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SOME RESULTS ON LOCALLY FINITELY
PRESENTABLE CATEGORIES

M. MAKKAI AND A. M. PITTS

ABSTRACT. We prove that any full subcategory of a locally finitely pre-

sentable (l.f.p.) category having small limits and filtered colimits preserved by

the inclusion functor is itself l.f.p. Here "full" may be weakened to "full with

respect to isomorphisms." Further, we characterize those left exact functors

T. C —» D between small categories with finite limits for which the functor

/*: LEX(D,Set) —> LEX(C,Set) induced by composition is full and faithful.

As an application, we prove a theorem on sheaf representations, a consequence

of which is that, for any site C = (C, J) on a category C with finite limits, de-

fined by a subcanonical Grothendieck topology J, the closure in LEX(C, Set)

under small limits and filtered colimits of the models of C is the whole of

LEX(C,Set).

Introduction. In this paper, we make contributions to the logic of 'essentially

algebraic' theories. Although the terminology will be categorical, the motivation

is a model-theoretical one: our interest lies in arriving at results connecting the

syntax and the semantics of that logic.

The definition of 'essentially algebraic' theory can be given conveniently only

in categorical terms. As is usually done, we identify such a theory with a small

category having (all) finite limits. The 2-category of all such categories, with func-

tors preserving finite limits as morphisms (1-cells), and all natural transformations

as 2-cells, is denoted by Lex; LEX denotes the 2-category with the smallness re-

striction removed. Set, the category of (small) sets, is the 'standard' 'theory', an

object of LEX. A 'model' of a theory C G Lex is a morphism C —> Set in LEX;

LEX(C, Set) is the 'category of models of C Talking about relations of syntax

and semantics amounts, roughly, to relating C and LEX(C,Set). Following [KR,

we could call our subject the "doctrine of Cartesian logic".

The doctrine of Cartesian logic corresponds to a logic with existential quantifi-

cation restricted to cases when unique existence is assured. For a detailed account

of this correspondence, cf. [C]. The main fact of the correspondence can be stated

simply. Call a first-order theory T over a language L axiomatized by sentences

of the form Vx(y?(x) —> 3=1yi/>(x, y)) with <p and ii finite conjunctions of atomic

formulas (3=1y means: "there is a unique y such that ...") a lim-theory. Then the

categories of models of lim-theories, with ordinary homomorphisms as morphisms,

are the same as the categories LEX(C, Set), -for C G Lex. The connection of the

lim-theories themselves and objects of Lex is a bit less easy to state; it is done

in [C].
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474 M. MAKKAI AND A. M. PITTS

The, by now, classic work [GU] gives, among others, an intrinsic characteriza-

tion of categories which, up to equivalence, can be written as LEX(C,Set); such

categories are called locally finitely presentable (l.f.p.). One would be tempted to

call them simply algebraic categories since they seem to be comprehensive enough

to include all categories of structures which are defined, in one sense or another,

by 'unitary algebraic' conditions. One of the main points about l.f.p. categories

is the following exactness property: LEX(C, Set) has all (small) limits and fil-

tered colimits and they are preserved by the evaluation ('underlying-set') functors

(-)oC: LEX(C, Set) —* Set (C G C). In fact, l.f.p. categories are cocomplete (have

colimits) as well, although the colimits are not 'standard'; they are not preserved by

the evaluation functors. The mentioned facts concerning limits and filtered colimits

are a consequence of a basic fact concerning Set: in Set, finite limits commute with

limits and filtered colimits.

In §1, we give an essentially self-contained account of the 'duality' of small cate-

gories with finite limits and l.f.p. categories. This duality amounts to an equivalence

of the 2-categories Lexop and LFP, the 2-category of l.f.p. categories, with mor-

phisms the functors preserving limits and filtered colimits. This duality may be

known to many people; most of it is already in [GU], and the remaining parts are

more or less folklore. Some technical results used later are also put in §1.

The main part of the paper, §§2 and 3, was greatly inspired by Hugo Volger's

paper [V]. In a traditional model-theoretical language, Volger arrives, sometimes

implicitly, at intriguing results concerning the Cartesian doctrine. One of his main

results is a somewhat complicated, but very useful syntactical characterization of

those theories whose class of models, considered as a full subcategory of the category

of all structures of the underlying language, has limits preserved by the inclusion.

One of the main results of the present paper is a purely categorical result, Proposi-

tion 2.6, which characterizes those morphisms F: C —> D in Lex that induce a full

and faithful morphism F*: LEX(D, Set) -> LEX(C,Set) in LFP. Although the
two results concern closely related situations, their statements or their proofs look

pretty unrelated.

Another result of [V] (Proposition 16) is the fact that any full subcategory of

the category of all L-structures (with homomorphisms as morphisms) for which the

inclusion creates limits and filtered colimits is an elementary class. Lemma 2.2 in

the present paper is a more general form of this result. Using 2.2, and material from

§1 we prove (Corollary 2.4) that any full subcategory of a l.f.p. category for which

the inclusion creates limits and filtered colimits is again l.f.p.; and even the more

general statement where the inclusion is required to be full only on isomorphisms

(Proposition 2.3).

Volger's remarks after his characterization theorem (Theorem 14) seem to

amount to a proof of the weaker result, Corollary 2.4 (although the result as such

is not stated). However, as far as we can see, the proof is incomplete (it does not

seem to follow that the categories of models of T and T*, in Volger's remarks, are

equivalent).

We shall give some comments as to why 2.3 is of interest beyond its having 2.4 .

as a consequence.

Finally, a result that can be deduced from the work of Volger is the fact that

whenever a structure is represented as the structure of global sections of a sheaf,
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LOCALLY FINITELY PRESENTABLE CATEGORIES 475

then the structure can always be constructed by using (possibly repeatedly) limits

and filtered colimits on the stalks of the sheaf. The precise, and more general,

statement is Theorem 3.3. Our proof of it uses two of the above-mentioned results:

2.4 and 2.6. An interesting-looking corollary concerning subcanonical Grothendieck

topologies ends the paper.

1. Gabriel-Ulmer duality. Let LEX be the 2-category of all categories hav-

ing finite limits; LFC the 2-category of all categories having all (small) limits

and filtered colimits. The morphisms (1-cells) of LEX are all functors between

categories with finite limits preserving finite limits; the 2-cells are all natural trans-

formations between such functors; similarly for LFC. We have forgetful functors

(inclusions)

(1) LEX -> CAT,

(2) LFC -> CAT

which are faithful and 2-full: full on 2-cells.

Set, or S as we will sometimes abbreviate it in this section, the category of

all small sets, is an object of both LEX and LFC. Moreover, each of the LEX-

operations on S, i.e., the finite limits, commute with each of the LFC-operations,

small limits and filtered colimits, on S as is well known (cf. [CWM]). We may

say that Set is a symmetric (LEX, LFC)-bistructure. Now, Set as a symmetric

(LEX, LFC)-bistructure gives rise, all by itself, to a pair of (2-)adjoint (2-)functors

G,F,

(3) LEXop ê LFC
F

presently described.

