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Abstract

This paper introduces a new recursion principle for inductively defined data modulo α-

equivalence of bound names that makes use of Odersky-style local names when recursing

over bound names. It is formulated in simply typed λ-calculus extended with names that can

be restricted to a lexical scope, tested for equality, explicitly swapped and abstracted. The

new recursion principle is motivated by the nominal sets notion of ‘α-structural recursion’,

whose use of names and associated freshness side-conditions in recursive definitions formalizes

common practice with binders. The new calculus has a simple interpretation in nominal sets

equipped with name-restriction operations. It is shown to adequately represent α-structural

recursion while avoiding the need to verify freshness side-conditions in definitions and

computations. The paper is a revised and expanded version of Pitts (Nominal System T. In

Proceedings of the 37th ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, POPL 2010 (Madrid, Spain). ACM Press, pp. 159–170, 2010).

1 Introduction

1.1 Alpha-structural recursion

When giving the semantics of a programming languages, it is commonplace to rise

above details of concrete syntax and work at the level of abstract syntax trees.

Indeed, if the language involves binding constructs (as most do), one often raises

the level of abstraction even further by implicitly quotienting abstract syntax trees

by an appropriate notion of α-equivalence. Working modulo α-equivalence affects

the fundamental tools of programming language semantics, namely the definition of

functions on syntax by structural recursion and the proof of properties of them by

structural induction: the arguments of a recursively defined function can have their

bound names changed as necessary, but one is obliged to prove that the value of the

defined function is independent of such changes. To be specific, consider the simple

example of the (possibly open) terms of the untyped λ-calculus (Barendregt, 1984)

Λ � {t ::= a | t t | λa. t}/≡α (1)

where a ranges over an infinite set � of variables and where syntax trees for λ-terms

are identified up to the usual notion of α-equivalence for λ-bound variables, ≡α.

When making a structurally recursive definition of a function f : Λ → X in terms

of functions f1 : � → X, f2 : X × X → X and f3 : � × X → X, one can take
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advantage of the identification of terms up to ≡α by restricting the applicability of

the recursion equation for terms of the form λa. t. Thus, in the third clause of the

recursion scheme

f a = f1 a

f(t1 t2) = f2(f t1, f t2)

a /∈ a ⇒ f(λa. t) = f3(a, f t)

⎫⎬
⎭ (2)

we restrict the recursion equation to apply only for bound variables a that avoid

some finite set a of variables – typically the ones that are involved in the definition

of the functions f1, f2, f3. For example, the function f(−) = (−)[t′/a′] : Λ → Λ for

capture-avoiding substitution of t′ ∈ Λ for a′ ∈ � is given by taking

f1 a �

{
t′ if a = a′

a if a �= a′

f2(t1, t2) � t1 t2
f3(a, t) � λa. t

and a to be the finite set consisting of a′ and the free variables of t′.

For Equation (2) to specify a well-defined (and total) function on α-equivalence

classes of syntax trees for λ-terms, the function f3 has to satisfy some condition

ensuring independence of the definiens f3(a, f t) in the third clause from choice of

the bound variable a used to represent the λ-abstraction λa. t in the corresponding

definiendum. In any particular case, such as in capture-avoiding substitution,

formulating and proving such a condition on f3 may be routine (and hence, in

the literature, such proof obligations are often left to the reader). What is less

routine is to find a condition that applies to arbitrary X, f1, f2, f3 and a that

not only ensures the scheme (2) always yields a well-defined and total function f,

but also is not too restrictive when it comes to applications; and of course such a

recursion scheme should be available not just for the example of λ-terms, but also

for a wide class of languages involving binding operations.

Alpha-structural recursion (Pitts, 2006) is such a scheme and it is the starting

point for the work described in this paper. It uses the theory of nominal sets and

the associated concept of (finite) support, which generalizes the notion ‘free name’

from finitary syntax to more general mathematical structures (Gabbay & Pitts, 2002;

Pitts, 2003). For example, the principle of α-structural recursion, when specialized to

the set of α-equivalence classes of syntax trees for λ-terms (1), yields the following

result whose proof can be extracted from Theorem 5.4 in Pitts (2006).

Theorem 1.1 (α-Structural recursion principle for Λ.)

For each nominal set X, the scheme (2) uniquely defines a function f provided the

functions f1, f2 and f3 have finite support contained in a and provided f3 satisfies

the following ‘freshness condition for binders (FCB)’

a /∈ a ⇒ (∀x ∈ X) a # f3(a, x) (FCB)

(where in general we write a # x to mean that the name a is not in the support of

an element x of the nominal set X.) �
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For the example of capture-avoiding substitution mentioned above X is Λ itself,

which can be given the structure of a nominal set in which support coincides

with the usual set of free variables of a λ-term; hence, FCB holds in this case

because f3(a, x) = λa. x and a # λa. x, since for any λ-term x ∈ Λ, a is not

free in λa. x. The Nominal package for the Isabelle proof assistant implements α-

structural recursion (and more) within Isabelle/HOL (Urban & Berghofer, 2006;

Urban, 2008). Experience with Nominal Isabelle suggests that, despite the need to

prove lemmas about support and to prove FCB, this is a convenient and expressive

formalization within higher order logic of structural recursion in the presence of

binders (see http://isabelle.in.tum.de/nominal/).

However, the ‘freshness condition for binders’ means that α-structural recursion

is not a convenient basis for a purely equational calculus – a desirable precondition

for integrating these ideas with pure functional programming and constructive type

theory (Nordström et al., 1990), as opposed to higher order predicate logic as in

the Isabelle/HOL system. This paper develops such a calculus of total, higher order

functions with a form of structural recursion modulo α-equivalence that manages

to retain the practically convenient ‘nominal’ treatment of binding in which bound

names are first-class citizens that can be tested for equality, passed to functions

as arguments and returned as results. This distinguishes the calculus from early

approaches to primitive recursion on data involving binding operations based upon

higher order abstract syntax (Schürmann et al., 2001). However, more recent such

systems, such as Delphin (Poswolsky & Schürmann, 2008) and the system introduced

by Licata et al. (2008), have nominal (or at least ‘pronominal’ Licata & Harper,

2009) features, such as types #T of names of variables of type T . What really

distinguishes the calculus introduced here from these recent systems is the emphasis

we place upon locally scoped names, or name-restriction, in addition to name-

abstraction. These are different concepts; for one thing, the first does not change

the type of the restricted entity, whereas for the second there is a change of type

from entity to name-abstracted entity. We will show that the theory of nominal

sets provides a setting in which the semantics of abstraction and restriction can

be compared. We next explain why we consider restriction important for structural

recursions that involve abstraction.

1.2 Locally scoped names

When defining and computing with recursive functions on syntax modulo α-

equivalence, conditions like FCB can be avoided by making use of locally scoped

names. Roughly speaking, the recursion scheme (2) is replaced by

f a = f1 a

f(t t′) = f2(f t, f t
′)

f(λa. t) = νa. f′
3(a, f t)

⎫⎬
⎭ (3)

where νa. (−) is a local scoping construct guaranteeing that a is not in the support of

νa. f′
3(a, x) for any x, thereby trivially satisfying FCB for f3(a, x) � νa. f′

3(a, x). This

is not an entirely new idea; for example, in Section 4.1 in Schürmann et al. (2001),
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the authors make use of an informal notion of local scoping when introducing their

examples. What is new here is that we manage to give νa. (−) a formal semantics

that in combination with some other constructs, such as name-swapping allows our

calculus to represent functions defined by α-structural recursion.

What is the meaning of νa. (−)? By far the most common interpretation of

locally scoped names is a stateful one, using dynamic allocation of fresh names:

νa. e is evaluated by augmenting the current state with a fresh name and then

evaluating e with a bound to that fresh name. FreshML (Shinwell et al., 2003;

Shinwell & Pitts, 2005) uses this mechanism to provide recursion schemes, such as

Equation (3), within the context of an ML-like impure functional programming

language. Stateful operational semantics do not give rise to equational calculi with

good logical properties. Indeed, even such an apparently simple computational

effect as dynamic allocation of names is known to interact in complicated ways

with higher order functions; for example, function expressions can fail to behave

extensionally: see Example 1.2 in Pitts & Stark (1998). Instead of trying to tame

dynamic allocation in this context, as in Pottier (2007), here it is avoided altogether by

using a version of the stateless, type-directed interpretation of νa. (−) from Odersky

(1994). In fact, the author rediscovered Odersky’s version of locally scoped names

while studying properties of nominal sets, which provide a new and rather simple

denotational semantics for it. Odersky’s theory may seem too simple: compared with

the dynamic allocation interpretation, there is no scope extrusion of local names

from function arguments and no sharing of local names between components of

a tuple. Nevertheless, combined with name-swapping, it produces a calculus that

can represent any function defined by α-structural recursion for Λ at least, and

potentially for any nominal signature in the sense of Definition 2.1 in Urban et al.

(2004).

1.3 Structure and contributions of this paper

We give a new (and simple) semantics for Odersky-style local names based upon the

notion of a name-restriction operation (Definition 2.6) on a nominal set. Section 2

reviews the theory of nominal sets and uses it to give a semantics for locally scoped

names satisfying some basic structural properties (α-equivalence, garbage collection

of unused names and invariance under reordering consecutive scopes). We show that

nominal sets equipped with such a local scoping operation are closed under forming

product (Section 2.3.2), function (Section 2.3.4) and name-abstraction (Section 2.3.5)

nominal sets. In particular, the operation of ‘concreting’ a name-abstraction, which

is, in general, a partial operation, naturally extends to a totally defined operation

in the presence of a name-restriction operation. This opens up the possibility of a

λ-calculus of total functions incorporating names and name-abstraction provided

one also adds this form of locally scoped name.

This possibility is realized in Section 3, where we extend the simply typed λ-

calculus over ground types for Booleans and names with name-abstraction types.

The resulting λαν-calculus is one of the main contributions of this paper. We give

its intended interpretation in nominal restriction sets (Section 3.2); and we develop
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an extension of the usual notion of β-conversion that is sound for this semantics

and that largely agrees1 with the Odersky (1994) functional theory of local names

(Section 3.3). In Section 3.4, we prove the existence and uniqueness (up to a

structural congruence) of normal forms for λαν-calculus β-conversion. The proof

uses evaluation to weak head normal form combined with a ‘readback’ operation,

inspired by the work of Coquand (1991) and Altenkirch & Chapman (2009).

Based upon this foundation, in Section 4, we study recursion schemes involving

locally scoped names. The new primitives of the λαν-calculus allow us to express the

known nominal sets initial-algebra semantics of syntax with binders in the convenient

style of FreshML (see Examples 4.3–4.6), while retaining an effect-free calculus. To

illustrate this, the λαν-calculus is extended with ground types for untyped λ-terms

and numbers, together with recursion combinators. We develop the normalization

properties of the resulting λανδ-calculus in Section 4.2. Then, in Section 4.3, we prove

that the α-structural recursion principle of Theorem 1.1 can be faithfully represented

in the λανδ-calculus (Theorem 4.13).

Finally, in Sections 5 and 6, we compare these results with previous work and draw

some conclusions about the use of locally scoped names for expressing recursion in

the presence of binding operations.

2 Semantics of scope

Fix a countably infinite set �, whose elements a are called (atomic) names. To

qualify as a notion of local scoping of names, a syntactic construct νa. (−) should

have three basic properties:

νa. e equals νa′. e[a′/a] if name a′ is not free in νa. e (ν-Alpha)

νa. e equals e if name a is not free in e (ν-Strengthening)

νa. νa′. e equals νa′. νa. e (ν-Exchange)

Here, (−)[a′/a] denotes (capture-avoiding) substitution and ‘equals’ may mean some

form of structural congruence that is imposed on the syntax, as is the case for name-

restriction in the π-calculus (Milner, 1992) (which has additional ‘scope extrusion’

properties to do with parallel composition); or it may mean some form of semantic

equality such as contextual equivalence, as is the case for the ν-calculus (Pitts &

Stark, 1993) and λν (Odersky, 1994). The names ‘Strengthening’ and ‘Exchange’

used above are adopted from Section 2.3 in Gacek et al. (2008), which imposes

these properties on the ∇-quantifier of Miller & Tiu (2005) in connection with the

study of locally scoped eigenvariables and generic judgements in inductive proofs.

Given its equational nature, ν-Strengthening could just as well have been called ‘ν-

weakening’. Note that the other familiar structural property, contraction, is definitely

not a property of local scoping: occurrences of a and a′ in an expression e are kept

distinct once scoped and we do not expect νa. νa′. e to equal νa′′. e[a′′/a, a′′/a′] in

general.

1 λαν-calculus semantics differs from Odersky’s version by taking νa. a to denote a value rather than
being undefined in the semantics.
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The theory of nominal sets provides a setting in which properties like the three

above can be expressed independently of any particular syntax for expressions. We

outline what we need of that theory in order to apply it to the notion of local

scoping; see Section 3 in Pitts (2006) for a more leisurely account. (The original

formulation of Gabbay and Pitts, 2002 was in terms of a universe of FM-sets, but

subsequent experience shows that it is simpler to work with the category of nominal

sets (Pitts, 2003) when possible; the relationship between the two is analogous to

that between the von Neumann universe and the category of sets.)

2.1 Nominal sets

The main idea is to formulate a syntax-independent notion of ‘free name’ entirely

in terms of the way permutations of names act on structures. Let Perm(�) denote

the group of finite permutations of the set �. Its elements are bijections π : � ∼= �
for which {a ∈ � | π(a) �= a} is finite; the group multiplication is given by function

composition (◦), the group identity by the identity function (ι) and inverses by

inverse functions (π−1). A nominal set is a set X equipped with a Perm(�)-action

(written π, x 
→ π · x)

(∀x ∈ X) ι · x = x

(∀π, π′ ∈ Perm(�), x ∈ X) π′ · (π · x) = (π′ ◦ π) · x

with respect to which every x ∈ X is finitely supported. By definition this means that

given x, there is a finite subset a ⊆ � such that for any a, a′ ∈ �−a, the permutation

(a a′) ∈ Perm(�) that swaps a and a′ leaves x invariant: (a a′) · x = x. When x is

finitely supported, the smallest (for inclusion) such a always exists and is called the

support of x, written supp(x).

Complementary to finite support is the notion of freshness: we say ‘a is fresh for

x’ and write a # x if a /∈ supp(x), that is if x is supported by some finite set of names

not containing a.

Example 2.1 (� as a nominal set.)

