and up to
equality in normal relational structures).

Example 4.13. All the relational structures of Exam-
ple 4.2 have inverse images and intersections. In example (i),
f *S=[u # D� } } } �D | (f� } } } � f)(u) # S]; in example
(ii) f *S=[u # D_} } }_D | (f_ } } } _f)(u) # S]; and in
example (iii) f *S=[(d, i) | (f (d), i) # S]. In each case � S
is given by set-theoretic intersection.

76 ANDREW M. PITTS

wwwww�

File: 643J 256812 . By:MB . Date:06:08:96 . Time:18:02 LOP8M. V8.0. Page 01:01
Codes: 6389 Signs: 4093 . Length: 56 pic 0 pts, 236 mm

The following consequences of the definition are easily
established.

Lemma 4.14. Let R be a (normal) relational structure
on Cpo= possessing inverse images and intersections. Each
inverse image operator f * is a monotone function, and taking
inverse images is contravariantly functorial in the sense that
idD*=idR(D) and (fg)*=g*f *. Each R(D) is a complete lat-
tice under the / ordering, with meets given by intersections.
Admissible R-relations are closed under taking intersections
and inverse images.

Remark 4.15. From the lemma, we have that any nor-
mal relational structure on C with inverse images deter-
mines a ``C-indexed poset,'' i.e., a functor R(&): Cop �
Poset, where Poset is the category of posets and monotone
functions. (The action of R(&) on morphisms is defined by
R(f)=f *.) In fact, any C-indexed poset arises in this way:
given R(&): Cop � Poset, the corresponding relational
structure has relations given by the elements of the posets
R(D) and f : R/S is defined to hold if and only if
R/R(f)(S), where / denotes the partial order on R(D).

Theorem 4.16 (Existence of Invariant Relations). Let
R be a relational structure on Cpo= possessing inverse images
and intersections . Let F : Cpoop

= _Cpo= � Cpo= be a locally
continuous functor equipped with an admissible action on
R-relations. Let i: F(D, D)$D be the minimal invariant for
F (whose existence is guaranteed by Theorem 3.3). Then the
invariant R-relation for F exists.

Proof. Using inverse images, the existence of an
invariant R-relation reduces to the solution of a fixed point
equation on the poset R(D). For using the facts about
inverse images stated in Lemma 4.14, it is not hard to see
that 2 is the invariant R-relation for F if and only if it is a
fixed point of the function ,: Radm(D) � Radm(D) defined by

,(R) =def (i &1)* F(R, R).

Since R has intersections (and admissible R-relations are
closed under them), Radm(D) is a complete lattice. However,
we cannot immediately appeal to the Tarski�Knaster fixed
point theorem to find an element satisfying 2=,(2),
because , is not necessarily a monotone function��since the
action of F(&, +) on admissible relations is order reversing
in its left-hand argument. Instead we apply the technique
of separating positive and negative arguments. For R&,
R+ # Radm(D), define

�(R&, R+) =def (i &1)* F(R&, R+).

If idD : S &/R& and idD : R+/S+ with S + admissible,
then the admissible action of F yields

idF(D, D)=F(idD , idD): F(R&, R+)/F(S &, S +)

and hence �(R&, R+)/�(S &, S+). Thus � determines a
monotone function Radm(D)op_Radm(D) � Radm(D). Note
that , can be obtained from � by diagonalizing. Thus to
construct the invariant R-relation it suffices to find 2
satisfying 2=�(2, 2).

``Symmetrizing'' �, we obtain a monotone operator

�9 : Radm(D)op_Radm(D) � Radm(D)op_Radm(D)

on the complete lattice Radm(D)op_Radm(D) defined by

�9(R&, R+) =def (�(R+, R&), �(R&, R+)).

Now we can apply the Tarski�Knaster fixed point
theorem to obtain the least (pre)fixed point of �9, which we
will denote by (2&, 2+). Thus 2& and 2+ are admissible
R-relations on D satisfying

2&=�(2+, 2&) 7 �(2&, 2+)=2+ (8)

\R&, R+ # Radm(D).

(R&/�(R+, R&)

7 �(R&, R+)/R+) O (R&/2& 7 2+/R+). (9)

In view of (8), to complete the proof it suffices to show
that 2&=2+, i.e., that 2+/2& and 2&/2+. The first
of these follows immediately, since by (8) we can take
R&=2+ and R+=2& in (9) to conclude that 2+/2&.
So it just remains to prove that 2&/2+, i.e., that idD lies
in the set

[2&, 2+]=[e | e: 2&/2+].

Since 2+ is admissible, this is a is chain-complete subset of
D wb D containing =. By the minimal invariant property of
D and fixed point induction, it suffices to check that
[2&, 2+] is closed under the function $: (D wb D) �
(D wb D) whose least fixed point is idD . But if e: 2&/2+,
then the admissible action of F yields F(e, e): F(2+, 2&)/
F(2&, 2+). On the other hand property (8) implies
i &1: 2&/F(2+, 2&) and i: F(2&, 2+)/2+. Hence if
e: 2&/2+, then

$(e) =def iF(e, e) i &1: 2&/2+,

as required. K

5. COMPUTATIONAL ADEQUACY

A denotational semantics of a programming language is
said to be computationally adequate for an operationally
defined notion of program equivalence provided any two

77RELATIONAL PROPERTIES OF DOMAINS

File: 643J 256813 . By:MB . Date:06:08:96 . Time:18:02 LOP8M. V8.0. Page 01:01
Codes: 6364 Signs: 3730 . Length: 56 pic 0 pts, 236 mm

programs are equivalent whenever the programs have equal
denotations. The study of this property has its origin in the
work of Wadsworth (1976), Milne (1973), and Plotkin
(1977). Plotkin (1985) reduces the proof of adequacy for a
recursively typed functional language to showing the exist-
ence of a relation of ``formal approximation'' between
domain elements and programs satisfying certain proper-
ties. One can see these properties as specifying the relation
of formal approximation as the fixed point of a certain
operator on relations. Unfortunately this operator is not
monotonic, so that extablishing that it has a fixed point is
non-trivial. In general, this difficulty with non-monotonicity
occurs when the denotational semantics of the program-
ming language requires the use of recursively defined
domains rec : .8(:) for which : occurs negatively in 8(:).
Traditionally one has to delve into the detailed construction
of the recursively defined domain to establish the existence
of the formal approximation relation. In fact, we will see
that for a suitable choice of relational structure R, the
requirements on the formal approximation relation are just
those of the invariant R-relation of Definition 4.8, and one
can simply apply Theorem 4.16 to deduce its existence.

We will illustrate this method of proving computational
adequacy using a programming language equivalent to a
small, but non-trivial fragment of Standard ML (Milner et
al., 1990) containing a single recursive datatype declaration:

datatype ty=In1 of _1 | } } } | Inn of _n . (10)

The types _1 , ..., _n are built up from the ground types unit
(one-element type), bool (booleans), int (integers), and
the single type identifier ty, using any combination of the
product (V) and function space (�) constructors. The
expressions of the language are given by

e : :=x identifiers

| () unit value

| true | false booleans

| if e then e else e conditional

| n
�

numerals

| op(e, e) operations

on int and bool
| In i (e) datatype value

| case e of

[In1(x) O e | } } } | Inn(x) O e] case expression

| (e, e) pairing

| fst(e) | snd(e) product projections

| *x :_ .e function abstraction

| ee function application

| letrec fx=e :_ in fe recursive functions.

We only consider well-typed expressions: if x1 , ..., xm are
distinct identifiers and {1 , ..., {m are types, then the typing
assertion

x1 :{1 , ..., xm :{m |&e :_ (11)

``if for i=1, ..., m the identifier xi has type {i , then
the expression e has type _ (and has its free iden-
tifiers contained in the set [x1 , ..., xm])''

can be defined inductively in the usual way. For example the
rules for datatype values and case expressions are

1 |&e :_i

1 |&In i (e) : ty

1 |&e : ty 1, x1 :_1 |&e1 :_ } } } 1, xn :_n |&en :_
1 |&case e of [In1(x1) O e1 | } } } | Inn(xn) O en] :_

where the types _1 , ..., _n are those occurring in the fixed
declaration (10). The rule for recursive function declara-
tions is:

1, f : _$ � _, x$:_$ |&e :_ 1 |&e$:_$
1 |&letrec fx$=e :_ in fe$:_

.

We omit the other type assignment rules. (See Gunter, 1992,
Tables 2.1, 3.1 and 4.1 for example.)