We start with the adjunction

CATop g CAT
F0

Vo- IdcAT -> Go^o    (unit)

en: FoGo —> IdcAT°p     (counit)

given by

Go = CAT(—, S),    abbreviated as ( —, S),

Fo = (-,S),

(£o)c- C —> ((C, S), S):     evaluation,

(Vo)a- A —> ((A, S), S):    evaluation.

(The fact that this is an adjunction means that the composites

/-,    noGo f,   j? /-,    Go£o r-,
LrO     —►     CoroCro     —►     Crfj

-co   —»   rocro^o   -►  c

are identities.)

The 'symmetry property' of 5 implies that, for any C G LEX, LEX(C, S) G

LFC; similarly, and symmetrically, LFC(>i, S) G LEX for A G LFC.   Also, for
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476 M. MAKKAI AND A. M. PITTS

any LEX-morphism C A C, the functor LEX(C, S) ^ LEX(C, S) defined by
composition is an LFC-morphism; of course, a dual statement can also be made.

These facts give rise to the promised 2-functors

G: LEXop ̂  LFC,        G(C) = LEX(C, S),

F:LFC^LEXop,        F(A) = LFC(A, S).

To define the counit and the unit of the desired adjunction

e: FG —> Wlex°p

i/:IdLFC°p —* GF

we proceed as follows.

The inclusion (1) gives rise to the 'restriction' functor, for each C G LEX:

((C,S),S)-(LEX(C,S),S).

Pre-composing this with (eo)ci the resulting functor factors through the inclusion

LFC(LEX(C, 5), S) -» (LEX(C, S), S),

resulting in the functor

£C:C^LFC(LEX(C,S),S).

This defines e; the description of n is symmetric. The fact that £ and r/ form an ad-

junction is a formal consequence of their definition together with the corresponding

fact for £0 and rjo-

We are going to take full sub-2-categories (full with respect to both 1-cells and

2-cells), Lex and LFP, of LEX and LFC, respectively, so that the corresponding

restriction of the above adjunction is in fact an equivalence. Lex is the full sub-

2-category of LEX with objects the essentially small objects of LEX (i.e., those

equivalent to a small category). The following definitions describe the smallness

conditions determining LFP inside LFC.

1.1 Definitions.
(i) A collection Q of objects in a category A is called a collection of generators

(for A) if every object in A can be expressed as a filtered colimit of objects in Q.

(ii) An object A of a (locally small) category A is called finitely presentable (f.p.)

if the functor A(A, —): A —> Set preserves filtered colimits. Af.p. will denote the full

subcategory of A whose objects are finitely presentable.

(iii) A category A is called locally finitely presentable (l.f.p.), ii A G LFC, A is

locally small and it has a small set of generators consisting of finitely presentable

objects. LFP is the full sub-2-category of LFC with objects the l.f.p. categories.

REMARKS. The use of the expression "collection of generators" in (i) is slightly

nonstandard. The definition of "finitely presentable" is, of course, the usual defini-

tion; in [GU], one finds "rVpresentable" instead. As the reader may already see,

and as will be pointed out in due course, the definition of "l.f.p." given here is

equivalent to that of [GU].

1.2 THEOREM (GABRIEL-ULMER DUALITY). The pair of adjoint functors (3)

obtained from the symmetric (LEX, L,FC)-bistructure Set restricts to an equivalence

Lexop~LFP.
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In other words,

(i) if C G Lex, then G(C) G LFP and £c is an equivalence of categories; and

(ii) if A G LFP, then F (A) G Lex, and 774 is an equivalence of categories.

Before the proof of the theorem, we list some facts and lemmas.

1.3. FACTS. Let C G Lex. (i) The inclusion LEX(C, 5) <-» (C, S) creates limits
and filtered colimits.

(ii) The Yoneda embedding y: Cop —> (C, S) is full, faithful, and sends colimits
in C to limits in (C, S).

(iii) The Yoneda embedding y is dense, i.e., for any M G (C, S), the diagram

DM- Cop I M -> (C, $): (G, -) -»■ M i-> (G, -) has colimit M, with the canonical
colimiting cone (G,-) —> M i-> (C, -) -> M.

(iv) The diagram DM of (ii) is filtered if and only if M G LEX(C, S).

(v) M G LEX(C, S) is f.p. if and only if M is representable, i.e., isomorphic to

(C,-), for some G e C.

These facts are, of course, well known. For completeness, we give a few words

concerning their proofs. The fact that finite limits commute with limits and filtered

colimits in Set implies that a limit or a filtered colimit in (C, S) oí functors pre-

serving finite limits is again such a functor; this shows (i). For (iii), whose proof is

a straightforward computation, see [SGA4, Exp. I, 3.4, p. 19], or [CWM, Corollary

X.6.3, p. 243]. For (iv), see [SGA4, Exp. I, proof of 8.3.3 (i)=>(ii), p. 77]. Since for
M G (C, S), and G € C, ((G, -), M) = M(C) (Yoneda), the fact that each repre-
sentable functor in LEX(C, 5) is f.p. follows from (i) and the fact that (filtered)

colimits in (G, S) are computed pointwise. Conversely, if A is an f.p. object of a

category A, and A is the filtered colimit colim¿ A¿ of objects A¿, then one concludes

(by considering the identity morphism A —> colim¿ Ai) that there is an index i such

that A is a retract of A¿. Put A¿ = B. If we have
p

Ac^B,       pi - ldA,
i

then
Ids „

B =t B^ A
ip

is a coequalizer diagram. Thus, if A G A = LEX(C, 5), and we use the filtered

colimit representation given by (iii) and (iv) via objects coming from C by y,

using (i) and the fact that C has finite limits we obtain that A is isomorphic to a

representable functor. This proves (v).    D

Note that facts 1.3(i), (iii), (iv) and (v) contain the first part of the statement
of 1.2(i): G(C) = LEX(C, S) G LFP.

The following lemma will have uses beyond Theorem 1.2.

1.4 LEMMA. Suppose that A is locally small and has limits and filtered colimits

which are preserved by a functor G: A —> B into a locally finitely presentable category

8- If A has a generating set of objects, Q say, then G has a left adjoint F: B —> A.

PROOF. We have to show that for every B G B, we have: (*)b there is an object

FB and a 'universal arrow' r/ß'- B —* G(FB) 'from B to G', i.e., r?s such that for

every arrow B -^ G A, thee is a unique /: FB —> A such that g — G(f)r¡B- If we

have B = colim¿e/R¿, a filtered colimit representation, and (*)b, holds for all i,
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then (*)b holds as well. In fact, for each a: i —* j in Morph(7), let Fa be defined

so that

Bi       -»     G(FBl)
rcP I I GFa

B.       _     G(FBj)

commute; thus, the filtered colimit colim¿ FBi makes sense, and we can take FB to

be it. Since G preserves filtered colimits, we have a canonical arrow B = colim B% —>

colimG(FBl) = G (colim FBi); we take ps to be this arrow; it is easy to verify that

it will have the required property.

By the last remark, and since B is l.f.p., it suffices to show the statement (*)b

for B f.p. in 3. Since A has limits and G preserves them, we can apply the Adjoint

Functor Theorem "at B", i.e., we need only find a set of arrows

{gl:B^G(Al)\iGl}

with the property that any g: B —► G (A) factors as

g:BhG(Al)GH)G(A)

for some i G I and /: Ai —► A in A. But

{B -» G(A) | A G 9}

is such a set. For, given any A G A, we can express it as a filtered colimit of objects

in g, say

A = colim Ak,
fcGK

with colimiting cone

(ik:Ak -> A | kGK).