Permutations act on names by function application. With respect to this action, each

a ∈ � has support supp(a) = {a}. Thus, a # a′ holds iff a �= a′.

Example 2.2 (Λ as a nominal set.)

Permutations act on syntax trees involving names by applying the permutation

wherever names occur in the tree. In the case of syntax trees for λ-terms, this

permutation action respects the usual notion of α-equivalence and so one gets an

action on the set Λ in Equation (1). One can show that the elements of Λ are finitely

supported with respect to this action. Indeed for each t ∈ Λ, supp(t) coincides with

the finite set of free variables of t.

Definition 2.3 (Category of nominal sets.)

The category Nom has nominal sets for objects. Given two such, X and Y , the

morphisms f ∈ Nom(X,Y ) are equivariant functions, that is functions from X to

Y satisfying f(π · x) = π · (f x) for all π ∈ Perm(�) and x ∈ X. Composition of

morphisms is given by the usual composition of functions.
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The category Nom is known to provide a model of classical higher order logic

with many interesting properties. We give the ones we need here.

2.1.1 Discrete nominal sets

Every set I becomes a nominal set if endowed with the trivial Perm(�)-action

π · i = i, which gives supp(i) = ∅. In case I = 1 = {0} is a one-element set, this gives

the terminal object in Nom . In case I = � = {True,False} is a two-element set, this

gives the subobject classifier in Nom (which is a Boolean topos Johnstone, 2002).

2.1.2 Products of nominal sets

The product of X and Y in Nom is given by the Cartesian product X ×Y = {(x, y) |
x ∈ X ∧ y ∈ Y } endowed with the componentwise action π · (x, y) = (π · x, π · y),
which gives supp(x, y) = supp(x) ∪ supp(y).

2.1.3 Coproducts of nominal sets

The coproduct of X and Y in Nom is given by the disjoint union X+Y = {(0, x) | x ∈
Y }∪{(1, y) | y ∈ Y } endowed with the action: π · (0, x) = (0, π ·x), π · (1, y) = (1, π ·y).
This gives supp(0, x) = supp(x) and supp(1, y) = supp(y).

2.1.4 Exponentials of nominal sets

Given X,Y ∈ Nom , their exponential X →fs Y consists not of all functions f from

X to Y , but just the ones that are finitely supported with respect to the usual

action of permutations on functions (π · f = λx ∈ X. π · (f(π−1 · x))); that f is

supported by finite a ⊆ � amounts to requiring for any a, a′ ∈ � − a and x ∈ X

that f((a a′) · x) = (a a′) · (f x). In particular, the elements of X →fs Y supported by

the empty set of names are precisely the equivariant functions, that is the elements

of Nom(X,Y ).

2.2 Name-abstraction

The original motivation for nominal sets was to extend the range of induction and

recursion for inductively defined sets to encompass sets quotiented by α-equivalence.

Nominal sets like Λ (Example 2.2) are isomorphic in Nom to nominal sets inductively

defined using products X × Y , coproducts X + Y and a name-abstraction construct

[�]X for representing domains of name-binding operations. For example, Λ ∼=
μX.� + (X × X) + [�]X (where � is regarded as a nominal set as in Example 2.1).

Definition 2.4 (The functor [�](−) : Nom → Nom.)

Given X ∈ Nom , let [�]X denote the set of equivalence classes of pairs (a, x) ∈
� × X with respect to the equivalence relation identifying (a, x) with (a′, x′) iff

(a a′′) · x = (a′ a′′) · x′ holds for some a′′ # (a, x, a′, x′). We write 〈a〉x for the

equivalence class of (a, x). The Perm(�)-action on the product � × X induces
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an action on [�]X and one can show that each 〈a〉x is finitely supported with

respect to this action; indeed supp(〈a〉x) = supp(x) − {a}. So [�]X is a nominal

set and given any equivariant function f ∈ Nom(X,Y ), we get a well-defined

equivariant function [�]f ∈ Nom([�]X, [�]Y ) by defining: ([�]f)(〈a〉x) = 〈a〉(f x).

This preserves identity and composition of morphisms and so makes [�](−) into a

functor from Nom to itself.

Given that name-binding operations can be modeled by finitely supported func-

tions with domain [�]X, the following proposition explains the origin of conditions

like FCB in Theorem 1.1. The proof of the proposition can be extracted from

Section 5 of Gabbay & Pitts (2002).

Proposition 2.5

Given X,Y ∈ Nom and f ∈ (� × X) →fs Y , there is a unique f̂ ∈ [�]X →fs Y

satisfying (∀a ∈ �) a # f ⇒ (∀x ∈ X) f̂(〈a〉x) = f(a, x) iff

(∀a ∈ �) a # f ⇒ (∀x ∈ X) a # f(a, x). (4)

In fact, Equation (4) holds of f iff there is at least one a ∈ � for which a # f and

(∀x ∈ X) a # f(a, x) hold; this fact is an example of the characteristic ‘some/any’

feature of the theory of nominal sets; see Theorem 3.8 in Pitts (2006).

2.3 Name-restriction

In this section, we develop the notion of a name-restriction operation on a nominal

set. It will be used to model locally scoped names in the calculi we consider in

Sections 3 and 4.

Definition 2.6 (Category of nominal restriction sets.)

A name-restriction operation on a nominal set X is an equivariant function in

Nom(� × X,X), written (a, x) 
→ a\x, satisfying

a # a\x (\-Alpha)

a # x ⇒ a\x = x (\-Strengthening)

a\(a′\x) = a′\(a\x) (\-Exchange)

for all a, a′ ∈ � and x ∈ X. We associate the operation \ to the right and assume

it binds less tightly than function application and permutation action; thus, a\a′\x
means a\(a′\x), a\f x means a\(f x) and a\π · x means a\(π · x). A nominal set

equipped with such an operation is called a nominal restriction set. We write Res for

the category whose objects are nominal restriction sets and whose morphisms are

equivariant functions preserving name-restriction (f(a\x) = a\f x).

Since the freshness relation # for a nominal set generalizes the syntactical ‘not free in’

relation (Example 2.2), it is clear that properties \-Strengthening and \-Exchange,

respectively, model the properties ν-Strengthening and ν-Exchange required of a

syntactic notion of local scoping of names; and the discussion in Section 2.2 shows

why \-Alpha models the α-equivalence property ν-Alpha. In view of Proposition 2.5,
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property \-Alpha is equivalent to requiring name-restriction to induce a morphism

ρ in Nom from [�]X to X satisfying

ρ(〈a〉x) = a\x. (5)

Then, properties \-Strengthening and \-Exchange are equivalent to the commu-

tation in Nom of

X
κ ��

idX

���
��

��
��

��
��

��
��

[�]X

ρ

��

[�][�]X
δ ��

[�]ρ

��

[�][�]X

[�]ρ

��
and [�]X

ρ
����������� [�]X

ρ
�����������

X X

respectively, where κ x = 〈a〉x for some (or indeed any) a # x; and where

δ(〈a〉〈a′〉x) = 〈a′〉〈a〉x.

Example 2.7 (Exceptional name-restriction.)

The monad (−) + 1 : Nom → Nom (corresponding to the ‘notion of computation’ of

Moggi, 1991 consisting of a single global exception) maps nominal sets to nominal

restriction sets. Given X ∈ Nom , writing X + 1 as {Some(x) | x ∈ X} ∪ {None}, it is

easy to see that we get a name-restriction operation on it by defining

a\Some(x) =

{
Some(x) if a # x

None otherwise

a\None = None.

Although this might seem a rather trivial notion of name-restriction it appears to

be the one that arises most often in informal practice to do with the manipulation

of syntax involving binders, viz. a locally scoped name used in an expression whose

value does not contain that name in its support. See also the ‘export↼’ function

in the possible-world-based analysis of programming with names and binders of

Pouillard & Pottier (2010).

Remark 2.8 (Free nominal restriction sets.)

For each nominal set X, there is a freely generated nominal restriction set F(X); in

other words, the forgetful functor U : Res → Nom has a left adjoint F : Nom → Res .

This can be described concretely as follows. Let Fin(�) denote the set of finite subsets

a of �. It becomes a nominal set via the Perm(�)-action π · a = {π(a) | a ∈ a},
which gives supp(a) = a. Then, F(X) is the set of equivalence classes of pairs

(a, x) ∈ Fin(�) × X with respect to the equivalence relation identifying (a, x) with

(a′, x′) if

supp(x)−a = supp(x′)−a′ ∧ (∃π ∈ Perm(�)) π ·x = x′ ∧ (∀a ∈ supp(x)−a) π(a) = a.

Write (a)x for the equivalence class of the pair (a, x). The Perm(�)-action on the

product Fin(�) × X induces an action on F(X) and this gives a nominal set (with
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supp((a)x) = supp(x) − a). The name-restriction operation on F(X) is given by:

a\(a)x = ({a} ∪ a)x. There is an equivariant function η ∈ Nom(X, F(X)) given

by η(x) = (∅)x and this has the required universal property for the free nominal

restriction set on X. Since we do not need the construction in this paper, we

omit further details. However, it is worth noting that whereas F(X) is in general

different from the nominal restriction set X + 1 from Example 2.7, one does have

F(�) ∼= � + 1.

Remark 2.9 (Res is a topos.)

The nominal sets model of names and binding has close connections with the use

of certain presheaf categories to model binding (Fiore et al., 1999). Indeed, Nom is

equivalent to a sheaf subcategory of the presheaf category Set I of functors to the

category of sets from the category I of finite sets and injective functions. The use

of name-restriction operations on nominal sets brings the connection with presheaf

categories even closer. Staton (private communication) has observed the fact that

Res is equivalent to the presheaf category SetpI, where pI is the category of finite

sets and injective partial functions. It is interesting to note that the use of injective

partial functions between finite sets of names already occurs in early work on logical

relations for locally scoped names; see Section 3 in Pitts & Stark (1993), where the

term ‘partial bijection’ is used for what we here call an injective partial function.

Being equivalent to a presheaf category, Res is, in particular, a topos (Johnstone,

2002), although not a Boolean one; so it is a model of intuitionistic extensional higher

order logic. However, in this paper, we will not be concerned so much with Res as

with a related category, namely the one whose objects are nominal restriction sets,

but whose morphisms are merely equivariant functions (not necessarily preserving

name-restriction). This is because we will be modelling-typed functional calculi,

where there is an operation of restricting a name to a local scope for each type of

the calculus, but where not all functions described by the calculus commute with

these operations.

2.3.1 Discrete nominal restriction sets

Every discrete nominal set (2.1.1) possesses a unique name-restriction operation,

given by a\i = i (since supp(i) = ∅ and hence a # i).

2.3.2 Products of nominal restriction sets

Given X,Y ∈ Res , the Cartesian product X × Y (2.1.2) can be given a name-

restriction operation by defining

a\(x, y) = (a\x, a\y).

(This gives the categorical product of X and Y in Res .)



Structural recursion with locally scoped names 245

2.3.3 Coproducts of nominal restriction sets

Given X,Y ∈ Res , the disjoint union X + Y (2.1.3) can be given a name-restriction

operation by defining

a\(0, x) = (0, a\x) and a\(1, y) = (1, a\y).

(This gives the categorical coproduct of X and Y in Res .)

2.3.4 Nominal restriction function sets

Theorem 2.10

For each X ∈ Nom and Y ∈ Res , the nominal set X →fs Y of finitely supported

functions possesses a name-restriction operation a, f 
→ a\f satisfying

a # x ⇒ (a\f) x = a\f x (6)

for all f ∈ X →fs Y , x ∈ X and a ∈ �.

Proof

We get a well-defined function a\f with the required properties by mapping each

x ∈ X to a′\((a a′) · f) x for some/any a′ # (f, x). The proof of this involves the kind

of reasoning with permutations and finite support that is typical of the theory of

nominal sets; we give the details in Appendix A. �

Remark 2.11 (Exponentials in Res.)

We remarked above that Res is known to be a topos, and hence, in particular, it

is a Cartesian closed category. If X,Y ∈ Res , then the name-restriction operation

on X →fs Y given in the above theorem does not, in general, make X →fs Y the

exponential of X and Y in Res , because function application does not commute

with name-restriction, in general. In fact, one can show that the exponential in Res

is given by the subobject of X →fs Y consisting of those finitely supported functions

f ∈ X →fs Y satisfying (∀a ∈ �, x ∈ X) a\f x = a\f (a\x).

2.3.5 Name-abstraction for nominal restriction sets

Ever since the introduction of the name-abstraction construct for nominal sets [�]X

(2.2), it has been known that the elements of [�]X have a dual nature: see Section 5

in Gabbay & Pitts (2002). On one hand, they are ‘abstractions-as-pairs’, with the

identity of the name a in the pair (a, x) anonymized via permutations when we pass

to the equivalence class 〈a〉x. On the other hand, they also represent ‘abstractions-

as-partial-functions’, since each equivalence class 〈a〉x ∈ [�]X is actually a partial

function from � to X (because 〈a〉x = 〈a〉x′ ⇒ x = x′) whose domain of definition

is {a′ | a′ # 〈a〉x}. So we get:

Definition 2.12 (Concretion.)

Given X ∈ Nom , for each p ∈ [�]X and a ∈ � with a # p, there is a unique element

p @ a ∈ X satisfying p = 〈a〉(p @ a) and called the concretion of p at a.
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Thus concretion satisfies

(〈a′〉x) @ a =

⎧⎪⎪⎨
⎪⎪⎩
x if a = a′

(a′ a) · x if a �= a′ and a # x

undefined otherwise.

(7)

The undefinedness in the third clause is forced by the necessity of making the right-

hand side independent of the choice of representative (a′, x) for the equivalence

class 〈a′〉x. The fact that concretion is a partial operation creates the same kind of

problems as does the FCB mentioned in Section 1 when it comes to formulating a

typed λ-calculus with this form of name-abstraction. However, if we restrict attention

to nominal sets equipped with a name-restriction operation, concretion extends to a

well-behaved total operation via the following result.

Theorem 2.13 (Name-abstractions as total functions.)
For each X ∈ Res , the nominal set [�]X possesses a name-restriction operation

satisfying

a �= a′ ⇒ a\(〈a′〉x) = 〈a′〉(a\x) (8)

for all a, a′ ∈ � and x ∈ X. In this case, there are morphisms m ∈ Res([�]X,�→fsX)

and e ∈ Res(� →fs X, [�]X) satisfying e ◦ m = id [�]X . (In other words, [�]X is a

retract of � →fs X in the category Res when X has a name-restriction operation.)

