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0, INTRODUCTION

I want to begin by calling to mind the theory HA" of
Heyting Arithmetic of all Finite Types (see [18], for exanple),
where we consider types built up from a base type O (for N)
using X and - : thus if «,8 are types, so are axf (product btype)
and a— g (exponential type), If B is a topos with natural
number object N, the cartesian closed structure of E allows us
to build a model of HA in a very natural way with N,=X,

N =N XN and N a_,B:(NB)N“ : call these the full finite types

axp” o B
over N in B,

A somewhat different approach to modelling HA® is to give
an interpretation of it within HA. This is the purpose of the

hereditarily extengional effective operations, which we can

define as follows:

Subsets EaSEN and equivalence relations =, on Ea are

built up inductively on the type symbols o according to the

clauses

(1) By=I;

(ii) n =y n iff n=n';

(i11) By xg ={<n,n>|n€E  and meEB};_

(iv) n =axp n' iff (n)0 =y (n')o and (n)1 =5 (n')1;

(v) 'EOHB = {n|Vm,m'6Ea(m_=am'?ak,k'GEB({n}(m):k,{n}(m'):k'and k=Bk'))} -
(vi) n = n' iff for all m€E {n}(m) =g {n*}(m).

(Here <+« +> and (-)0,(-)1 are primitive recursive pairing

and unpairing functions, and {n}(m) is the value at m {(if

defined) of the partial recursive function with index n.)
Then we define the extensional effective operations of

type a to comprise the quotient set Ea/=a'
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Now J.M.E,Hyland has shown that we can regard these
extensional effective operatlions as the full finite types over
the natural number object in a particular (elementary) topos,

which Thas come to be called the effective jopos and denoted

Eff. Let me briefly indicate how this comes about.
Firstly recast the definition of the effective operations

by defining maps Ia: ll\Ta—-'% PN inductively on the types «a a&s

fol;ows:

(a) Ny=N and Io(n) = {n};

(b) Naxﬁ =N x NB INand Iaxﬁ(x’y) = {{n,m) |n€Ia(x) and meIB(y)}i
(e) INa_,B={fe(JNB) “lIa_,B'(f) is inhabited}, where

Ia_,B(f) = {n| V€N Vmﬁla(x)‘a kEIB(fx) {n}{m)=k}-.

Then B = U{Ia(x) ixelNa}, and the extensional effec¢tive < -

operations of type «, Ea/za, are in bijection with the IV .

Let us think of Ia('x) as measuring the extent to which xEN  is

in the type «; in fact let us write [ x€N_] for the set Ia(x)

(xGINa)o. So we are regarding subsets of N as truth-values (in

the same way that we regard open subsets of a space X or elements -

~of a locale H as truth-values). The clauses (b) and (¢) suggest

how to form conjunctions and implications of these new truth-

values: given p,q&IN let

| PAQ = {<n,m>|n€p and m€q}

and p+q = {n|Vn€p Jkeq {n}(m)=k}.

Then (b) becomes
[ (x,y) €N

and (c) becomes

[ re No g 1 =XD_Na[[ xeN J - [ £x € Ng 1.

The latter suggests that universal quantification is given by

]]=[[x€N‘~a]]A[[y€NB]],

axp

- intersection, so that the right-hand side could be written

[[Vx(x EN, ~ fx¢€ Nﬁ)]"
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Thig looks promising. Note in particular that whilst still
resembling H-valued logic, the above constructions mimick the

notion of realizability (c.f. [18]). Now for the latter one is

interested in when there exists a number realizing a particular

formula: correspondingly it seems that we should regard a
formula as true in this semantics 1if the subset of N that isﬁ
its interpretation contains some number (just as xGlI\TOt was an
effective operation as [ x EN, ]]zIa(x) was inhabited). The
effect of this definition of truth on the truth-values pEN is
to coilapse them to 2= {1l ,T}, since p=q is inhabited iff g
is or p is not. 8o does the structure we are building also col-
lapse to the classical 2-valued semantics? Of course the answer
is no, and we have already seen why not, For a formula such as
Yx(x€ Na“+ foNB) ‘

becomes true in the semantics only if there is some n€W which
is in all the [ x€ N, 1-10 fxE.NB I (x GlNa) simultaneously.

To build the effective topos we just mimick the construction
of H-valued sets (see [ 6] for example). Thus as objects take
sets X together with an equality relation x,x'pb—=> [ x=x'] €N

on X*X which should he symmetric and transitive, i.e.

ﬂ'ﬂ_' x=x"']-[ x'z‘x]]

X, X I

wa [ ) [x=xDALx=x"] » [x=x']

are to be inhabited. As maps (X,=) — (Y,=) take {(equivalence |
classes of) strict functional relations XXY ———= PN . Hence INa
with equality x,x'p—= I(x)NI(x') becomes an object N, of Bff.
Eff is a topos (but not a Grothendieck one) and within that topos'
the N are (isomorphic to) the full finite types defined at the

beginning of this introduction. (I should mention that independ-

ently of Hyland, W.Powell formulated the above semantlcs and used
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it to build a hierarchy that stands in the same relation to the
effective topos as the hierarchy“UH does to the topos of sheaves

over the complete Heyting algebra (1ocale) H; see [15].)

Originally the effective topos was given, much as i have
described it, as a topos of Q-valued sets where Q (=PIN with
the realizability structures defined above) was a "model for
second order propositional logic", directly generalisihg the
construction of the topos of H-valued sets from a locale H. It
was while studying this construction that I formulated the
notion of tripos. (The name was coined byP.T. Johnstone and is

an acronym; standing for Topos-Representing Indexed Pre-

Ordered Set o) This kind of structure is both a generalisation

and a simplification of the original models. for second order
propositional logic: there are more examples of it and the
definition allows the use of techniques from categorical logic
and from indexed category theory to advantage. (I shall draw
upon the language of the latter theory in what follows: see
[4] for an account of it.) As a way of codifying logic, a
tripos is a particular instance of F. W. Lawvere's "hyperdoctrines"E
[12] and is closely related to the structures in [ 3 ]. What
distinguishes it from the former is the requirement in the
definition of tripos of a generic predicate, whilst it differs
from the latter by not mentioning (extensional) equality. 4s a
result there is a happy balance: the definition is lax enough
to allow examples as dissimilar as loocales and realizability
structures, whilst still ensuring that a rather rich theory
emerges in the chapters that follow. Let me outline how this

theory is developed in what follows.
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Chapter 1 begins with the definition of tripos and various
definability resuvlts are given which reduce the amount of
structure needed to specify a tripos. The wvarious known
examples are then given. Of these, two are in fact broad classes
of related structures: complete Heyting algebras give localic
triposes and partial combinatory algebras give realizability
triposes. An interesting non-example is also given: it shows
that even without a generic predicate, an indexed pre-order
may still represent a topos - in this case a Boolean topos
with any specified (possibly incomplete) Boolean algebra of
truth-values (c.f. 1.8 and 2.9). On the other hand, the power-
full results of Chapters 3-6 will not apply to such toposes.

In Chapter 2, starting from a C-tripos P, the topos it
represents,C[P] is constructed. The method is a direct
generalisation of that used in constructing H-valued sets from
H. If we think of a tripos as giving a semantics for higher-
order Intuitionistic logic without equality, then this passage
to C[P] is one of adding equality plus the Axiom of Extension-
ality at all types. Conversely, given that a topos is presented
as C[P], its internsal logic is described in terms of the
"external" logic of P,

In Chapter 3 the constant-objects functor [XP:O ——> C[P]
is defined, and those functors ¢ ——> E from C into a ftopos
wnich arise in this way are characterised: in general [}p
does not have a right adjoint (global sections) and the
characterisation is not as straightfoward as for the particular
case of a localic extension. The chapter ends with the useful
result (3.14) that existential and universal quantificafion
in a tripos P can be given in a simple, generic way iff the

functor [Nais regular.,
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Chapter 4 examines the connection between (indexed) functors
between triposes and functors between the toposes they represent.
In particular the notion of a geometric morphism between
triposes is developed and a pleasing correspondence is exhibited
between such morphisms P——>R and geometric morphisms
C[P] —— C[R] between the toposes whose inverse image-
functors preserve constant objects. In demonstrating this,
essential use is made of membership predicates (or a generic
predicate) given in the definition of tripos: they allow a
weak form of "sheafification" to be carried out, which is
nevertheless sufficient for constructing direct image functors.

Chapter 5 continues the development of Chapter 4 by
examining inclusions and sheaf sub-triposes. The results are
employed in investigating the sheaf sub-toposes of the effective
topos.

Chapter 67presents an extremely useful result on iterating
the construction of Chapter 2. Using it, localic and regliz-
ability triposes can be combined in various orders to obtain
new triposes, and examples of this are given. In particular
it is shown that if the effective topos construction is
applied to a realizability topos, enother realizability topos
is obtained. | |

The final Chapter 7 applies the results obtained so far
to studying the construction which sends a topos B (with
natural number object) to the effective topos eBE defined from
it (the effective topos described at the begimming of this
introduction being eSet)}. There are two principal results,
Firstly the assignment BF——> el is the object part of a
functor and the topos el (or more precisely the functor

ZX:E-———é> eE defined in Chapter 3) has a certain "universal
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property" (Theorem 7.11); this gives a categorical character-
isation of the effective topos construction. Secondly, the
extent to which the assignment El——> éE fails to be idem~
potent is measured by a monad (Theorem 7.19). The category of
algebras for this monad is identified for the special case of
realizability toposes. It is here that the consequences of the
"geometrically" oriented theory of the preceding chapters are

worked out for the "recursion-theoretic" realizability toposes.
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1. DEFINITION AND EXAMPLES

Let C be a category with finite limits (in fact, just finite
products will do).

1.1 Definition

A C-tripos, P, is a C-indexed category together with the
following structure:

(a) For each object I of C, the category PI is actually a pre-
ordered set (that is, there is at most one arrow between any
two objects); write 'FI for the pre-order on PI.

In addition, the category PI is to have finite limits and
colimits, and be cartesian closed (and we are given specific
binary operations of meet (AI)’ join (\&) and Heyting implicat-
ion (ﬂI), together with distinguished top (TI) and bottom (LI)
elements). We shall call pre-ordered gsets with this structure

Heyting pre-algebras.

(b) P is complete and cocomplete as a C-indexed category. That
is, for each map f:Il——> dJ in C we are given left and right

adjoints to the functor Pf, denoted 3f, Vf respectively, which

satisfy the Beck condition: n
P———>dJ
given a pullback square ICL lg in C, we have
1-fsx

Pg-Vf =|~; Vh-Pk and Pg-3f o p-; 30-Pk.
(Actually, if we have the Beck condition for V, we have it
for 3 as well by taking left adjoints,)

Furthermore we require that each Pf preserve the implication
=7 (it already preserves meets and joins by virtue of the above).

(¢) For each object I of C there is PI in C and €; in P(IXPI),
such that given any ¢ in ‘P(IXJ) there is a map {p}:J — PI
in C with P(ide{¢})€I 4+ ¢ in P(IxJ). (We will call €

I
the membership predicate for I.)
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A tripos is a structure in which to interpret logic. Specific-
ally, one should think of the category C as carryihg the "type"
and "term" structure, and of each PI as a collection of (npn—
standard) "predicates" on I, pre-ordered by "entailment", |-p.
Part (a) of the definition deals with the Intuitionistic Propositional
Calculus, part (b) with substitution and quantification, and part

(¢) with higher-order logic. The only thing missing is equality.

1.2 Definability results

Just as some parts of logic can be defined in terms of others,
so some of the structure required by Definition 1.1 can be given
in terms of the rest. Specifically T,A,L ,V and 3 can always be

defined in terms of -,V and €:

T = Vﬂ(GI -+ GI),
¢ A = Val((Prg > (Prg' » €1)) = €1),
4 = Vne,
¢ v o' =Vn((Prp » €. A Prp’ » €;) » €,),
and 3F(Y) = V' (V(£ x 1d)(Pny = P(f x id)€; = €;),

where n:l X PI—> I, n':d X PJ—> J are the projections and
f:J—>> I. See 1.4 of [ 9 ] for the details.

In Definition 1.1 we assumed as little about C as possible.
However, as indicated in the introduction we intend to work with
triposes very much in the spirit of internal locale theory. Thus
C will usually be a topos and in this case we can cut down the
gtructure needed to specify a C-tripos until it looks very similar
to an internal locale,

So let E be a topos and P an E-tripos. Firstly one can replace
(¢) of Definition 1.1 by:

(c') There is a generic predicate ocP(Z) (some object & of B),

such that given any ¢€P(I) there is a map {¢}:I—> 2 in B
with P{o}o 4 k1 ¢.
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The membership predicates are then given by taking P1 to be }_“.I and

I——> ¥ is the evaluation

€1 to be evI(a)eP(I-XzI), where evy:l X%
map. Purthermore, pre-ordering each E(I,r) by
fry8in E(I,z) iff f(o) by &(o) in P(I),
we make E(-,%) into an E-indexed category and
E(I,z) ——> P(I)
f |—————> Pf(0)
into an equivalence of E-indexed categories., An E-tripos P, in

which each P(I) is actually E(I,L) for some (fixed) objectZ of E,

will be called canonically presented. Now we are interested in

triposes in as much as they represent toposes (via the construction
to be set put in Chapter 2 ), and equivalent triposes give equiv-
alent toposest so when B is a topos (or even just cartesian closed)
we can always take an E-tripos to be canonically presented.