Since G preserves filtered colimits, we have G A = colimfc€K G(Ak) and

(G(ik):G(Ak)^G(A)\kGK)

is a colimiting cone. But now given any g: B —> G(A), since B is finitely presentable,

g factors through one of the maps in this colimiting cone, i.e., g factors as

g:B^G(Ak)G^k)G(A)

for some k G K; and Ak G g as required.    D 1.4

1.5 COROLLARY. Let A G LFP. For A G At.p. clearly the representable functor

A(A, — ) G LFC(A, S). Hence we have a canonical functor

hA:A°l^LFC(A,S)       (A^A(A,-)).

This functor is an equivalence of categories.

PROOF. As a consequence of the Yoneda lemma, h¿¿s full and faithful. To

show that h & is essentially surjective on objects, let X: A —► 5 be a functor in

LFC. By 1.4, X has a left adjoint Y. The adjunction Y H X specializes to the

natural isomorphisms

A(Y(1),A) = S(1,XA) = XA

for any A G A. i.e.

A(Y(1),-)~X.
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Since X preserves filtered colimits, Y(l), by definition, is f.p.    D 1.5

Now, we can complete the proof of 1.2(i); the assertion to be proved is that £c

is an equivalence of categories, for C G Lex.

Let A = LEX(C, S).   A is l.f.p.   By 1.3(v), the Yoneda embedding Cop -» A
factors through A{.p. ■—»¡ncl. A, and in fact, the resulting functor Cop —► Af.p. is an

equivalence of categories. Moreover, the composite

CoplZ AZ^LFC(A,S)
hfi

(with hA from 1.5) is isomorphic to £c- Therefore, by 1.5, £c is an equivalence as

well.    G 1.2(i)

Turning to the proof of 1.2(h), we let A be an l.f.p. category, C = A¡p , B =

LFC(A, S), i: A{.p. t-> A the inclusion, h: C —► B the functor of 1.5. By 1.5, h is
an equivalence of categories.

It is clear that LFC(A, S) has finite limits preserved by the inclusion

LFC(A,S)->(A,S).

It follows from h¿ being an equivalence that Ai.p. has finite colimits preserved by

i. Since by the argument in the proof of l-3(v), A(.P. is in the closure under finite

colimits of a small set contained in A(.p., A(.P. is essentially small. It follows that

F (A) =B~Cg Lex, as required for the first part of 1.2(h).

h induces the equivalence /i*:LEX(B, S) —> LEX(C,5). Composing r\ —

r\A.: A —> LEX(B, S) and h*, we obtain a functor

t:A^LEX(C,S)

which, as inspection shows, is identical to

A^A(i(-),A).

Since h* is an equivalence, to show that r¡ is an equivalence, it suffices to show that

t is one.

The fact that the functor r is an equivalence, for any l.f.p. category A, with

a suitable definition of "l.f.p.", is due to Gabriel and Ulmer, and is arguably the

main result of [GU]. We are going, nevertheless, to outline the proof, especially

since some ingredients of it will be useful for other purposes as well. First, we give

a concept which will be important to us. The lemma that follows the definition is

due to [GU]; the second part of it is relatively little known.

1.6 DEFINITION. A collection C of objects in a category A will be called conser-

vative if, given /: A —* B in A such that for each G G C

U:A(C,A)^A(C,B)

is a bijection, then / is an isomorphism. Thus, assuming A to be locally small, C is

conservative iff the restricted Yoneda functor, A —» Setc " (sending A i—> A(—, A))

reflects isomorphisms.

1.7 LEMMA.   Let A be a locally small category with filtered colimits.

(i) Any set of generators in A is a conservative set.
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(ii) // C is a conservative set of finitely presentable objects in A which when

regarded as a full subcategory of A has finite colimits that are preserved by the

inclusion i: C "—> A, then i is dense.

PROOF, (i) This is an easy exercise in category theory.

(ii) (Cf. 7.4 of [GU].) To say that i is dense is to say that, given an object A G A,

the forgetful functor Ua'- C/A —> A from the category of objects of C over A has

(f:UA(f)-+A\fGC/A)

as a colimiting cone.   Note that by assumption on C, C/A is small and filtered;

hence we can form colimc/A Ua in A. Let

is:UA(f)^ colimUA(h)\f G C/A
hSC/A

be the colimiting cone and let

q: colim UA —> A
C/A

be the unique morphism making

UA(f)

colimc/A Ua

commute for each / G C/A. We have to show that g is an isomorphism and since

C is a conservative set of objects, it suffices to show that for each G G C

g,: A (C, colim UA(f)) ~^A(C,A)
V    fec/A )

is a bijection. But G is finitely presentable; so it suffices to show that the compo-

sition with the canonical bijection

G: colim A(C,UA(f))=>A(C, colim UA    U A(C,A)
fec/A V      C/A        )

is a bijection.

Now, this canonical bijection is that induced by the maps (if)*: A(C, Ua(})) —*

A(C, colime/a Ua)- Recalling that we may form the colimit of a filtered diagram

of sets as the quotient of the disjoint union of the sets by a suitable equivalence

relation, we see that if [h] G colime/a A(C,Ua) denotes the equivalence class rep-

resented by h: C —> UA(f), then

G[h] = g*(if)*h = gifh = fh.

But since [G -i UA(f)\ = [C ^ UA(fh)] in colimc/A A(C,UA), it follows that G
is indeed a bijection with inverse the map sending k: C —► A to [idc: C —> UA(k)\.

D 1.7
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1.8 COROLLARY.   If A is l.f.p., then the inclusion i:Ai.P. ^-> A is dense.

PROOF. By defintion of "l.f.p.", and 1.7(i), A{.p. is a conservative set in A. We

said above that A{.p. has finite colimits preserved by i. Thus, the assertion follows

from 1.7(H).    D 1.8

We return to the proof of 1.2(ii), specifically of the fact that the functor r is an

equivalence. By (the dual of) [CWM, X.6.2, p. 242] and 1.8, t is full and faithful
(indeed, this fact is equivalent to the density of i). To show that r is essentially

surjective, let M G LEX(^°P , S) be arbitrary; M can be represented (1.3(iii) and

(iv)) as a filtered colimit M = colimk Aopp(Ak,-) = colimk A(i(-), Ak); but the

last is isomorphic to A(i( — ), colimk Ak), by the definition of At.p.- In other words,

M = t(A) for A = colinifc Ak, as was to be shown.    D 1.2(h)

The following characterization of l.f.p. categories appears in [Mu] (the referee's

communication).

1.9 COROLLARY. The locally small category A is l.f.p. if and only if it satisfies
the following conditions

(i) A has filtered colimits.

(ii) ^f.p. has finite colimits preserved by i: A{.p. '-» A.

(iii) A has a small set of generators consisting of f.p. objects.