Proof
We give the proof in Appendix B. �

Corollary 2.14
If X ∈ Res , then the partial operation of concretion (Definition 2.12) extends to a

total function @ ∈ Nom([�]X × �, X) that corresponds to function evaluation

ev ∈ Nom((� →fs X) × �, X) under the monomorphism m of Theorem 2.13.

[�]X × �

m×id

��

@

�������������

X

(� →fs X) × �

ev

�������������

(9)

Proof
For each a ∈ �, consider ca ∈ (� × X) →fs X given by

ca(a
′, x) �

{
x if a = a′

a′\(a a′) · x if a �= a′.

Note that supp(ca) = {a} so that a′ # ca ⇒ a′ �= a ⇒ a′ # a′\(a a′) · x = ca(a
′, x).

So we get ĉa ∈ [�]X →fs X as in Proposition 2.5. Writing p@a for ĉa p, we thus have

an equivariant function @ ∈ Nom([�]X × �, X) satisfying

(〈a′〉x) @ a =

{
x if a = a′

a′\(a a′) · x if a �= a′.
(10)
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Note that this agrees with Equation (7) when a # 〈a′〉x. This definition makes

Equation (9) commute, since for any (p, a) ∈ [�]X × �, choosing a representative

p = 〈a′〉x with a′ �= a we have

ev (mp, a)

= {definition of ev and m}
(a′\(λa′′ ∈ �. (a′ a′′) · x)) a

= {by (6), since a �= a′}
a′\(a′ a) · x

= {by (10), since a �= a′}
p @ a. �

Example 2.15

Consider [�](X × X) with X the nominal restriction set � + 1 (Example 2.7). If

a, a′ ∈ � are distinct names, then the element

〈a〉(Some(a), Some(a′)) ∈ [�](X × X)

contains a′ in its support, and therefore, its concretion at a′ is undefined for

the original notion in Definition 2.12. For the extended notion of concretion in

Corollary 2.14, we have (〈a〉(Some(a), Some(a′))) @ a′ = (Some(a′),None).

3 Typed λ-calculus with abstractable names

This section defines the λαν-calculus, a calculus for total, higher order functions

with names and name-abstraction. By also including syntax for name-restriction, we

are able to unbind name-abstractions using the totally defined version of concretion

described in the previous section. As a result, the calculus is a straightforward

extension of simply typed λ-calculus and does not need the bunched contexts with

freshness assumptions used by Schöpp & Stark (2004) or Cheney (2009). The calculus

provides a foundation for the form of structural recursion with locally scoped names

introduced in Section 4.

3.1 Syntax of the λαν-calculus

The types and expressions of the λαν-calculus are given in Figure 1. Types are

built up from ground types for Booleans (Bool) and names (Name), by forming

finite product types (T1 × · · · × Tn), function types (T1 → T2) and name-abstraction

types (Name . T ). Expressions may involve two different kinds of identifier: atomic

names a ∈ � and variables x ∈ �, where � is a countably infinite set disjoint from

�. Variables stand for unknown expressions, whereas atomic names just stand for

themselves. Both kinds of identifier may be bound; the binding forms are as follows.

• Function abstraction: free occurrences of x in e are bound in λx → e.

• Locally scoped names: free occurrences of a in e are bound in νa. e.

• Name-abstraction: free occurrences of a in e are bound in αa. e. (N.B. many

calculi based on nominal sets use a non-binding form of name-abstraction;
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Fig. 1. λαν-Calculus types T and expressions e.

we will derive this from the binding form αa. e together with name-swapping

in Definition 3.5.)

• Unbinding: free occurrences of a and x in e′ are bound in let 〈a〉x = e in e′.

Following the usual informal practice expressions are implicitly identified up to α-

equivalence of these bound identifiers. We also use ‘Church-style’ explicitly typed

variables in order to simplify the presentation of the syntax.2 Thus, we assume the

countably infinite set � is partitioned into disjoint, countably infinite subsets �(T )

as T ranges over Typ; the elements of �(T ) are the variables of type T . Figure 2

gives the inductive definition of the set Exp(T ) of well-typed expressions for each

type T ∈ Typ. Even though each x ∈ � has a unique type, for clarity we often write

λx → e as λx : T → e when x ∈ �(T ).

Notation 3.1

The finite sets of free variables and free names of an expression e are denoted fv (e)

and fn(e), respectively. The result (well defined up to α-equivalence) of capture-

avoiding substitution of e for all free occurrences of x in e′ is denoted e′[e/x]; and

2 ‘Curry style’, with variables assigned types by environments, is possible and would be desirable for
dependently typed extensions of the system.



Structural recursion with locally scoped names 249

Fig. 2. Well-typed λαν expressions, e ∈ Exp(T ) (T ∈ Typ).

similarly for simultaneous substitutions, e′[e1/x1, . . . , em/xm]. Note that if x ∈ �(T ),

e ∈ Exp(T ) and e′ ∈ Exp(T ′), then e′[e/x] ∈ Exp(T ′).

Remark 3.2 (Exp as a nominal set.)

The usual action of name-permutations π ∈ Perm(�) on the abstract syntax trees

of λαν-calculus expressions respects α-equivalence of bound names and so induces

a Perm(�)-action on Exp. Just as in Example 2.2, this makes Exp into a nominal

set in which the support of each e ∈ Exp is the finite set fn(e) of free names of e. It

is not hard to see that if e ∈ Exp(T ), then π · e ∈ Exp(T ). Thus, for each T ∈ Typ,

Exp(T ) is a nominal subset of Exp.

Note that a name-swapping expression (a1 � a2)e is, in general, different from the

expression (a1 a2) · e obtained by letting the transposition (a1 a2) ∈ Perm(�) act on

the expression e. For example, when e = x is a variable, (a1 a2) · x = x �= (a1 � a2)x.

Definition 3.3 (The ‘anonymous name’.)

The expression νa. a ∈ Exp(Name) plays an important role in the λαν-calculus, so

we give it a special name:

Anon � νa. a. (11)

Remark 3.4 (Concretion versus unbinding.)

We have chosen to use ‘unbinding’ let 〈a〉x = e ine′ as the elimination form for name-

abstraction types. The operation of concretion (corresponding to the operation in

Corollary 2.14) can be defined in terms of it, using name-swapping:

e @ a � let 〈a′〉x = e in (a′ � a)x where a′ �= a. (12)

Thus, e @ a ∈ Exp(T ) if e ∈ Exp(Name . T ). The reason for this choice is that

unbinding has better properties with respect to the weak notion of expression

equality (β-conversion, defined in Section 3.3) we use later in the paper when

representing structural recursion with locally scoped names. However, up to the
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stronger version of equality induced by the denotational semantics of Section 3.2,

the two notions are interdefinable: concretion is obtained from unbinding as above

and conversely, let 〈a〉x = e in e′ is equal in denotation to νa. (e′[(e @ a)/x]) (where

a /∈ fn(e)). In other words, the denotation of e is matched to the pattern 〈a〉x by

concreting it at a locally scoped name; this is comparable to the use of such patterns

in FreshML (see Section 3.5 in Shinwell & Pitts, 2005) except that here local scoping

is not interpreted via dynamic allocation of names (see the discussion after the proof

of Theorem 3.10 below).

As well as allowing us to define concretion in the λαν-calculus, the explicit name-

swapping operation (a � a′)( ) also gives name-abstraction subtle expressive power:

Definition 3.5 (Non-binding name-abstraction.)

For each a ∈ � and e ∈ Exp(T ), define 〈a〉e ∈ Exp(Name . T ) by

〈a〉e � αa′. (a � a′)e where a′ /∈ fn(e). (13)

This is a non-binding form of name-abstraction; unlike for αa. e, the name a occurs

free in 〈a〉e. Examples 3.6 and 3.7 illustrate its use. Before giving them, we introduce

some syntactic sugar that makes it easier to specify λαν-calculus function expressions.

For each a ∈ �, x ∈ �(T ) and e ∈ Exp(T ′), define λ〈a〉x→e ∈ Exp((Name.T )→T ′)

by

λ〈a〉x → e � λy → let 〈a〉x = y in e where y /∈ fv (e). (14)

Given distinct variables x1 ∈ �(T1), . . . , xm ∈ �(Tm) and e ∈ Exp(T ), define

λ(x1, . . . , xm) → e ∈ Exp((T1 × · · · × Tm) → T ) by

λ(x1, . . . , xm) → e � λy → e[(pr1 y)/x1, . . . , (prm y)/xm] where y /∈ fv (e). (15)

Example 3.6 (Mapping over name-abstractions.)

We will see in the next section that the intended interpretation of λαν-calculus

types is nominal restriction sets. The action of the name-abstraction functor [�]( )

(Definition 2.4), when confined to nominal restriction sets, can be expressed in the

λαν-calculus as follows:

mapAbs � λf → λ〈a〉x → 〈a〉(f x) (16)

∈ Exp((T → T ′) → (Name . T ) → (Name . T ′)).

Example 3.7 (‘Shocking’ isomorphisms.)

The name-abstraction functor [�]( ) (Definition 2.4) commutes with many other

nominal set constructs. For example, [�](X1 × X2) ∼= ([�]X1) × ([�]X2) and

[�](X1 →fs X2) ∼= ([�]X1) →fs ([�]X2). (See Section 2.5 in Licata et al., 2008 for the

analogy to Girard’s ‘shocking equalities’.) The second isomorphism is quite surprising

and was noted by Gabbay (2000, Corollary 9.6.9). If we confine ourselves to nominal

restriction sets, then the functions that give these isomorphisms can be expressed

(via the denotational semantics given in the next section) in the λαν-calculus as
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Fig. 3. Denotation of λαν types, �T � ∈ Res (T ∈ Typ).

follows.

i � λ〈a〉(x1, x2) → (〈a〉x1, 〈a〉x2) (17)

∈ Exp(Name . (T1 × T2) → (Name . T1) × (Name . T2))

j � λ(y1, y2) → αa. (y1 @ a, y2 @ a) (18)

∈ Exp((Name . T1) × (Name . T2) → Name . (T1 × T2))

k � λy → λy1 → αa. (y @ a)(y1 @ a) (19)

∈ Exp(Name . (T1 → T2) → (Name . T1) → (Name . T2))

l � λf → αa. λx1 → (f(〈a〉x1)) @ a (20)

∈ Exp(((Name . T1) → (Name . T2)) → Name . (T1 → T2))

3.2 Semantics of the λαν-calculus

The types of the λαν-calculus are intended to denote nominal restriction sets

(Definition 2.6). Figure 3 gives the definition of this denotational semantics. The

ground type Bool stands for the discrete two-element nominal restriction set

� = {True,False} (Section 2.3.1). The ground type Name stands for the nominal

restriction set � + 1 = {Some(a) | a ∈ �} ∪ {None} obtained from the nominal set

of names as in Example 2.7. The interpretation of Name . T uses Theorem 2.13

to lift the name-restriction operation for �T � to the nominal set [�]�T � of name-

abstractions. The interpretation of T1 ×· · ·×Tm uses the name-restriction operations

on each �Ti� to get one of the product �T1� × · · · × �Tm� as in Section 2.3.2. The

interpretation of T1 → T2 uses Theorem 2.10 to lift the name-restriction operation

for �T2� to the nominal set of finitely supported functions �T1� →fs �T2�.

The expressions of the λαν-calculus are interpreted as finitely supported functions

of valuations of the following kind.

Definition 3.8 (Valuations.)

The nominal set Val consists of functions ρ on � satisfying

(∀T ∈ Typ, x ∈ �(T )) ρ x ∈ �T �

and which are finitely supported with respect to the usual Perm(�)-action on

functions. There are many such functions because each �T � contains elements with

empty support (to which all variables of that type may be mapped to get an emptily

supported valuation) and because valuations can be updated: if ρ ∈ Val , x ∈ �(T )

and d ∈ �T �, then the updated valuation ρ[x 
→d] ∈ Val maps x to d and otherwise

acts like ρ.
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Fig. 4. Denotation of λαν expressions.

Each e ∈ Exp(T ) determines a finitely supported function �e� ∈ Val →fs �T � as

specified in Figure 4. Since we identify expressions up to α-equivalence, one has to

check that the clauses in Figure 4 involving binding operations are independent of the

choice of bound identifier. For binding atomic names (νa. ( ), αa. ( ) and let 〈a〉x = ein

( )), this follows from property \-Alpha of name-restriction in Definition 2.6. For

binding variables (λx → ( ) and let 〈a〉x = e in ( )), one can argue as on pp. 492–493

in Pitts (2006), by establishing the following properties simultaneously with the

definition:

((∀x ∈ fv (e)) ρ(x) = ρ′(x)) ⇒ �e�ρ = �e�ρ′ (21)

�(x x′) · e�ρ = �e�(ρ ◦ (x x′)) (22)

(where (x x′) · e is e[x′/x, x/x′] and ρ ◦ (x x′) is ρ[x
→ρ(x′)][x′ 
→ρ(x)]).

The definition of the denotation of variables, function abstraction, application,

tuples, projection, Booleans, conditionals and equality test is entirely standard. The

definitions of �νa. e� and �αa. e� make use of the name-restriction operations on

Val →fs �T � and Val →fs [�]�T � that they have by virtue of Theorems 2.10 and 2.13
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(since each �T � is in Res , as we saw above). Note that from Equation (6) we have

�νa. e� ρ = a\(�e� ρ) if a # ρ (23)

and also

�αa. e� ρ = 〈a〉(�e� ρ) if a # ρ (24)

where we have used \-Strengthening from Definition 2.6 to simplify a\〈a〉(�e� ρ).

Note that given ρ ∈ Val , one can always satisfy the condition a # ρ on the

above equations up to α-equivalence of νa. e and αa. e. It is instructive to compare

the denotation of αa. e with the derived one for the non-binding form of name-

abstraction (13); applying the definitions in Figure 4 one finds that

�〈a〉e� ρ = 〈a〉(�e� ρ) (25)

for all ρ, whether or not a # ρ holds.

The denotation of name-swapping (a�a′)e is given by the action of the permutation

(a a′) on the nominal sets �T �. The denotation of unbinding makes use of the

totally defined concretion operation @ a from Corollary 2.14. Atomic names a are

interpreted as elements Some(a) in the left-hand summand of �Name� = � + 1.