In such a tripos, P pregerves identities and composition exactly,
rather than just up to isomorphism. We can also choose the pro-
positional operations so that they are preserved exactly. For
example, letting m:ZXL——>1I be YA nzeP(ZxE) (where Ty 4T, are
the projections ExL—>>% ) we have for f,g in P(I)=E(I,I):

ne<f,g > = P<f,g >(1t1 )\‘112)
- |-I P<f,g >n, Ap P<f,g >m,
= T I\Ig.
Then redefining A on P(I) by f,g —> m'<f,g >, we have
h(f A;g) = m<f,g ><h = h(f) A7 h(g),
so that each Ph preserves meets exactly.

Can we also choose the quantifiers 3,V so that the Beck conditions

hold exactly, rather than just up to isomorphism? This is equiv-

alent to asking that the quantification be computed fibre-wise,
i.e. there should be maps /\P ’ Vp ;(QE)E—;- L such that

(Vfe)J = Apfot | fi =3},
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and (3t9)j = \/fot | f1 =3 },

where I—Lf—>J in C. Proposition 3.14 below gives a charac-

|

E
terisation of those triposes defined over toposes that have fibre-

wise quantification. For the moment we note that the triposes
defined in 1.4 from locales and in 1.5 from combinatory algebras
always have fibre-wise quantification. |

To complete the transference of structure from P to £, note
that the pre-order f-; on P(I)=E(I,%) can be defined in terms of
that on P(1) (1 the terminal object in B). Let Dpoc E(1,5) consist

of those g:1——> I with T, |-, ¢ (the designated truth-values).
Then given f,g in P(I),
£y g iff PI('ﬁ) =Ty f—s

iff T Fy VI(f = g)

iff  VI{f - g) €Dp
(where I denotes the unique map I —> 1 in E),.

So to summarise, a canonically presented E-tripos with fibre-

wise quantification, P, (for B a topos) may be specified by
(a) an object I of B,
(b) maps -p:IXZ — > % and /\P:(QE)E———>Z in E, and
(c) a subset Dy of E(1,L),
satisfying various relations (such as those set out immediately
before 1.4 of [ 9 ]) which ensure that when T,A, L ,V,P,3,V and €
are defined as above, the requirements of Definition 1.t are

satisfied.

Remarks
(1) It should be emphasised that what we have here is more
general than the definition of a locale. This is because of

the two (linked) faots that /\P is not necessarily a map
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assigning greatest lower bounds in & and the pre-order b1 on
E(I,z) is not necessarily that induced point-wise by the pre-
order |-, on E(1,z) (i.e. by DP).

(ii) We cannot necessarily replace the subset Dp in (c) by a
subobject D >—>>5 (and define : 1—2—>3 eDp iff p factors
through D ). If this is possible we shall say that P is an
internal E-tripos, since the structure and relations needed
to specify P are expressible in the internal logic of the
topos E (i.e. an internal B-tripos is a model in E of a certain
higher-order theory). This is a degirable feature; however to
carry out the analysis in Chapter 7, we shall have to consider
E-triposes that are not internal. We should regard non-
internal triposes in the same way that that we do elementary
toposes. We cantake the latter to be models of the familiar theory
written in a language with two sorts, namely object and arrow
sorts; similarly a C-tripos P is a model of a theory written
in a three-~sorted language, with a sort for the predicates as
well as for objects and arrows. This is the view-point of
[ 3 ] when defining "topos formel". We can interpret the two-_
sorted theory in the three-sorted one by taking predicates
to be subobjects of objects (this is Bxample 1.3(i) below),

and the construction to be given in Chapter 2 reflects the

three-sorted theory into the two-sorted one.

Let us turn to some examples of triposes.

1.% Some special examples

(i) Let E be a topos. The functor SubE:‘OP————B-Cat which
asgigns to each object I the partially-ordered set of sub-
objects of I, carries the structure of an E-tripos (the
generic predicate being 1ﬁ=1—__%>QEQ‘

(ii) Let T be a theory in a many-sorted, higher-order langusge
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L. Let C be the category with objects the types of I and arrows
the terms of I, Then there is a C-tripos P, with for each type
Xof IL

P(X) = formulae of L with free variable of type X,

pre-ordered by T-provability (c.f. [3 ]).

1,4 localic examples
Let H be an internal locale of a topos E. We define the
canonical E-tripos of H, P, %o be B{(-,H) with the Heyting algebra

structure on each PI=E(I,H) induced by the internal structure on
H; quantification is given fibre-wise by the internal inf map
/\H:(QE)H~——%> H; and there is just one designated truth-value in

Db’ namely the top element 1&:1—~—%> H.

Remark
If § >—> H is a filter on H, we can modify P by taking
DP={ B > x | h factors through § >———> H} and still getla
tripos. More generally if P is a C-tripos and § € P{1) is a filter,
we can redefine the pre-order on each P(I) by
pbr T iff VI(g~¥) €F

and get a new C-tripos, which we shall denote Pg.

1.5 Realizability examples
To give these examples we need some "combinatory logic". By

s (partial) combinatory algebra, A, we mean a set A equipped with

a partial binary operation (called application and denoted by

a,b ——> a(b) ) together with elements X and S of A, satisfying
for all a,b,c ¢ A that
K(a)(b) = a,
E(8(a)(v)),
and S(a)(b)(c) = ale)(b(e)),

where "E" means "is defined" and = means "“one side is defined iff
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the other is and then they are equal", Since we are dealing with
a partial operation, as the notation suggests we are thinking of
the theory of combinatory algebras as formulated in D.3. Scott's
logic of Identity and Existence set out in [{6¢ ]; the language has
varlables x,y,%,..., constants X,S (possibly more) which exist
(i.e. EK,ES are axioms) and a function symbol for application
which is to be strict (i.e. Bx(y) - Ex AEy is an axiom). The terms

of the language are usually called combinatory terms. We can

introduce A-terms as an abbreviation for certain combinatory terms
in the usual way: if « is a combinatory term, Ax.a is another and
is defined inductivelyon the complexity of a as follows:

o if a is x, Mx.a is S(X)(X),

e if « is y (different from x), Ax.a is K(y),

« if ¢ is ¢ (a constant), Ax.a is K(e),

» if « is B,(B,), Ax.a is B(Ax.B;)(Ax.B8,).

We thus have that x does not occur in Ax.a and the rule of

n

B-conversion holds: (Ax.a)x = a. Note also that if a has free-
variables amongst x,X then BX - E(Ax.a), so that closed A-terms
are always defined.

The theory of combinatory algebras is of course intended to
formalise the notion of (untyped) intensional functions or "rules"
applied to one another. There are many models of the theory, the
principal being N, the set of natural numbers with application

n{m) = value at m of the partial recursive function
with index n.
Again, any model of the A-calculus (such as Scott's "graph" model)
gives a combinatory algebra, and in these cases application is
totally defined.

Now let us see how to make triposes from combinatory algebras.

Let A be a combinatory algebra in a topos E and define a binary
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operation =p on PA the powerobject of A, by
P a={al| V bEp(Eal(b) A alb)eq) }.
(Since membership is "strict", we shall often supress the Ea(b)
in expressions such as the above.) If we think of the elements of
PA as "propositions" and the elements of A as "proofs", with agp
read as "a proves p", then the definition of ~a models the real-
izability interpretation of intuitionistic implication.
Define a map /\A:P(PA)———:- PA by
ApZ = {a]| Voea,pgha(ped ~ alvlep }.
Then on choosing an appropriate set of designated truth-values
DCE(1,PA), and using the definability results of 1.2, we find
that E(-,PA) can be made into a canonically presented E-tripos.
There are several possibilities for D, but we shall be concerned
with two in particular: |
(i) Let D be induced by the subobject {p|3aeA(a€p)}M§- PA.
This makes E(-,PA) into an internal E-tripos (recall Remark
(ii) after 1.2).
(11) Suppose B is a subalgebra of E(1,A) (i.e. BC B(1,4)
containg K and 8 and is closed under application); then take
for D all those 1——= PA corresponding to subobjects A'>—> A
through which some bi:l——> A in B factors. In general the
resulting E-tripos will not be internal, unless B is
induced by an internal subalgebra of A.
Recalling the Remark after 1.4, note that if P denotes an E-
tripos obtained from A as in (ii), then the inhabited subobjects
of A form a filter 8 C P(1) and Pi is the tripos obtained from
A as in (1).

Definitions

We shall c¢all a tripos obtained from a combinatory algebra

A by using _’ﬁ\.’/\ﬂ and some D, a realizability tripos on A. When

E is Set and A is N, (i) and (ii) coincide: we shall call the
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resulting tripos the effective tripos. (The reason for this name

stems from the fact that in the corresponding ftopos the finite
types over the natural numbers are built from the "hereditarily
extensional effective operations" in a very simple way: see [ 8 ]).
Remark
If Pis a realizability tripos on A, the definable structure

AL ,V,3,Y can be given quite simply. For Tirly we take
the top and bottom subobjects of A respectively. For A, V we take

pAga = {a]| Byla)ep AR (a)Eq } |

pvpa = {a I(}?O(a):KAP1 (2)€p) v (B (a)=8 AP, (a)eq) }
where P,,P, are unpairing combinators (for example, PO=Rx.x(K),
P1=lx.x(K(hy.y)), corresponding to the pairing combinator
P =2Axyz.z(x)(y); thus PO(P(a)(b)).-.a, P,(P(a)(b)) =b. We shall
usuelly write pairing and unpairing as <x,y > and (x)o,(x)1 res-
pectively). If f:I——> J,then we can take If:E(I,PA) — E(J,PA)
8o that ¢:I—> PA is sent to

(3If)g:j F—> U {oi | f1 = j }.
If £ is epi we obtain Vf by replacing {_J by () in the above;
however in general, as the definition of /\A suggests, we must
define

(ve)g:d b—= [V { [ £i=3]~pot | i€TI )

where [ fi=j]={a]| fi=j }.

1.6 Further examples

The results on iteration in Chapter 6 will provide us with a
means for combining the examples in 1.4 and 1.5 to obtain new
triposes. For the moment we record an interesting tripos which
can in fact be obtained in this way (see 6.4).

Take a realizability tripos, for definiteness let us say the
effective tripos, and modify it in the following way. Instead of

taking the "propositions™ to be subsets of N, let them be subsets
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together with anequivalence relation. Thus put
L = { RENXN | R ig symmetric and transitive }
R= Set(-,Z)
and, given R,5 in ¥ define
R-gS = { (m,n) | Vx,7 &N (x,5)ER = (n(x),n(y))€S},
Also, if 5S35 define
ARE = { (mn) | WRELVx,yeW(RED » (n(x),n(y)) €R) }.
Then with D= { R€Z| dn(n,n)ER }, we get a Set-tripos. (It
I'-t_ is interersting to ‘no.te fhat ¥ comprises the.objects of”
a cartesian closed category in such a way that R “R ° is
actually the exponential of 3 by R, Given R in I, it restricts
to an equivalence relation on uR = {n|(n,n)eR}: let |R| denote
the quotient uR/R. Then the arrows R ——> § in £ are to be
the elements of |R »g 8|, The pre-order induced by D on g is
just: R [—13 iff there is a map from R to S in ¥, i.e. iff
SR = R 2p 8 has a global section.
The category ¢ has a rather rich structure. It is in fact
locally cartesian closed, regular and contains z natural 1;1umber

object (namely AN)- Contained within it is a copy of the

"hereditarily extensional effective operstions™ (c.f. Chapter 0).

1.7 Combining examples 1.4 and 1.5

We can weaken the notion of combinatory algebra defined in
1.5 by allowing the partial application to be "many-valued".
This has already been suggested by P,iczel in [1], where he
defined the notion of a "D-application" on a complete lattice
(£,<): this is to be a partial binary operation X,y = x(y)
on g, satisfying amongst other things that there are K,S€D (an
upwards closed subset of I ) with

K{x)(y) €x
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and S(x) (y) () < x(2)(y(z)).

Yince ¥ is complete, we get an implication on it by defining
X2y = /\{zlEz(x) Az{x)<y}s

and using -, the inf map /\and D€L, we get a tripos. As Aczel

points out, this construction takes in both the localic triposes

of 1.4 and the realizability triposes of 1.5, For the former,

take % =H with D a filter and application just binary meet, so

that K=8=T for the latter, take ¥ =PA with application

H?
given by:
Ep(q) iff for all a€p and b€ q Ea(b), and in this
case plq)={alb)|a€p and bEq}
(see also 4.9(iv) below). Example 1.6 is also a tripos of this
kind, as is the result of the iteration to be given in 6.5. |
Instead of assuming that (£,<) is a complete lattice, we can
introduce the notion of covers. Thus suppose we have a set A
equipped with a binary relation >, a partial binary operation
a,b ——= a(b) (called application), elements K,5€ A, a sub-
set DEA (of designated constructions) and a map CtA ——>= P(PA)
(assigning covers). We take as axioms the following (where
B> o means (Ea = B> a), so that EaABza — Ef holds):

(I) > pre-orders A;

(II)(i) if ar>a' and bl>Db', then a(b) = a'(b');
(ii) K(a)(b) = a;
(iii) BS(a)(b) and S(a)(b)(c) = ale)(blec));

(III)(i) if a,a'€ D and Ea(a'), then a(a') €D;
(ii) X,S €D;

(IV) (i) if b €8S €C(a), then b > a;

(ii) if 8€C(a) and (V¥s€ S Es(b)), then Ea{b) and {s(b)|ses}1

is in C(a(p)).

|
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Given such a Structure, just as for covers on semilattices
(c.f. [11]), we can define IS A to be a C-ideal iff it is down-

wards closed (a P> b€I => g €I) and closed under covers

(I28€C(a) =» a€I). Let £ be the set of O-ideals. For I,J € &
we define I+ J € 5 just as for realizability triposes:

I-J = {a| Ybe€I Jec€J a(b)=c}.
Similarly for § €I, we define AJ € Z to be
At = {a| VoVIES Jeel alb) =c},
and DE€ ¥ to be
D= {I| Ja€cD(acI)}.