PROOF. It is clear from the above that every l.f.p. category A satisfies condition

(ii). Conversely, one sees that the conclusion of 1.8 remains true for A satisfying the

three conditions, with the same proof. Thus, the final argument above establishes

that the canonical functor r: A —► LEX(i?op , S) is an equivalence in this case; also,

A°pp is essentially small.    D 1.9

The official definition of "l.f.p." in [GU] is this: A is l.f.p. iff A is co-complete (has

all small colimits), and it has a small conservative set contained in Af.p.. With out

definition of "l.f.p.", this is a true statement: the 'if part is contained in 1.9 and

1.7(h); the 'only if' part follows by the fact that LEX.(A°P , 5) is a full and reflective

subcategory of (Aopp , S) (a consequence of 1.4), which implies that LEX(A°P , S)

is co-complete [CWM, Exercise V.5.3, p. 116].

Here is a new set of conditions ensuring that a category is l.f.p.

1.10 PROPOSITION. Suppose B is l.f.p., A has limits and filtered colimits,
G: A —> B preserves them, and G is conservative (reflects isomorphisms). Sup-

pose either that (i) A has a small set of generators or that (ii) G has a left adjoint

and A{.p. has finite colimits preserved by the inclusion Ai.p. ^-> A. Then A is l.f.p.

Moreover, Af.p. is equal to the finite colimit closure of {F(B): B G Bf.p.}, for F the

left adjoint of G.

For the proof, we need

1.11 LEMMA. Suppose A is locally small, has limits, and has a small set of

generators. Then Af.p. has finite colimits, and the inclusion A{.p. <—► A preserves

them.

PROOF. We have to show that given a finite category J, every diagram D: J —► A

whose vertices are finitely presentable has a colimit in A (since this colimit will

automatically be finitely presentable).   In other words, given such a diagram we
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have to find a cone (oj: D(j) —> A | j G J) under D which is initial amongst such

cones; but since A has limits, it is sufficient to verify a "solution set" condition (cf.

Theorem V.6.1 of [CWM]), i.e., find a set of cones under D so that an arbitrary

cone under D factors through one of the cones in the set. We claim that if C is a set

of generators for A, then the collection of cones under D with vertices in g forms

such a solution set. (It is a set since J and g are small and A is locally small.)

For suppose (üj: D(j) —> A \ j G J) is an arbitrary cone under D. Express A as a

filtered colimit of objects in g, say

A = colim G(k)

with colimiting cone

(ik:G(k)^A\kGK).

Since each D(j) is finitely presentable, a3 factors through one of the ik:

„A

Since there are only finitely many objects j G J and K is filtered, we can take the

same k for every j in the above; then since there are only finitely many arrows

a-j ~* f m Ji by changing k if necessary we can also arrange (by using now the

'uniqueness condition' in the D(j)'s being finitely presented) that for each a

D(j)      °^      D(f)

G(k)

commutes. Thus (gjk: D(j) —» G(k) \ j G J) is a cone in the solution set through

which the given cone factors (via ik).    D 1.11

PROOF OF LIO. Assume the hypotheses of the proposition and condition (i), in

particular. By 1.11, A{.p. has finite colimits preserved by the inclusion A{.p. <—> A.

By 1.4, G has a left adjoint, say F. In other words, condition (ii) is satisfied too.

Consider the objects of A of the form FB, for B G Sf.p.. Using the adjunction and

the fact that G preserves filtered colimits, one immediately checks that FB G A(.p.

when B G B{.p.. We claim that the set {FB: B G B(.P.} is conservative for A. In

fact, with any f:A—>A' in A, and B G Sf.p., the map in Set

(FB,A)   —   (FB,A')
{FBjy

is isomorphic to

(B,GA)   -»   (B,GA')

by the adjunction F H G. Therefore, if the former is a bijection, so is the latter.

Since Sf.p. is conservative in S (1.7(i)), it follows that if the former maps are all

injections, Gf is an isomorphism; hence, since G reflects isomorphisms, / is an

isomorphism as well. This shows the claim.
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Take the closure of {FB:B G Sf.p.} under finite colimits; call this closure C. C

is an essentially small full subcategory of At.p. having finite colimits preserved by

the inclusion C '—y A. By 1.7(h), C is dense in A. It follows that A is l.f.p., and

C = Ai.p. (the latter by the argument given for 1.3(v)).    G 1.10

Finally, let us note a consequence of 1.4, and introduce a piece of notation.

1.12 COROLLARY/DEFINITION. Every morphism F:A^B in LFP has a left

adjoint.  We write Ft for the essentially unique left adjoint of F.    D 1.12

Let us note that all results in this section remain valid, with essentially the same

proofs, upon systematically replacing, in all definitions and assertions, the term

"finite" by the term "of cardinality less than /c" for a fixed regular cardinal k. In

fact, this is the context in which the results of [GU] are stated.

2. Reflective subcategories of l.f.p. categories. Throughout this section

we will consider a fixed locally finitely presentable category S, a category A with

limits and filtered colimits and a functor F: A —> S preserving these limits and

colimits.

By Theorem 1.2 we can take S to be LEX(C, Set) with C a small category with

finite limits. Thus if L is the underlying graph of C, objects of S can be regarded

as certain kinds of diagram of type L in Set, the category of all such diagrams

being denoted Set . Now we can regard L as specifying a many-sorted language:

the objects of L are the sorts and the arrows of L the (unary) function symbols.

From this viewpoint, diagrams of type L in Set are just L-structures in the usual

sense of model theory. In prticular the essential image of F, viz

K = {B G B | B = F(A) some A G A},

is a class of L-structures and we can apply the terminology and methods of model

theory to study it. We thus have the notion of an elementary embedding M —> N

(a particular kind of morphism in Set ), the concept of two objects M, N G SetL

being elementarily equivalent (denoted M = N), ultraproducts of objects of SetL,

etc. We also need the following model-theoretic concepts:

An ultralimit oí an L-structure M is a filtered colimit of the form colim/g<a Mß,

where a is an ordinal, Mo = M and for each ß with ß + 1 < a, Mß —* Mß+1 is the

diagonal embedding of Mß into an ultrapower of itself; moreover there is a "conti-

nuity" condition, namely that for each limit ordinal A < a, M\ = colim/a<A Mß.

It is well-known that ultraproducts in SetL are combinations of products and

filtered colimits; by their definition ultralimits are such combinations too. More

precisely, if A is a (not necessarily full) subcategory of SetL, with the inclusion

A *-> Set creating all limits and filtered colimits, and M G A, then all ultralimits

of M are (up to isomorphism) in A as well.

Now let k be an infinite cardinal and M an L-structure. Say that M is < k-

saturated if for all sets I of cardinality < /c, for any /-indexed system (a¿ \i G I) of

elements of M and for any set $(x) of formulae with single free variable x in the

language L extended by adding the a¿ as constants, if every finite subset of <J>(z)

is satisfiable in M, then so is $(x). M is called < K-homogeneous if for any sets

/, J of cardinality < k, any map /: / —> J and any indexed systems (o¿ \ i G I),

(bj | j G J) of elements of M, if

(M, (a, | i G I)) = (M, (bm | i G I))
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then there is an automorphism h oí M with h(af) = i>/(¿), all i G I.