On the other hand, the unique element None of the right-hand summand is the

denotation of the ‘anonymous name’ (11):

�Anon� ρ = �νa. a� ρ = a\Some(a) = None. (26)

Recall from Remark 3.2 that each Exp(T ) is a nominal set. Since all the constructs

involved in the definition in Figure 4 are equivariant, � � is itself equivariant, that is

π · �e� = �π · e�. (27)

In other words, � � is a morphism in Nom(Exp(T ),Val →fs �T �). The denotational

semantics also has the usual property with respect to substitution (proved by α-

structural recursion for λαν expressions):

�e′[e/x]�ρ = �e′�(ρ[x
→�e�ρ]). (28)

3.3 λαν-Calculus conversion

This section gives a notion of equality for λαν-calculus expressions generalizing the

usual notion of β-conversion for the simply typed λ-calculus and containing the

structural congruences mentioned at the beginning of Section 2. The relation of

β-conversion for the λαν-calculus

e =β e′ (T ∈ Typ, e, e′ ∈ Exp(T ))

is by definition the smallest congruence (that is equivalence relation respected by

the syntactic constructs of the λαν-calculus) on well-typed expressions containing

the basic conversions listed in Figure 5.
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Fig. 5. λαν-Calculus β-conversion, e =β e′ (T ∈ Typ, e, e′ ∈ Exp(T )).

Example 3.9

If x and x′ are distinct variables of type Name, then the Boolean expression x=x′ is

not subject to any conversion. (It is in fact a ‘neutral’ expression in the terminology

of the next section.) By contrast if a, a′ ∈ � are distinct atomic names, then

by Conv-Eqn we have (a = a′) =β False. Since β-conversion is a congruence, this

particular conversion holds even if a and a′ occur within the scope of constructs that

bind atomic names, such as αa. (−) and νa. (−). For example, the closed expression

αa. αa′. a = a′ is β-convertible to αa. αa′. False; and using Conv-ν-Strengthening,

we have:

νa. νa′. (a = a′) =β False.

Contrast this with

((νa. νa′. a) = (νa. νa′. a′)) =β True

which is also obtained from Conv-ν-Strengthening and Conv-Eqn.
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Theorem 3.10 (Soundness of β-conversion.)

If e =β e′, then �e� = �e′�.

Proof

It follows from the form of the definition in Figure 4 that the relation � � = � � is

a congruence. So to prove that it contains =β , it suffices to show that each of the

conversions in Figure 5 is satisfied by the denotational semantics.

Structural conversions. These are satisfied because of properties \-Strengthening

and \-Exchange for the nominal restriction set Val →fs �T �.

Scope reductions. For Conv-ν-Fun, given ρ ∈ Val and d ∈ �T �, up to α-equivalence,

we can assume that the bound name a in both the expressions νa. λx : T → e and

λx : T → νa. e (is the same and) satisfies a # (ρ, d); therefore

�νa. λx : T → e� ρ d

= {by (23), since a # ρ}
(a\�λx : T → e� ρ)d

= {by (6), since a # d}
a\�λx : T → e� ρ d

= {by definition of � �}
a\�e�(ρ[x
→d])

= {by (23), since a # ρ[x
→d]}
�νa. e�(ρ[x
→d])

= {by definition of � �}
�λx : T → νa. e� ρ d.

So we do indeed have �νa. λx : T → e� = �λx : T → νa. e�. Similarly, satisfaction of

Conv-ν-Prod follows by combining Equation (23) with the way restriction is defined

on products in Section 2.3.2; and Conv-ν-Abs is satisfied because of Equations (23),

(24) and (8).

Equality and condition reductions. The satisfaction of these is immediate from the

definition of � �.

Swapping reductions. Satisfaction of Conv-π-Fun follows from Equation (28) and

the action of permutations on functions (Section 2.1.4); Conv-π-Prod follows from

the action of permutations on tuples (Section 2.1.2); Conv-π-Abs from Equation

(25) and the action of permutations on name-abstractions (Definition 2.4) and

Conv-π-Gnd from Equation (26) and the action of permutations on atomic names

and Booleans.

β-Reductions. Satisfaction of Conv-β-Fun is a consequence of the substitution

property (28); Conv-β-Prod is immediate from the definition of � � and Conv-β-

Abs follows from Equations (23) and (24), the substitution property (28) and the

property (10) of concretion for nominal restriction sets. �

Remark 3.11 (Comparison with Odersky’s λν.)

The most subtle part of the above proof is the soundness of Conv-ν-Fun. This

conversion and Conv-ν-Prod are characteristic features of the functional theory of

local names of Odersky (1994); the first corresponds to his νλ reduction and the

second to his νp reduction. The λαν-calculus was designed to fit the semantics of

locally scoped names in nominal restriction sets, but turns out to agree with Odersky’s
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notion of local name to a large extent. However, there are differences. Nominal

restriction takes the structural conversions Conv-ν-Strengthening and Conv-ν-

Exchange as fundamental; whereas they are not explicit in Odersky’s system, but

are valid up to contextual equivalence: see Proposition 5.2 in Odersky (1994). Also,

here we take a rather more ‘total’ view of name-equality: in Odersky’s system νa. a

is not a value (canonical form) and νa. a== νa. a is a stuck expression that does not

reduce; whereas here Anon � νa. a turns out to be a normal form and Anon=Anon is

convertible to True by the conversion Conv-Eqn. Both behaviours are different from

the more common one (in Scheme, ML, Haskell, . . . ) based on dynamic allocation

of globally fresh names; for example, the OCaml (http://caml.inria.fr/ocaml)

version of Anon=Anon is ref()==ref(), which evaluates to false by dynamically

allocating two different names on the left- and right-hand sides of the ‘shallow’

equality test ==.

Remark 3.12 (‘Anti-Barendregt’ convention.)

In the expression let 〈a1〉x = αa2. e2 in e1, the scopes of the two binding atomic names

a1 and a2 are disjoint, being e1 and e2, respectively. Therefore, up to α-equivalence, we

may assume that a1 and a2 are equal. We have taken advantage of this observation

when stating the conversion rule for unbinding a name-abstraction, Conv-β-Abs in

Figure 5. Note that this is an instance where it is helpful to not follow the ‘Barendregt

Variable Convention’ (Barendregt, 1984) that bound identifiers be distinct.

Remark 3.13 (Incompleteness.)

The definition of conversion in Figure 5 was chosen to be as weak as possible

subject to the criteria that it be decidable, have relatively simple normal forms (see

Section 3.4) and adequately represent α-structural recursion when extended as in

Section 4. The converse of Theorem 3.10 certainly does not hold. For one thing, we

have left out η-expansions:

�λx → (e x)� = �e� ∈ �T → T ′� if x /∈ fv (e) (29)

�(pr1 e, . . . , prm e)� = �e� ∈ �T1 × · · · × Tm� (30)

�αa. (e @ a)� = �e� ∈ �Name . T � if a /∈ fn(e). (31)

Also, we have left out identities that hold because of elementary properties of

permutations; for example, �λx → (a � a)x� = �λx → x�. A more interesting example

of incompleteness is the fact that �νa. νa′. (a�a′)e� = �νa. νa′. e�, whereas νa. νa′. (a�a′)e

is not in general convertible to νa. νa′. e using the definition in Figure 5. This suggests

the following question.

Open Problem 3.14

Friedman (1975) proved that simply typed λ-terms have equal denotations in the full

function hierarchy over a countably infinite set iff they are βη-convertible. Is there

an analogue of this for λαν-calculus and its interpretation in nominal restriction

sets? In other words, can one find a finite axiomatization of the relation � � = � �

of denotational equality between λαν expressions. Indeed, is it a decidable relation?
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Fig. 6. λαν-Calculus normal and neutral forms.

3.4 Normalization for λαν-calculus

Figure 6 defines a notion of normal form for λαν-calculus β-conversion. We call the

elements of Nf (T ) the normal forms of type T ; and the elements of the auxiliary

subset Neu(T ) ⊆ Nf (T ) are called the neutral forms of type T .

If a ∈ � does not occur free in u ∈ Neu(T ), then u and νa. u are different elements

of Exp(T ) that are convertible by Conv-ν-Strengthening. Similarly, so long as a �=
a′ then νa. νa′. u and νa′. νa. u are different elements of Exp(T ) that are convertible

by Conv-ν-Exchange. However, these are essentially the only instances where

conversion between normal forms does not coincide with syntactic identity (modulo

α-equivalence, of course). More precisely, it is a consequence of the normalization

Theorem 3.16 below that conversion restricted to normal forms coincides with the

following simple notion of structural congruence.

Definition 3.15 (Structural congruence.)

Let ≡ be the congruence on normal and neutral forms generated by

νa. u ≡ u if a /∈ fn(u) (32)

νa. νa′. u ≡ νa′. νa. u (33)

for all a, a′ ∈ �, u ∈ Neu(T ) and T ∈ Typ.

Theorem 3.16 (λαν-Calculus normalization.)

Each typeable λαν expression is β-convertible to a normal form, which is unique up

to structural congruence:

(∀T ∈ Typ, e ∈ Exp(T ))(∃n ∈ Nf (T )) e =β n (34)

(∀T ∈ Typ, n, n′ ∈ Nf (T )) n =β n′ ⇒ n ≡ n′. (35)

The proof of the theorem occupies the rest of this section and Appendix C. It

shows that the normal form of each well-typed λαν expression can be computed;
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Fig. 7. Weak head normal and weak neutral forms.

and since it is not hard to see that structural congruence ≡ is a decidable relation,

it follows that the β-conversion relation for the λαν-calculus is decidable too. The

traditional route to such a result is via Church–Rosser and Strong Normalization

properties for an oriented version of conversion. It may be that Theorem 3.16 can

be proved in that way although the presence of a structural congruence is an added

complication. However, here we use a method that gives a more direct ‘big step’,

syntax-directed definition of the β-normal forms of λαν expressions, inspired by

Coquand (1991), Harper & Pfenning (2005) and Altenkirch & Chapman (2009).

The rules in Figure 9 inductively define a relation e⇓n for evaluating λαν

expressions e to normal forms n in two big steps. The first step ⇓w finds a weak

head normal form for expressions and the second step ⇓n ‘reads back’ (Grégoire &

Leroy, 2002) normal forms for weak head normal forms; the relation ⇓ is then

the composition of ⇓w with ⇓n. Weak head normal forms for λαν-calculus are

defined in Figure 7 along with an associated notion of weak neutral form. The

definition of evaluation in Figure 9 makes use of two auxiliary functions on

weak head normal forms, w 
→ a�ww and w 
→ (a1 a2)ww, that are defined in

Figure 8. Both are well-defined total functions, since we identify expressions up to α-

equivalence.

It is not hard to see that evaluation preserves typing:

e ∈ Exp(T ) ∧ e ⇓w w ⇒ w ∈ Wnf (T ) (36)

w ∈ Wnf (T ) ∧ w ⇓n n ⇒ n ∈ Nf (T ). (37)

Also, the read back relation restricts to neutral forms:

v ∈ Wneu(T ) ∧ v ⇓n n ⇒ n ∈ Neu(T ). (38)

Lemma 3.17

For all T ∈ Typ, e ∈ Exp(T ) and n, n′ ∈ Nf (T )

n ⇓ n (39)

e ⇓ n ∧ e ⇓ n′ ⇒ n = n′. (40)
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Fig. 8. Auxiliary functions on weak head normal forms.

Proof

Property (39) follows from n ⇓n n, which is proved by induction on the structure of

n. For property (40), we prove

e ⇓w w ∧ e ⇓w w′ ⇒ w = w′

w ⇓n n ∧ w ⇓n n′ ⇒ n = n′

}
(41)

by induction on the derivation of e ⇓w w and w ⇓n n from the rules in Figure 9.

The only difficulty is to deal with α-equivalence: for the rules involving binding

operations, one has to show that the choice of bound identifiers does not affect the

results of evaluation up to α-equivalence. First note that the rules in Figure 9 are

preserved by permutations of atomic names and type-preserving permutations of

variables. It follows that evaluation is preserved by such permutations. This allows

one to permute bound identifiers in an induction hypothesis to sufficiently fresh

ones as necessary (cf. Section 2 in Pitts, 2003). One then uses

e ⇓w w ⇒ fn(w) ⊆ fn(e) ∧ fv (w) ⊆ fv (e)

w ⇓n n ⇒ fn(n) ⊆ fn(w) ∧ fv (n) ⊆ fv (w)

}
(42)

whose proof uses the easily verified fact that fn(a�ww) = fn(w) − {a}. �

Lemma 3.18

If e ⇓ n, then e =β n.

Proof

The result follows from

e ⇓w w ⇒ e =β w

w ⇓n n ⇒ w =β n

}
(43)

which is proved by induction on the derivation of e ⇓w w and w ⇓n n using the easily

verified facts that a�ww =β νa. w and (a1 a2)ww =β (a1 � a2)w. �
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(∗) these rules use the auxiliary functions on weak head normal forms defined in Fig. 8.

Fig. 9. Evaluation to normal form, e ⇓ n.

Proposition 3.19

Define

e ⇓≡⇓ e′ � (∃n, n′) e ⇓ n ∧ e′ ⇓ n′ ∧ n ≡ n′. (44)

Then, for all T ∈ Typ and e, e′ ∈ Exp(T ), e =β e′ implies e ⇓≡⇓ e′.

Proof

The proof uses a suitable logical relation and is given in Appendix C. �

We can now complete the proof of λαν-calculus normalization.
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Proof of Theorem 3.16.

Since =β is by definition a reflexive relation, for each e ∈ Exp(T ) by Proposition 3.19,

we have that e ⇓ n holds for some n; and so by Lemma 3.18, property (34) holds.

For property (35), if n, n′ ∈ Nf (T ) satisfy n =β n′, then by Proposition 3.19, we have

n ⇓≡⇓ n′; but by Lemma 3.17, this is equivalent to n ≡ n′. �

Remark 3.20 (Machine-checked proof.)

The various lemmas and propositions in this section and Appendix C give the proof

of Theorem 3.16 in enough detail to convince the reader of its truth, one hopes.

Nevertheless, the nature of what the theorem asserts depends very delicately upon

the particular definitions in Figures 5–8. Mistakes in, or changes to (cf. Remark 3.13),

those definitions could easily invalidate either the theorem, or some details of our

proof of it, in a way that might well be hard to spot without checking all the details

that are elided here. Furthermore, in the next section, we extend the λαν-calculus

with a form of structural recursion and will have to replay the proof of normalization

for this extended calculus.