Let Expr_ denote the collection of closed expressions of
type _, i.e., the expressions e for which the typing assertion
< |&e :_ holds. Let Can_ denotes the subset of Expr_ con-
sisting of the expressions in canonical form. These are given
by

c : :=() | true | false | n
�

| In i (c) | (c, c) | *x :_ .e.

The operational semantics of the programming language
can be given via a type-indexed family of evaluation relations

e -_ c (e # Expr_ , c # Can_).

These relations are inductively defined by the rules in
Table 1, which follow the dynamic semantics of the corre-
sponding Standard ML expressions, as specified in (Milner
et al., 1990).

Turning now to the denotational semantics of this
language, for each type _, let F_(&, +): Cpoop

= _Cpo= �
Cpo= be the locally continuous functor defined by

Funit (&, +) =def 1=

Fbool (&, +) =def 2=

Finit (&, +) =def
Z=

78 ANDREW M. PITTS

File: 643J 256814 . By:SD . Date:03:07:96 . Time:09:45 LOP8M. V8.0. Page 01:01
Codes: 2929 Signs: 1184 . Length: 56 pic 0 pts, 236 mm

TABLE 1

Rules for expression evaluation

Fty(&, +) =def (+)

F_ V _$(&, +) =def F_(&, +)�F_$ (&, +)

F_ � _$(&, +) =def (F_(+, &) wb F_$ (&, +))= .

Here 1= , 2= , and Z= are the cppos obtained by lifting the
discrete cpos 1=[0], 2=[0, 1], and Z=[..., &1, 0, 1, ...].
Let F(&, +): Cpoop

= _Cpo= � Cpo= be the locally con-
tinuous functor

F(&, +) =def F_1
(&, +)� } } } �F_n(&, +)

and let D be its minimal invariant, with associated
isomorphism i :F(D, D)$D. Then we can define the denota-
tion �_� of the type _ to be

�_� =def F_(D, D).

In particular, i is an isomorphism from �_1� � } } } � �_n�

to �ty�.

Each closed expression e # Expr_ can be given a denota-
tion �e� which is an element of the cppo �_�. More
generally, an open expression e for which the typing asser-
tion (11) holds determines a strict continuous function

�e� : �{1� � } } } � �{m� b� �_�

or, equivalently, a continuous function �{1�a_} } }_�{m� a

� �_�. These functions are defined by induction on the
structure of e using the corresponding domain-theoretic
operations. For example, for each d9 =(d1 , ..., dm) # �{1� a

} } }�{m�a one defines

�Ini (e)�(d9) =def (i b ini b �e�)(d9)

�case e of[} } } | In i (xi) O ei | } } }]�(d9) =def
�ei�(d9 , d)

where

i&1(�e�(d9))=ini (d), for some i=1, ..., n and d # �_i�a

79RELATIONAL PROPERTIES OF DOMAINS

File: 643J 256815 . By:MB . Date:06:08:96 . Time:18:02 LOP8M. V8.0. Page 01:01
Codes: 7613 Signs: 3652 . Length: 56 pic 0 pts, 236 mm

where ini : �_i� b� �_1� � } } } � �_n� is the insertion func-
tion associated with the coalesced sum, as in Defini-
tion 3.1(iv). The clauses of the definition of �e� are all quite
standard and we omit them. (See Winskel, 1993, Sect. 13.3,
for example.)

Similarly, for each context C[&{] of type _ say, con-
taining a ``hole'' of type {, one can define a continuous func-
tion �C[&{]� : �{� � �_� by induction on the structure of
C[&{]. Here we take a context C to be an extended expres-
sion containing instances of the place-holder &{ , and which
becomes a closed expression C[e] # Expr_ whenever a
closed expression e # Expr{ is substituted for the place-
holder. (We are simplyfying matters by only considering the
notion of context, and contextual equivalence, for closed
expressions.)

We wish to show that the denotational semantics is ade-
quate for establishing that two expressions have the same
observable behaviour under evaluation in all contexts. We
will use a notion of observation based upon the form of a
canonical expression of arbitrary type. The relation

c#_ c$ (c, c$ # Can_)

of ``having the same form'' is inductively defined by

()#unit () true#booltrue false#bool false n
�
#int n

�
c#_i c$

Ini (c)#ty Ini (c$)
c1#_ c2 c$1#_$ c$2

(c1 , c$1)#_ V _$ (c2 , c$2)

*x :_ .e#_ � _$ *x$:_ .e$.

Given e1 , e2 # Expr{ , let us write e1 �{ e2 to mean that for
all contexts C[&{] of type _ (any _), and all c1 # Can_ :

C[e1] -_ c1 O _c2 # Can_(C[e2] -_ c2 7 c1#_ c2).

Then we say that e1 and e2 are contextually equivalent, and
write e1r{ e2 , if both e1 �{ e2 and e2 �{ e1 hold. (For
this particular language, with its strict function application,
the notion of contextual equivalence remains unchanged if
in the definition we restrict contexts to be of type bool, or if
we merely observe convergence.)

Proposition 5.1. (Computational Adequacy). For all
types { and all e1 , e2 # Expr{ , if �e1�=�e2� then e1r{ e2 .

This proposition can be deduced easily from the following
properties of the denotational semantics:

�C[e]�=�C[&]�(�e�) (12)

\c # Can_(�c�{=) (13)

\c1 , c2 # Can_(�c1�=�c2� O c1#_ c2) (14)

\e # Expr_ , c # Can_(e -_ c O �e�=�c�) (15)

\e # Expr_(�e�{= O _c # Can_ .e -_c). (16)

Suppose �e1�=�e2�. If C[e1] -_ c1 , then using (12), (15),
and (13) one has

�C[e2]�=�C[&{]�(�e2�)

=�C[&{]�(�e1�)=�C[e1]�=�c1�{=

so that by (16) there is some c2 such that C[e2] -_ c2 , and
hence also with �c1�=�c2� (by (15) again); then c1#_ c2

by (14). Thus e1 �{ e2 ; and e2 �{ e1 holds by a sym-
metrical argument. Therefore (12)�(16) do indeed imply
Proposition 5.1.

Now (12) is the basic property of compositionality of the
denotational semantics and can be established from its
definition by induction on the structure of C[&]. Proper-
ties (13) and (14) are simple to prove by induction on the
structure of the canonical form c. Property (15) is often
called the soundness of the denotational semantics with
respect to the operational semanitcs and can be proved by
checking that the relation �e�=�c� is closed under the
rules in Table 1 defining the evaluation relation.

So it only remains to prove (16). Adapting the method in
(Plotkin, 1985), this can be done by constructing a type-
indexed family of ``formal approximation'' relations

I_��_� a_Can_

with the following properties:

\c # Can_([d | d I_ c] is chain-complete) (17)

d Iunit () � d=0 (18)

d Ibool false � d=0
(19)

d Ibool true � d=1

d Iint n
�

� d=n (20)

d Ity In i (c) � _di # �_i�a (d=(i b ini)(di) 7 di I_i c) (21)

(d, d $) I_ V _$ (c, c$) � (d I_ c 7 d $ I_$ c$) (22)

f I_�_$ *x:_.e � \d, c(d I_ c O f (d)(I_$)= e[c�x]) (23)

Where the auxiliary relation (I_)=��_�_Expr_ is defined
from I_ by

d(I_)= e � (d{= O _c(e -_ c 7 d I_ c)). (24)

Suppose for the moment that such a family of relations
I_ exists. For any valid typing assertion (11), properties

(17)�(23) imply that

d1 I{1
c1 7 } } } 7 dm I{m cm O �e�(d9)(I_)= e[c� �x�]. (25)

80 ANDREW M. PITTS

File: 643J 256816 . By:MB . Date:06:08:96 . Time:18:02 LOP8M. V8.0. Page 01:01
Codes: 7131 Signs: 4723 . Length: 56 pic 0 pts, 236 mm

The proof of this proceeds by induction on the derivation of
the typing assertion. (The induction step in the case when e
is letrec fx=e$:_ in fe" requires fixed point induction,
relying upon the fact that each [d | d(I_)= e] is chain-
complete and contains =, by (17) and (24).)

The m=0 case of (25) implies that for any closed expres-
sion e # Expr_ we have �e�(I_)= e. Hence if �e�{=, (24)
implies that e -_ c for some c. Thus (16) and hence also
Proposition 5.1 do indeed follow from the existence of rela-
tions I_ satisfying (17)�(23).