2.1 LEMMA. For k and M as above, there is an ultralimit of M which is < n-

saturated and < n-homogeneous.

PROOF. The result follows from Theorems 6.1.8, 6.1.4 and 5.1.17 of [CK].
D 2.1

2.2 LEMMA. With F: A —> S, L and K as above, suppose that F is faithful and

full on isomorphisms, i.e., if g:FA —> FA' is an isomorphism in B, then g — F(f)

for some (isomorphism) /: A —> A' in A.  Then

(i) K is an elementary class ofL-structures, i.e., there is a first-order theory T

in the language L with K = Mod(T) the class of models of T in Set.

(ii) F is full for elementary embeddings, i.e., if g:FA —» FA' is an elementary

embedding of L-structures, then g = F(f) for some f: A —> A' in A.

PROOF, (i) By assumption on F its essential image K = {B \ B = FA some

A G A} is closed under taking ultraproducts and ultralimits. However it is also

closed under elementary equivalence. For suppose M = N with N G K. Taking

k > card M (= ^{card M(c) \ c G L}), by Lemma 2.1 there is a < /c-saturated,

< /«-homogeneous L-structure P which is an ultralimit of N and hence in AT. By

saturation there is an elementary embedding e: M —> P (cf. 5.1.12 of [CK]). We

will show that e is the joint equalizer of the automorphisms h of P with he = e:

it then follows by assumption on F (in particular since F is full on isomorphisms)

that M G K.
So given a G P\im(e) we have to find an automorphism hoiP such that he — e

but h(a) t^ a. By the homogeneity of P it suffices to find b G M with

(P,a,(e(c)|ceM))EE(P,6,(e(c)|ceM))

and b ^ a. Such b satisfies the formulae in the set

<3>(x) = {a / x} U {<p(x. e(c)) | c e M and P N ip(a, e(c))}.

By saturation, we can find 6 provided each finite subset of $(x) is satisfied in P.

But if

a/jA t¡j(x,e(c))

is the conjunction of such a finite set which is not satisfied in P, then

PI=Vx(^(x,e(c)) ->x = a).

Now x = a shows that

P\= 3xip(x,e(c))

and e is elementary: so there is en G M with

Pr=V(e(co),e(c)).

Hence a = e(cn), contradicting o ^ im(e).

Thus /C is closed under ultraproducts and elementary equivalence and hence it

is an elementary class (cf. [CK]).

(ii) Given the elementary embedding g: FA -> FA' = N, find e: N -> P as in

the proof of (i). Thus g and eg are the equalizers of collections of automorphisms
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of P and hence (changing P by an isomorphism if necessary) are in the image of

F. But since

FA     A     FA'
id | | e

FA     %      P

is a pullback square, it follows that g is also in the image of F.    D 2.2

REMARK. Lemma 2.2 for the case when F is full is due to Volger; cf. Proposition

16 in [V].

2.3 PROPOSITION. Given a functor F: A -> S with B G LFP and such that A
has and F preserves limits and filtered colimits, suppose that F is faithful and full

on isomorphisms.  Then A G LFP (and hence F is a morphism in LFP).

PROOF. By the Löwenheim-Skolem theorem, every L-structure is the colimit of

a directed diagram of L-structures of power at most card L + No and of elementary

embeddings. Hence, by 2.2, A has an essentially small set of generators, consisting

of those objects that are, as L-structures, of power at most cardL + Ho- Now, the

result follows from 1.10.    G 2.3

REMARKS. 1. The referee suggested that the above proof could be made more

categorical by employing the methods and results of [AN1, AN2, and NS], or the

equivalent versions given by [GL].

2. To put ourselves in a familiar situation, let S the category of L-structures, for

an arbitrary fixed language L. Let K be an arbitrary class of L-structures (objects

in S). Then there is, up to equivalence, a smallest subcategory (not necessarily full)

\K]S of S containing K such that the inclusion [K]s —> S is full on isomorphisms,

creates limits and filtered colimits. [K]s is constructed by starting with objects

in K and by successively throwing in the objects and morphisms of limiting and

filtered colimiting cones based on diagrams already in, as well as all isos between

objects already in [K]s. The structures in[K]s can be said to share the common

algebraic properties of the ones in K, in a rather wide sense of 'algebraic', since

algebraic properties should be preserved under the operations that are used to build

[K]g from K. Eg., let L contain the single relation symbol C, and let K be the

class of all partial orders 0(X) of open sets of any topological space X. Then

the properties summarized in "M is a Heyting algebra" will all be shared by the

structures M in [K]s. Note that the quoted properties are expressed in terms of

C by first-order sentences of fairly high complexity; nevertheless, they are to be

regarded as 'algebraic', in contrast to arbitrary first-order properties.

Lemma 2.2 says that the class of objects in [K]3 is an elementary class; in other

words that, conversely, any structure that shares all those first-order properties

common to members of [K]s is, in fact, a member of [K}¿-. Although we have not

found a neat syntactic description of the algebraic properties, in the wide sense,

common to members of K, we have found a simple description of the class of all

structures sharing these properties. We are encouraged to define the algebraic

properties of K as the axioms true in [K] s.

Proposition 2.3 reassures us that, at least abstractly, [K]s is an 'algebraic' cat-

egory, i.e., it can be presented as LEX(C,Set) for some (although not very well-

known) C € Lex. In [MI], further observations will be made on C ~ ([K]s)° p ■
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2.4 COROLLARY. If A ^-> S is a full subcategory of a locally finitely presentable

category and A is closed under limits and filtered colimits in B, then A is also locally

finitely presentable and a reflective subcategory of B.    D 2.4

If in 2.4, S = LEX(C,Set), then by Lemma 2.2(i), A = Mod(T) for T some
first-order theory in the language L = graph of C. Volger has given a syntactic

characterization of the kind of theories that arise in this way: cf. Theorem 14 of [V].

Volger's theorem says the following. Given any language L, and an elementary class

A oí L-structures; then A, when considered a full subcategory of the category of

L-structures, has limits and filtered colimits preserved by the inclusion if and only

if A can be axiomatized by an L-theory T of the following kind: the axioms of T are

all of the form Vx(ip(x) —> 3yt/>(x, y)), where <p and tp are conjunctions of atomic

formulas; moreover, for each such axiom—and, in fact, for each consequence of T of

the given form—there exists a formula a(x, y) :=: 3zt(x, y, z) with r a conjunction

of atomic formulas such that

T h Vx(^(x) -> 3y^(x, y) A a(x, y))

and

n-Vx3^V(x,y).

A simple way for a theory T to satisfy Volger's condition is to be axiomatized

by sentences of the form \rx(<p(x) —> 3=1y?/>(x,y)). Volger gives an example of

a theory satisfying his conditions which cannot be axiomatized in the simpler

way. This complication is expressed, in the categorical context, by the follow-

ing fact: it is possible that a morphsm /: C —► D in Lex has the property that

7*:LEX(D,Set) —» LEX(C,Set) is full and faithful, and yet, I is not a quotient
morphism in the appropriate sense for the 2-category Lex.

Let us say a few words about quotient morphisms in Lex. Intuitively, the mor-

phism /: C —> D, as an interpretation of the 'theory' C in D, is a quotient if D is

obtained by adding new axioms but no new primitives to C.