Then using the axioms given above, one may verify that =, A and

D endow & with a tripos structure.

1.8 A non-example

Suppose that H is a Heyting algebra (not necessarily a
complete one). For a set I, let P(I) be the sub-Heyting algebra
of HT comprising those ¢:I—=> H with im(¢) finite. Bince if
¢ €EP(I) and f:J —> I then ¢<f EP(J), r is a Set-indexed
category. Moreover it is not hard to see that it satisfies (a)
and (b) of Definition 1.1, But so long as H is itself infinite,
there can be no generic predicate for P, which is therefore not
a tripos. However in 2.9 we will éee, at least in the case that

H is Boolean, that this defect is more apparent than real.
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2. THE BASIC CONSTRUCTION

As the acronym tripos suggests, from each C-tripos P (C a
finitely complete category), one can construct a topos, which will
be denoted C[P]. This construction is a direct generalisation of
the construction by Higgs and Fourman-Scott [ 6 ] of the topos of
H-valued sets of a locale H.

Having established the internal logic of a tripos, many of
the proofs in this Chapter reduce to straightfoward deductions

which we omit; the reader should refer to [ 9 ] for more details.

2.1 P-interpretation of languages

Suppose we are given a many-sorted first-order language with-
out equality, I (¢.f. [13], for example) and a C-iripos P.
A P-interpretation of I is given by the following data:

(a) for each type (sort) X of I, an object X of C;
(b) for each function symbol £ of L, of signature (Ll yeoeesX 3Y)

say, an arrow f:-lzr Xi———-—-> Y in C;
(¢) for each relation symbol R of I, of signature (§1 ,...,)_{n) say,

an element R of P(Ti_[ Xi).
The obvious inductive definitions then allow us to interpret
terms of L as arrows in C and formulae of IL as elements of the
P(I). Thus given a formula ¢ whose free variables are amongst
X = (%, ,...,zn) , we assign an interpretation

I 1€ PTTX)
(where X, is the type of ]_(_i); for example
[V, (o(x AV (x,)) 3 = oy (P [o(x YIA Py [¥(x,0])

where ni:X1XX2--——> Xi are the projections.

Given a finite sequence I'of formulae of IL, a formula ¢ of
I, and a string of variables E containing the free variables of

I'V{¢p}, we have a semantic entailment notion
)
I‘l=£ ¢
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which holds precisely when .
AL Y@ 1+ [o@ T in PTTX,)

We shall say that ¢(X) is valig for the P-interpretation iff
@ éé ¢ (usually written Py p). A P-model of a theory T in the
languagelb is then a P-interpretation that makes all the axioms of
T valid.

Let rl_i’ P
denote the “labelled: syntactic entailment notion of intuitionistic
logic (a detailed description of which can be found in [ 2 1.
Then we have the following fundamental result, whose proof is by

induction over the definition of Fg s

Soundness Lemma

If I‘F} ¢ holds, then so does I‘ﬁ% ¢, for any P-interpretation
of IL. D

2.2 Objects, relations and functions

By a P-object (X,=) we shall mean a P-model of the theory of
eqality (of partial elements; see [Jo]). Thus X is an object of
¢ and =, a predicate in P(XxX), satisfies

PEx=%"" %x'=X,

a3
I

0

N-

and Pk x=x'Ax'=x"
The predicate By = [x=x] in P(X) is thus the "extent to which x
exists"; we shall usually write [x € X] for Ey.
A relation on P-objects (X1,=p,...,(Xn,=n)is an element R of
-P(T;TXi) which respects the equalities, i.e.
Pk R(;1,...,§n)f\ﬁi\:_{_=i§i - R(E{,-‘-»E;I)-
Say that R is gtrict iff in addition we have
Pk R(xyyeeerx) = /)&i\ggiexi.
A strict relation F on P-objects (X,=),(Y,=) will be called

functional iff it satisfies
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(a) P is single-valued, i.e. Pk F(x,x) A Flx,y) =y =y"s

(b) F is total, i.e. Pk x € X = HyF(x,y}.

Remark _
If F and F' are both functional relations from (X,=) to

(Y,=), to prove that F |-F', we need only show that F |- F',

2.% Theorem

Let P be a C-tripos. There is a category, denoted CLP ],
whose objects are the P-objects (X,=) and whose arrows from (X,=)
to (Y,=) are -} equivalence classes of functional relations from
(X,=) to (Y,=). (If f:(¥X,=)—== (¥,=) is a typical arrow in
CLP ], a choice of functional relation representing £ will
usually be denoted by the corresponding upper--case letter,F.) The
identity arrow on (X,=) is the equivalence class of =, and the
composite of f:(X,=)——> (Y,=) and g:(¥,=)— (2,=) is
represented by [ HTy (F(x,y) A G(I,g)):[[ in P(XxZ).

Moreover C|{P] is a topos.

Remark

If P is a C-indexed category which only satisfies parts
(a) and (b) of Definition 1.1, we can still carry out the
construction of the category CG[{P]. It will bea "logos" in the
sense of [3 ], i.e. a regular category with stable finite
sups, Heyting implication and universal quantification of
subobjects along maps. Note however that we do not claim that
paft (¢) of 1.1 is a necessary condition for C[ P ] to be a

topos: see 2.9.

In the next few paragraphs we prove 2.3 by giving the struc-

ture of C¢[ P] in detail,
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2.4 Finite 1limits in C[P)

(i) Let 1 be the terminal object in C. Then (1,T,) is terminal

(X2’=2)
(1i) Given in C[P], we can consruct the

f,

%
1’.=l1)-—-"-——; (Y ,=)
P
pullback as (x1xx2,=P)—2—> (X,,=5), with

(X

[ a=p2l=0(na= mna)r(na =, najra€P]
in P((X1XX2)X(X1XX2)), where
[a€e?]=103yF(na=y)AF(na=y)]
in'P(X1xX2) and p; is represented by [[gEPA('uig._ =5 li)]] in
P_((X1xx2)xxi)'
(iii) Teking (Y,=) to be the terminal objeot, we see from (ii)
that the product of (X1,=1) and (X2,=2) in C[P] is (X1XX2,=12),

where [ g =10 a'l = [ 2 = nia')A(ra =, n2gj]].

2.5 Monomorphisms, epimorphisms and isomorphisms in C¢[P]

(1) Given a commutative square

(P,=) h >(Y,=)

k g

(X,=) L >(%,=)

in G[P], it is a pullback iff for any (and hence all) represent-

atives F,G¢,H,K of f,g,h,k we have
PE F(x,2z) A 6(y,z) - Jp (H(p,y) AK(p,x)),
and Pk H(p,y) A K(p,x) AH(p',y) AK(p',x) > p=7p'.
(ii) As a corollary of (i), we have that f:(X,=)—> (Z,=) is
mono in C[P] iff

PE F(x,z) AF(x',z) = x = x' (i.e. single-valued in x).
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(iii) Similarly, f is epi in C[P] iff
Pe z € 2 - =xF(x,z) {i.e. total in z).
(iv) Putting (ii) and (iii) together, f is an isomorphism iff

F is a functional relation both from (X,=) to (Z,=) and vice versa.

2.6 Subobjects, powerobjects and partial maps in C[P]

(1) Let (X,=) be a P-object and R a strict relation on (X,=).
Define a new P-object ||R||, by changing the equality on X to

[ x=x'AR(x) J.
Then by 2.5(i), the functional relation [[ R(x)A x=x'] represents
a monomorphism ||R[| >—> (X,=). We shall call such monics

canonical.

Given any monic m:(Y,=) >——> (X,=), we get a strict relation
on (X,=) by defining R = [ EX.M(X.’E) J. Then by 2.5(iii), M
represents an isomorphism (Y,=)— [|R|, and furthermore the

triangle (Y,=)

||Ru/

commutes. Thus every subobject of (X,=) in C[P] may be represented

(X’=)

by a canonical monic.
If R,S are strict relations on (X,=), then
Rby 8 iff [[R]| < [8] in Sub(X,=).
Thus the map
{(RE (X)| R a strict relation for (X,=)}——> Sub(X,=)

R > 2] > ()
is an equivalence of pre-ordered sets. We shall have more to say

about this equivalence in 2.10. For the moment, note that the pull-
vack of |8 >—= (¥,=) along f:(X,=)— (Y,=) is represented

by the canonical monic

| 3y @(x,p) A s() | > (x,=),
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(ii) Given a P-object (X,=), its powerobject P(X,=) has under-
lying object PX (given to us by part (c¢) of Definition 1.1) and
equality
[R=py 81 = [Vx(x€3R © x€48)AREF],
where [ REPX ]| = [Vx,x'(x €4 R ax=x' = x'€RAVx(2E,R~x€X)]
(i.e. R exists to the extent that it is a strict relation for
(X,=) ). Here €y is the membership predicate on X in P(XxFPX).
The membership relation E(X’=) >—> (X,=)xP(X,=) for (X,=)
in C[P] is given by the canonical monic
| R €PX A x €y R || >—> (XxPX,=).
(iii) We shall need (in Chapter 3) to use partial map classifiers
in the topos C[P], which we now consruct explicitly from power-
objects.
Given a partial map between P-objects (X,=) and (Y,=), say
o —L—> (1,=)

m

(X,=)
we can (by 2.6(1i)) assume that the monomorphism m is canonical,
determined by some strict relation R for (X,:)° Hence we can
pick some F in P(XXY) representing f, and F will be a partial

functional relation from (X,=) to (Y,=), i.e. it will be strict

and single-valued (in the sense of 2.2), Conversely every such
relation determines a partial map (X,=)——>(Y¥,=) in C[P] (with
R=[dz®z,y) 1),

Now, given a P-object (X,=), the predicate

[LREK ] = [Vx,x'(264R Ax'€R @ x&4R ax=x') ]
in P{(PX) is a strict relation for P{(X,=) and so determines a
canonical monic, which we denote by

&) >— p(X,=).
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. ~ - o
Then [ x€4R AREX 1 in’P(XxPX) represents a map N:(X,=)—=> (X,=)
which by 2.5(ii) is mono. This is the partial mep classifier for
(X,=). Given a partial functional relation F from (Y,=) to (X,=),

[ yeY A Vx(xegR & F(x,y)) ]
in P(YxPX) represents a map (Y,=)—> (i::) making

IR - S(X,=)

(Y,':) _‘?(X,=

a pullback suare, and is the unique such map.

2.7 Change of designated truth-values and filterpowers

Suppose that ¢ € P(1) is a filter. Recall from the Remark
after 1.4 that changing Dpto $ gives a new C-tripos, Pi' Now
by 2.6(1i) each ¢€§ gives a canonical monic lo | >— 1 in C[P]:
in this way we obtain & filter of subobjects of 1 in CLP], which

~

we shall denote by §. It is not hard to see that C[Pi] is

actually equivalent to the filterpower topos C[P]ﬁ (c.f. 9.3
of [10]). Under this equivalence, the logical functor
C[P]—> C[P]i is identified with the obvious functor from
CLP] to C[Pl] which is just the identity on objects.

2.8 The examples revisited

Let us apply the construction C,P |—— C[P] to the examples

in 1.%,1.4 and 1.5.

1.3(1) E[Suby] is of course equivalent to E (the equivalence
being a very special case of Proposition %.8 below, with
A:0——> E equal to idE).

1.3(11) C¢[P] is equivalent to the "syntactic category" of T as
defined in [3 ] or [ ¥ ]. |

1.4 Just as in [ 6 ], we have E[P] = E[H], the topos of
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B-valued sheaves on H, As in 2.6, filters on H give filter-
powers of E[H]. “

1.5 These give the realizability toposes first devised by

M. Hyland, whose properties are discussed in [ 8 ]. When P is
the effective tripos, we shall denote Set{P] by Eff, the
effective topos. Note that Set itself is (equivalent to) a

realizability topos, namely that given by the degenerate

combinatory algebra @, which has just one element K=S.

2.9 The non-example revisited

The Set-indexed category P.of 1.8 satisfied (a) and (b) but
not (c¢) of Definition 1.1, Thus as in the Remark after Theorem
2.3, we expect Set[P] to be only a logos, However in the case
that P is given by a Boolean algebra B, then Set[P] is actually
a {Boolean) topos. The powerobject of (X,=) in Set[P] is of the
form (PX,=) where PX is the powerset of X, Moreover, calculating
Set[P](1,R) we find it is isomorphic (qua Heyting algebra) to
the Boolean algebra B. Now P.J.Freyd has shown how, starting
from B, one can construct a Boolean topos ® with algebra of truth-
values 1somorphic to B. We may describe ® as follows (c.f.
Exercise 9.11 of [10] and also [17]):

Let ¥ be the filtered poset of finite Boolean subalgebras

of B. Bvery F €¥ is atomic: P22l

where aF = {atoms of F}; also
every inclusion FE€ G in % is induced by a (surjective) map

a@ —> alf', Thus F ——= Sh(F) = et gives a filtered diagranm
of Boolean toposes and logical functors, and ® is defined to be
the colimit of this diagram. Filtered colimits in the category

of (Boolean) toposes and logical functors are created by the

forgetful functor to the category of categories and functors.
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Thus 3(1,2) = colimFe‘s;Sh(F)U , Q) & COlimFG'FF ~B in the category of
Boolean algebras.