The existence of such relations is not straightforward.
Because of clause (21), one cannot simply define I_ by
induction on the structure of _. And one cannot use the
right-to-left implications in (17)�(23) as the clauses of a
simulatneous inductive definition of the relations I_ , since
the clause corresponding to (23) contains a negative
occurrence of the relation being defined.

In the literature, two methods can be found for constructing
relations on recursively defined domains with such non-
monotonic fixed point properties. One method, due to Milne,
Plotkin, and Reynolds makes use of Scott's construction of a
recursively defined cppo as the colimit of a chain of embed-
dings D0 � D1 � } } } , where the cppo Dn is obtained by
iterating the domain constructor n times, starting with the
trivial cppo [=] (cf. the proof of Theorem 3.3). Then the
desired relation can be constructed as an intersection of
countably many relations defined by induction on n at the
same time as the Dn are defined; see (Reynolds, 1974). A
second method, essentially due to Martin-Lo� f, applies only
to Scott domains (precluding the use of constructors like the
Plotkin powerdomain) since it makes use of their presenta-
tion in terms of ``information systems'' (Scott, 1982). This
method hinges upon the fact that each [d | d(I_)=e] is
in fact a Scott-closed subset of �_�. Hence it suffices to
construct the relations I_ only for compact elements of
�_�, since d(I_)=e holds if and only if a(I_)= e holds for
all compact a with a C= d. Information systems provide a
formal language for compact elements of (recursively
defined) Scott domains, and a(I_)= e (a compact) can be
defined by a well-founded induction on the size of (a formal
representation of) a ; see (Winskel, 1993, Section 13.4).

Here we show that the existence of relations I_ satisfying
(17)�(23) follows directly from Theorem 4.16 by choosing
a suitable relational structure R on Cpo= and defining
admissible actions of the appropriate domain constructors.
This provides a new method of construction that is more
abstract than the above two, in that it relies upon the ``mini-
mal invariant'' property of the recursively defined cppo �ty�

rather than upon the techniques for giving concrete con-
structions of recursively defined domains.

Let R be the relational structure of Example 4.2(iii) with
the set I equal to

Can =def [c :_ | c # Can_]

the set of all canonical forms, tagged with their types. Thus
for each cppo D, R(D) consists of all subsets of Da_Can ;
and the relation f : R/S holds if and only if

\(d, c :_) # R(f (d){= O (f (d), c :_) # S).

From Example 4.5 we have that R # R(D) is admissible if
and only if for each _ and each c # Can_ , [d | (d, c :_) # R]
is a chain-complete subset of Da .

The locally continuous functors F_ and F used above to
give the denotation of types can be endowed with admissible
actions on R-relations. Given any D, E, R # R(D) and
S # R(E), we define F_(R, S) # R(F_(D, E)) by induction
on the structure of _ as follows:

Funit(R, S)=[(0, () :unit)] (26)

Fbool (R, S)=[(0, false :bool), (1, true :bool)] (27)

Finit (R, S)=[(n, n
�
: int) | n # Z] (28)

Fty (R, S)=S (29)

F_ V _$ (R, S)=[((d, d $), (c, c$) :_ V _$) | (d, c :_)

F_(R, S) 7 (d $, c$:_$) # F_$ (R, S)] (30)

F_ � _$ (R, S)=[(f, *x :_ .e : _ � _$) |

\(d, c :_) # F_(S, R)(f (d){= O

c$ # Can$ e[c�x] -_$ c$ 7

(f (d), c$:_$) # F_$ (R, S))]. (31)

Then the action of the functor F=F_1
� } } } �F_n is defined

by:

F(R, S)=[(ini (d), In i (c) : ty) | i=1, ..., n

7 (d, c :_i) # F_i (R, S)].

It is not hard to verify (by induction on the structure
of _) that these definitions satisfy the requirements
of Definition 4.6 for admissible actions of functors
Cpoop

= _Cpo= � Cpo= . (The determinacy of the evaluation
relation -_ is needed at the induction step for a function
type when proving that F_(R, S) is admissible when S is.)

Recall that by definition, �ty� is the minimal invariant
cppo for the functor F. We noted in Example 4.13 that R
has inverse images and intersections. So we can apply
Theorem 4.16 to deduce that F possesses an invariant
R-relation 2 # R(�ty�). For each type _ define

I_ =def [(d, c) | (d, c :_) # F_(2, 2)].

We claim that this is the family of ``formal approxima-
tion'' relations required in the proof of computational ade-
quacy. Since �_�=F_(D, D), it is certainly the case that I_

81RELATIONAL PROPERTIES OF DOMAINS

File: 643J 256817 . By:MB . Date:06:08:96 . Time:18:02 LOP8M. V8.0. Page 01:01
Codes: 5993 Signs: 4196 . Length: 56 pic 0 pts, 236 mm

is a subset of �_�a_Can_ . Since 2 is admissible by defini-
tion and because the action of each F_ on R-relations
satisfies clause (i) of Definition 4.6, I_ satisfies property
(17). Properties (18)�(20), (22), and (23) follow imme-
diately from the corresponding clauses (26)�(28), (30), and
(31) of the definition of the action of the functors F_

on R-relations. Finally, property (21) also follows from
the corresponding clause (29) together with the defining
property of the invariant R-relation 2, namely that
i :F(2, 2)/2 and i&1: 2/F(2, 2).

Remark 5.2. It should be clear how to extend the proof
of computational adequacy we have given here to the case
of simultaneous recursive datatype declarations. To treat the
case of local datatype declarations, one has to extend the
approach developed in Sections 3 and 4 to the case of
domain equations with extra parameters. This is considered
briefly in Section 7. Rather than the deducing adequacy
results from a general theory of relational properties, one
can also apply the key techniques in our proof on an ad hoc
basis. (Pitts, 1993a) illustrates this direct approach with
respect to a simple language based upon the untyped
lambda calculus with arithmetic operations.

6. INDUCTION AND CO-INDUCTION PRINCIPLES

Many kinds of relational structure on Cpo= possess dis-
tinguished ``identity'' relations. The following definition
axiomatizes the properties we require of such identity rela-
tions (cf. O'Hearn and Tennent, 1993, Section 2).

Definition 6.1. A unitary relational structure, R, on a
category C is a relational structure in the sense of Defini-
tion 4.1 together with a family of R-relations ID # R(D) (for
each C-object D) satisfying

f : ID/IE , for all f : D � E. (23)

We call ID the ``identity R-relation on D.''

Example 6.2. We can make the relational structure 4.2(i)
unitary by defining ID to be [(x, ..., x) | x{=] _ [=].
Example (ii) in 4.2 could be made unitary by defining ID to
be [(x1 , ..., xn) | x1 C= x2 C=} } }C= xn]. Another natural
candidate for the identity relation on D in this case would be
ID=[(x1 , ..., xn) | x1=x2= } } } =xn].

Condition (32) is not much of a constraint upon the
family (ID | D # C) and as the last example illustrates, there
may be several different ways to enrich a relational structure
with identity relations. However, we will be interested in
actions of functors on relations which preserve identity
relations and this further constrains matters.

Definition 6.3. Let R be a unitary relational structure
on Cpo= and let

F : (Cpoop
=)m_(Cpo=)n � Cpo=

be a functor (where m, n�0) equipped with an admissible
action on R-relations, as in Definition 4.6. We say that this
action is unitary provided for all cppos D1 , ..., Dm , E1 , ..., En

F(ID1
, ..., IDm , IE1

, ..., IEn)=IF(D1, ..., Dm , E1, ..., En). (33)

Let F: Cpoop
= _Cpo= � Cpo= be as in the above defini-

tion. Suppose also that F is locally continuous and hence
possesses a minimal invariant cppo D, with associated
isomorphism i : F(D, D)$D. Then from (32) and (33) we
have

i&1: ID/IF(D, D)=F(ID , ID)

i : F(ID , ID)=IF(D, D)/ID .

So provided ID is admissible, it has the defining properties
of the invariant R-relation (cf. Definition 4.8) and so
Corollary 4.10 holds with 2=ID . We have proved the
following result.

Proposition 6.4. Suppose R is a unitary relational
structure on Cpo= whose identity relations are admissible. Let
F : Cpoop

= _Cpo= � Cpo= be a locally continuous functor
equipped with a unitary admissible action on R-relations.
Then the minimal invariant cppo for F, i: F(D, D)$D,
satisfies the following rule for all R&, R+ # R(D):

i &1: R&/F(R+, R&) i : F(R&, R+)/R+

R&/ID/R+

(R+ admissible). (34)

We will show how this rule gives rise to families of induc-
tion and co-induction principles for recursively defined
cppos.