Working with categories rather than syntax, the process of adding new axioms

to C becomes that of inverting a collection S of (mono)morphisms in C in a way

that is universal for Lex. The "category of fractions" construction Q:C —► C[S_1]

(cf. [GZ]) gives an explicit way of doing this for suitable collections S. "Universal"

here means that for any D G Lex

Q*:Lex(C[E_1],D) -> Lex(C,D)

is full and faithful and has essential image those functors inverting every morphism

in S. Let us call a morphism Q in Lex which arises in this way a quotient morphism.

Examining the construction of C[S_1] one can prove that Q: C —► D in Lex is a

quotient iff it satisfies the condition:

For every g: d —► Q(c) in D, there is /: c' —► c in C and an isomor-

Qf
phism d = Qc' in D so that g factors as g: d = Qc' —> Qc.

The class of quotient morphisms in Lex is orthogonal to the class of conservative

morphisms, i.e., those /: C —> D which reflect isomorphisms. These two classes

form a factorization system on the 2-category Lex (cf. [FT I]); in particular I is an

equivalence (or more precisely full, faithful, and essentially surjective) iff it is both

conservative and a quotient.
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Returning to the situation of Corollary 2.4, by Theorem 1.5 up to equivalence

the inclusion A '-* S in LFP is of the form

A = LEX(D, Set) £ LEX(C, Set) = S

for some I: C —► D in Lex; thus 7 has the property that I* is full and faithful. We

can now translate the possible failure of T (the theory with Mod(T) ~ A) to be a

finite limit theory quotient of C into the statement that I need not be a quotient

morphism. (Of course if J is a quotient then I* is full and faithful.) Let us see an

example of this.

2.5 EXAMPLE. Let To be the single-sorted theory of one constant Co and one

binary relation a (written x a y and read "y immediately succeeds x" ) satisfying for

each n = 1,2,3,... the axiom
n

(i) (coo-yio- ■•• ayn KcooZfO ■■■ a zna z) -> f\ y¿ = z¿.

í=i

Let Ti be the extension of To by countably many constants Cf,C2, ■ ■ ■ satisfying

the additonal axiom

(Ü) CnfJC„+1

for n = 0,1,2,....
Thus To and Tf are Horn theories and the faithful forgetful functor U: Mod(Ti)

—► Mod(To) is in LFP. Now axiom (i) shows that in any To-model (X, a, xo)

there is at most one way to choose a sequence of elements in X starting at Xo

and satisfying axiom (ii); i.e., each To-model has at most one Ti-model structure.

Moreover if (X, a, xo, Xf,...) is a Ti-model and /: (X,a, xo) —» (X',a', x0) is a T0-

homomorphism, then (X',0',x'0=fxo, fxf,...) is a Tf-model. It follows that the

forgetful functor U is not only faithful but also full. We claim that the morphism

in Lex corresponding to U is not a quotient; this morphism is Fop: Mod(T0)° p —►

Mod(T!)op , where F: Mod(T0) -> Mod(T,) is left adjoint to U. We can describe

F explicitly as follows.
Given a To-model (X,a,xq), let P(X) = {x | 3x' xax'} be the subset of

predecessors in X. By axiom (i) any (finite or infinite) sequence Xf, X2,... in P(X)

satisfying

Xo <T Xf a X2 a ■ ■ ■

is uniquely determined. Call the longest such sequence the "spine" of X: its length

may be finite (possibly zero) or countably infinite. In the latter case X is already

a Tf-model and we can take F(X, a, Xo) to be (X, a, xo,xi,...) (and the unit of

the adjunction at X to be the identity). If however this length is finite, so that

the spine is (xi, X2, • • •, xn), we can form F(X) by adjoining countably many new

elements to X, denoted xn.|_i, xn+2, • • -, and extend a by defining

xn a xn+f a xn+2 o-

(The unit of the adjunction at X will be in this case the inclusion X —> X U

{xn+i,Xn+2,... ,}■)

Now the free To-model on a set I is easily seen to be 1 +1 with a the empty

relation. F thus sends this to N +1 with

<r= {(n,n+l) I neN}.
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Let q: F(l + 1) —» F(l + 0) be the map N + 1 —> N which sends the unique element

of 1 to 1 G N and sends each n 6 N to itself. It is not hard to see that a To-

model is finitely presentable iff it is finite and that the only finite To-model X with

F(X) = F(l) is 1 itself. Thus if Fop:Mod(T0)opp -» ModiTi)^ were a quotient

morphism in Lex (recalling the characterization of such morphisms given above),

there would have to be p: 1 +1 —> 1 in Mod(To) and an automorphism F(l) = F(i)

in Mod(Ti) so that q: F(l + 1) -> F (I) is

F(l + 1) F^] F(1) = F(1).

Of course there is just one To-homomorphism 1 + 1 —► 1, and the only automorphism

of F"(l) is the identity: hence we would have q = F(p). But these two maps differ

on the unique element of 1 <^-> TV + 1 = F(l).    □ 2.5

This situation should be contrasted with that for pretoposes (which are the proper

categorical counterpart of theories in the intuitionistic logic of =, A, V and 3; cf.

[MR] and [KR]). Specifically if 7:P —> Q is a morphism in the 2-category Pt

of (essentially small) pretoposes, the hard part of the "conceptual completeness

theorem" of Reyes and the first author says that if

7*:PT(Q,Set)^PT(P,Set)

is full and faithful then I is a quotient morphism (in the sense appropriate to Pt);

we refer the reader to Chapter 7 of [MR] for the details. Whilst 2.5 shows that

the corresponding statement for Lex fails, one should note that nevertheless a very

strong form of conceptual completeness holds for Lex by virtue of the Gabriel-

Ulmer duality; viz for C, D e Lex, if LEX(C, Set) ~ LEX(D, Set) then C ~ D.
The natural question which therefore arises is whether one can give a condition

on 7: C —> D in Lex, weaker than that of being a quotient, which is necessary

and sufficient for 7*:LEX(D,Set) -> LEX(C,Set) to be full and faithful. We
devote the rest of this section to proving the following proposition, which provides

a positive answer to this question.

2.6 PROPOSITION.   For I: C —> D in Lex, the following are equivalent:

(i) The geometric morphism i: Set —> Set induced by I (viz i* = left Kan

extension along Iop and i* = precompositon with I°p) is an inclusion.

(ii) 7*:LEX(D,Set) -> LEX(C,Set) is full and faithful.
(hi) For each c G C, every object of the slice category E*/Ic is a retract of an

object in the image of the functor llApply 7" Ie: C/c —> D/7c, i.e.

given g:d —> Ic in D, there is f:c' —* c in C and maps i: d —> 7c'

and r: Ic' —> d in D such that r o i — id, g o r = If (and hence

If O i = g)
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PROOF, (i) => (ii). Recall (or cf. [TT]) that if TOP denotes the 2-category of

Grothendieck toposes and geometric morphisms, there is an equivalence

LEX(C, £) ~ TOP(<f, Setc°P)

that is natural in C G Lex and £ G TOP. In particular

LEX(D,Set)     ~     TOP(Set,SetD°P)

i'l = I ¿o(-)
LEX(C.Set)     ~     TOP(Set,Setc°P)

commutes up to isomorphism. But if i is an inclusion, i o ( — ) is full and faithful

and hence so is 7*.