Now given FEF, if (X,=) is an F-valued set it is also a
P-object, since F&B and I' is finite, In this way we get a functor
Sh(F) ——> Set[P] which is logical; and as ¥ varies over ¥ this
gives a cone under the diagram Fr——> Sh(F). It is in fact a

colimiting cone, so that Set{P] is eqivalent to 0.

In the definition of P, it is natural to consider limiting
the types to finite sets, i.e. to restrict Pto a Setf—indexed
category with P(I)=Set(I,B) for I an object in Set,, the
category of finite sets and meps. Once again, Setf[P] is a topos.
We may describe a very simple category equivalent to Setf[P] as
follows:

The objects are finite sequences b1,...,bn of elements

of B; the arrows f:(b1,...,bn)————%9 (b{,...,bh) are nxm

matrices (fij) of elements of B such that for each

i=1,...yn fi1""’fim is a partition of b, with fijg b3
each j=1,...,,m,
(In the terminology of Chapter 3, what we have described is the
full subcategory of Setf[P] comprising the subconstant P-objects,

which since B is Boolean is egquivalent to the whole of Setf[P].)

2.10 Internal and external logic

What advantage is it to know that some topos E is actually
G[P] for a C-tripos P? One answer is that then we have a present-
ation of the internal logic of E externally as the logic of P.
For in 2.6 we saw that Sub(X,=) was equivalent to a sub-pre-
ordered set of P(X). Using this equivalence we may identify the
logical'operations on subobjects in E with operations on the

predicates in P. We have already done this in 2.6 for substitution
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along a map. The propositional operations are straightfoward,
although we must remember to keep all relations strict. Thus
(ER Y
IR|fufRt |l = | RVR'],

n

| RAR |,

IRI=RY = | (R(x)"R(x")) A xEX |,
1 = “ Eex_"t
and 0 = | 1y I,

in Sub(X,=). Similarly, given fi(X,=)——> (Y,=) and R a strict
relation for (X,=), we find that
LIRI = | Fx(Flx,y) ARG |,
and VY[R = IVx(F(x,y)~ R(x)) A ye |

b4

ut

in SUb(Y,z).

In general, suppose we have a many-sorted, first-order

languge with equality L, and an interpretation of L in the topos
CLP] in the usual sense of categorical loglc, Thus each type X of
L is interpreted as some P-object (X,=), each function symbol £,
of signature (31,...,§n;l), by a map f:T_T(Xi,=i)———%> (Y,=)
represented by a functional relation F@P(Tj'KiXY) say, and each
relation symbol R, of signature (31,...,§n), by a subobject
~>————€>]_T(Xi,=i) canonically represented by some relation Rfﬂ(T_TXiL
Phese choices determine a P-interpretation of a new language
I* without equality: IL* has the same types as L, relation
symbols =y,Ey (of signatures (X,X) and (X)) for each type X,
relation symbols R for each relatlon symbol R of IL (with the same
signature), and relation symbols E (of signature (£1,...,En,l))
for each function symbol £ (of signature (§1,...,§n;1)) of L.
Now we may translate every L-formula ¢ into a I*-formula ¢¥
as follows:
(y=y)* is (y=y),
AN O LIELR= PR S¢-¢ SPRPRYE SR LY \ S TR
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.’P(t1 - ,tn)*‘ is o gc_1, . ,W;n(P(;} peeesX ) A /& (ti=£i)*5,
(wh_ere t; are terms and P is R, =y or EX)

(pa)* is g¥ A,

(pvi)* 1s g*vir,

(p-Y)* ds ¥ Ux,

(T)* is T,

(L)* s |,

(Jxg)* is Jdx (x€X Ag¥)

and (Vzxo)* is Wx(x€X - ¢*).

Then from the remarks above, by induction on the structure of ¢
we have: |

Proposition

The P-interpretation of ¢*, [ cp"ﬁc_’) T1¢ (T_rXi), is a relation
for T—]'(Xi,=i). If we make it strict by forming
qJ*I\m.l{.ie.}.{.i! 7
then the canonical mon:?.-c | *a /)é\gc_iegi | >~—>TT7 (X4,=4)
determines the same subobject as {[cp(z) B >—'—>_|—T(xi'=i) , the
interpretation of ¢ in C[P] iﬁ the usual categorical sense (see
[13], for example).
[]

In this sense the internal logic of C[P] coincides with the
external logic of P, It is apparent from the above (and no suprise
since we are generalising the notion of H-valued sets) that the
natural logic for interpretations of languages with equality in P
is the "higher-order intuitionistic logic of partially defined

elements" expounded in [{6].
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3, THE "CONSTANT OBJECTS" FUNCIOR

We now wish to investigate the properties of toposes of the
form C[P]. When P is the canonical E-tripos of some internal
locale H (E a topos), we know (2.8) that C[P] is E[H], E-valued
sheaves on H. Hence there is a geometric morphism

E[H] —————> &
with inverse image functor A, assigning constant sheaves, and
direct image functor [", taking global sections; moreover this
E-topos has 1 as an object of generators, i.e. for each sheaf X
in E[H] there is an object I in E and maps

. ——> X

A(I)

presenting X as a subquotient of a constant object. Conversely
every E-topos fi¥-—3 B with this property arises (up to equiv-
alence) from an E-locale in this way (namely F = E[f,Q45]).

How much of this remains true for an arbitrary tripos?
Certainly not all: for example, in Chapter 5 we shall see that
the effective topos is not defined over Set at all, buf rather
contains Set as a subtopos. However we can still define the
analogue of the functor Z& and salvage some of its properties,

as we now proceed to show.

3.1 Definition

Let C be a finitely complete category and P a C-tripos. The

constant P-object on an object X of ¢, denoted Ap(X), has

underlying object X and equality predicate [ x =Ax x] = AN TZ)
where.AX:X———%> X X is the diagonal map in C.

For each map f:X——> 7Y in C, I idx,f:>13{€ P(XXY) represents
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a map Ap(f):Ap(x)—> AP(Y) in C{P]. It is easy to verify that
this defines a functor

Ap:¢ ——> ¢[P].

%.2 Remarks

(1) Note that Ap(f) is also represented by [ fx =ay ¥ 1 in P(XxY).
For, applying the Beck condition for 3 to the pullback

XY or——— = TRY

<idy,f >I Dy

X = ¥

we have -P(fxid)(EIAY)'T;I 4 F 3<id,f>(PE) Ty 4 3<id,f>T,.

(ii) In the case that P is the canonical E-tripos of an E-locale
H, we find that [ x=py2'] = VH{ Ty | 2=x"}, as we should
hope (c.f. 4.8(iii) of [6 ]).

In the localic case /\ is left exact, and this remains true
in general. To prove it we need the following result about the

maps C/X —— P(X), sending f to-Hf(Taomf):

%.3 Lemma

Y
If is a pullback square in C, then we
g _
Z

_h
k
I

HR<—wg

have (I)Ty A (F)Ty 4 F (Ffk)Tp in P(2).
Proof |
AfK)Tp 4 F @) AR (PK) Ty | (3£) Ty, and (Afk)Tp + Q&) Ty

similarly; so (3fk)T, | (3) Ty AQQ-) Ty

Conversely, Ty F (3x) (Ph) Ty ~ (P£)(3£K) T,

4k (P£)(3g)Ty » (P£)(AfK) T, (Beck)

50 @A), F @e)Ty » ATy, (P preserves -

ice. (AT A@ER)Ty F (3T, and 3-+P)

Ul
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3.4 Proposition

The functor AP:C-——> C[P] preserves finite limits.
Proot
(i) Ap preserves the terminal object 1 of C since A1:1-————> %1
is an isomorphism, and hence (3/_\1 )'Ti Ak Tixq-

(ii) To see that AP preserves a pullback sqguare

in €, apply 2.5(i): we need to show that
Pk fx =p; 2 A8Y =gz 2 @ Jp(kp =gy ZAND =5y ¥),
and Pl kp =pyx ABD =gy ¥ AKR'=px EADR'=gyY * R =pp R
which follow by applying Lemma 3.3 to various pullback sguares.

Thus AP preserves the terminal object and pullbacks, and

L]

We shall now reconstuct the tripos P from the topos C[P] via

hence all finite limits.

AP' The following lemma gives a useful formulation of the con-

stant equality on X:

3.5 Lemma
With =,y € P(XxX) as in Definition 3.1, we have that
Pk x =gy &' © VR(xExR ¢ x'€;R).
Proof
Since Ty 4} ‘PAX_[VB.(?.EGXE_*" x'€R) ]|, we have that
(3A) Ty F [VR(xeR & x'eqR) 1.
Conversely, by (¢) of Definition 1.1, we can find &6:X——> PX
in C with Pg zexé(g') © x =5 x'. Then
VE(E%{EQ .}i"\exg) = Eex‘s(ﬁ') © ?.E'ex‘s(l')
E X =pp X' 9 2=y X
= (as [ x' =AX x'] =T}() .

L]

I
i
b
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It follows that every element of P(X) is a relation for Z}PX,
and necessarily strict since [ X =py x J=Ty. So from 2.6(1) we

have that the map
| lly: PCX) ——— Subg[p)(ApX)

R f———=> |IR]| >= ApX

is an equivalence, In fact:

3.6 Proposition

The zbove maps | I make P and Subc[p]°[§8p into equivalent
C-indexed categories.
Proof

Given £:X——=> Y in C and S€ P(Y), recall that the pullback

of 8| > ApY along Apf is IR || >—> ApX where

R = ﬂ'...:.hi(fﬁ =AY ZAS(?_)) ]]
-4 [[:_-I'ér_S(fg_(_) T by Lemma 3.5
4 Pf(8). N
Thus P(X) ‘> Sub(ApX)
Y
Pf (Ap)~!
P(Y) L ;l L > sub(ApY)

commutes up to isomorphism.

]

Remark

Since the first-order structure on P is defined categorically,
it is preserved by equivalences, Thus for example
3R = [ Jem | ana  VIR| ¥ [VER) |

by taking left and right adjoints in the above square.

The topos C[P] looks "generated by 1" over C, in the following
senge. Given a P-object (X,=), by 2.5(iii) the equality predicate

represents an epimorphism from | x€X | to (X,=). So we have



ApX

in G[P]. Of the possible representations of (X,=) as a sub-
quotient of a constant P-object, we can single out one with
particularly good properties. Consider the predicate

Sy = [ Jx(xEXaVE (x'€R * x'= x)) ]
in P(PX) ("R is a singleton for (X,=)"), giving a canonical mono-
morphism | 8y || > Ap(PX). Now [ s (R)A x€4R ] € P(PXxX)
represents a map bX:" Sy | —— (2723 in G[P] (which by 2.5(iii)
is an epimorphism). Classifying the partial map

oy
I Sx | ———=> (X,=)

I

Ap(PD)
A
gives a map BX:ZXP(PX)-——%> (X,=). By 2.6(iii), By is represented
by By = [Vx(54(R)AxE4R © xE4R') ] in P(PX=PX). Note

that since Pk R'€X AxE,R' - 8y(R'), we have P R'€X = By(R',R'")
so that Bx is itself an epimorphism. It has the following

property:

3.7 Lemma
Given any map f:ﬁspY*——é> (X,=) in C[P], there 1s a map

g:Y —= PX in C such that

Ap(e0) —E 55 (63
Ap(g) T f
Ap(Y)
commutes.
Proof

Pick a representative F € P(YXPX) for f. By (c) of Definiton

1,1, we can find g:¥——> PX in C such that
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Pk x€xe(y) < R (F(y,R) A x&4R).

Now (using Lemma 3.5) Bx°Ap(g) is represented by
[Vx(Sy(sy) A xzaly) + xE.R) ]

in P(YxPX). But by the defining property of g and the fact that

F is a functional relation from (Y,=) to (X,=), we have that
PE F(!_:B.) A SX(SX)A Eexg(z) - Eexgs

and Pk F(y,R)A x84R ~ Sy(agy)a x€ye(y),

so that F 1 [Vx(Sy(gy) A x€ze(y) « x€;4R) ] in P(YXPX). It

follows from the Remark after 2.2 that f = gyoAo(g). -

Thus in a weak sense (since the map g in Lemms 3.7 is not
uniquely determined by f), Bx classifies the universal rep-
resentation of (X,=) as a subquotient of a constant P-object,
We shall see that it is exactly this property of toposes equipped
with a left exact functor from C that characterises the ones
that arise from C-triposes.

Suppose then that A:C —> E is a functor into a topos E
that preserves finite limits. In view of Proposition 3.6, the
obvious candidate for a C-tripos is P= SubE°[X°p. Indeed,
since A is left exact (and Suby is a tripos!) Psatisfies parts
(a) and (b) of Definition 1.1. Thus by the Remark after 2.3,
we can constuct the category C{P], and similarly we can still

define the functor Ap:C——= C[P], and it will be left exact.

3.8 Proposition

With E,A and P as above, there is a fully faithful com-

parison functor K from C[P] to E such that

A C[P]
A\f’E
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commutes up to isomorphism. K is an equivalence iff every object
of B is the subquotient of some A (X) (X an object of C).