For all these reasons, it would be very desirable to have a fully formalized and

machine-checked proof of the results in this section in a form that is amenable to

extensions. Of the interactive theorem proving systems currently available, Nominal

Isabelle (http://isabelle.in.tum.de/nominal/) seems most suited to this task.

For one thing, Isabelle’s Nominal package provides support for the kind of reasoning

about permutations and freshness of atomic names in inductive definitions that

we used in the proof. Furthermore, Isabelle itself admits a maintainable style of

structured proof via its Isar mode. Systems, such as Nominal Isabelle, have yet to

reach a level of usability to make the task of formalizing a proof of Theorem 3.16

either simple or quick and no such development has yet been carried out. However,

work, such as Urban et al. (2011), shows both the feasibility and usefulness of

doing so.

4 Recursion with locally scoped names

In this section, we extend λαν-calculus with expressions for recursively defined

functions on the terms (modulo α-equivalence) of languages with binding oper-

ations. The aim is to use the local scoping construct νa. ( ) to give a syntactic

version of α-structural recursion in a simply typed λ-calculus, without the need for

explicit freshness judgements. Pitts (2006) develops a semantic α-structural recursion

principle for a wide class of languages involving binding operations, namely those

that can be specified via a ‘nominal signature’; see Definition 2.1 in Urban et al.

(2004). We can express any such signature in the λαν-calculus using a combination

of ground, product and name-abstraction types for the signature’s sorts.3 However,

for the sake of simplicity, we just consider one such signature, for the untyped

λ-calculus, plus the usual signature for natural numbers.

3 More precisely, one can express any nominal signature with a single sort of names; but the extension
of λαν-calculus with many sorts of name is straightforward.
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Fig. 10. Extending λαν-calculus with λ-terms and numbers.

4.1 λανδ-Calculus

The λανδ-calculus extends the calculus of Section 3 with data for untyped λ-terms

and numbers. Its syntax, typing and conversions are given in Figure 10. (In the

figure, 1 ∈ Typ denotes the m = 0 case of T1 × · · · × Tm.)

To keep things simple, Figure 10 only specifies combinators lrec and nrec for a

simple, iterative form of recursion, rather than full primitive recursion for the ground

types Lam and Nat. The conversion Conv-δ-L for iterating under an object-level
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λ-abstraction makes implicit use of locally scoped names because of the conversion

rule for name-abstractions, Conv-β-Abs in Figure 5. This becomes clearer once

we introduce some useful syntactic sugar for iteratively defined functions on Lam,

making use of the name-abstraction and tuple patterns introduced in Equations (14)

and (15). Experience with FreshML (Shinwell et al., 2003) shows that the use of

name-abstraction patterns is very convenient for expressing recursion under binders.

Definition 4.1 (Syntactic sugar for Lam-recursions.)

rec

⎛
⎜⎜⎝
f : Lam → T

f(Vx) = e1

f(A(y1 y2)) = e2

f(L(〈a〉y)) = e3

⎞
⎟⎟⎠ � λy′ → lrec (λx → e1) (λ(y1, y2) → e′

2) (λ〈a〉y → e′
3) y

′ (45)

where f, x, y1, y2, y, y
′ are distinct variables, y′ /∈ fv (e1, e2, e3) and

• e1 contains no free occurrence of f;

• e2 only contains free occurrences of f in subexpressions of the form f y1 and

f y2; and e′
2 is the result of replacing those subexpressions with y1 and y2,

respectively;

• e3 only contains free occurrences of f in subexpressions of the form f y; and

e′
3 is the result of replacing those subexpressions with y.

Using the typing and conversion rules in Figures 2, 5 and 10, we get the following

result.

Theorem 4.2 (Recursion with locally scoped names.)

Suppose f ∈ �(Lam → T ), x ∈ �(Name), y1, y2, y, y
′ ∈ �(Lam), a ∈ � and

e1, e2, e3 ∈ Exp(Lam) satisfy the conditions given in Definition 4.1. Writing r for

the λανδ expression defined in Equation (45), then r ∈ Exp(Lam → T ) and for all

e ∈ Exp(Name), e′, e′′ ∈ Exp(Lam) and a′ ∈ �, we have

r (V e) =β e1[e/x]

r (A(e′, e′′)) =β e′
2[r e/y1, r e

′′/y2]

r (Lαa′. e′) =β νa′. e′
3[r e

′/y] if a′ /∈ fn(e1, e2).

⎫⎬
⎭ (46)

This is precisely the kind of recursion scheme alluded to in Section 1.2 that uses

locally scoped names when recursing under a binder. It is interesting to compare it

with the informal use of ν in Section 4.1 in Schürmann et al. (2001) when motivating

specific examples of that paper’s recursion scheme for higher order abstract syntax;

we give our version of some of their examples below.

Example 4.3 (Substitution.)

Define

sub � λx → λy → rec

⎛
⎜⎜⎝

s : Lam → Lam

s(Vx′) = if x′ = x then y else Vx′

s(A(y1, y2)) = A(s y1, s y2)

s(L(〈a〉y1)) = L(〈a〉(s y1))

⎞
⎟⎟⎠

∈ Exp(Name → Lam → Lam → Lam).
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Here, 〈a〉(s y1) � αa′. (a � a′)(s y1) is an instance of the non-binding form of name-

abstraction introduced in Definition 3.5. From Equation (46), we have that sub

satisfies

sub a e (V e′) =β if e′ = a then e else V e′ (47)

sub a e (A(e1, e2)) =β A(sub a e e1, sub a e e2) (48)

sub a e (L(αa1. e1)) =β νa1. L(〈a1〉(sub a e e1)) if a1 /∈ fn(a, e) (49)

We claim that sub a e e′ represents the capture-avoiding substitution of the λ-term

represented by e for free occurrences of the object-level variable V a in the λ-term

represented by e′. For example, L(αa′.V a) represents the λ-term λa′. a; so, assuming

that a and a′ are distinct atomic names, sub a (V a′) (L(αa′.V a)) should represent the

λ-term (λa′. a)[a′/a], that is λa′′. a′, where a′′ �= a′. Indeed, one can use the conversion

equations in Figures 5 and 10 to calculate that

sub a (V a′) (L(αa′.V a))

= {by α-equivalence for λανδ expressions, where a1 �= a, a′}
sub a (V a′) (L(αa1.V a))

=β {by (49)}
νa1. L(〈a1〉(sub a (V a′) (V a)))

=β {by (47), Conv-Eqn and Conv-if-True}
νa1. L(〈a1〉(V a′))

� {where a′′ �= a′}
νa1. L(αa′′. (a1 � a′′)(V a′))

=β {by Conv-π-Data and Conv-π-Gnd}
νa1. L(αa′′.V a′)

=β {by Conv-ν-Strengthening}
L(αa′′.V a′)

which does indeed represent the λ-term λa′′. a′. The claim that sub correctly represents

capture-avoiding substitution for λ-terms, in general, is substantiated in Example 4.14

in Section 4.3.

It is worth noting that we can also represent the kind of capturing substitution

that may occur when a λ-term context has its hole filled. Holes are represented by

variables x; and hole filling by substitution of expressions for variables, e[e′/x]. For

example, the context λa.[−] can be represented in the λανδ-calculus by the open

expression L(〈a〉x) = L(αa′. (a � a′)x). Filling the hole in λa.[−] with a gives λa. a; and

correspondingly, the substituted expression L(〈a〉x)[V a/x] is indeed convertible to

L(αa.V a).

Example 4.4 (Counting occurrences of λ-abstractions.)

Consider the function |−| from λ-terms to numbers satisfying |a| = 0, |t t′| = |t| + |t′|
and |λa. t| = |t| + 1. What could be simpler? And yet formal recursion schemes

for λ-terms have found it tricky: see Section 3.3 in Gordin & Melham (1996) and

Section 3 in Norrish (2004). We can represent this function in the λανδ-calculus
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more or less directly by

cntlam � rec

⎛
⎜⎜⎝

c : Lam → Nat

c(Vx) = zero

c(A(y1, y2)) = plus (c y1) (c y2)

c(L(〈a〉y)) = S (c y)

⎞
⎟⎟⎠

where zero � Z () and plus � λz1 → λz2 → nrec (λ() → z1) (λz → S z) z2 is addition.

From Equation (46), we have that cntlam satisfies

cntlam (V e) =β zero (50)

cntlam (A(e1, e2)) =β plus (cntlam e1) (cntlam e2) (51)

cntlam (L(αa. e)) =β νa.S(cntlam e) (52)

(Compare this with Example 4.4 in Schürmann et al., 2001.) For example, |λa. a| =

|a| +1 = 0+1 = 1; and correspondingly, cntlam (L(αa.V a)) =β νa.S(cntlam(V a)) =β

νa.S zero =β S zero, by Equations (52) and (50) and Conv-ν-Strengthening.

Example 4.5 (Counting bound variable occurrences.)

Define

cntvar � λy → rec

⎛
⎜⎜⎜⎜⎝

f : Lam → (Name → Nat) → Nat

f(Vx) = λb → b x

f(A(y1, y2)) = λb → plus (f y1 b) (f y2 b)

f(L(〈a〉y)) = λb → f y (λx→
if x = a then one else b x)

⎞
⎟⎟⎟⎟⎠ y (λx → zero)

∈ Exp(Lam → Nat)

where one � S zero. The idea is to count occurrences of bound variables in a λ-term.

The iteration is parameterized by a function b : Name→Nat initially set to λx→zero

and updated by mapping a to one when passing under a λ-abstraction that binds the

name a. This example should be compared with Example 4.3 in Schürmann et al.

(2001).

Example 4.6 (Listing binding variables.)

The previous example shows that we can compute with object-level bound names.

What if we try to do something with them that would break object-level α-

equivalence? – such as trying to compute a list of binding variables in a λ-term

bv � rec

⎛
⎜⎜⎝

f : Lam → Lam

f(Vx) = nil

f(A(y1, y2)) = append (f y1) (f y2)

f(L(〈a〉y)) = cons(a, f y)

⎞
⎟⎟⎠

where we encode lists of atomic names as certain expressions of type Lam and

nil : Lam, cons : (Name × Lam) → Lam and append : Lam → Lam → Lam are

suitable encodings of nil and cons constructors and an append operation for such

lists. In fact, all that bv computes is a list of Anon’s whose length is the number

of occurrences of λ-binders in the λ-term. For example, bv (L(αa. L(αa′.V a))) =β

cons(Anon, cons(Anon, nil )) because:
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bv (L(αa. L(αa′.V a)))

=β {by (46)}
νa. cons(a, νa′. cons(a′, nil ))

=β {by Conv-ν-Data and Conv-ν-Prod}
cons(νa. a, cons(νa. νa′. a′, νa. νa′. nil ))

=β {by Conv-ν-Strengthening}
cons(νa. a, cons(νa′. a′, nil )).

Compare this with the Fresh Objective Caml function listBvars on p. 15 in

Shinwell & Pitts (2005).

4.2 Normalization for λανδ-calculus

We extend the notion of normal and neutral forms for the λαν-calculus (Figure 6)

to the λανδ-calculus as follows:

n ∈ Nf ::= · · ·
| V n

| A(n, n)

| L(αa. n)

| Z()

| S n

u ∈ Neu ::= · · ·
| A u

| L u

| Z u

| lrec n n n u

| nrec n n u

(53)

The neutral forms are slightly more complicated than might be expected, for example

compared with Figure 4 in Pitts (2010), because we have chosen to make all

constructors unary, via the use of product and name-abstraction types.

The notion of structural congruence between normal forms remains unchanged

(Definition 3.15), as does the statement of the normalization theorem:

Theorem 4.7 (λανδ-Calculus normalization.)

Each typeable λανδ expression is β-convertible to a normal form, which is unique

up to structural congruence. (That is, properties (34) and (35) hold for the λανδ-

calculus.)

Proof

The proof is an extension of that given in Section 3.4. The definition of weak head

normal forms and weak neutral forms in Figure 7 is extended as follows:

w ∈ Wnf ::= · · ·
| V e

| A(e, e)

| L(αa. e)

| Z()

| S e

v ∈ Wneu ::= · · ·
| A v

| L v

| Z v

| lrec e e e v

| nrec e e v.

(54)

The relations e ⇓ n, e ⇓w w and w ⇓n n defined in Figure 9 are extended by adding

the rules in Figure 11. The auxiliary functions w 
→ a�ww and w 
→ (a1 a2)ww defined
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Fig. 11. Evaluation to normal form for λανδ-calculus.

in Figure 8 are extended as follows:

a�ww �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

· · ·
V(νa. e) if w = V e

A(νa. e1, νa. e2) if w = A(e1, e2)

L(αa′. νa. e) if w = L(αa′. e) where a′ �= a

w if w = Z()

S(νa. e) if w = S e

(55)

(a1 a2)ww �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

· · ·
V((a1 � a2)e) if w = V e

A((a1 � a2)e1, (a1 � a2)e2) if w = A(e1, e2)

L(αa′. (a1 � a2)e) if w = L(αa′. e) with a′ �= a1, a2

w if w = Z()

S((a1 � a2)e) if w = S e.

(56)

These extensions do not affect the proof of Lemma 3.18. So, one can prove the

normalization theorem by proving the property in Proposition 3.19; this is done, as

before, using a logical relation; the details are in Appendix C. �

4.3 Representational adequacy

In this section, we show that λ-terms and functions on them defined using the

α-structural recursion principle (Theorem 1.1) can be faithfully represented in the

λανδ-calculus.
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Definition 4.8 (Closed expressions and normal forms.)

For each T ∈ Typ, let Cexp(T ) denote the subset of Exp(T ) consisting of λανδ

expressions of type T that are closed, that is which have no free variables; and let

Cnf (T ) denote the subset of normal forms with no free variables. Note that if e is

a closed expression, then so is π · e for any π ∈ Perm(�); so Cexp(T ) is a nominal

subset of the nominal set Exp(T ). Similarly, Cnf (T ) is a nominal subset of Nf (T ).

Of course closed expressions may well involve free atomic names – we use the

latter to represent free object-level variables, as we shall see for the example of the

untyped λ-calculus.