(ii) => (iii). First note that if 7: C —> D is in Lex, so is 7c:C/c —> D/7c.

Similarly, given S in LFP and B G S, the category B/B of objects in S under

B is locally finitely presentable. (For the forgetful functor U: B/B —> S creates

limits and filtered colimits, and reflects isomorphisms; it has a left adjoint U, given

by coproduct with B; also, B/B has arbitrary small colimits. Thus, 1.10 (with

condition (ii)) is applicable.)

Moreover, given F: A -> S in LFP, we get B/F-.FB/A -> B/B in LFP by

sending an object under F\B, F\B —► A, to its transpose B —> FA across the

adjunction F\ H F, and similarly for morphisms. It follows that if F is full and

faithful, so is B/F.

Now there is an equivalence of categories

LEX(C/c,Set) ~ Fc/LEX(C,Set)

where Yc is the representable functor C(c, —). This is because A: C —> C/c (send-

ing d to 7T2: c' X c —* c) is characterized in LEX as the result of freely adjoining a

global element 1 —> c to c G C (i.e., in terms of theories, the result of expanding the

language by a constant of type c without adding any new axioms). The equivalence

is natural in C: thus given 7: C —> D

LEX(D/7c,Set) ~ Y(7c)/LEX(D,Set) ~ 7!(Fc)/LEX(D,Set)

(/«)• \ = / Yc/r

LEX(C/c, Set) ~ Fc/LEX(C, Set)

commutes up to isomorphism. (Here 7|:LEX(C, Set) —► LEX(D,Set) denotes the

left adjoint of 7*, i.e., left Kan extension along 7.) Thus if 7* is full and faithful,

so is Yc/I* and hence so is (7C)*, each c G C. So we will have (iii) if we can show:

7* full and faithful implies that every object of D is a retract of an object in the

image of 7. By Theorem 1.2 this is equivalent to showing that if F: A —> S in LFP

is full and faithful, then each A G A{.p. is a retract of some F\B with B G Sf.p.. But

given such an F and A G A(.p., we can express FA as a filtered colimit of finitely

presentable objects of S, say

FA = colim Bk,    with Bk G Bf p all k G K.
fceK

Then as F is full and faithful

A = FFA = co\imFBk.
fceK
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Since A is finitely presentable, this composite isomorphism factors through one of

the vertices of the colimit

A »  ^>     colim F\ Bk
fceK**. Î

for some fceK. Thus A is a retract of F\Bk with Bk G Sf.p., as required.

(iii) =>• (i).   We have to show that ¿, = (7op)*:Set
Dop

Setc°P is full and

faithful. For this it is sufficient to take X = Setop in the following lemma.

2.7 LEMMA. 7/7:C —► D ¡n Lex satisfies (iii) of 2.6, then for any category X,

I*: Xu —> Xe is full and faithful.

PROOF. To show 7* is faithful, given ip, vj: F =t G in Xo suppose <p¡ = vb¡.

Then for any d G D, taking c = 1 (the terminal object in G) in 2.6(iii), we can

express d as a retract of an object in the image of 7:

d

id

\

7c

Then

F<T

F7c-

>Gd

-*-G7c
<Plc=lt>Ic

commutes and Gi is (split) mono: hence ¡pd = r¡>¿.

To show that 7* is full, given F,G G XD suppose we have 9:FI —> GI in Xe.

Then given d G D find c, i, and r as above and define

tpd = Gr o 0C o Ft

F7c

f-U    Gd
ÎGr

-»    G7c.

We will show simultaneously that <p<¿ is independent of the choice of retract and is

natural in d.
Given g: df —► (¿2 in D and retracts

id I

d 1

\'

7cj 0 = 1,2),

applying 2.5(iii) to

d      —>      /Ci X iC2 = i(Cf X C2),
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we can find (/i, /2): C3 —> Ci x c2 and maps ¿3: df —> 7c3, r3: 7c3 —> <7i such that

r3 o ¿3 = id, ¿1 o r3 = 7/1    and    i2g o r3 = 7/2

(and hence Iff oi3 — if and 7/2 o ¿3 = z2g)

(7ci x 7c2;

Thus

Grf6CiFif = Grf9ClFIffFi3 = Gr1G7/1ÖC3Fi3

= GriGiiGr30c3Fi3 = Gr36C3Fi3.

Hence

Gg(Gr1eciFil) = Gg(Grz6C3Fi3) = Gr2GÍ2GgGr3ec;íFi3

= Gr2GIf26C2Fi3 = Gr2ec2FIf2Fi3 = (Gr2ec2Fi2)Fg.

Thus Gg o y?dl = <pd2 o Ff/, so that <p<i is natural in d; moreover, taking g = id we

also get Gr20C2FÍ2 — Gri0ClFif, i.e., the definition of <p¿ is independent of which

retract we choose. In particular, when d = Ic for some c 6 C, we can take the

retract i = id = r and conclude that ip¡c = 9C. Thus 7* is indeed full.    D 2.7

This completes the proof of 2.6.    D 2.6

REMARK. The equivalence of conditions (i) and (ii) could be deduced from the

"conceptual completeness result" for pretoposes, mentioned above.

3. Regaining the global sections of a sheaf from its stalks. Suppose

that C is a small, finitely complete category and that £ is a Grothendieck topos.

We can think of a functor F G LEX(C, £) as being a "sheaf of models of C over

the generalized space £." From this viewpoint, the global sections of F, TF G

LEX(C, Set), is the composition of F with T = £(1, -): £ —* Set. Similarly, given
a point of £, i.e., a geometric morphism p G TOP(Set, £) = Pt(£), the stalk of

F at p, Fp G LEX(C, Set), is the composition of F with the inverse image part

of p, p*: £ —> Set. From the point of view of models of C in Set, F provides a

sheaf representation of TF in terms of the stalk models Fp. Can one express this

relationship solely in terms of the category of models in Set, LEX(C,Set)? One

often thinks of a sheaf representation as a kind of generalized limit, and indeed for

presheaf toposes limits do indeed provide the answer to the above question.

3.1 EXAMPLE. Suppose that £ = SetA°P with A a small category. Then V: t ->

Set is just liniA°p, i.e., "take the limit over Aop." Now each object a G A provides

a point pa of £ whose inverse image part is just evaluation at a:

P*a(F) = F (a)

(and similarly for morphisms in £). Moreover such a: a —> a' in A gives a natural

transformation pa, —* pa. We thus get a diagram of type Aop in LEX(f,Set)

whose limit is T:

r=   lim pi.
oGAop
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In particular, for any F G LEX(C, £), the global sections of F is expressible as a

limit (in LEX(C, Set)) of stalks of F.

A particular case, proved by Ellerman [E], is when £ is sheaves on a partially

ordered set P topologized by the order topology: for then £ ~ Set      .    G 3.1

For general Grothendieck toposes £, the operation of taking limits may not suffice

to regain TF from {Fp | p G Pt(£)} in LEX(C, Set). Of course the latter collection

of models might be rather small if £ has few points. (Recall that it is perfectly

possible for £ to be nontrivial but have no points at all; cf. Chapter 7 of [TT].) So

we will only consider toposes with enough points, i.e., such that if f:X —► Y in £

and p*(f) is a bijection for each p G Pt(£), then / is an isomorphism.