Induction

Let P be the relational structure on Cpo= of Exam-
ple 4.2(i) in case n=1, with identity relations given as in
Example 6.2. Thus for each cppo D, P(D) consists of all
subsets of D that contain =; the relation f : R/S holds just
in case f maps R into S ; and the identity P-relation ID is the
whole of D. From Example 4.5 we have that R # P(D) is
admissible if and only if it is a chain-complete subset of D
(containing =, as must any P-relation). Note in particular
that each identity relation is admissible.

82 ANDREW M. PITTS

File: 643J 256818 . By:MB . Date:06:08:96 . Time:18:02 LOP8M. V8.0. Page 01:01
Codes: 6499 Signs: 4145 . Length: 56 pic 0 pts, 236 mm

Theorem 6.5 (Induction Property of Minimal Invariant
cppos). Suppose F: Cpoop

= _Cpo= � Cpo= is a locally
continuous functor and let D be its minimal invariant cppo,
with associated isomorphism i: F(D, D)$D. With P as
above, suppose that F possesses a unitary admissible action on
P-relations satisfying for all R # P(D) that F(R, ID)
=IF(D, D) . Then D satisfies the following rule of induction for
any chain-complete subset R�D containing =.

\u # F(D, D)(u # F(ID , R) O i(u) # R)
\d # D .d # R

Proof. Since identity P-relations are admissible, we can
apply Proposition 6.4 to conclude that D satisfies rule (34).
Note that since ID is the whole of D, R&/ID holds for
any R&. So the first half of the conclusion of (34) tells us
nothing in this case. This suggests that we take R&=ID .
Then second half of the conclusion tells us that the subset
R+ is the whole of D. Moreover since by assumption
F(R&, ID)=IF(D, D) , the first half of the hypothesis on R&

and R+, namely that i &1: R&/F(R+, R&), is automati-
cally satisfied when R&=ID . So all in all, we have that in
case R&=ID , R+=R, (34) reduces to the desired induction
rule. K

We will show that this theorem applies to a wide range of
recursively defined cppos. For R # P(D) and S # P(E)
define R= # P(D=), R_S # P(D_E), R�S # P(D�E),
R�S # P(D�E), R � S # P(D � E), and R wb S #
P(D wb E), as follows:

R= =def R _ [=]

R_S =def [(d, e) | d # R 7 e # S]

R�S =def [(d, e) | ={d # R 7={e # S] _ [=]

R�S =def [in1(d) | ={d # R]

_ [in2(e) | ={y # S] _ [=]

R � S =def [f | \d # R . f (d) # S]

R wb S =def (R � S) & (D wb E).

Lemma 6.6. (i) If f : R/R$ and g : S/S$, then
f= : R=/S= , f_g: (R_S)/(R$_S$), f �g: (R�S)/
(R$�S$), f �g : (R�S)/(R$�S$), f � g: (R$ � S)/
(R � S$), and f wb g : (R$ wb S)/(R wb S$).

(ii) (ID)==ID=
, ID_IE=ID_E , ID �IE=ID�E ,

ID �IE=ID�E , ID � IE=ID � E , and ID wb IE=ID wb E .

(iii) Let 8(:) be a cppo-constructor built up from the
variable : and constants ranging over cppos, using (&)= , _,
�, �, �, and wb . Then the locally continuous functor
8� : Cpoop

= _Cpo= � Cpo= associated with 8 as in Section 3,
possesses an admissible action on P-relations. (For this rela-
tional structure, property (ii) of Definition 4.6 holds without
the restriction concerning admissibility.)

(iv) With 8 as in (iii), the action of 8� on P-relations
satisfies 8� (R, IE)=I8� (D, E) , for all R # P(D). In particular,
the action of 8� on P-relations is unitary.

Proof. Properties (i) and (ii) are easily verified, and then
(iii) follows from them by induction on the structure of 8;
in the inductive definition of R, S [8� (R, S), in case 8 is :
we take 8� (R, S)=S, and in case 8 is a constant K we take
8� (R, S)=IK . For (iv), first note that R � IE=ID � E and
R wb IE=ID wb E ; these facts together with (ii) gives the
desired result by induction on the structure of 8. K

Corollary 6.7. Let 8(:) be a cppo-constructor built up
from the variable : and constants K ranging over cppos, using
(&)= , _, �, �, �, and wb . Let D=rec : .8(:) be the
cppo recursively defined by :=8(:), with associated iso-
morphism i : 8(D)$D. Then D satisfies the following rule of
induction for any chain-complete subset R�D containing =

\u # 8(D)(u # 8(R) O i(u) # R)
\d # D .d # R

where 8(R)�8(D) is defined by induction on the structure
of 8 as follows, using the operations on subsets defined before
Lemma 6.6:

:(R) =def R

K(R) =def IK

8=(R) =def 8(R) _ [=]

(81 _82)(R) =def 81(R)_82(R)

(81 �82)(R) =def 81(R)�82(R)

(81 �82)(R) =def 81(R)�82(R)

(81 � 82)(R) =def I81(D) � 82(R)

(81 wb 82)(R) =def I81(D) wb 82(R).

Proof. Lemma 6.6 implies that Theorem 6.5 holds for
the functor F=8� , whose minimal invariant is D=
rec : .8(:). It is easy to verify that 8� (ID , R) is precisely the
subset 8(R) defined above. So we have the stated induction
rule for rec : .8(:). K

Example 6.8 (Lazy Lambda Calculus). Let 8(:)=
(: � :)= . In this case D=rec : .8(:) is the canonical
domain model of the lazy lambda calculus studied in
(Abramsky, 1990; Abramsky and Ong, 1993). In this case,
for each R # P(D), 8(R) is the subset of (D � D)= contain-
ing = and all elements of the form f where f # (D � D)
satisfies that f (d) # R for all d # D. Thus for each d # D,
i &1(d) # 8(R) if and only if \x # D(d } x # R) (where d } x is
the application defined in Example 3.6). Note that since i is
a bijection, i: 8(R)/R holds if and only if for all d # D,
i &1(d) # 8(R) implies d # R. So Corollary 6.7 yields the

83RELATIONAL PROPERTIES OF DOMAINS

File: 643J 256819 . By:MB . Date:06:08:96 . Time:18:02 LOP8M. V8.0. Page 01:01
Codes: 6320 Signs: 4678 . Length: 56 pic 0 pts, 236 mm

following induction principle for chain-complete, =-con-
taining subsets R�D of the canonical domain model of the
lazy lambda calculus:

\d(\x(d } x # R) O d # R)
\d(d # R)

This principle looks like a kind of (impredicative!)
``structural induction'' for D, in which a ``function'' d # D is
decomposed into its vector of values (d } x | x # D).

Example 6.9 (Fixpoint Induction). When 8(:)=:= ,
D=rec : .8(:) is the cpo

[0 C= 1 C= 2 C=} } }C= �].

This is a fixpoint object for the strong monad (&)= on the
category of cpos, in the sense of Crole and Pitts (1992). In
this case Corollary 6.7 is the induction principle which
motivated the one for fixpoint objects of strong monads in
general, studied in loc. cit. Scott's principle of induction for
admissible properties of least fixed points of continuous
functions is a formal consequence of this instance of the
theorem.

Example 6.10 (Structural Induction). Suppose 8(:) is
built up from : using only flat cppos, � , and � . Then
rec : .8(:) is also a flat cppo, i.e., is of the form X= for some
discrete cpo X. Indeed, X is the initial algebra for an
appropriate endofunctor on the category of sets and func-
tions��the functor being built up using the set operations of
cartesian product (corresponding to �) and disjoint union
(corresponding to �) according to the structure of 8. In
this case the induction principle of Corollary 6.7 is an
instance of the principle of initial algebra induction studied
by Lehmann and Smyth (19, Section 5.2). As is well known,
for various choices of such 8, X yields inductively defined
sets of numbers, lists, trees, etc., and initial algebra induc-
tion coincides with the corresponding principle of structural
induction.