Inspecting the definition of λανδ-calculus normal and neutral forms in Figure 6

and Equation (54), it is apparent that neutral forms always contain at least one free

variable and hence that Cnf (Lam) is in bijection with the nominal set

Λ[Anon] � {t ::= Anon | a | t t | λa. t}/≡α (57)

of possibly open untyped λ-terms (modulo α-equivalence, of course) involving a

constant symbol Anon. Consequently, we get a simple form of ‘representational

adequacy’ (Pfenning, 2001) result within λανδ-calculus for the object language

consisting of the untyped λ-calculus:

Proposition 4.9

With Λ as in Equation (1), the function �−� : Λ → Cnf (Lam) satisfying

�a� = V a

�t t′� = A(�t�, �t′�)
�λa. t� = L(αa. �t�)

⎫⎬
⎭ (58)

(well defined by Theorem 1.1) gives a bijection between Λ and the subset of Cnf (Lam)

of closed normal forms not involving Anon (and hence, not involving any use of

name restriction, νa. (−)). �

Remark 4.10 (The ‘anonymous name’.)

We have seen that admitting locally scoped names at all types leads to a simple

equational calculus for name-abstraction and its unbinding destructor. The price we

pay for this is the existence of the canonical form Anon (Definition 3.3), and hence,

the fact that object-level syntax (such as λ-terms) is injectively, but not bijectively

represented by λανδ-calculus normal forms. Nevertheless, the representation (58) is

very simple. This is good; the ‘coding gap’ between object- and metalanguage is very

small – we just have to take care with the extra constant Anon when manipulating

the object language from within the λανδ-calculus.

Below we will need the following result showing that for closed expressions of

ground type the ‘non-binding’ form of name-abstraction 〈a〉e (Definition 3.5) is

β-convertible to the binding form αa. e.

Lemma 4.11

If G ∈ {Name,Bool, Lam,Nat}, a ∈ � and e ∈ Cexp(G), then 〈a〉e =β αa. e.
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Proof

If suffices to prove

(∀a1, a2 ∈ �, e ∈ Cexp(G)) (a1 � a2)e =β (a1 a2) · e (59)

since then, by definition of α-conversion, we have

αa. e = αa′. (a a′) · e =β αa′. (a � a′)e � 〈a〉e

where a′ is any atomic name not free in e. By the normalization Theorem 4.7, for

Equation (59), it suffices to prove (a1 � a2)n =β (a1 a2) · n for all n ∈ Cnf (G). This

follows by α-structural induction for n, relying on the fact that closed normal forms

of ground type do not involve neutral subexpressions. �

We turn next to the representation of functions on Λ by computing normal forms

in λανδ-calculus. First note that our proof of the normalization Theorem 4.7 gives

more than just the existence and uniqueness (modulo ≡) of normal forms: we proved

that the recursively enumerable evaluation relations {(e, n) ∈ Exp(T )×Nf (T ) | e ⇓ n}
are in fact the graphs of total functions that pick out representatives of normal forms

of expressions within ≡-equivalence classes.

Definition 4.12 (Normalization function.)

For each T ∈ Typ and e ∈ Exp, write nf T (e) for the unique n ∈ Nf (T ) satisfying

e ⇓ n. Thus, nf T (−) satisfies:

e ∈ Exp(T ) ⇒ e =β nf T (e) (60)

n ∈ Nf (T ) ⇒ nf T (n) = n (61)

e, e′ ∈ Exp(T ) ∧ e =β e′ ⇒ nf T (e) ≡ nf T (e′). (62)

Note that since ⇓ is equivariant so is nf T so that nf T ∈ Nom(Exp(T ), Nf (T )). In

view of Equation (42), we also have that nf T restricts to a function from Cexp(T )

to Cnf (T ).

Given any type T ∈ Typ, let X denote the quotient nominal set Cexp(T )/≡ of

closed normal forms of type T modulo structural congruence. We write [n] for the

equivalence class of n ∈ Cnf (T ). Suppose that the functions

f1 ∈ � →fs X

f2 ∈ (X × X) →fs X

f3 ∈ (� × X) →fs X

are all supported by the finite subset a ⊆ � and that f3 satisfies the ‘freshness

condition for binders’

a /∈ a ⇒ (∀x ∈ X) a # f3(a, x). (FCB)

Let f ∈ Λ→fsX be the function defined from f1, f2 and f3 by α-structural recursion as

in Theorem 1.1. We will show that if f1, f2 and f3 are representable in λανδ-calculus

in a suitable sense, then so is f.
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Theorem 4.13 (Representation of α-structural recursion.)

With f1, f2, f3 and a as above, suppose the closed expressions e1 ∈ Cexp(Name→T ),

e2 ∈ Cexp((T × T ) → T ) and e3 ∈ Cexp((Name . T ) → T ) satisfy

fn(e1, e2, e3) ⊆ a (63)

f1 a = [nf T (e1 a)] (64)

f2([n], [n
′]) = [nf T (e2 (n, n′))] (65)

a /∈ a ⇒ f3(a, [n]) = [nf T (e3 αa. n)] (66)

for all a ∈ � and n, n′ ∈ Cnf (T ). Then, the function f ∈ Λ →fs X defined

by α-structural recursion from (f1, f2, f3) is represented by λx → lrec e1 e2 e3 x ∈
Cexp(Lam → T ) in the sense that for all t ∈ Λ

f t = [nf T (lrec e1 e2 e3 �t�)]. (67)

Proof

By the uniqueness part of α-structural recursion, to prove Equation (67), it suffices

to show that t 
→ [nf T (lrec e1 e2 e3 �t�)] satisfies the recursion scheme (2) that defines

f; in other words, writing r �t� for lrec e1 e2 e3 �t�, it suffices to prove:

[nf T (r �a�)] = f1 a (68)

[nf T (r �t1 t2�)] = f2([nf T (r �t1�)], [nf T (r �t2�)]) (69)

a /∈ a ⇒ [nf T (r �λa. t�)] = f3(a, [nf T (r �t�)]). (70)

We give the proof of Equation (70); the proofs of Equations (68) and (69) are

similar. Suppose a /∈ a. Then, for any t ∈ Λ

r �Λa. t�
= {by (58)}

r (L(αa. �t�))
=β {by Conv-δ-L in Figure 10, since a /∈ a ⊇ fn(e1, e2, e3) by (63)}

e3 αa. r �t�
=β {by (60)}

e3 αa. nf T (r �t�).

Therefore, [nf T (r �Λa. t�)] = [nf T (e3 αa. nf T (r �t�))] and combining this with Equa-

tion (66) gives Equation (70). �

Example 4.14

Theorem 4.13 can be used to prove that the expression sub defined in Example 4.3

does indeed represent capture-avoiding substitution on λ-terms, in the sense that for

all a ∈ � and t, t′ ∈ Λ

sub a �t� �t′� =β �t′[t/a]�. (71)
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Proof of (71).

Fixing a and t, in the theorem take T = Lam and (f1, f2, f3) to be the functions well

defined by

f1 a
′ �

{
[�t�] if a′ = a

[V a′] if a′ �= a

f2([n1], [n2]) � [A(n1, n2)]

f3(a
′, [n]) � [L(αa′. n)].

for all a′ ∈ � and n, n′ ∈ Nf (Lam). They are supported by the finite set a consisting of

a and the free atomic names of t; and f3 satisfies FCB since a′ /∈ fn(L(αa′. n)). Let f be

the function defined from them by α-structural recursion as in Theorem 1.1. An easy

proof by α-structural induction (Pitts, 2006) shows that (∀t′ ∈ Λ) f t′ = [�t′[t/a]�].
So to prove Equation (71), it suffices to show that for all t′ ∈ Λ

f t′ = [nf Lam(sub a �t� �t′�)]. (72)

Note that by the definition of sub in Example 4.3, we have sub a �t� =β λy →
lrec e1 e2 e3 y where

e1 � λx → if x = a then �t� else Vx

e2 � λ(y1, y2) → A(y1, y2)

e3 � λ〈a′〉y → L(〈a′〉y).

So, Equation (72) follows from Theorem 4.13 once we verify properties (63)–(66) for

e1, e2 and e3. Note that by definition of �t�, it has the same free atomic names as t;

therefore, we certainly have Equation (63). Property (64) is an immediate consequence

of the definitions of f1 and e1, together with the definition of β-conversion; similarly,

for Equation (65). Finally, for Equation (66), we use Lemma 4.11; if a′ /∈ a =

{a} ∪ fn(t) then

e3 αa
′. n

=β {by definition of e3}
let 〈a′〉y = αa′. n in L(〈a′〉y)

=β {by Conv-β-Abs in Figure 5}
νa′. L(〈a′〉n)

=β {by Lemma 4.11}
νa′. L(αa′. n)

=β {by Conv-ν-Strengthening in Figure 5}
L(αa′. n)

and hence by Equations (61) and (62), f3(a
′, [n]) � [L(αa′. n)] = [nf Lam(e3 αa

′. n)].

�

5 Related work

Notions of name-restriction in nominal sets. The notion of nominal sets equipped

with a name-restriction operation given in Section 2.3 was discussed by the author

in a talk on ‘Nominal Semantics of Abstraction and Restriction’ at the conference
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on Category Theory and Computer Science that took place in Copenhagen in 2004

and in a manuscript privately circulated around that time to do with free nominal

restriction sets. However, several other people researching nominal techniques have

considered operations, mainly syntactical ones, that have the characteristic properties

(\-Alpha), (\-Strengthening) and (\-Exchange). See, for example Cardelli &

Gordon (2001), Fernández & Gabbay (2009) and Gabbay & Lengrand (2009). What

is new here is the observation that nominal sets equipped with a name-restriction

operation are closed under exponentiation by nominal sets (Theorems 2.10) and

under taking nominal sets of name-abstractions (Theorem 2.13). This immediately

suggests a simple calculus of higher order functions with name-restriction and name-

abstraction that turns out to resurrect Odersky’s conception of locally scoped name.

Computing with higher order abstract syntax. It has become very common to use

typed λ-calculus as a uniform method of representing syntax involving bind-

ing (Pfenning & Elliott, 1988). The pros and cons of this higher order abstract

syntax compared with ‘nominal’ techniques have been vigorously debated (Cheney,

2005; Crary & Harper, 2006). In comparing systems that employ them, one should

bear in mind the purpose for which they are designed: is it representation plus

proof (classical or constructive), or representation plus computation (functional or

logical), or both? The primary focus of this paper is on functional computation on

representations. So, the analyses of Poswolsky & Schürmann (2008) and Licata et al.

(2008)(Licata et al., 2008) are pertinent: early uses of typed λ-calculus representations

identify ‘functions-as-data’ with ‘functions-as-computation’ (Miller, 1990 provides

an early exception) and this leads to complications, such as modalities (Schürmann

et al., 2001), when trying to develop recursion and induction for higher order

abstract syntax. Various authors have advocated separating the two notions of

function, leading to forms of locally scoped symbols in Poswolsky & Schürmann

(2008), Pientka (2008), Licata et al. (2008), Licata & Harper (2009) and Westbrook

et al. (2009) that are comparable to the notion of name-abstraction αa. e in the

λαν-calculus used in this paper. This should not be confused with the notion of

name-restriction νa. e that we are using here.4 For one thing the latter does not

change the type of expressions, whereas the former does. The nominal sets model in

Section 2 clarifies the difference between the two notions. Furthermore, Theorem 2.13

provides an interesting semantical insight: in the presence of name-restriction, it is

consistent to regard types Name . T of ‘functions-as-data’ as subtypes of types

Name → T of ‘functions-as-computation’.

A characteristic feature of using typed λ-calculus to represent binding is that

one gets substitution and β-equivalence ‘for free’ in addition to renaming and α-

equivalence. This is often seen as a strength of the approach (Pientka, 2008), but the

author is not so sure. There are very many different forms of substitution; and many

forms of name-binding that have nothing to do with substitution whatsoever. The

approach here is to strive for the simplest possible system providing an expressive

4 Unfortunately ‘ν’ is used to indicate abstraction rather than restriction by Poswolsky &
Schürmann (2008) and by Westbrook et al. (2009).



Structural recursion with locally scoped names 273

and familiar form of recursion modulo renaming; one that makes it easy for the

user to deal with the many different kinds of object-language substitution on a

case-by-case basis. So, compared with Poswolsky & Schürmann (2008) and Licata &

Harper (2009), for example here some things are not automatic. Similarly, Licata &

Harper (2009) incorporate types classifying closed object-level expressions, whereas

the author would prefer to let the user make inductive definitions of such types.

On the other hand, the use of locally scoped symbols of any data type, rather than

just at name types like Name as here, seems an interesting feature of Miller (1990),

Miller & Tiu (2005), Poswolsky & Schürmann (2008) and Licata et al. (2008).

Nominal calculi. Harper has coined the term ‘pronominal’ for the use of locally

scoped symbols as ‘pronouns referring to a designated binding site’ (Licata &

Harper, 2009), contrasting it with the nominal approach to symbols as nouns with

independent existence. Is the λαν-calculus nominal or pronominal? The answer is

not so clear. We are used to the idea of free variables in λ-calculus being implicitly

λ-bound; in other words, their ‘designated binding site’ is an implicit top level. In

λαν-calculus, we can definitely think of free atomic names as having an implicit

top-level designated binding site as well; but they are ν-bound rather than λ-bound.

What makes this possible is the fact that in our system, like Odersky’s, ν-binding

commutes with λ-abstraction and tupling (see the Conv-ν-Fun and Conv-ν-Prod

conversions in Figure 5).

However, λαν-calculus is ‘nominal’ in the sense of being a language for describing

some aspects of the theory of nominal sets. Among previous such languages perhaps

the most closely related to λαν-calculus is the ‘simple nominal type theory’ (SNTT)

of Cheney (2009). The motivation behind both systems is to produce a calculus

combining simple type theory (initially, and dependent type theory in the long

run) with some of the distinctive features of the nominal sets model of names and

binding, particularly inductively defined nominal sets involving the name-abstraction

construct. Moreover, both λαν-calculus and SNTT aim to avoid the need for freshness

side conditions while defining and computing in the calculus. However, SNTT’s use

of bunched contexts containing information about object-level freshness means that

the aim of avoiding freshness conditions is only partially met: well typedness of

SNTT terms is mediated by freshness conditions in the context. By contrast, λαν-

calculus has a completely conventional type system and all freshness conditions

associated with α-equivalence have been elevated to the meta-level (in much the

same way as for systems based on higher order abstract syntax Pfenning & Elliott,

1988). This is at the expense of introducing terms like νa. a (cf. Remark 4.10), but the

fact that SNTT lacks name-restriction νa. (−) and name-swapping (a1 � a2)(−) limits

its expressivity. Cheney (2009) discusses the limitations caused by lack of a name-

restriction construct in Section 4 of that paper. In particular, some of the ‘shocking’

isomorphisms of Example 3.7 are not expressible in SNTT; see Figure 5 in Cheney

(2009).5 Nevertheless, SNTT is a very interesting system whose metatheory is simpler

5 Be warned, Cheney (2009) uses the notation 〈a〉(−) for the binding operation that is denoted here by
αa. (−).
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than the one presented here. It would be interesting to investigate translating it into

λαν-calculus; perhaps the translation of its bunched contexts might provide useful

conditions in a conditional-equational calculus more expressive than the simple

equational notion of conversion we have given here.