Now, as well as taking limits, we emphasized in §1 that the other natural oper-

ation in LEX(C, Set) is that of taking filtered colimits.

3.2 NOTATION. If K is a collection of objects in a locally finitely presentable

category A, let [K\ ^-> A denote the least full subcategory of A containing K that is

closed under taking limits and filtered colimits in A. (We will always assume that

full subcategories are replete, i.e., if an object is isomorphic to something in the full

subcategory, it too is in the subcategory.) Note that by Corollary 2.4, \K\ is also

locally finitely presentable and \K\ •—» A is a morphism in LFP.

3.3 THEOREM. Suppose that C is a small category with finite limits, that £ is

a Grothendieck topos with enough points and that F G LEX(C, £). Then for any

LeLEX(<f,Set)

L o F G [{Fp I p G Pt(<f)}] «-> LEX(C, Set).

In particular, taking L = Y we get that the global sections of F, as a model of C

in Set, is in the closure of the stalks of F under limits and filtered colimits.

PROOF. Let K = {Fp \ p G Pt(<?)}. Then as remarked above, by Corollary 2.4

[<} -+ LEX(C,Set) is in LFP, and hence by Theorem 1.2 there is 7: C -> D in

Lex and an equivalence [K] — LEX(D,Set) making

[K] - LEX(D,Set)

\     =     /r

LEX(C,Set)

commute up to isomorphism. (Thus D ~ [K]°p .) Hence a functor is in [K] just in

case it is isomorphic to one in the image of 7*.

Since £ has enough points, we can find a sufficient set of points, i.e., a set P of

points such that the associated geometric morphism

tt: Setp -> £

(whose inverse image part has component at p G P equal to (n*)p = p*) is a

surjection. The existence of such a set P is really an application of the downward

Löwenheim-Skolem theorem: cf. 7.16 and 7.17 of [TT].

Now if p G P, (ir*F)p = p*F = Fp G K Ç [K]: so by the remark above, there

is Gp G LEX(D,Set) and an isomorphism I*(GP) ~ (7r*F)p. The functors Gp

(p G P) fit together to give a finite-limit preserving functor G: D —> Set   , and by
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construction

D 5 Setp
i Î = W
C £        £

commutes up to isomorphism in LEX. We therefore get a corresponding square in

TOP commuting up to isomorphism:

SetDop      «L     Setp

* 1 —        I *■
Setc°P      ¿        £

Here i is the geometric morphism induced by 7 (as in 2.6(i)), / corresponds to F

under the equivalence

LEX(C, £ ) ~ TOP(£\ Setc°P),

and similarly for t; and G.

Since 7* is full and faithful, by Proposition 2.6 i is an inclusion.  But by con-

struction n is a surjection; hence the square in TOP factors as

Setc°" 4- - £

Correspondingly we thus get a factorization in LEX:

Setp

So for any L G LEX(¿\ Set), L o F = I*(LH), and so LF G [XT] as required. D

3.3
By geometric logic we mean the intuitionistic logic of =, A, V, 3 and infinitary

disjunction \f (of formulae involving only finitely many free variables); cf. Chapter 2

of [MR]. Specifying a theory T in this logic amounts to giving a small site (C, J), i.e.,

a small category C G Lex equipped with a Grothendieck topology J. The category

of models of T in Set, Mod(T), is then the full subcategory of LEX(C, Set) whose

objects are the J-continuous functors; this category is equivalent to the category

of points of the classifying topos of T, i.e., of the topos of sheaves on the site,

Sh(C, J). See for example [MR] or Chapter 7 of [TT] for the details of this.

From Theorem 3.3 we can obtain the following result about geometric theories.

3.4 COROLLARY. Suppose that T is a geometric theory which is specified by

a small site (C, J), where C has finite limits and the Grothendieck topology J is
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subcanonical (i.e., representable presheaves are sheaves). If T has enough models

in Set (i.e., Sh(C, J) has enough points), then

[Mod(T)]=LEX(C,Set).    ■

PROOF. Since J is subcanonical the Yoneda embeding 77: C <—> Setc factors

through Sh(C, J) <-> Setc°P and for any c G C

C^—->■ Sh(C,J)

vX    Sh(C,J)/77c

\,   ir
Set

commutes up to isomorphism, where Yc is the representable functor C(c, —) and A

is right adjoint to the forgetful functor E:Sh(C, J)/77c -> Sh(C, J). For rA77(-)

= Sh(C,J)/77c(l,A77(-)) = Sh(C,J)(E(l),77(-)) = Sh(C, J)(Hc,H(-)) =
C(c,-). Applying Theorem 3.3 with £ = Sh(C, J), F = 77 and L = T o A,
we have

Yc = VA o H G [Hp \ p GPt(£)}.

But by definition of £, {77p | p G Pt(£)} = ob Mod(T). Thus Yc G [ModT]. Now
any functor in LEX(C, Set) can be expressed (canonically) as a filtered colimit of

such representable functors. Hence [ModT] is the whole of LEX(C, Set).    D 3.4

3.5 REMARKS, (i) The proof of 3.4 gives no information about the number of

times one has to alternate the operations of taking limits and filtered colimits to

obtain a particular functor in LEX(C, Set). We do not know to what extent the

maximum number of such alternations is an interesting measure of the complexity

of T as a geometric extension of the finite limit theory C.

(ii) Theorem 3.3 and Corollary 3.4 are best viewed in the context of a general

"sheaf representation problem" for geometric theories over finite limit theories, viz:

GIVEN a finite limit theory, i.e., C G Lex; a geometric quotient T of it, i.e., a

Grothendieck topology J on C; and a model F G LEX(C, Set) of C in Set.

FIND a Grothendieck topos £ and a sheaf M of T-models over £ (i.e., a J-

continuous functor in LEX(G, £)), whose global sections is F.

M. Coste [C] has shown that one can always find such a representation (£,M) for

F provided J is subcanonical and generated by finite covering families (so that T

is a coherent theory). Indeed in this case we can take (£,M) to be the spectrum

of F, i.e., the value at F of the left adjoint to the functor

(T-modelled toposes)op — LEX(C,Set)

sending

(f.MlHroAf.
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Returning to the general case, let us remark that recent (unpublished) work of

A. Joyal shows that if a representation (£,M) exists for F, then we can always

take £ to be localic over Set, i.e., a topos of sheaves on a complete Heyting algebra.

For Joyal has shown that for any Grothendieck topos £ there exists a connected,

locally connected geometric surjection

q:Sh(A)-^£

with A a complete Heyting algebra (i.e., a locale). This means in particular that

q* has a left adjoint q¡:Sh(A) —> £ satisfying q\(l) = 1. Hence

£ £ Sh(A)

r\      =       /r

Set

commutes up to isomorphism since

Tq*(-) = Sh(A)(l, </*(-)) SS £(q,(l), -) = T(-).

Thus if (£,M) is a representation for F, so is (Sh(A), q*M).
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