Remark 6.11. Jensen (1981) also derives a family of
induction principles for recursively defined domains starting
from their minimal invariant property. Corollary 6.7 differs
from Jensen's induction property in a couple of respects.
First, although the proof of 6.7 ultimately depends on
properties of continuous endofunctions on the recursively
defined domain, the induction hypothesis is stated purely in
terms of subsets of the domain, whereas Jensen's principle in
general contains hypotheses still involving endofunctions.
Secondly, for the problematic case of a constructor 8(:)
involving negative occurrences of :, such as Example 6.8,
Jensen's principle can be vacuous (in the sense that the con-
clusion occurs as part of the induction hypothesis) when 6.7

is not. Nevertheless, 6.7 does not yield useful information
about rec : .8(:) in all cases. For example, when 8(:) is
: � K (with K some fixed cppo) then 8(R)=ID � K ; so the
hypothesis i: 8(R)/R is just i: ID � K /R, which is the
same as R=D, since i is an isomorphism. So the induction
principle is vacuous in this case.

Co-induction

Let S be the relational structure on Cpo= of Exam-
ple 4.2(ii) in case n=2. Thus for each cppo D, S(D) con-
sists of all subsets of D_D; and the relation f : R/S holds
if and only if for all (d1 , d2) # R, (f (d1), f (d2)) # S. Endow S
with identity relations as in Example 6.2: thus ID is the par-
tial order relation C=D . From Example 4.5 we have that
R # S(D) is admissible if and only if it is a chain-complete
subset of D_D containing (=, =). Note in particular that
each ID is admissible.

Theorem 6.12 (Co-induction Property of Minimal
Invariant cppos). Suppose F: Cpoop

= _Cpo= � Cpo= is a
locally continuous functor and let D be its minimal invariant
cppo, with associated isomorphism i: F(D, D)$D. With S as
above, suppose that F possesses a unitary admissible action on
S-relations satisfying for all R # S(D) that F(R, ID)=
IF(D, D) . Call R�D_D an F-simulation if it satisfies

\(d, d $) # R . (i &1(d), i &1(d $)) # F(ID , R) (35)

Then for any d, d $ # D, d C=D d $ if and only if (d,d $) # R for
some F-simulation R.

Proof. Since identity S&relations are admissible, we
can apply Proposition 6.4 to conclude that D satisfies rule
(34). Consider the special case when the admissible
S-relation R+ is just ID . Then second part of the con-
clusion of the rule (viz., ID/R+) is automatically satisfied.
The same is true for the second half of the hypothesis (viz.,
i :F(R& ,R+)/R+), since by assumption F(R&, ID)=
IF(D, D) . Thus taking R&=R and R+=ID in (34), we have

i&1: R/F(ID , R) O R/ID (36)

But i &1: R/F(ID , R) holds just in case R is an F-simula-
tion; and ID= C=D . So (36) says that any F-simulation is
contained in the partial order relation. This establishes the
``if '' direction of the theorem. For the ``only if '' direction, just
note that since F(ID , ID)=IF(D, D) and i &1 is monotone,
C=D is itself an F-simulation. K

To apply this theorem we need to produce suitable
actions of cppo constructors on S-relations. For R # S(D)
and S # S(E) define R= # S(D=), R_S # S(D_E),

84 ANDREW M. PITTS

File: 643J 256820 . By:MB . Date:06:08:96 . Time:18:02 LOP8M. V8.0. Page 01:01
Codes: 5961 Signs: 3439 . Length: 56 pic 0 pts, 236 mm

R�S # S(D�E), R�S # S(D�E), R � S # S(D � E),
and R wb S # S(D wb E), as follows:

(d, d $) # R= � d{= O (d${= 7 (d, d $) # R)

((d, e), (d $, e$)) # R_S � (d, d$) # R7 (e, e$) # S

(u, u$) # R�S � \d # Da , e # Ea(u=(d, e)

O _d $ # Da , e$ # Ea

((d, d $) # R 7 (e, e$) # S))

(u, u$) # R�S � \d # Da(u=in1(d)

O _d$ # Da(u$=in1(d $)7(d, d$) # R))

7\e # Ea(u=in2(e)

O _e$ # Ea(u$=in2(e$) 7 (e, e$) # S))

(f, f $) # R � S � \d # D . (f (d), f $(d)) # S

(f, f $) # R wb S � \d # Da . (f (d), f $(d)) # S.

It is easy to verify that these constructions on S-relations
have all the properties stated in Lemma 6.6, except that for

f : R/R$ 7 g : S/S$ O f wb g: (R$ wb S)/(R wb S$)

we need to assume (=, =) # S. Since this is certainly the case
when S is admissible, one does indeed get admissible actions
on S for the functors 8� , as in part (iii) of the lemma. Note
that the definitions of R � S and R wb S, ``throw away'' the
relation R (cf. the discussion in Example 4.7). This ensures
that these constructions satisfy R � IE=ID � E and
R wb IE=ID wb E and hence that part (iv) of the lemma
holds. So if 8(:) is a cppo constructor built up from the
variable : and constants K ranging over cppos, using (&)= ,
_, �, �, � , and wb , then the associated locally con-
tinuous functor F=8� : Cpoop

= _Cpo= � Cpo= has a unitary
admissible action on S-relations. Therefore its minimal
invariant D=rec : .8(:) satisfies the Theorem 6.12.

Writing 8(R) for 8� (ID , R), we can use the definitions
above to give a direct description of this subset of
8(D)_8(D) by induction on the structure of 8 (and hence
explain when a relation R�D_D is a 8� -simulation).

(d, d $) # :(R)

� (d, d $) # R

(d, d $) # K(R)

� d C=K d $

(d, d $) # 8=(R)

� d{= O (d ${= 7 (d, d $) # 8(R))

((d, e), (d $, e$)) # (81_82)(R)

� (d, d $) # 81(R) 7 (e, e$) # 82(R)

(u, u$) # (81 �82)(R)

� \d # (81(D))a , e # (82(E))a (u=(d, e)

O _d $ # (81(D))a , e$ # (82(E))a (d, d $) # 81(R)

7 (e, e$) # 82(R))

(u, u$) # (81 �82)(R)

� \d # (81(D))a (u=in1(d) O _d $ # (81(D))a

u$=in1(d $) 7 (d, d $) # 81(R))

7 \e # (82(E))a (u=in2(e) O _e$ # (82(E))a

u$=in2(e$) 7 (e, e$) # 82(R))

(f, f $) # (81 � 82)(R)

� \d # 81(D) . (f (d), f $(d)) # 82(R)

(f, f $) # (81 wb 82)(R)

� \d # 81(D)a . (f (d), f $(d)) # 82(R).

Thus Theorem 6.12 yields the following result about
rec : .8(:).

Corollary 6.13. Let 8(:) be a cppo-constructor built
up from the variable : and constants K ranging over cppos,
using (&)= , _, �, �, �, and wb . Let D=rec : .8(:) be
the cppo recursively defined by :=8(:), with associated
isomorphism i: 8(D)$D. Then for any d, d $ # D, to prove
d C= d $ it suffices to show (d, d $) # R for some subset
R�D_D satisfying:

\(x, x$) # R . (i &1(x), i &1(x$)) # 8(R). (37)

The co-induction principle for recursively defined cpos
established in (Pitts, 1994) can be deduced from
Corollary 6.13 by restricting attention to cppo constructors
8(:) just involving the constructions (&)= , �, �, and
((&) wb (+))= . For such 8 we have 8((!=))=(9(!))= ,
where 9(!) is a corresponding cpo constructor built up
using (&)= , _, _+ , and the partial continuous function
space constructor (&) � (+)= . Then rec ! .9(!)=
(rec : .8(:)) a and the co-induction principle of Theorem
2.5 of loc. cit. is precisely that of Corollary 6.13 for this case.
As shown in loc. cit., binary relations satisfying (37) give a
uniform notion of ``simulation'' (for the cppo-constructors
considered), which includes for example (one-sided)
applicative bisimulation, used by Abramsky (1990) in con-
nection with the lazy lambda calculus. We refer the reader
to (Pitts, 1994) for further discussion and applications of
this co-inductive characterization of the partial order on
recursively defined cppos. (See also (Fiore, 1993; Rutten,
1993; Paulson, 1993) for related applications.)

85RELATIONAL PROPERTIES OF DOMAINS

File: 643J 256821 . By:MB . Date:06:08:96 . Time:18:02 LOP8M. V8.0. Page 01:01
Codes: 6320 Signs: 4938 . Length: 56 pic 0 pts, 236 mm

The existence of a simulation (i.e., a relation satisfying
(37)) containing two elements of a recursively defined cppo
establishes that the order relation holds between them. Thus
equality of elements d and d $ can be established by exhibit-
ing two simulations, one containing (d, d $) and the other
(d $, d). There is a more symmetric notion of ``bisimulation''
that establishes directly that two elements are equal. This
can be obtained by changing the notion of identity relation
for the relational structure S used in this section from
ID= C=D to equality relations ID=[(x, x) | x # D]. In
order to retain the necessary property 8� (R, ID)=I8� (D, D) ,
one has to ``symmetrize'' the definition of the action of
cppo-constructors on S-relations. For example R= would
now be

(d, d $) # R= � d{= O (d ${= 7 (d, d $) # R)

7 d ${= O (d{= 7 (d, d $) # R).