Nominal System T. This paper is a revised and expanded version of Pitts (2010). The

calculus presented in that paper is called Nominal System T because it takes Gödel’s

System T for primitive recursive functions of higher type (Gödel, 1958), formulated

as a typed λ-calculus following Tait (1967) and generalizes from numbers to inductive

data modulo α-equivalence of bound names. The λαν-calculus presented here follows

the suggestion in Section 7 of that paper and provides name-abstraction types. As

we noted at the beginning of Section 4, this enables any nominal signature of

constructors to be added easily to the calculus. In formulating the λανδ-calculus, we

added the signatures for λ-terms and numbers and developed iteration combinators

for them that correspond to their initial algebra semantics in nominal restriction

sets; doubtless more general forms of primitive recursion rather than iteration could

be given, along the lines of those in Pitts (2010). That paper develops η-long β-

normal forms for Nominal System T (via a normalization-by-evaluation argument),

whereas here we have just used β-normal forms – they are sufficient for the results

in Section 4.3.

This paper gives (in Section 2) the details of the semantics of locally scoped

names in nominal sets alluded to in Pitts (2010). In doing so, a flaw in that

paper emerges. Nominal System T admits name-swapping expressions with arbitrary

expressions of type Name to be swapped, rather than just atomic names as here.

For example, (Anon � a)e is well formed in Nominal System T (with slightly different

concrete syntax). We can extend the denotational semantics of Section 3.2 to cope

with such expressions. In particular, the denotation of (Anon � a)e is given by

restriction, λρ ∈ Val . a\(�e�ρ). However, the conversion (πλ) in Figure 3 of Pitts

(2010) is not sound for this semantics. A correct, but more complicated definition

of conversion could be given; however, here we have taken the simple way out

and made the syntactic restriction that only atomic names can appear in explicit

swapping expressions. This has the knock-on effect, via Definition 3.4, of restricting

the operation of concreting a name-abstraction to apply only to atomic names. This

does restrict the expressivity of λαν-calculus; for example, one cannot λ-abstract

a in λx → x @ a ∈ Exp((Name . T ) → T ) to get a concretion function of type

Name → (Name .T ) →T . However, the restriction does not prevent the formulation

of structural recursion with locally scoped names in Section 4.

6 Conclusion

Locally scoped names are an important feature of the informal metatheory of

binding operations in programming languages and logics. Nominal sets provide a

fruitful mathematical model of name scoping in the presence of recursive definitions.

Previous work on formal languages based on this model (Pitts & Gabbay, 2000;

Schöpp & Stark, 2004; Cheney, 2009) uses some form of freshness information built
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into a type system in order to ensure that an expression using a locally scoped name,

when interpreted in nominal sets, does not have the name in its support. In this paper,

such ‘static freshness inference’ is avoided by using an Odersky-style local scoping

construct, which is given a new interpretation using nominal-sets-with-restriction,

rather than just nominal sets. This results in a more standard form of typed λ-

calculus with fewer side conditions than Schöpp and Stark’s calculus and greater

expressiveness than Cheney’s calculus. However, as pointed out in Remark 4.10,

our approach does entail dealing with the extra canonical form Anon = νa. a. The

presence of this single nonstandard constant of type Name does not seem quite

as bad as the ‘exotic’ terms that can appear in systems based on weak high-order

abstract syntax, but nevertheless, it will complicate any logic based upon the λανδ-

calculus. In managing to avoid static freshness inference, perhaps we have traded

one form of complexity in reasoning for another?

To investigate this question further, an obvious next step is to try to gener-

alize the use we have made of local names and name-swapping from simple to

dependent types. Historically speaking, Gödel’s System T was a stepping stone

on the way to Martin-Löf’s much more expressive treatment of recursion and

induction (Nordström et al., 1990). It would be interesting to investigate whether

the approach introduced here extends to a ‘nominal Martin-Löf type theory’ with

Odersky-style local names and name-swapping. The motivation is the search for

a logical framework (Pfenning, 2001) that admits familiar forms of specification

using bound names and formalizes the informal uses of ‘modulo α’ recursion and

induction that are common in the practice of programming language semantics.

This is certainly the motivation of previous work in this line (Schöpp & Stark, 2004;

Westbrook et al., 2009), but the hope is that the use of the form of locally scoped

names considered here can lead to a simpler system that is more expressive, or at

least which is closer to informal practice in its forms of expression.

A Proof of Theorem 2.10

The proof of Theorem 2.10 depends upon the following result.

Lemma A1

Suppose X ∈ Nom and Y ∈ Res . For each f ∈ X →fs Y and a ∈ �, there is a unique

g ∈ X →fs Y satisfying

a # g (A1)

(∀x ∈ X) a # x ⇒ g x = a\f x (A2)

Proof

First note that we have

(∀a′, a′′ ∈ �) a′, a′′ # (f, x) ⇒ a′\((a a′) · f)x = a′′\((a a′′) · f)x. (A3)

To see this, suppose a′, a′′ # (f, x). If a = a′ or a = a′′, then a, a′, a′′ # (f, f x) and so

both the right- and left-hand sides of the Equation (A3) are equal to f x by property

\-Strengthening. So we may suppose a′ �= a �= a′′; but then by property \-Alpha,
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we have a′\((a a′) · f)x = (a′ a′′) · (a′\((a a′) · f)x), from which the desired equality

follows by equivariance of (−)\(−).

In view of Equation (A3), we get a well-defined function by mapping each x ∈ X

to

g x = a′\((a a′) · f) x for any a′ # (f, x). (A4)

Note that by equivariance of \, g x = (a a′) · (a\f((a a′) · x)). So when a # x and

hence (a a′) · x = x, we get g x = (a a′) · (a\f x) = a\f x since a, a′ # a\f x. Thus,

Equation (A2) holds for this definition of g.

Since \ is equivariant, it follows from its definition that g is supported by the finite

set supp(f) ∪ {a} and hence is in X →fs Y . In fact, g is supported by supp(f) − {a},
since choosing any a′ # (a, f), we have for any x ∈ X:

((a a′) · g) x
= {permutation action on functions}

(a a′) · (g((a a′) · x))

= {by (A4), choosing a′′ # (f, a, a′, x) and hence with a′′ # (f, (a a′) · x)}
(a a′) · (a′′\((a a′′) · f)((a a′) · x))

= {equivariance and a, a′ /∈ supp((a a′′) · f)}
a′′\((a a′′) · f) x

= {by (A4), since a′′ # (f, x)}
g x.

Hence, (a a′) · g = g; and since a′ # (a, f), we have a′ # g and thus a = (a a′) · a′ #

(a a′) · g = g. So, g satisfies Equation (A1).

For uniqueness, if g′ ∈ X →fs Y also satisfies Equations (A1) and (A2), then for

any x, picking a′ # (g, g′, x) we have

g′ x

= {a, a′ # g′ by (A1) and assumption on a′}
(a a′) · g′((a a′) · x)

= {by (A2) for g′, since a # (a a′) · x}
(a a′) · (a\f((a a′) · x))

= {by (A2) for g, since a # (a a′) · x}
(a a′) · g((a a′) · x)

= {a, a′ # g by (A1) and assumption on a′}
g x.

Thus, g′ = g. �

Proof of Theorem 2.10.

For each a ∈ � and f ∈ X →fs Y , let a\f be the unique function g ∈ X →fs Y as

in Lemma A1, which indeed has property (6). The fact that \ ∈ Nom(� × (X →fs

Y ), X →fs Y ) follows easily from its definition; so it just remains to check that it

has properties \-Alpha, \-Strengthening and \-Exchange. The first is Equation

(A1). For the second, if a # f, then a\f and f are both finitely supported functions

satisfying Equatons (A1) and (A2); hence, by the uniqueness part of Lemma A1,

a\f = f. Finally, for property \-Exchange, without loss of generality, we may

assume a �= a′ and then for any x ∈ X we have:
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(a\a′\f) x

= {by (A4), choosing a′′ # (a, a′, f, x) and hence with a′′ # (a′\f, x)}
a′′\((a a′′) · (a′\f)) x

= {equivariance of \ and a′ # (a, a′′)}
a′′\(a′\((a a′′) · f)) x

= {by (A4), choosing a′′′ # (a, a′, a′′, f, x) and hence with a′′′ # ((a a′′) · f, x)}
a′′\a′′′\((a′ a′′′)(a a′′) · f) x

= {by (\-Exchange) for Y ∈ Res and a′, a′′′ # (a, a′′)}
a′′′\a′′\((a a′′)(a′ a′′′) · f) x

= {reversing the above steps}
(a′\a\f) x. �

B Proof of Theorem 2.13

For each a ∈ �, consider ra ∈ (� × X) →fs [�]X given by

ra(a
′, x) �

{
〈a′〉x if a = a′

〈a′〉(a\x) if a �= a′.

Note that a′ # ra(a
′, x) for all a′, x; hence, ra induces r̂a ∈ [�]X →fs [�]X as in

Proposition 2.5. Writing a\p for r̂a p, we have

a\(〈a′〉x) =

{
〈a′〉x if a = a′

〈a′〉(a\x) if a �= a′.
(B1)

So property (8) holds; and it is easy to see that \ is equivariant and satisfies \-Alpha,

\-Strengthening and \-Exchange.

Using the name-restriction operation on � →fs X from Theorem 2.10, we get an

equivariant function in (� × X) →fs (� →fs X) by mapping each (a, x) to the finitely

supported function a\(λa′ ∈ �. (a a′) · x) ∈ � →fs X. By Proposition 2.5, this induces

a well-defined (and equivariant) function m satisfying

m(〈a〉x) = a\(λa′ ∈ �. (a a′) · x) (B2)

for all a ∈ � and x ∈ X. It is not hard to see that m preserves name-restriction and

hence m ∈ Res([�]X,� →fs X). For if a, a′, a′′ ∈ � are mutually distinct, then for

any x ∈ X, we have

(a\m(〈a′〉x))a′′

= {by (A2), since a �= a′′}
a\m(〈a′〉x)a′′

= {by (B2)}
a\(a′\(λb ∈ �. (a′ b) · x)a′′

= {by (A2), since a′ �= a′′}
a\a′\(a′ a′′) · x

= {by \-Exchange, equivariance of \ and since a �= a′, a′′}
a′\(a′ a′′) · (a\x)

= {by (A2), since a′ �= a′′}
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(a′\(λb ∈ �. (a′ b) · (a\x))a′′

= {by (B2)}
m(〈a′〉(a\x))a′′

= {by (B1), since a �= a′}
m(a\〈a′〉x)a′′

and this suffices to show that a\my = m(a\y) holds for all a ∈ � and y ∈ [�]X.

In the other direction, given f ∈ � →fs X, note that if a, a′ # f, then 〈a〉(f a) =

〈a′〉(f a′); so we get a function e from � →fs X to [�]X by defining

e(f) = 〈a〉(f a) where a # f. (B3)

and this gives a morphism in Res(�→fs X, [�]X). Finally, to see that e◦m = id [�]X ,

note that

e(m(〈a〉x))

= {by (B3), where a′ # (a, x)}
〈a′〉(m (〈a〉x) a′)

= {by (B2) and (6), since a �= a′}
〈a′〉(a\(a a′) · x)

= {by (B1), since a �= a′}
a\(〈a′〉(a a′) · x)

= {by definition of 〈−〉−, since a′ # (a, x)}
a\(〈a〉x)

= {by \-Alpha, since a # 〈a〉x}
〈a〉x. �

C Proof of Proposition 3.19

We prove

e =β e′ ⇒ e ⇓≡⇓ e′ (C1)

first for the λαν-calculus and then for its extension to the λανδ-calculus.

C.1 λαν-Calculus

Property (C1) is proved via the logical relation defined in Figure C1. It is not hard

to see that this defines an equivariant partial equivalence relation:

e ∼T e′ ⇒ π · e ∼T π · e′ (π ∈ Perm(�)) (C2)

e ∼T e′ ⇒ e′ ∼T e (C3)

e ∼T e′ ∧ e′ ∼T e′′ ⇒ e′ ∼T e′′. (C4)

The proof of transitivity (C4) is by induction on the structure of types, with the

induction step for name-abstraction types relying on a ‘some/any’ property typical

of the theory of nominal sets (cf. Theorem 3.8 of Pitts, 2006); in the clause for

∼Name.T in Figure C1, if the right-hand side holds for some a /∈ fn(e, e′) then it holds
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Fig. C1. Logical relation, e ∼T e′ (T ∈ Typ, e, e′ ∈ Exp(T )).

for any such a:

e ≈Name.T e′ ⇔
(∀a /∈ fn(e, e′))(∃e1, e

′
1) e ⇓w αa. e1 ∧ e′ ⇓w αa. e′

1 ∧ e1 ∼T e′
1. (C5)

Remark C1

In Figure C1, one might expect the definition of e ≈T1→T2
e′ to begin (∃x /∈

fv (e, e′), e2, e
′
2) . . ., mirroring the occurrence of ‘a /∈ fn(e, e′)’ in the definition of

e ≈Name.T e′. It makes no difference to the definition of ≈ to add this condition on

x, but it is not necessary to do so, because x is not in the support of the rest of

the defining clause for functions (unlike the defining clause for name-abstractions,

where a may occur in the support of the existentially quantified property).

Write e �w e′ if e and e′ have the same behaviour with respect to evaluation to

weak head normal form:

e �w e′ � (∀w) e ⇓w w ⇔ e′ ⇓w w. (C6)

The following property of the logical relation follows immediately from its definition.