2roof

(1) Given a P-object (X,=), the equality [ z=x'] >—> A (XxX)
restricts to an equivalence relation on [ x€X T}, with quotient

K(X,=) say; thus

[ x=x']

I x€X ]]-—qx——» K(X,=)

is a coequalizer in E.
Given an arrow -f:(X,=)——> (Y,=) in C[P], any represenative
F >3 A(XX)® AX¥AY factors through [ x€X Jx[ y€Y ] >—=/A( XxY);
take its image along ayxdy:
F>——> [ zex Ix[ ye¥ ]

Axxqy
Kp >——> K(X,=)x X(Y,=)
Then the above square is also a pullback and KF is the graph of
a function K(f£):X(X,=) — K(Y,=) in B which is independent of
the choice of representative ¥ for f.
It is easy to see from the way that identities and compos-
jtes are defined in C[P], that these definitions give a functor
K:G[P] ——=>=E,
(ii) Suppose that ¢ is another functional relation from (X,=)
to (Y,=), with Kp & K, in SubE(K(x,=)xK(Y,=)). Then since the
square above is a pullback, F = G in SubEA(XXY) . Thus K is
faithful.
(iii) To see that K is full, given ©:K(X,=) — X(Y,=) in E,
form the pullback
F >————> [ x€X Ix[ y&Y ] >—> A\ (XxY)
Uxxdy

K(X,=) >Zﬁ,—e>? K(X,=) X K(Y,=)
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Then F represents a map f:(X,=)—= (Y,=) and by construction
K(f) = ©.

(iv) Given an object X of G, since A is left exact the constant
equality on X, [ EFAXE'] >——=>/\ (XxX) is just the diagonal
subobject of AX: hence K(ApX) # AX, and this isomorphism is
natural in X.

(v) Using choice, K will be an equivalence iff it is essentially
surjective, i.e. iff for each object A of E there is some
P-object (X,=) with K(X,=) 2 A, Given such an isomorphism,

since K(X,=) is a subquotient of AX, so is A. Conversely, given

a diagram e
M ————>=> A

AX

in E, the epimorphism e is the coequalizer of some equivalence
relation R ———2M, Then R >—> MxM >—>AXxAX 2 A(XX)
is an equality predicate for X, and by its construction K(X,R)

Ll

is isomorphic to A.

%.,9 Bxample

Bven if the functor K constructed in 3.8 is an equivalence,
so that C[P] is a topos, P need not be a C-tripos. For example
let E=Set[P] with P defined from a Heyting algebra H as in 1.8.
We saw in 2.9 that if H is Boolean then E is a topos (and in
fact /\:Set —= E is logical). By the way E is constructed,
the comparison functor K:Set[SubﬁZ}oP]——-—%> E is an equivalence.
But_SubﬁZ§0p ig equivalent to P (as a Set-indexed category) and
as we noted in 1.8, so long as H is infinite, part (c) of

Definition 1,1 fails for P,
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When l3==SubE°[§°P we may restate (¢) of Definition 1.1 as:
(c") For each object I of C there is an object PI of C and
a map'aI:ZS(PI)———%> (QE)ZXI in E such that
¢(J,PI) > E(AJ,(QE)AI)
f > e;°Af

is a surjection, each object J of C.

Using this formulation, we can now prove the result that was

promised after Lemma 3.7:

%.10 Theorem

Let C be a finitely complete category, E a topos and
A:C——=E a left exact functor. Then the following are
equivalent:

(1) A:¢——= E is equivalent (over ¢) to ZSP:C-——bc[P], for
some C-tripos P;

(i1)(a) for each object A of E, there is some object A of C
and a map BA:[Xﬁ-———€> & in E (X the partial map classifier
of A), such that given any f:AX —> } in E there is
g:X —> & in € with £ = B,cAg; and
(b) +the maps B, are all epimorphisms.

Proof .

Since (ii) holds for Ap:C—>C[P] by Lemma 3.7, we have
that (i) implies (ii).

Conversely suppose (ii) holds. By (ii)(b), the partial map

that B, classifies presents A as a subquotient of [&(ﬁ):

T,
——

pb

<
=

v
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So putting P= SubEQ[XOP we have by Proposition 3.8 that
A:C —> B is equivalent (over C) to Ap:C—> C[P]. By the
remarks after that proposition, to prove that P is actually a
C-tripos, it suffices to verify condition (c").
But given an object I of C, we may take FPI =((QE)ZgﬁA; since
there is a retraction __ |
QAI>——> (QAI)——»QAI ; re=id

(where r is (QAI) :>—-—>Qn——n——>9AI ), and by (ii)(a), we
have that e = Tefpal induces a suraection

¢(J,PI) —— > B(AJ, oAT, > E(A 7,080

g p——> poAg | > (reg)eAg,

each object J of C. []

Note that condition (c") above is satisfied if A has a
right adjoint ['. For then we may take PI = ['(Rj )f-\‘I and

API-—> (Q )AI to be the counit of A+ I at (¥g )AI, then

¢(J,PI) —> E(AJ,(Q, ) AT
f eI°ZSf

is actually a bijection. In particular, this shows that given a
geometric morphism of toposes f:F —> B, SubFa(f*)OP is an
E-tripos. It is not hard to see that E{Subye(f )°P] = E[fu2p],
E-valued sheaves on the internal locale f,Qp; the full and
faithful comparison functor KiE[fyRp]——> F of Proposition 3.8
is in this case the inverse image part of the geometric morphism
F————€>'E[f*QF] which forms half the "hyperconnected-localic"
factorization of £ (see [ 11 ]). When dealing with triposes in
general we lose the localic part, but retain the hyperconnected |
part:
3.11 Proposition

With A3C—> B as in Theorem 3,10, suppose A satisfies
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condition (ii)(a) of that theorem. Then P==SuonZX°p is a
G-tripos and there is a hyperconnected geometric morphism
*
hiE——> C[P] such that h *Ay ¥ A,
B E
B
& *

\ Th h

AP C[P] CLP]

That P is a C-tripos follows as in the proof of Theorem %.10,

c

Proof

and by Proposition 3.8 we have a fully faithful comparison
functor K:G[P]——> E with K-Ap¥ A

Now it is not hard to see that K is left exact and that its
image in E is closed under taking subobjects there. So if we can
show that K has a right adjoint we will have, by 1.5 of [ ],
that it is the inverse image part of a hyperconnected geometric
morphism E—>C[P].

But given A4 in E we have BA:ZX(ﬁ)—~——%>-E,classifying the

partial map EA————E———€> A say. Then the kernel pair of «,

I

A@)
xpr(e) —3 B,, gives an equality predicate
kpr(o) >—> B xE, >—> ARxAR = A(BXR)
on A, making it into a P-object (ﬁ,kpr(a)) = R(A). Furthermore
K(RA) is obtained by coequalizing kpr(a)j::::3 B,, so we get

o
By —> A

N A

K(RA)

Then €4 is universal amongst maps of the form K(X,:)—Qi——%> A,

For given such an f, by (ii)(a) there is Y:X —> A in C with
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ax K(X,=) f
[ xex ]].h_/77 T
l e EA/G/.

pb l
A(X)

TATAM

Then pulling back the graph of A(Y) along [ x€X Ixe, >—> AXxA A
gives a predicate G >—> A (X#4) which represents a map
g:(X,=) ——> RA in C[P], and K(g) is the factorization of f
through E,*
—_—
[x=yx'] S [ x€X ]]———»K('X’:)i
1
J( l K(g)i / A

kpr(a) s By —— K(RA) g}

Since & is mono and K faithful, g is the unique such map.
Thus € is the counit at A of an adjunction K 4 R, as required.

O

%.12 Change of bhase

Suppose that f:F—>E is a geometric morphism of toposes.
Using Proposition 3.11, we can generalise the process which sends
an F-locale A along f, to an B-locale fyA, with the resulting
(hyperconnected) geometric morphism F[A] —> E[f,4].

For let P= F(-,L) be a canonically presented F-tripos. Bince
Ap:F —> F[P] satisfies (1i)(a) of 3.10 and £* has a right
adjoint, Algf* will also satisfy it (for a P-object (Y,=), the
map Apf*(f*EY)AM Ap(zh) B o (v,2) will do the
trick). So SubF[p]o(A.Pf*)Op is an B-tripos: in view of the
natural isomorphisms

SubF[P](APf*X) ¥ p(£7X) = F(f X,L) 2 B(X,£,%)
we can replace it with a canonilcally presented tripos structure

on E(-,f E). We shall write f4P for this tripos.
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Thus we have a hyperconnected geometric morphism

h:F[P]——> E[£,P] such that
*
h

F{P}] €« E[£,P]
y |
Ap Agp
F < £ E

commutes up to isomorphism.

In general [&P:O——-%> ¢[P] will not have a right adjoint
(for example, when P is a realizability tripos), but it may still
nave some "right exactness". In fact, for all the examples of
triposes defined over toposes given in Chapter 1, [XP preserves
epimorphisms. As we shall now see, this is due to the way in

which quantification is defined in them:

3.1% Lemma

Let C be a finitely complete category and P a C-tripos. Given

f1X —— Y in C,
idpy -4 b VEePf iff ddpy 4 F 3fePf iff Ty | (3£)Ty.

The functor le preserves epimorphisms iff these conditions
are satisfied for all epimorphisms f in C.
Proof

By category theory, idpy 4 F VfsPf iff Pf is a fully faith-
ful functor, iff ide 4k 3f+Pf, which trivially implies that
Ty b (3£)T;. But if the latter holds, then given V¥ in P(Y)

YA VYA@RHT - IF(PEYATY) 4 F (3r) (PE)Y.

Now since [ XEAPY ] = Ty and A<idy,f>Ty € P(XxY) represents
Ap(f), we have from 2.5(iii) that Ap(f) is epimorphic iff
T+ (3u2)3<idx,f:>7k 4 (3£)Ty. So Ap preserves epimorphisms
iff Ty - (3£) Ty, for all epi's f.

O
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Recall that if P is an E~tripos, for.E a topos, we may assume
up to equivalence that it is canonically presented, say P=B(-,L).
In 1.2 we said that P had fibre-wise quantification iff there
were maps Vp ,/\P:(QE)Z.——_—> L with

(Ftg)y = Vp{ 9z | fx=y } ana (vip)y = Ap{ ¢x | fz=y },
given maps £:X ——= Y and ¢:X—>1L in E, Note that if this
is the case, the maps /\P,VP are uniquely determined by V and 3.
For let <e ,n>:€z>-—-—>EK(QE)E be the (standard) membership
relation for L in E. By assumption, (Vn)e = /\Pos and {(In)e = \/Pos,
where s:@ —> 0¥ sends p to { e(g) | ng)=p }. Thus s = idgz,

and so /\ = (Vn)e Vp = (3n)e.

3.14 Proposition

Let E be a topos and P an E=tripos. Then we can choose V and
3 so that P has fibre-wise quantification iff AP:E ——> E[P]
preserves epimorphisms.
Proof

From the above remarks, we have to check that the maps
/\P= (Vn)e and \/P= (In)e work.

Given f:X ——= Y and ¢:X ——> ¥ in E, form the image
factorisation of <¢,f> :

> I XY,

<@, >
\ /cp' >

Then there is a pullback square

K r s

f! Pb n

where sy = { ¢x | fx=y } and eer = ¢', Then by the Beck conditions
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Aps
and \/bs

Now suppose that Z&P preserves epimorphisms. Then by Lemma 3,12

(Ps)(Vn)e 4 |- (V£'){Pr)e = (Vf')gp’ } %)
(Ps)(@n)e 4 F (A£")(Pr)e = (F£')g' .J 7

VasPq H + ddpy o b 3gq°Pq,
so from (*)
Ags -+ (V£')(Vq) (Padg' - F (¥f)g,
and Vs 4 F (3£')(3d) (Pa)e' 4} (3f)e.
B0 we may redefine the quantifiers in terms of,AP,V$ as required,
Conversely if P has fibre-wise quantification, given an
epimorphism f:X —>» Y, putting ¢ = Tk in the above, we can
take K=Y, q=f, f'=idy and ¢'=Ty. So from (¥)
30Ty = @D = Vs 4F (329" HF Ty
Thus by Lemma 3.13, [Sppreserves epimorphisms.
Ll
Ag a corollary of Proposition 3.14, assuming the Axiom of

Choice, we can choose gantification fibre-wise in any Set-tripos.
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4. MORPHISMS OVER A FIXED BASE

In this chapter we wish to examine the relationship between
C-indexed functors P ——>R between C-triposes (C a fixed
category with finite limits) and functors between the corres-
ponding toposes C[P]——> C[R]. Once again we have in mind the
localic case, where continuous maps between E-locales (for E a
topos) correspond to geometric morphisms between their assoclated
sheaf toposes. We shall see that, with the correct definitions,

the same remains true of triposes.

Suppose that 1:P——>R is a C-indexed functor between C-
triposes. Given a P-object (X,=}, 1(=) € R(XxX) will be an equality
predicate on X provided each lX:PX————%>1?X preserves finlte
meets, i.e, if 1 is a left-exact C—~indexed functor. Supposing
this to be the case, we get an R-object (X,1(=)), which we shall
denote I(X,=).

However, if 1 preserves T and A but not necessarily 3,
then given a functional relation F € P(XxY) between P-objects
(X,=) and (Y,=), 1(F) €R(XXY) will only be a partial functional
relation (c.f. 2.6(iii)). So how can we extend 1 to maps in
CLP]?

In the localic case wé would use the fact that each H-set
was isomorphic to the underlying H—set_of a sheaf (namely the
sheaf generated by the H-set: c.f. 4.17 of [ 6]) and define 1
on sheaves. In the general case we can still recover enough of
this to do the trick.

Given a P~object (X,=), recall from GChapter3 that Sy € P(PX)
is the predicate

[ Iz(xeX A V' (x'eR+ x'=x)) ].

Now it is easy to see that SX is a strict relation for P(X,=),
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the powerobject of (¥X,=): so it determines a canonical monic,
which we shall denote by

S(X,:) S— P(X,:) .