With similar changes for the other cppo constructors,
Corollary 6.13 remains valid as stated except that d C= d $ is
replaced by d=d $.

Remark 6.14. We have seen that it is fruitful to treat
domain constructions via functors (of mixed variance) on a
suitable category of domains. However, the approach taken
in this paper to properties of recursively defined domains
exploits structure of domain constructions over and above
their functoriality properties. The unitary admissible action
on relations that a particular construction possesses may
well not be a consequence of its functoriality properties.
Indeed the very notion of relation may take us outside the
category of domains (as is the case for the notion of relation
used in Section 5, for example). Rutten (1993) and Fiore
(1993) develop results analogous to Theorem 6.12, but
where relations are subobjects in the category and the
notion of (bi)simulation is phrased purely in terms of
(order-enriched) categorical properties of the functor. Such
an approach has the advantage of relaxing the conditions
on a functor needed to establish a co-inductive property of
its minimal invariant. However, it has the disadvantage of
tightening the conditions required of a simulation. In con-
crete instances it leads to results like Corollary 6.13, but
weakened by adding the requirement that the simulation R
is also a chain-complete subset of D_D. Unlike the case for
induction properties, such a chain-completeness condition
is unnecessary. It can also be inconvenient, since in practice
one seeks simulations with as few elements as possible when
establishing a specific instance of the order relation on
rec : .8(:).

Nevertheless, it can be useful to consider formulations of
co-induction principles like Theorem 6.12 which relax the
conditions imposed on the functor F. For example, (Pitts,
1994, Section 5) extends Corollary 6.13 to domain construc-
tors 8(:) involving the Plotkin powerdomain, P< (Plotkin,

1976). In this case the proof is not quite a corollary of
Theorem 6.12, because the operation R # S(D) [P<(R)
given there does not obviously satisfy the requirements of
Definition 4.6 to be an admissible action. It does satisfy a
weaker version of condition (ii) of that definition, with
S$= C=E and g the projection half of an embedding-projec-
tion pair; and as loc. cit. shows, this is sufficient to establish
the co-induction result, which includes Abramsky's
``internal full abstraction'' theorem for his domain model of
SCCS (Abramsky, 1991, Proposition 3.11) as an instance.
However, Rutten (1993, Section 5) obtains Abramsky's
result (modulo the use of chain-complete simulations) just
using the local continuity of the functor P<: Cpo= � Cpo=

via his order-enriched categorical notion of bisimulation.

7. PARAMETERIZED RECURSIVE DOMAINS

The results in this paper exploit the fact that various
simple domain constructors have well-behaved actions on
relations. The solution of recursive domain equations with
parameters provides an important source of more com-
plicated domain constructors. For example, if 9(:, ;) is a
binary domain constructor built up from variables : and ;
using (&)= , _, �, �, �, and wb, we get a unary domain
constructor

8(:) =def rec ; .9(:, ;) (38)

whose value 8(D) at a cppo D is the minimal solution of the
domain equation ;=9(D, ;). To extend the results of
Section 4 to include constructors like (38), we first have to
see how the treatment in Section 3 of domain constructors
in terms of locally continuous functors of mixed variance
can be extended to cope with parameterization.

Parameterized Minimal Invariant cppos

We sketch how to associate a locally continuous functor
F : Cpoop

= _Cpo= � Cpo= to the domain constructor (38).
Let 9� (:&, :+, ;&, ;+) denote the result of separating
positive and negative occurrences of : and ; in 9(:, ;).
Then as in Section 3, 9� determines a locally continuous
functor

G : Cpoop
= _Cpo=_Cpoop

= _Cpo= � Cpo= (39)

with the property that G(D, D, E, E)=9(D, E). It is
possible to construct a family of cppos (F(D&, D+) |
D&, D+ # Cpo=) together with isomorphisms

iD&, D+ : G(D&, D+, F(D+, D&), F(D&, D+))$F(D&, D+)

(40)

86 ANDREW M. PITTS

File: 643J 256822 . By:MB . Date:06:08:96 . Time:18:02 LOP8M. V8.0. Page 01:01
Codes: 6296 Signs: 3447 . Length: 56 pic 0 pts, 236 mm

satisfying the following, simultaneous minimal invariant
property:

for each pair of cppos D&, D+, (idF(D+, D&) ,
idF(D&, D+)) is the least fixed point of the continuous
endofunction $D&, D+ on

(F(D+, D&) wb F(D+, D&))

(F(D&, D+) wb F(D&, D+))

given by $D&, D+ (e&, e+)=($&
D&, D+ (e&, e+),

$ +
D&, D+ (e&, e+)), where

$&
D&, D+(e&, e+)

=def iD+, D& b G(idD+ , idD& , e+, e&) b (iD+, D&)&1

$ +
D&, D+(e&, e+)

=def iD&, D+ b G(idD& , idD+ , e&, e+)(iD&, D+)&1

The construction of these cppos can be carried out as in
the proof of Theorem 3.3, except that one works with
doubly-indexed families of cppos and embeddings to build
up the desired doubly-indexed family of cppos as colimits
of chains of embeddings. Just as in Theorem 3.4, the
simultaneous minimal invariant property leads to a univer-
sal property for (40), namely,

for all f : A b� G(D&, D+, B, A) and g: G(D+, D&,
A, B) b� B, there are unique h: A b� F(D&, D+)
and k: F(D+, D&) b� B making the following
squares commute

F(D&, D+) www�
(iD&, D+)&1

G(D&, D+, F(D+, D&), F(D&, D+))

h G(id, id, k, h)

A
f

G(D&, D+, B, A)
(41)

G(D+, D&, F(D&, D+), F(D+, D&)) www�
iD+, D&

F(D+, D&)

G(id, id, h, k) k

G(D+, D&, A, B)
g

B.

Moreover, the assignment (f, g) [(h, k) determines a con-
tinuous function.

This universal property allows us to extend (D&, D+) [
F(D&, D+) to a locally continuous functor F : Cpoop

= _
Cpo= � Cpo=. Indeed, given u&: D&

2 b� D&
1 and

u+: D+
1 b� D+

2 , we can define F(u&, u+): F(D&
1 , D+

1) b�
F(D&

2 , D+
2) as the first component of the pair (h, k) corre-

sponding to

f =G(u&, u+, id, id) b (iD1
& , D1

+)&1

g=iD1
& , D1

+ b G(u+, u&, id, id).

The uniqueness part of the universal property ensures that
this action on morphisms preserves identities and composi-
tion; and the local continuity of the functor F follows from
the fact that the assignment (f, g) [(h, k) is continuous.

We have constructed F : Cpoop
= _Cpo= � Cpo= out of

G : Cpoop
= _Cpo=_Cpoop

= _Cpo= � Cpo=. We write

F(&, +)=rec X.G(&, +, X&, X+)

to indicate this dependence. On the diagonal, i.e., in the
case D&=D=D+, the simultaneous minimal invariant
property yields that (F(D, D), iD, D) is the minimal invariant
(in the sense of Definition 3.2) for the locally continuous
functor G(D, D, &, +): Cpoop

= _Cpo= � Cpo=. So when
G=9� is the functor associated with the binary constructor
9(:, ;), then for each D we have that (F(D, D), iD, D) is the
minimal invariant for the locally continuous functor
9� (D, D, &, +). But the latter is precisely the functor
obtained by separating positive and negative occurrences of
; in the domain constructor 9(D, ;), whose minimal
invariant is by definition rec ; .9(D, ;). Thus rec ; .9(D, ;)
$F(D, D) is indeed the diagonalization of a locally con-
tinuous functor F : Cpoop

= _Cpo= � Cpo=.

Remark 7.1. Note that off the diagonal, i.e., in the case
D&{D+, the simultaneous minimal invariant property
of F(D+, D&) and F(D&, D+) is more subtle than the
property of a minimal invariant D(D&, D+) for the functor
G(D&, D+, &, +). Indeed we cannot expect such a
D(D&, D+) to be functorial in D&, D+, since
D(D&, D+)$G(D&, D+, D(D&, D+), D(D&, D+)) and
the latter expression does not respect the variances of D&

and D+.