Lemma C2

If e �w e′ and e′ ∼T e′′, then e ∼T e′′. �

Lemma C3

For all T ∈ Typ, v, v′ ∈ Neu(T ) and e, e′ ∈ Exp(T )

v ⇓≡⇓ v′ ⇒ v ∼T v′ (C7)

e ∼T e′ ⇒ e ⇓≡⇓ e′. (C8)

Proof

Property (C7) follows immediately from the definition in Figure C1. For property

(C8), if e ∼T e′, then either (∃v, v′) e ⇓w v ∧ e′ ⇓w v′ ∧ v ⇓≡⇓ v′, in which case

e ⇓≡⇓ e′, or e ≈T e′. So it suffices to prove

e ≈T e′ ⇒ e ⇓≡⇓ e′ (C9)

and we do this by induction on the structure of T . The base case when T = G is a

ground type is immediate from the definition of ≈G. The induction steps for product
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and name-abstraction types are straightforward. Finally, in case T = T1 → T2, if

e ≈T e′ then e ⇓w λx → e2 and e′ ⇓w λx → e′
2 hold for some x, e2, e

′
2 satisfying

(∀e1, e
′
1) e1 ∼T1

e′
1 ⇒ e2[e1/x] ∼T2

e′
2[e

′
1/x]. (C10)

Since x ⇓≡⇓ x, by Equation (C7), we have x ∼T1
x, and therefore, Equation (C10)

gives e2 ∼T2
e′
2. Arguing as above, this means that either e2 ⇓≡⇓ e′

2, or e2 ≈T2
e′
2; and

in the latter case, by induction hypothesis, we again have e2 ⇓≡⇓ e′
2. So e2 ⇓≡⇓ e′

2

holds and since e ⇓w λx → e2 and e′ ⇓w λx → e′
2, this implies that e ⇓≡⇓ e′, as

required. �

We next show that the logical relation is compatible with all the expression-

forming constructs of the λαν-calculus.

Lemma C4

(i) If e ∼T e′, then νa. e ∼T νa. e′.

(ii) If x ∈ �(T1), e, e
′ ∈ Exp(T2) and (∀e1, e

′
1) e1 ∼T1

e′
1 ⇒ e[e1/x] ∼T2

e′[e′
1/x],

then λx → e ∼T1→T2
λx → e′.

(iii) If (∀i ∈ {1..m}) ei ∼Ti
e′
i, then (e1, . . . , em) ∼T1×···×Tm

(e′
1, . . . , e

′
m).

(iv) If e ∼T e′, then αa. e ∼Name.T αa. e′.

(v) If e ∼T1→T2
e′ and e1 ∼T1

e′
1, then e e1 ∼T2

e′ e′
1.

(vi) If e ∼T1×···×Tm
e′, then pri e ∼Ti

pri e
′ for all i ∈ {1..m}.

(vii) If e1 ∼Name.T e′
1, a /∈ fn(e1, e

′
1), x ∈ �(T ), e2, e

′
2 ∈ Exp(T ′) and (∀e, e′) e ∼T e′

⇒ e2[e/x] ∼T ′ e′
2[e

′/x], then let 〈a〉x = e1 in e2 ∼T ′ let 〈a〉x = e′
1 in e′

2.

(viii) If e1 ∼Bool e
′
1, e2 ∼T e′

2 and e3 ∼T e′
3, then if e1 then e2 else e3 ∼T if e′

1 then

e′
2 else e′

3.

(ix) If e1 ∼Name e′
1 and e2 ∼Name e′

2, then e1 = e2 ∼Bool e
′
1 = e′

2.

(x) If e ∼T e′, then (a1 � a2)e ∼T (a1 � a2)e
′.

Proof

Part (i) is proved by induction on the structure of T . At ground types, the property

follows from the definitions of ⇓w, ⇓n and a�w( ) in Figure 9, using the easily verified

fact that

w ⇓≡⇓ w′ ⇒ a�ww ⇓≡⇓ a�ww
′. (C11)

In particular, v ⇓≡⇓ v′ implies νa. v ⇓≡⇓ νa. v′; so for the induction steps at compound

types, we just have to show e ≈T e′ ⇒ νa. e ∼T νa. e′. We give the argument in

case T = T1 → T2; the other cases are easier (using property (C5) for the case of

name-abstraction types). Suppose e ⇓w λx → e2 and e′ ⇓w λx → e′
2 hold for some

x, e2, e
′
2 satisfying Equation (C10). Then, νa. e ⇓w λx→νa. e2 and νa. e′ ⇓w λx→νa. e′

2;

so to prove νa. e ≈T νa. e′, it suffices to show that

(∀e1, e
′
1) e1 ∼T1

e′
1 ⇒ (νa. e2)[e1/x] ∼T2

(νa. e′
2)[e

′
1/x]. (C12)

Given e1 ∼T1
e′
1, pick a′ /∈ fn(a, e1, e

′
1, e2, e

′
2). By Equation (C2), we have (a a′) · e1 ∼T

(a a′) · e′
1 and hence by (C10), e2[(a a′) · e1/x] ∼T2

e′
2[(a a′) · e′

1/x]. Thus, by induction

hypothesis, νa. e2[(a a′) · e1/x] ∼T2
νa. e′

2[(a a′) · e′
1/x]; and by choice of a′, this is the

same as (a a′) · ((νa. e2)[e1/x]) ∼T (a a′) · ((νa. e′
2)[e

′
1/x]). So by Equation (C2) again,

(νa. e2)[e1/x] ∼T (νa. e′
2)[e

′
1/x]. So we do indeed have Equation (C12), as required.
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Parts (ii)–(iv) are straightforward.

For part (v), if e ∼T1→T2
e′ and e1 ∼T1

e′
1, then by definition of ∼T1→T2

• either e ⇓w λx → e2, e
′ ⇓w λx → e′

2 and Equation (C10) hold: in this case,

e e1 �w e2[e1/x] ∼T2
e′
2[e

′
1/x] �w e′ e′

1 and hence e e1 ∼T2
e′ e′

1 by Lemma C2

(and Equation (C3));

• or e ⇓w v, e′ ⇓w v′ and v ⇓≡⇓ v′ hold: in this case, e e1 ⇓w v e1 and e′ e′
1 ⇓w v′ e′

1;

furthermore, by Equation (C8), we have e1 ⇓≡⇓ e′
1, which together with v ⇓≡⇓ v′

yields v e1 ⇓≡⇓ v′ e′
1.

For part (vi), if e ∼T1×···×Tm
e′ then by definition of ∼T1×···×Tm

• either e ⇓w (e1, . . . , em) and e′ ⇓w (e′
1, . . . , e

′
m) with (∀i ∈ {1..m}) ei ∼Ti

e′
i: in

this case, for each i ∈ {1..m}, we have pri e �w ei ∼Ti
e′
i �w pri e

′ and hence

pri e ∼Ti
pri e

′ by Lemma C2 (and Equation (C3));

• or e ⇓w v, e′ ⇓w v′ and v ⇓≡⇓ v′ hold: in this case, pri e ⇓w pri v, pri e
′ ⇓w pri v

′

and pri v ⇓≡⇓ pri v
′.

For part (vii), suppose e1 ∼Name.T e′
1, a /∈ fn(e1, e

′
1), x ∈ �(T ), e2, e

′
2 ∈ Exp(T ′)

and (∀e, e′) e ∼T e′ ⇒ e2[e/x] ∼T ′ e′
2[e

′/x]. By definition of ∼Name.T

• either e1 ≈Name.T e′
1 holds: in this case, by Equation (C5), e1 ⇓w αa. e and

e′
1 ⇓w αa. e′ hold for some e, e′ satisfying e ∼T e′ and hence also νa. e2[e/x] ∼T ′

νa. e′
2[e

′/x] by assumption on e2, e
′
2 and using part (i); but let 〈a〉x = e1 in e2 �w

νa. e2[e/x] and let 〈a〉x = e′
1 in e′

2 �w νa. e′
2[e

′/x], and therefore, by Lemma C2,

let 〈a〉x = e1 in e2 ∼T ′ let 〈a〉x = e′
1 in e′

2;

• or e1 ⇓w v, e1 ⇓w v′ and v ⇓≡⇓ v′ hold: in this case, let 〈a〉x = e1 in e2 ⇓w

let 〈a〉x = v in e2 and let 〈a〉x = e′
1 in e′

2 ⇓w let 〈a〉x = v′ in e′
2; by assumption on

e2, e
′
2, we have e2 = e2[x/x] ∼T ′ e′

2[x/x] = e′
2 (since x ∼T x holds by Equation

(C7)), hence e2 ⇓≡⇓ e′
2 by Equation (C8), and therefore, let 〈a〉x = v in e2 ⇓≡⇓

let 〈a〉x = v′ in e′
2.

For part (viii), if e1 ∼Bool e
′
1, e2 ∼T e′

2 and e3 ∼T e′
3, then by definition of ∼Bool

• either e1 ⇓w True and e′
1 ⇓w True: in this case, if e1 thene2elsee3 �w e2 ∼T e′

2 �w

if e′
1 then e′

2 else e′
3 and we can apply Lemma C2 to get if e1 then e2 else e3 ∼T

if e′
1 then e′

2 else e′
3;

• or e1 ⇓w False and e′
1 ⇓w False: this case is similar to the previous one;

• or e1 ⇓w v, e′
1 ⇓w v′ and v ⇓≡⇓ v′ hold: in this case, if e1 then e2 else e3 ⇓w

if vthene2elsee3 and if e′
1 thene′

2elsee′
3 ⇓w if v′ thene′

2elsee′
3; and since e2 ⇓≡⇓ e′

2

and e3 ⇓≡⇓ e′
3 hold by Equation (C8), we also have if v then e2 else e3 ⇓≡⇓

if v′ then e′
2 else e′

3.

Part (ix) is proved similarly to part (viii).

Finally, part (x) is proved by induction on the structure of T . At ground types,

the property follows from the definitions of ⇓w, ⇓n and (a1 a2)w( ) in Figure 9, using

the easily verified fact that

w ⇓≡⇓ w′ ⇒ (a1 a2)ww ⇓≡⇓ (a1 a2)ww
′. (C13)
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In particular, v ⇓≡⇓ v′ implies (a1 � a2)v ⇓≡⇓ (a1 � a2)v
′; so for the induction steps at

compound types, we just have to show e ≈T e′ ⇒ (a1 � a2)e ∼T (a1 � a2)e
′, the proof

of which is straightforward – in the case of name-abstraction types using property

(C5) to pick a representative bound name a in e ⇓w αa. e1 that is not equal to a1 or

a2 so that (a1 � a2)e ⇓w αa. (a1 � a2)e1 holds (and similarly for e′
1). �

Definition C5 (Substitutions.)
A (finite) substitution σ ∈ Sub is by definition a function from variables to well-

typed λαν-expressions that respects typing (x ∈ �(T ) ⇒ σ(x) ∈ Exp(T )) and

satisfies σ(x) = x for all but finitely many variables x. We write e[σ] for the result

of applying to e the simultaneous substitution specified by σ. Two substitutions

are logically related, σ ∼ σ′, if for all T ∈ Typ and x ∈ �(T ), it is the case that

σ(x) ∼T σ′(x).

Corollary C6 (‘Fundamental property’ of the logical relation.)
For all T ∈ Typ, e ∈ Exp(T ) and σ, σ′ ∈ Sub

σ ∼ σ′ ⇒ e[σ] ∼T e[σ′]. (C14)

Proof
By α-structural induction (Pitts, 2006) for e. For the base case e = x ∈ �(T ), we

need x ∼T x, which follows from Equation (C7). The other bases cases, a ∼Name a,

True ∼Bool True and False ∼Bool False are immediate from the definition in

Figure C1. The induction steps follow from Lemma C4. �

Lemma C7
For all T ∈ Typ and e, e′ ∈ Exp(T ), if e =β e′ then e ∼T e′.

Proof
It suffices to show that the logical relation is a λαν-calculus congruence containing

the basic β-conversions in Figure 5. First note that the identity substitution satisfies

σ ∼ σ (since we have x ∼T x for all x ∈ �(T ), by Equation (C7)). Therefore,

Corollary C6 implies that the logical relation is reflexive:

(∀T ∈ Typ, e, e ∈ Exp(T )) e ∼T e. (C15)

We have already noted that it is symmetric (C3) and transitive (C4); and Lemma C4

and Corollary C6 together show that it respects the expression-forming constructs

of the λαν-calculus (modulo α-equivalence). So the logical relation is indeed a

congruence. To see that it contains the conversions in Figure 5, note that (in view of

Equation (41)) they are all instances of the �w relation; but combining Lemma C2

with Equation (C15), we have that e �w e′ implies e ∼T e′. �

Combining property (C8) in Lemma C3 with Lemma C7, we have proved Equation

(C1). �

C.2 λανδ-Caclulus

When passing from the λαν-calculus to the λανδ-calculus, the definition of the logical

relation e ∼T e′ (Figure C1) is unchanged, since it is independent of the nature of

ground types. However, three new clauses have to be added to Lemma C4:
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(xi) If e ∼T e′, then K e ∼G K e′ (where K ∈ {V,A, L,Z,S} and K : T → G).

(xii) If e1 ∼Name→T e′
1, e2 ∼(T×T )→T e′

2, e3 ∼(Name.T )→T e′
3 and e ∼Lam e′, then

lrec e1 e2 e3 e ∼T lrec e′
1 e

′
2 e

′
3 e

′.

(xiii) If e1 ∼1→T e′
1, e2 ∼T→T e′

2 and e ∼Nat e
′, then nrec e1 e2 e ∼T nrec e′

1 e
′
2 e

′.

The proof of (xi) is straightforward, using property (C8). However, the proofs of

(xii) and (xiii) are more involved because of the inductive nature of normal forms

of types Lam and Nat. Recall from Figure C1 that at ground types G, the logical

relation coincides with the relation ⇓≡⇓. Write e ∼(k)
G e′ if e ⇓n n, e′ ⇓n n′ and n ≡ n′

hold for some n, n′ with e ⇓n n and e′ ⇓n n′ having proofs of height � k. Then, one

can prove (xii) by proving

e ∼(k)
Lam e′ ⇒ (∀e1, e

′
1, e2, e

′
2, e3, e

′
3)

e1 ∼Name→T e′
1 ∧ e2 ∼(T×T )→T e′

2 ∧ e3 ∼(Name.T )→T e′
3 ⇒

lrec e1 e2 e3 e ∼T lrec e′
1 e

′
2 e

′
3 e

′

by induction on k ∈ �. Similarly, for (xiii).

The extended Lemma C4 gives the fundamental property of the logical rela-

tion (Corollary C6) for λανδ-calculus and the fact that it contains β-conversion

(Lemma C7). Then, as before, we get Equation (C1) by combining property (C8)

and Lemma C7. �
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