The diagram I 8y ﬂ-—-EE——+E> (X,=)
AP(PX) )

constructed for Lemma 3.7 then gives us an isomorphism

(X,=) —=—> 8(X,=),
represented by [ Eﬁxﬁ:ﬁsx(ﬂ) ] in P(XxPX). (In the localic
case S(X,=) would be the underlying H-set of the sheaf generated
vy (X,=): see 4.18 of [ 6 ]).

4.1 Definition

Say that a P-object (X,=) is weakly complete iff given any

partial functional relation F from (Y,=) to (X,=), there is

f:Y ———> X in C with

PE dxF(y,x) « Py, fy),

4.2 Proposition

Any P-object is isomorphic to a weakly complete one.
Eroof

From the above, it will suffice to show that, given a
P—object_(X,:), S(X,=) is weakly complete. But this follows from
Lemma 3.7 (or directly as in Proposition 3.3 of [ 9]).

[]

4.% Lemma

Suppose that 1:P ——R is a left exact C-indexed functor
between C-triposes, and that (x,=),(Y,=) are P-objects, the
latter being weakly complete. Then given any functional relation
F from (X,=) to (Y,=), 1(F) is a functional relation from 1(X,=)

to 1(Y,=).
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Proof
From previous remarks, all we need verify is that 1(F) is
total. But since (Y,=) is weakly complete, we can find f:X—>Y
with [ HXF(E,X) T 4+ [ F(x,£fx) J. Then we have
1[ x€ex ]]P = 10 HzF(g,z) ]]P (since F is total)
4k 1[ Fx,fx) Jp
4+ [ (1F) (x,1x) I
4+ [y (1M (x,y) Ig
as required.
Ll
Thus given f:(X,=) —— (Y,=) in C[P], represented by F,
with (Y,=) weakly complete, we can define L(f):1(X,=) —> I(¥,=)
to be represented by 1(F)}., This makes 1 into a left exact
functor on the full subcategory of weakly complete P-objectse
(since, as in the proof of Lemma 4.3, 1 preserves the existential
quantifiers used in constructing composites of maps and finite
limits). Then, using Proposition 4.2, we can extend 1 to a

left exact functor C[P]——> C[R].

4.4 Remark

Since 1I:P(I)—-——> R(I) is natural in I, it follows from
part (e¢) of Definition 1.1 that 1 is determined up to isomorphism
by what it does to the predicate 61 in P(1xP1), In particular
if & is a topos, P= E(-,IZ), R= E(-,A) are canonically pres-
ented E-triposes and 1:P ——>Ris an E-indexed functor, then
1 is determined up to isomorphism by lE(idE) L —>A ¢ given
any ¢:l——>>L we have

1:(p) = 1;(Pg)idy -|I|- (Rp)1s(idy) = (1pidg)eq.
We shall usually just write 1 for 1Z(idz)' and assume lI(cp)= leg.
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4.5 Exsmple

Let E be a topos and P= E(-,L) a canonically presented
E-tripos. There is an E-indexed functor 6:SubE-————>-P, which
if we make SubE canonically presented by replacing it with
E(—,QE), is given by 6= (31:1'1,1913)'17I i, ——> 1L (where truep:!—=Qp
and T,:1 —=> 1 are the respective top elements). Thus if
¢:1 —>R , classifies wtA >——> I, by the Beck condition for
4, we have

bp = (P@)(HtrueE)T] qf— (Ha)(PA)T; = () T,.

From this it easily follows that & is left exact. Furthermore,
identifying E[Suby] with E, we find that 8:B[Sub,] — E[P]

is actually the functor Ap:E —— E[P] constructed in Chapter 3.

We now turn to the analogue of continuous maps between

lcocales:

4.6 Definition

Let C be a finitely complete category and P,R C-triposes.

A geometric morphism f: P — R is given by a pair of C-indexed

*
functors f : R——=>P, f,: P—>R, such that for each object

*
X of G, (f )y is left exact and left adjoint to (£4)xe

Given such a geometric morphism f, since f*,f* are left
exact we get induced left exact functors f*,f* between C[P]
and C[R] defined as above. But note that since f, commutes with
substitution along maps (up to isomorphism), on taking left
adjoints we get that £ preserves 3, It follows that the con-
struction of 5* on the full subcategory of weakly complete

P-objects works on the whole of C[R]: so we can construct f

without recourse to weak completions.
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4.7 Proposition

Let f: P——>R be a geometric morphism of C-triposes. Then
E* and f* constitute a geometric morphism of toposes
f:¢{P} — C[R].
Proof
It suffices to check that ?* is left adjoint to f*. To do
this, we will exhibit a map e(x'_:):%*E*(x,:) — > (X,=) in ¢[P]
which is universal amongst maps ¥*(Y,=)-——%> (X,=) ((¥,=) an
R-object).
By Proposition 4.2, we may assume that (X,=) is weakly complete.
Consider E = f*f*[[ x€X JAl x=x'] in P(XxX). As f*f* I id, E
is a functional relation from %*%*(x,=) to (X,=), and so rep-
resents a map E(X’=):§*?*(X,=)-———%>h(X,:).
Given any g:f'*(Y,=) ——> (X,=), represented by G € P(YxX)
say, consider G = £,GA[ yexY 1. Since id ¢ f*f*, G is a strict,
single-valued relation on (Y,=)xf.(X,=). Moreover since (X,=)
is weakly complete, as in Lemma 4.3 we have
(£ Lyer D+ [ Iz (€0 (g0 1.
Then since id ¢ f*f* we have
[yex ] ¢ T 3x6(y,x) ].
So @ represents a map g:(Y,=) —= F,(X,=) in C[R]. Now
E(X,=)°§té) is represented by
[ 3w (£ (£6(y,x") A yET) A £ 1 (2'€X) A x'=E) T,
which entails G in P(YxX); so by the Remark after 2.2, we have
that £y _y*F (B) = & )
f (X,=) f Te(X,=)
A 4
i _ |
g | f (&) | g
Y,=

E(X,= - (X1=)

(Y,=) F(Y,=)
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It remains to show that g is the unigue such map. Suppose
hi(Y,=)——> f*(x,z) satisfies E(X'z)tv%*(h) = g, and that h
is represented by H € R(Y*X). Then

PE dJx' (f*H(g,z‘) AE L (x'EX) A x'=x) © G(y,x).
Thus £ H G in P(YxX), and hence
H - f.6alyeY] = @

gince H is strict. Therefore h = g, as required.

, *
Note that since f preserves T and 3, we have that

f*(-':ARx) 4+ =£¥X
in P(Xx¥X). Thus

s

¢ 7
V-4

Bp ¢[P]

commutes up to isomorphism, i.e. the inverse image part of the
geometric morphism f:C[P]——> CG[R] constructed above preserves

constant objects. Conversely, we have:

4,8 Theorem

Let P,R be C-triposes and g:C[P]——> C|[R] a geometric
morphism of toposes whose inverse image funcitor preserves
constant objects (up to isomorphism). Then there is a geometric
morphism of triposes f: P——> R unique up to (unique) iso-
morphism such that g is isomorphic to .

Proof

To define f use the equivalences P Subc[P]ozxgp,

R« Subc[R]oAl;’P of Proposition 3.6. Given S in R(X), define
£'8 in P(X) up to isomorphism by requiring that
I £'s | >——= Apx = g |s|—> g*ARX = Apx
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*
in SubG[P]([XPX). This makes f into a left exact C-indexed
functor R——> P. .
Similarly given R in P(X), define £ R in R(X) up to iso-
morphism by requiring that
| 4R || > —> AgX

s

RX

gxlR] >——> guAX= g*g*ARx
be a pullback in C[R], where 1} is the unit of g* 4 gy. Again,
fy is a C-indexed functor. Furthermore
S - f,R in R(X)
itf [8] < | £4R | in Sub(AgX)
irf (g S| > g'AgX & ApX) s IR] in Sub(A,¥)
iff £S5 R in P(X).
So we have a geometric morphism of triposes f:P———>>R.,
To show that T 4is isomorphic to g*, from Proposition 3.8
we have that an R-object (X,=) is presented as the coequalizer

of an equivalence relation
| z=x' || .

L=X
and a map r:(X,=) ——> (Y,=) (represented by R in R(XxY) say)

| zex || ———= (x,=),

is presented as a pullback/image factorisation

I R(x,y) {| > || zex x| ye¥ |

(X,=) ><:Ld,r> > (X,=) % (Y,=).
% _ ‘
Since g preserves the exactness of these diagrams and transforms

[ |
we get g*(X,z) ~ (X,f*(=)) 4 f*(X,=), naturally in (X,=).

Finally f is unigque up to isomorphism, since if g = f ,

into || f*(-) | of the appropriate predicates,

the subobjects

some geometric morphism f': P——=R, then for § in R(X)



- - % ~
frrs) > f AgX 85 ApX

g

| £%s |

commutes, so £'*3 4k £78,

[]

4,9 Examples of geometric morphisms

_Lil Geometric morphisms between the canonical triposes of
locales of course correspond to continuous maps between the
locales themselves.
(i1) TLet A be a combinatory algebra in a topos E, and let
Y:PA —> O classify the subobject { p | Ja(atp) } >—= PA,
| Recalling the description of ﬂh and A, from 1.5, we have
Y(Ty) = trueg,
and Bk Vp,a€PA(YpAYy = Y(pag)).
Similarly, if for ¢,V :I ——> PA we have
EE ( VI(p =, ¥) inhabited),

then El Vi€I(vgi — YYi) .
It follows that if P is a realizability tripos on A with desig-
nated truth-values given in either of the ways (i) or (ii) of
1.5, Y gives a left exact E-indexed functor P-——€»SubE.
Furthermore Y is left adjoint to the functor & of Example 4.5
(since Ye& = id and Ax.x = SKK € PA(id = &Y) € P(1)),

Thus Y and 8 constitute a geometric morphisnnSubE-———ebp
which we shgll call N} (for reasons that will become apparent
in Chapter 7). By Proposition 4.7, ¥ induces a geometric morphism
A:E —> E[P], and we noted in 4.5 that Ne is just Ap.
Similarly Tr = V:BE[P] —= E is just an internal global section

functor and may be described as follows:
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Given a P-object (X,=), V(X,=) is the quotient in E

of { x | [ x€X] inhabited } by the equivalence relation

{ (x,x") | [ x=x'] inhabited }. And if f:(X,=) —> (¥,=)

in BE[P], then ¥£f:Y(X,=) —> ¥(Y,=) has graph

{ (fx),(y)) | F(x,y) inhabited } (where F is any repres-

entative for f and [x] is the equivalence class of x).
Thus the situation for realizability toposes is in some sense
opposite to that for localic toposes, where taking global
sections is right adjoint to the constant-sheaf functor.
{iii) Let P be the effective tripos (defined in 1.5) and R
the tripos described in 1.6; thus P= Set(-,PW ), R= Set(-,ZI)
where £ = { R € NN | R is symmetric and transitive }.

Consider the maps i,d:PN——>>1, ut:l —= PN given by

i{p)} = pxp . (the indiscrete equivalence relation on p)
d(p)

and u(R) = A (R) (the underlying set of the partial
equivalence relation R ')

(pxp)nimA (the discrete equivalence relation on p)

(where A:lN ——> N« is the diagonal map).

It is easily verified that u,i constitute a geometric
morphism i:P ——R, whilst d,u constitute a geometric
morphism r: R —> P ; moreover i r® = ued = idPIN . Thus i,r

induce geometric morphisms of toposes

Bff = Set[P] i 5 Set[R]
id r
Bff = Set[_P]

which make Eff a retract of Set[R] (a retract of a very special

* _*_%
so that ¥ 1 < id).

sort since I'= T
(iv) Let A be a combinatory algebra (in Set) and define a new

one mA ("multi-valued A") from it as follows:



L55]

mA has underlying set D(A) = {p=A| p inhabited} with
application given by .
Ep(q) iff for all x€p, y€q Ex(y),
and in this case p(q) = {x(y)| x€p and y€q}
(thus we may take the K and S combinators for mA to be {K}
and {S} respectively).

Let Ry, Ryp De the realizability triposes on &, mA with
designated truth-values given by the inhabited subsets in each
case. Then there is a geomeitric morphism i:Rﬂ——-—B- Rua given
by

)

and iup

U2 (F= p(n) ),

D(p) = {agp| g inhabited} ( psd ).

*
(It is not hard to see that i and i, define functors and that
* * *
i 4is left exact; furthermore i+iy = idPA’ and if a€i }; “p P

then {a} ei &’mﬂ i*P‘)

4,10 Remarks

(1) ILet C-Trip denote the (bi)category of C-triposes and
geometric morphisms; let C-Top denote the (bi)category whose
objects are pairs (E,A) where E is a topos and A;C—> B
a left exact functor satisfying condition (ii) of Theorem 3.10,
and whose arrows (B,A) ——= (B8',A"') are pairs (g,a) where
g:E —> E' is a geometric morphism and a:gtA'——-q A an
isomorphism. Then |

(PL>R)——> ( (c[P],Ap) ~E=—> (C[R],AR))
gives a (bi)functor C-Trip — G-Top, which by Theorems 3,10
and 4.8 is an equivalence.
(i1) Let P and R be realizability triposes: let us suppose
that they are Set—triposes, given by combinatory algebras A
and B (designated truth-values being the inhabited subsets of

A and B). Let 1:P —>R be a regular Set-indexed functor,
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i.e. one which preserves T, A and 3 (Tor example the inverse
image part of a geometric morphism),

Then 1 is determined up to isomophism by the map A:A ——> PB
sending a€A to 1{a}. For consider E, = {(a,p)| a€pSA} and let
n,0:E, —> PA be n(a,p) =p, ola,p) = {a}; since VP is just
U (c.f. 1.5), we have that Fu(c) =idp, and hence

1 = 12(idp,) = 1(3Fn)o 4 F In(1le) = In(a).
Thus 1 is isomorphic to the map PA ——> PB sending p& A to
L {A(a) | a€p}.
Since 1 preserves }- and T and T, |, {a}, we have
T by (7)) Fy L{a} = Ala),
so that:
(a) for each a€A, A(a)EB is inhabited.