Parameterized Invariant Relations

Now suppose R is a relational structure on Cpo= for
which the functor (39) has an admissible action on R-rela-
tions (as in Definition 4.6 in case m=n=2). In order to
extend the results of Sections 5 and 6 to encompass the use
of domain constructors like (38), we have to investigate
whether the action of G on R-relations gives rise to a similar
action of F(&, +)=rec X . G(&, +, X&, X+). Such an

87RELATIONAL PROPERTIES OF DOMAINS

wwwwwwwww�

wwwwwwwww�

File: 643J 256823 . By:MB . Date:06:08:96 . Time:18:02 LOP8M. V8.0. Page 01:01
Codes: 6225 Signs: 3139 . Length: 56 pic 0 pts, 236 mm

action should also be invariant under the isomorphisms
(40) in the sense that

iD&, D+: G(R&, R+, F(R+, R&), F(R&, R+))/F(R&, R+)

(iD&, D+)&1: F(R&, R+)

/G(R&, R+, F(R+, R&), F(R&, R+)). (42)

Proposition 7.2. For each pair of cppos D&, D+ any
family of admissible R-relations

F(R&, R+) # Radm(F(D&, D+))

(R& # R(D&), R+ # R(D+))

satisfying (42) has the following universal property:

for all f : A b� G(D&, D+, B, A), g: G(D+, D&,
A, B) b� B, R& # R(D&), R+ # R(D+), R # R(A),
and S # Radm(B), if

f : R/G(R&, R+, S, R)

and

g: G(R+, R&, R, S)/S

then the unique h: A b� F(D&, D+) and k:
F(D+, D&) b� B determined by f and g satisfy

h: R/F(R&, R+) and k: F(R+, R&)/S.

Proof. This can be proved in the same way as Proposi-
tion 4.9, using the least fixed point characterization of
(h, k), K

Note that the universal property given in the above
proposition specializes to the following ``mixed'' fixed point
rule for the family of R-relations F(R&, R+):

R/G(R&, R+, S, R) 7 G(R+, R&, R, S)/S
R/F(R&, R+) 7 F(R+, R&)/S

(S admissible). (43)

In particular a family of admissible R-relations satisfying
(42) is unique if it exists. The universal property in the
proposition also implies that R&, R+ [F(R&, R+)
satisfies the conditions of Definition 4.6 required for an
admissible action on R-relations. For F(R&, R+) is
admissible by assumption whether or not R+ is; and
if u&:R&

2 /R&
1 and u+:R+

1 /R+
2 , then F(u&, u+):

F(R&
1 , R+

1)/F(R&
2 , R+

2) follows by taking f =G(u&, u+,
id, id) b (iD1

&, D1
+)&1 and g=iD1

& , D1
+ b G(u+, u&, id, id) (for

which the corresponding h, k are F(u&, u+) and F(u+, u&))
and taking R=F(R&

1 , R+
1) and S=F(R+

1 , R&
1).

If R has sufficient completeness properties, namely
inverse images and intersections (cf. Definition 4.12), then
the existence of relations satisfying the hypotheses of
Proposition 7.2 can be established in much the same way
that the existence of invariant relations was established in
Theorem 4.16. First note that when the relational structure
R has inverse images, the conditions in (42) can be refor-
mulated as a family of fixed point equations:

F(R&, R+)

=(i &1
D&, D+)* G(R&, R+, F(R+, R&), F(R&, R+)). (44)

Fixing D& and D+, let P be the set of all pairs(\&, \+) of
functions

\&: R(D&)_R(D+) � Radm(F(D+, D&))

\+: R(D&)_R(D+) � Radm(F(D&, D+)).

If R has intersections each Radm (&) is a complete lattice
and hence P is a complete lattice under the partial order
given by

(\&
1 , \+

1)�(\&
2 , \+

2) � \R&, R+(\&
2 (R&, R+)

/\&
1 (R&, R+) 7 \+

1 (R&, R+)/\+
2 (R&, R+)).

Let �:(\&, \+) [(�&(\&, \+), �+(\&, \+)) be the endo
function of P given by:

�&(\&, \+)(R&, R+)

=def (i &1
D+, D&)*G(R+, R&, \+(R&, R+), \&(R&, R+))

�+(\&, \+)(R&, R+)

=def (i &1
D&, D+)*G(R&, R+, \&(R&, R+), \+(R&, R+)).

Then � is a monotone endofunction on the complete lattice
P. So we can apply the Tarski�Knaster theorem to obtain
its least fixed point, (,&, ,+). It suffices to prove ,&=,+,
since then F(R&, R+)=

def ,&(R&, R+)=,+(R&, R+) is an
admissible R-relation solving (44). The least prefixed point
property of (,&, ,+) together with the symmetry of \
immediately gives ,+�,&. The reverse inequality is
proved by appealing to the simultaneous minimal invariant
property of F(D&, D+). For the set

[(e&, e+) | e&: ,&(R&, R+)/,+(R+, R&)

7 e+: ,&(R+, R&)/,+(R&, R+)]

is a chain-complete subset of

(F(D+, D&) wb F(D+, D&))

(F(D&, D+) wb F(D&, D+))

88 ANDREW M. PITTS

File: 643J 256824 . By:MB . Date:06:08:96 . Time:18:02 LOP8M. V8.0. Page 01:01
Codes: 7137 Signs: 6018 . Length: 56 pic 0 pts, 236 mm

containing(=, =). One can verify that this subset is closed
under the action of the continuous endofunction $D&, D+

that, by the simultaneous minimal invariant property, has
least fixed point(id, id). Hence by fixed point induction,
(id, id) belongs to this subset. So id : ,&(R&, R+)/
,+(R+, R&) for all R&, R+; and thus ,&�,+.

To summarize we have established the following result.

Theorem 7.3. Let R be a relational structure on Cpo=

possessing inverse images and intersections . Let G: Cpoop
= _

Cpo=_Cpoop
= _Cpo= � Cpo= be a locally continuous

functor equipped with an admissible action on R-relations.
Then the locally continuous functor F(&, +)=rec X .
G(&, +, X&, X+) also possesses an admissible action on
R-relations, for which each F(R&, R+) is admissible and
satisfies (42).

This theorem generalizes easily to the case of functors G
with more than one extra parameter, i.e., of the form
(Cpoop

= _Cpo=)n_Cpoop
= _Cpo= � Cpo=. Using it, the

method developed in Section 5 for proving computational
adequacy can be applied to functional languages involving
recursive types with parameters, such as the metalanguage
in (Plotkin, 1985).

Note that if R has identity relations and the action of G
on R-relations is unitary (in the sense of Definition 6.3),
then so is the action of rec X .G(&, +, X&, X+): just apply
the rule (43) with R&, R+, R, S all identity R-relations
to see that F(ID& , ID+)=IF(D&, D+) . Thus the mixed
inductive�co-inductive rule established in Proposition 6.4
can be applied to recursively defined functors such as
rec X .G(&, +, X&, X+). To go on to deduce from this
proposition the results in Section 6 about induction and
co-induction extended to recursively defined constructors,
one needs to establish (for particular relational structures)
the property F(R, I)=I which was used there. If G has
such a property, it does not seem automatic that
rec X .G(&, +, X&, X+) will have it. Nevertheless the co-
induction result of Corollary 6.13 does extend to the case of
recursively defined constructors, as is indicated briefly in
(Pitts, 1994, Remark 4.2). We leave consideration of a
similarly extended induction principle to another occasion.

Concluding Remarks

As far as this paper is concerned, expressions like ``rec X .
G(&, +, X&, X+)'' are an informal notation for certain
locally continuous functors. However, it would be interest-
ing to extend the work in (Plotkin, 1985) to a metalanguage
for recursive types whose syntax enforces the separation of
positive and negative occurrences, whilst somehow still
allowing diagonalization back to the ``usual'' language of
recursive types; together with a logic formalizing the various
relational properties of (parameterized recursive) domains
we have established here.

The utility of considering actions of type constructors on
relations is perhaps best known from the body of work
beginning with (Reynolds, 1983) on relational properties of
parametric polymorphism: see (Abadi et al., 1993) and
(Plotkin and Abadi, 1993) and the references therein. It is
well known that inductive and co-inductive types can be
encoded in the Girard�Reynolds polymorphic lambda
calculus. Hence they inherit relational properties from those
of \-types. Domain theory brings into the picture considera-
tions of partiality and more particularly, the distinctive
combination of inductive and co-inductive properties
enjoyed by a recursively defined domain. The ``nearly
ultimate'' metalanguage for domain theory will presumably
incorporate a syntactic version of Reynolds' relational
parametricity for \-types (along the lines of loc. cit.), and
derive from it the kind of proof principles for recursively
defined domains that we have established here.

Received November 29, 1993; final manuscript received January 8, 1996

REFERENCES

Abadi, M., Cardelli, L., and Curien, P.-L. (1993), Formal parametric
polymorphism, Theoret. Comput. Sci. 121, 9�58.

Abramsky, S. (1990), The lazy lambda calculus, in ``Research Topics in
Functional Programming'' (D. Turner, Ed.), pp. 65�116, Addison�
Wesley, Reading, MA.

Abramsky, S. (1991), A domain equation for bisimulation, Inform. and
Comput. 92, 161�218.

Abramsky, S., and Ong, C.-H. L. (1993), Full abstraction in the lazy
lambda calculus, Inform. and Comput. 105, 159�267.

Barendregt, H. (1984), ``The Lambda Calculus. Its Syntax and Semantics,''
revised ed., North-Holland, Amsterdam.

Crole, R. L., and Pitts, A. M. (1992), New foundations for fixpoint com-
putations: FIX-hyperdoctrines and the FIX-logic, Inform. and Comput.
98, 171�210.

Fiore, M. P. (1993), A coinduction principle for recursive datatypes based
on bisimulation, in ``Proc. 8th Annual Symposium on Logic in Com-
puter Science, Montre� al,'' pp. 110�119, IEEE Computer Society Press,
Washington, DC.

Freyd, P. J. (1991), Algebraically complete categories, in ``Proc. 1990
Como Category Theory Conference'' (A. Carboni et al., Eds.), Lec.
Notes in Math., Vol. 1488, pp. 95�104, Springer-Verlag, Berlin.

Freyd, P. J. (1992), Remarks on algebraically compact categories, in
``Applications of Categories in Computer Science'' (M. P. Fourman,
P. T. Johnstone, and A. M. Pitts, Eds.), L.M.S. Lecture Note Series,
Vol. 177, pp. 95�106, Cambridge Univ. Press, Cambridge, UK.

Freyd, P. J., and Scedrov, A. (1990), ``Categories, Allegories,'' North-
Holland, Amsterdam.

Gordon, M. G. C., Milner, R., and Wadsworth, C. P. (1979), ``Edinburgh
LCF,'' Lecture Notes in Computer Science, Vol. 78, Springer-Verlag,
Berlin.

Gunter, C. A. (1992), ``Semantics of Programming Languages. Structures
and Techniques,'' MIT Press, Cambridge, MA.

Gunter, C. A., and Scott, D. S. (1990), Semantic domains, in ``Handbook of
Theoretical Computer Science'' (J. van Leeuwen, Ed.), pp. 634�674,
Elsevier, Amsterdam.

Hudak, P., Peyton Jones, S., and Wadler, P. (1991), ``Report on the
Programming Language Haskell: Version 1.1,'' Technical Report, Yale
Univ. and Glasgow Univ.

Jensen, F. V. (1981), ``Inductive Inference in Reflexive Domains,'' Dept.
Computer Science Report No. CSR 86-81, Edinburgh Univ.

89RELATIONAL PROPERTIES OF DOMAINS

File: 643J 256825 . By:MB . Date:06:08:96 . Time:18:01 LOP8M. V8.0. Page 01:01
Codes: 5041 Signs: 4205 . Length: 56 pic 0 pts, 236 mm

Lawvere, F. W. (1970), Equality in hyperdoctrines and the comprehension
schema as an adjoint functor, in ``Applications of Categorical Algebra''
(A., Heller, Ed.), pp. 1�14, Amer. Math. Soc., Providence, RI.

Lehmann, D. J., and Smyth, M. B. (1981), Algebraic specification of
datatypes: A synthetic approach, Math. Systems Theory 14, 97�139.

Mac Lane, S. (1971), ``Categories for the Working Mathematician,''
Springer-Verlag, New York.

Meyer, A. R., and Cosmodakis, S. S. (1988), Semantical paradigms: notes
for an invited lecture, in ``Proc. 3rd Annual Symposium on Logic in
Computer Science, Edinburgh,'' pp. 236�253, IEEE Computer Society
Press, Washington, DC.

Milne, R. E. (1973), ``The formal semantics of computer languages and
their implementations,'' Ph.D. thesis, Cambridge Univ., Cambridge,
UK.

Milner, R., Tofte, M., and Harper, R. (1990), ``The Definition of Standard
ML,'' MIT Press, Cambridge, UK.

O'Hearn, P. W., and Tennent, R. D. (1993), Relational Parametricity and
Local Variables, in ``Conf. Record 20th Symp. on Principles of Program-
ming Languages, Charleston,'' pp. 171�184, ACM, New York.

Paulson, L. C. (1993), ``Co-induction and Co-recursion in Higher-Order
Logic,'' Computer Laboratory Tech. Rept. No. 304, Cambridge Univ.

Pitts, A. M. (1993), Relational properties of recursively defined domains, in
``Proc. 8th Annual Symp. on Logic in Computer Science, Montre� al,''
pp. 86�97, IEEE Computer Soc. Press, Washington, DC.

Pitts, A. M. (1993a), Computational adequacy via ``mixed'' inductive
definitions, in ``Mathematical Foundations of Programming Language
Semantics, Proc. 9th Int. Conf., New Orleans, LA, April 1993,'' Lecture
Notes in Computer Science, Vol. 802, pp. 72�82, Springer-Verlag,
Berlin.

Pitts, A. M. (1994), A co-induction principle for recursively defined
domains, Theoret. Comput. Sci. 124, 195�219.

Plotkin, G. D. (1973), ``Lambda Definability and Logical Relations,''
Memorandum SAI-RM-4, School of Artificial Intelligence, Univ.
Edinburgh.

Plotkin, G. D. (1976), A powerdomain construction, SIAM J. Comput. 5,
452�487.

Plotkin, G. D. (1977), LCF considered as a programming language,
Theoret. Comput. Sci. 5, 223�255.

Plotkin, G. D. (1985), ``Lectures on Predomains and Partial Functions,''
Notes for a course at CSLI, Stanford Univ.

Plotkin, G. D., and Abadi, M. (1993), A logic for parametric
polymorphism, in ``Proceedings of the Conference on Typed Lambda
Calculus and its Applications, Utrecht,'' Lecture Notes in Computer
Science, Vol. 664, pp. 361�375, Springer-Verlag, Berlin.

Reynolds, J. C. (1974), On the relation between direct and continuation
semantics, in ``2nd Int. Colloq. on Automata, Languages and Program-
ming'' (J. Loeckx, Ed.), Lecture Notes in Computer Science, Vol. 14,
pp. 141�156, Springer-Verlag, Berlin.

Reynolds, J. C. (1983), Types, abstraction and parametric polymorphism,
in ``Information Processing 83'' (R. E. A. Mason, Ed.), pp. 513�523,
Elsevier, Amsterdam.

Rutten, J. J. M. M. (1993), A structural co-induction theorem, in ``Proc. 9th
Int. Conf. on the Math. Foundations of Programming Language
Semantics, New Orleans'' (S. Brookes et al., Eds.), Lecture Notes in
Computer Science, Vol. 802, pp. 83�102, Springer-Verlag, Berlin.

Scott, D. S. (1982), Domains for denotational semantics, in ``Proc.
9th Internat. Coll. on Automata, Languages and Programming''
(M. Nielsen, and E. M. Schmidt, Eds.), Lecture Notes in Computer
Science, Vol. 140, pp. 577�613, Springer-Verlag, Berlin.

Smyth, M. B., and Plotkin, G. D. (1982), The category-theoretic solution
of recursive domain equations, SIAM J. Comput. 11, 761�783.

Thompson, S. (1989), A logic for Miranda, Formal Aspects Comput. 1,
339�365.

Wadsworth, C. P. (1976), The relation between computational and denota-
tional properties for Scott's D� models of the lambda-calculus, SIAM
J. Comput. 5, 488�521.

Winskel, G. (1993), ``The Formal Semantics of Programming Languages.
An Introduction,'' MIT Press, Cambridge, MA.

Winskel, G., and Larsen, K. G. (1984), Using information systems to solve
recursive domain equations effectively, in ``Semantics of Data Types''
(G. Kahn, et al., Eds.), Lecture Notes in Computer Science, Vol. 173,
pp. 109�130, Springer-Verlag, Berlin.

90 ANDREW M. PITTS