Now let A = {(a,a')]| Ea(a')}, 6:A———> PA be 6(a,a') ={ala')}
and 7 ,ﬂZ:A——a PA ve w,(a,a') = {a}, n,(a,a') ={a'}. Then
y A 71:2 I_A 63 so sinde 1l preserves | and A, we have l1t1 A lﬂ:2 '7.\ 16,
hence 1n, I-A in, = 16 and therefore:
(b) +there is b€ B such that for all a,a'€ A, if Ha(a') then
b€ Ma)*(Ala')~ Alala’))).

Conversely if A:A — PB satisfies (a) and (b), it is not

hard to see that defining 1(p) = |J{A(a)| a€p} we get a
regular Set-indexed functor 1l: P—=R.

There are very many examples of regular functors between
realizability triposes. For example if A is IN and "€ B rep-
resents the numeral n€N in B (see 6.7), then A(n) ={'n"}
satisfies (a) and (b) and so determines a regular functor
P-—>R. Again, with A = N and B = & the "graph" model of the
A-calculus (PN with Scott application) we get a regular functor

1:R —>P by letting

7\(10) = {nl wnEp},
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where W = {m| En(m)} is the recursively enumerable subset of

IV with index n (and we get another by replacing Wn by e, the

n"® Pinite subset of IN).
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5. TOPOLOGIES AND SUB-TRIPOSES

In Chapter 4 we saw how the obvious generalisation of the
notion of "continuous map of locales" to triposes gave results
about geometric morphisms between the induced toposes. In this
chapter we shall do the same for the notion of "nucleus" (or
J-operator) on a locale (c.f, |6 ]) and sheaf subtoposes., We
shall confine ourselves to the case when P is E(-,%), a

canonically presented tripos on a topos E.

Now a sheaf subtopos of E[P] corresponds to a Lawvere-
Tierney topology j: ® —= @ in B[P] (c.f. [10], Chapter 3).
Given such a map, let the subobject of @ it classifies (the
generic j-dense subobject) be canonically represented by a
strict relation J: L —= ¥ for @ =(%, ¢ ). Since J is a relation
we have
(1) P (J(p)Ap—q) » J(g).
oince j is a topology we have
(2) P J(D),

(3) Pk d(Jp) « J(p), and

(4) PE dJ{pAag) < (JpAdag).

From these it follows that

(5) Pe (p—gq) = (Jp~ Jg), and
(6) Pk p = Jp.

In view of (5) J determines (as in Remark 4.4) an E-indexed
functor J: P——>P, whichby (2) and (4) is left exact, by

(6) is inflationary (id < J) and by (3) is idempotent (JJ= J).

Conversely any such functor gives a strict relation on @ in

E[P] whose classifying map is a Lawvere-Tierney topology.
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5.1 Definition

A (Lawvere-Tierney) topology on an E-tripos P is an

inflationary, idempotent left exact B-indexed functor J:P—> P,
From the above, such topologies correspond to sheaf sub-

toposes of H[P].

5.2 Remarks

(i) Such; a topology on P= B(-,I) can be specified by a map
Jd: x — ¥ satisfying just
PE (p = q) = (Jp = Jq),
PE J(T),
and P J(Jp) = J(p),
since (4) and (6) follow from these.
(1i) ILet (E[P])j be the sheaf subtopos corresponding to a
topology J on P, with associated sheaf functor L:E[P]—> (E[P])j.
Applying Theorem 3%.10 to L°AP:E e (E[P])j, we see that

(E[P])J is eqivalent (over E) to E[ PJ], for some canonically

presented E-tripos, PJ. We may describe PJ as follows:
The underlying E-indexed category of P; is just E(-,Z),
but we redefine =+, V and D by letting
idxd P .

== T'x Y >1,

- be Ix%
Py

(Vi) be (v£)(Jg) (so that Ap is P £d

> Py, /\P>z

if P has fibre-wise quantification), and
t——>31 be in Dp iff 1—L-—>3—>73 is in Dp.
Thus IB' is given by o |E"1|/ iff ¢ }E’J'\If , whilst T, A, ],V
and I remain unchanged.
(iii) Let f:P——>R be a geometric morphism between E-triposes,
inducing f:E[P]——2 E[R] as in Proposition 4.7. Then J= f*f*
is a topology on R and the surjection-inclusion factorisation

of T (c.f. 4.14 of [10]) takes the form
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t:E[P] — E[R;]———— E[R].
— *
Thus T is an inclusion iff f f, 2 id, and in this case we shall

say that fiis an inclusion,

5.3 Examples

Lil Topologies on the canonical triposes of Jocales are just

nuclei (or J-operators) on the locales themselves,

(ii) Consider the geometric morphism q:SubE-———-B-P of Example

4.9(ii). We noted there that q*q* = Ye6 = id,, so I} is an

inclusion: the corresponding topology, which we shall denote

by Jy:PA——> PA sends pSA to Jy(p) = {a| p is inhabited}.
Note that when E is Set, J, is 443 so in particular

(Eff)11 o Set., Also note that unless A is the degenerate com-

binatory algebra 0, E is always a proper subtopos of E[P] (i.e.

J. is not the least topology idPA)o

0
(iii) Corresponding to the inclusion i:P «——>R of Example
4.9(iii) is the topology J(R) = {{(m,n)| (n,n)ER and (m,m)€R}.
Thus Bff & Set[R;].

(3v) We noted in 4.9(iv) that i iy =idp,, so that i is an
inclusion Rp=—>R_,. As in (ii), unless A is 0, 4 is a
striect inclusion. For the topology corresponding to 1 sends
§ € D(a) to J(P) = {q:Ui | q is inhabited}; thus if K £ 8
in A, then J§, = Ji2 and §1n §2 = @ where ii: {{X,S}} and
};2= {{X},{5}}, so that m{J}i-Pi | $ € D(a)} is empty, i.e.

J is not isomorphic¢ to the least topology,id.

We are now going to explore the subtoposes of the effective
topos. To do this we require some generalities on generating

topologies in a tripos:

5.4 Lemma (c.f. 3.57 of [10])
Let P= B(-,I) be acsnonically presented E-tripos. If
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my ——> L5, let Jm:E-——_———%Z be given by

J (p) = [Vallmg ~» @) A(p~>a) > a)].
Then
(i) if m satisfies Pk (p = q) = (mp -~ mg), then J is a top-
ology on P; moreover m '_E Jm and Jm is the least such topology;
(ii) 4if (X,=) is a P-object and R:X—=I a strict relation
on (X,=), then the least topology J which makes |R[ >— (X,=)
J-dense is Jm’ where m:Z —>X% is

m(p) = [ JzeX(R(x) » p) ].

Proof |
(i) Straightfoward deductions and use of the Soundness Lemma
of 2.1.
(ii) |R] >— (X,=) is J-dense iff PF Vx€X J(Rx). But a
simple logical deduction shows that if m': £ ——> L satisfies
PE (p =~ q) » (m'p » m'g), then

mppm'  1ff PEVxEX n'(Rx).
Then since by (i) J_ is the least topology J satisfying m | J,

the result follows,

]

Notation: write < for the (pre-)order on topologies (given by
s ) and < for the strict order. We will denote the least and
greatest topologies by J, and Jr respectively; thus J,(p)=p
and Jy (p)=T.

Now let E be Set and P the effective tripos. So far we
know of three distinct topologies on P, namely J, ,Jy and the

topology Jy = =1 of 5.3(ii), and we have J,< 44 < Jy.

5.5 Lemma : _
Let m:PN —> Pl satisty Pk (p = q) = (mp = mq), and J
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be as in 5.4. Then the following are equivalent:
(1) J < &y

(i1) J, < 4,

(i1i) m(L) =1 .

Furthermore we have

(iv) J, <dJ  iff n {mp-p| pEN} is empty,
and for any topology d

(v) aqs<d iff [} {J{n}| neNW} is inhabited.
Proof

d.

; <d_ iff PEYp J (p) iff J (1) inhabited iff m(L)

is inhabited. So we have (i) iff (iil). But (ii) implies that
m<J < 80 m(L) by +2(L) =1, i.e. m(L)=1; conversely

if m(y)=1 , then Jm(J_)=_|_ , 80 Ax.x € Jm(p)*-—,-,(p), all p €N,
ie. I < qq. Thus (i1) iff (iii).

Since J is not isomorphic to J, iff ﬂ {mpp| pEN} is
empty, (iv) is immediate.

For (v), note that 44 < J iff (] {9(p)| p is inhabited} is
inhabited, which certainly implies n {J{n}| nEMW} is
inhabited. Conversely, suppose a € QJ{n} and pEN is
inhabited, say n €p; then e =Ax.x € {n} 2p, so ble) €J{n}*Jp,
where b is any element of (p=q)~(Jp=Jq). Thus ble)(a) € Jp,

p.d
all inhabited p & W,

L]

Remark

M. Hyland has shown that, quite suprisingly D J{n} is
inhabited iff J{0}NJ{1} is. Since (by 5.4(ii)) the latter
is true iff 1+ 1 >—> AP(1+ 1) is J-dense, we see that 44
is the least topology that makes 1+1 >—> Ap(1 +1) dense.
In other words, if we force A :Set — Eff to preserve finite

coproducts, we collapse Eff back down to Set.
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Lemma 5.5 shows that there are no topologies on Eff
strictly between 44 and J;; are there any between J, and -7
It turns out that there are very many, but a little work is

required to exhibit them.

5.6 Proposition

Let (X,=), R, m and J  be as in Lemma 5.4(ii). Suppose
further that for each x in X, R(x) is inhabited., Let * € N
be any index for the empty partial function, and define
m PN —> PN by

n*(p) = {1 { aSN| pAa{*} & a2 nlq)}.
Then m* - - Jm'
Proof
If pSq, then m(p)S m(q); hence
m(n*p) € ﬂ {m(q)| pA{*} €q2mnlq)}
e N{a | paf*}ea2mnla))

*(

V)

p).
Thus PE V_E(m(m*g)“*m*l)) , and certainly PI=VE(_I_> -’m*g). Then

= I

gince Jm(B) |=Pp (m(m*g)-'m*_g) A (p~ m*g) - m'p, we get J. F m .
To show c:)nversely that m® F Jm we must find a number in
IO (mg=a) A (p+q) = (m"q~p).
Now by th;qRecursion Theorem (see 6.6), there is an f in N
such that for all a,b,n €N, f<a,b> 1is defined and satisfies
{ b(n), it (n), = *,
f <a,b>(n) =
a<(n)0,f<a,b>°(n)1 > otherwise.
(where, as in the Remark in 1.5, <.,*>, (°)0 and (.)1 denote
pairing and unpairing, and f<a,b>0(n)1 denotes the composition
of (n)1 with f<a,b>, i.e. 7\m.f<a,b>((n)1m) ).
Given subsets p,q of N and numbers a €m(q)~ g, PE€p—q,
consider the set r = {n Eim*(lp)| f<a,b>(n) €q}. By definition

f<a,b> €r-=q. If n€m(r), say (n)O € [ x€X J and (n)1€R(x)->r



[64]

some x € X, then f<a,b>°(n)1 € R(x)~ g so that m(q) contains
< (n)o,f< a,b>°(n)1> and thus a<(n)0,f< a,b> o(n)1> is in q.
But since R(x) is inhabited and (n)1 ER(x)- r, (n)1 £ %, s0
that by definition of f, £<a,b>{(n) = a<(n)o,f< a,b> °(n)1>
is in g. Since n€m(r) € m(n"p) S n"p, we conclude that n€r.

Thus m(r) S r. But also p A{*} € r (since if n€pA {*},
then certainly n€m p and since (n)y =%, £<a,b> = b(n)y € a).
So by definition of m", m*(p) Er and therefore m*{p) = r.
Thus £<a,b> €m (p)~ q, and therefore

£ € (mg~q)A(p=q) ~ (n"p~q)

all p,q € N.

[]

5.7 Corollary

Bvery topology J on the effective tripos is isomorphic to
the m* for some (X,=) and strict relation R on (X,=).
Proof

Since J is the least topology which inverts the generic
J-dense subobject, J is isomorphic to the Jm for some (X,=)
and R.

If J % J,, then J 4 F m' for (X,=) equal to A(1) and
R:i —> PN corresponding to @ in PN, So we may suppose that
J24d <dp, i.e. (by 5.5) that m(])= |, which means that
if R(x)=| then [ x€X] = L. Then |R| >— (X,=) is
isomoriahic to || R|X0 | >—> (Xo'=lxo) where X, is
(x| [ x€X ] is inhabited}. Now we can apply Proposition 5.6
and get that J 2 J_ 4k m .

[]

5.8 Example

Using Proposition 5.6, we can give a topology J on the

effective tripos such that J, < & < 4.
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N
b

Take (X,=) to be A@W), R: N —= PN to be R(n) = {x| n

and J to be J for m given as in 5.4(ii). Thus

m(p) = [ x€X(Rx » p) ] = {a] InVx=n ((a),lxep)}.
Now by 5.5 ;< Jd < 7 (for m(g)=1 , and Omp*p = | since
< 0,Ax.x> € Dm{x| ng x} whilst Q {x|ng x} = L)

To show that J < -4, since by 5.6 J, b m*, we must show
(5.5(v)) that Ennﬁ{n} = ] . But in fact m%{O}twm*{1} = 1. This
follows since
(a) m preserves N,

(b) < n,*> € m(p), any pEN, and

(c) m'p = m(m*p)L;pA{*}.

From these we get < 0,% > € n*{O\m {1} 2 m{m* {ON\m*{1}), so
that by definition of m" {0}, it is contained in m*{O}\m*{1},
i.e. m {0} and m*{1} are disjoint, as required. Therefore J  is
‘a topology for the effective tripos lying strictly between J;

and 11

[l

In fact using Proposition 5.6, one can show that the lattice
of topologies between J, and -~ 1s extremely rich. As an example

we quote the following:

Theorem (M., Hyland; W. Powell)

Let N >—= ANl be the canonical monic in Eff given by
the predicate n}——> {n} (we shall see in Chapter 6 that N is
actually a natural number object in the topos Eff). Then each

subset A of I determines a subobject K >——> N by restriction:

—

pb

B < =<

|

D> <——<=
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Let JA be the least topology that forces A>——= N to be
decidable. Then the map Aj—— J, induces an embedding of
the V-gsemilattice of Turing Degrees into the Heyting algebra

of topologies on the effective topos.

[
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6. ITERATION

Let us consider iterating the constuction of Chapter 2.
Suppose then that C is a finitely complete category, P a C-
tripos and R a C[P]-tripos. So we have left exact functors

¢ P > ¢lp] B - ¢[pP][R],

and ask whether their composite arises from a C-tripos. By
Theorem %.10 the answer is yes, if we can verify the condition

(ii) of that theorem for zxﬁzsp.

6.1 Lemma

Let C be finitely complete, E,F be toposes, AN:iC ——=E
and ﬁf:jh———€> F left exact functors, and suppose also that
[f preserves epimorphisms. Then if A and [y satisfy condition
(ii) of Theorem 3%.10, so does NeA.
Proof,

Given an object B of F, we have epimorphisms ﬁﬁ:[g(ﬁ)~€i>-ﬁ
in F and ﬁﬁ:[ﬁ(%)——%§> g'in B, classifying partial maps

« — == B o-——"‘)>ﬁ
in F and in E
[ : 'R
A (B) A (B)
(which present B and B' as subobjects of constant objects in a

TR o~ ]
weakly universal way). Then the map 5%:[§Z&(B)————%> B classify-

ing
2 . >> B
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satisfies (ii)(a) for B,

) L R . ~
Now if b: A (B) ——= B classifies

[

—_—> B

A (B)
A'(hg) ],
A (By
then we have pullback squares
. 55 B
pb Y)B
A B) > > N(B) ——> 5
A (ng)
and
— 3 . ——————F 0
v Y
pb
V. .
A > N(8)  pb Ny
¥ pb A(']ﬁ) v
KA B — > N(f) —— %,
A (gg) b

so that Bﬁ::b°[f(ﬂﬁ) and pY =bs/A'(g). Then since g} is epi,

’
so is b; and since Bg is epi and [K preserves epimorphisms, [&(Bﬁ
is also epi. Therefore B} is an epimorphism, and hence (i1) (Do)

is satisfied as well,

1

6.2 Theorem

Let C be a finitely complete category, P a C-tripos and R
a C[PJ-tripos with fibre-wise quantification. Then |?%§§P,is
a C-tripos and [kﬂqﬁ:C-———€> C[R%ﬁsp] is equivalent (over C)

to C—» C¢[P] ——— C[P][R].
P AR
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Proof

By Proposition 3.13, AR preserves epimorphisms; so by
Lemma 6.1 we can apply Theorem 3,10 to AﬁAp and get that
GLPJ{R] is equivalent over C to C[S] for some C-tripos S. But
by Proposition %.6, S is equivalent to SUbC[P][R] (AﬁAP)OP
which is itself equivalent to R‘ASP.

[

6.3 Remark

If E is a topos and P= E(-,Z) and R= E[P](-,(A,=)) are
canonically presented triposes, let us see how to canonically
present the tripos R°A8p.

' A r—

Recall from Lemma 3.7 that we can take B(, _)‘Ap (A) —==(4A,=)

,=
in E{P] to be the classifying map of
b
s, A (A=)

A
Ap(zh)
vhere SA:)IA—--%h 2 ois 8,(R)=[ Jz eAVx'(Bx' « x'= x) J). Now

b

, is a predicate in R([| 8 [): existentially quantifying along

iy (for R) gives us a predicate o =EIRiA(bA) in R(AF;(ZA)). We
shall show that ¢ is a generic predicate for R°A§p (c.f. (")
of 1.2). |

Given chR(ApI), by Lemma %.7 there is a map f:I ——> &

in E such that ¢=B(a )°Apf, i.e, we have
1}

API - ¢ (A|=)
AN /‘5}

id

phb .
A

ApI
o mAp(ZA)-

Then (using the Beck condition on the pullback square) we have
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o Adt) = RIApL)A(1)0y 4 b F(Ed)R{9"y 4 F g’ = ¢
as required. Thus the structure Qn_FPZXSP induces a tripos

structure on E(-,z") and R-AISP n B(-,Z0),

If the only triposes we kﬁew were localic ones, the content
of Theorem 6.2 would be trivial: merely that the composite of
two localic geometric morphisms is again localic. However by
iterating realizability triposes or mixtures of localic and
realizability triposes, Theorem 6.3 enables us to construct new
examples. The rest of this chapter will be concerned with

illustrating this.

6.4 Example

We have already met an example of a "realizability followed
by locale" iteration, namely the tripos R of 1.6. For in 4.9(iii)
we showed that Eff is a retract of Set[R]:
Eff 3 > Set{R]

id r

Eff,
Now every R-object is the subquotient of some constant object
Z&R(I), and [XR(I) =4 f*([XI) (AI the constant object on I in
Eff). So T is a localic geometric morphism and hence Set[R] is
equivalent to the localic extension of Eff by the Eff-locale
E*(QSet[R])' Recalling that R= Set(-,I) where Zis
{R €N | R is symmetric and transitive}, since ry =u pre=
serves 3, r may be calculated directly from u: thus ?*(QSet[R])

is ¥ with the equality
M

3 > 7 —2 > PN .
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6.5 Lxample: realizability and forcing

Our next example (due to M. Hyland, from a suggestion of
P. Aczel) is of a "locale followed by realizability" iteration.
The locale will be Q(IN]N), the open subsets of Baire space (=1NN
with the product topology). (In fact we will really be dealing
with the locale of "formal Baire space" as in [§ ], but since
we shall give the example over Set the distinction is masked
by the Axiom of Choice.)

Tet NN

be the set of finite sequences of numbers,
partially ordered by the relation of extension. Write v ou if
the sequence v extends the sequence u; also write a« 3 u if
the infinite sequence ocGJNIN extends u. Thus the sets

B(u) = {aE.]N]NI o 5 u} (u61N<]N)
form a basis for the topology on IN]N.

If 8§ is a subset of IN<]N

and u is a finite sequence, if
(a) ve€S implies v > u, and

(p) B(w) = | J{B(v)]| vESs},
then we shall say that S covers u; let G(u) be the set of

covers of u.

e realizability part of our example will use recursion
relative to a partial function W ——=1I on the natural num-
bers., We will denote by {n}f(m) the value at m (if defined)
of the partial recursive functional with index n asking values
of f:lN — IN, Note that we can regard each u in II\I<]N as a
partial function and so speak of {n}*(m).

Now in Set[Q(]NN)] = Sh(l\Tm) there is a generic sequence of
natural numbers given by the function g: AN —— AN whose
graph |G| > A @ xN) is canonically represented by
the predicate GiINXN ——9-_.0.(ININ) sending (m,n) to {ala(n)=m},

Let & be the combinatory algebra in Sh(ININ)Wi‘th underlying
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sheaf the natural number object AN and application

n,m ————= {n}8(m). |
If we calculate the predicate N XN XN ———>> Q(IN]N) which
canonically represents the graph of this partial application,
we find that it is |
(1) App®(n,m,k) = U {B(u) | wel Y ang (n}*(m) = k}.
(This is because internally {n}%(m) =k + Julgau A {n}¥(m) = k)
holds, whilst n,m,u —> {n}*(m) is recursive in n,m and
(suitably coded) u, and like N, NY is the constant sheaf
AWy with [ gou J=58(u).)

Let Rbe a realizability tripos based on &, and consider

Set > sn(™) —A—B—-:- Sh(IN]N)[R] ,

to which we can apply Theorem 6.2. Now in view of the natural
isomorphisms

RIAT) = sn@¥)(AT,08Y) = sn@ ) (A (xw) ,0)
& Set (I, 2N D))

= set(I,emNy,

2

we see that Sh(]N[N)[R] arises from the tripos structure in-

duced on Set(-,Q(ININ)[N) by them. However we will replace QGNIN)IN

by another set X for which the tripos structure has an
interesting description.

In fact let & comprise those subsets p of <y 1 gatisfying
(2) for all nEN, u,vEIN<1N; if vu and uf n€p then vi- n_e-p,.
where instead of “(u,n)€ p'we write’u )} né€ p“(ahd read "u forces
n to be in p"),. Define maps i:Q(]NlN)lN——>Z and r: I —> Q(IN]‘N)IN
by putting
(3) 1(9) = {(u,n) |B{u)S ¢(n)} and rp(n) = {a| JuledupAuIF n€p)}
Thus rei= id, and hence the Set-indexed category structure on

Set(-,Z) induced via ry:Set(-,I) ——> Set(—,g(mm)m) makes
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the latter into an equivalence. Write P for the tripos Set(-,L)
(so that Sh(NY)[R] « set[P].
If p,q €%, recalling the definitiom of — for realizability
triposes, we have that (rp —'qu) N —s Q(ININ) sends a€lN +to
[ Vn rp(n) = Imn(app®(a,n,m) Aralm)) J.
Now by (1) and (3) we have
[ dm(app®(a,n,m)A ra(m) ]

m \vim€q n)=m

U[ UB(V)] " [{a}‘"( UB(W)J

U{B() |[vi-{a}’(n)€ a},

since m is unique if it exists and "{a}"(n) = m" enjoys the

property (2) that "vim€ q" does. Thus (u,a) is in p-pq =i(rp grq)
iff for all n€WN
B{u)nrp{n) = U {B(v)| vir {a}'(n)€E q}.
We can rewrite this using the notion of cover defined above:
(4) ula€(p-pq) iff \V’n,vju_(v IFn € p =~ SEC(v) Ve s(u I{a}(n)eq))

Similarly, using the description of A for realizability
triposes in 1.5, we find that Ap:PL —— I can be defined by
(5) uira€Ad iff VnVped Js€C(u) Vves(vir{a}'(n)€ p)

To complete the description of the tripos structure on P we
need to know exactly how the designated truth-values for R were
giveﬁ. If they were given as in (i) of 1.5, then we find that
(6) p€X is in Dp iff Ve I n,u(edu A ulFn€ p).

If however they were given as in (ii) of 1.5 by the subalgebra

of global sections of & comprising the standard numerals (i.e.

An:A1 ——= AN for n€N}, then we find that
(7) pé€ZI is in Dp iff Idn Ve Juladuauine p).
The reader should compare (4), (5), (6) and (7) with the
combination of forcing and realizability introduced by
N.D. Goodman in [7 ]: the tripos P is connected to it in the

same way that the effective tripos is connected to ordinary
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realizability. (In fact in [ 7] the forcing is of a more class-
ical kind, using cofinal covers: we could make P correspond to

it more closely by replacing Q(IN]N) by S?(IN}N)-,-;.)

To complete the round of examples we shall consider a
"reglizability followed by realizability" iteration. In fact we
will demonstrate a nice closure property of the effective topos
construction: if we carry out this construction on a realizability
topos the result of the iteration is another realizability topos.
To do this we need to examine the natural number object and

partial recursive functions in such toposes. The basic tool is:

6.6 Recursion Theorem for combinatory algebras
Let A be a combinatory algeﬁra in a topos L. Then there is
a global element R:1 — A (namely Az.a(a), where « is
Ayx.z(y(y))(x) ) such that
EE Vx,y€A(B(Rx) ARxys x(Rx)y).

[l

For simplicity in what follows we shall assume that A is
a combinatory algebra in Set; however the results generalise
(and we shall need the generalisation later) to any topos E

with natural number object.

6.7 Definition

By a choice of numerals in A we shall mean a map N ——> A4,

denoted n|——"n, for which there are elements s,p,dC A

satisfying for all n€WN and x,y € A that

s(M') = "™n+t” (successor),
p(n+1') = ™' (predecessor),

dxy0" = x
and (definition by numeral cases).
dxym+f = y
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There is always a choice of numerals in A: for example
define ™' inductively by
0T =e = 2Ax.x, nl' = <" ,K > ;
then we may take s = Ax.< x,K> , p=F, and d = Axyz.z(Ke) (Ke)Kxy.
Given a choice of numerals in A, using d,p and R the

recursion combinator of 6.6, we obtain:

6.8 Primitive Recursion for combinatory algebras

There is P in A such that for all x,y€A EP<x,y > and
P<x,y><z, 0> = xz

y<<z,m'>P<x,y><z,n>>

P<x,y > <z, ‘n+1" >
all nEN, z€A.

[]

6.9 Definition

Say that a partial function tp:IN-‘k———\-IN is weakly representable

in & (with given numerals) iff there is an f in A such that for

r -1 -
o(ng,ceeyny) =m = f<n"1,...,'nk>='m.

Then since the initial funetions are weakly representable,

by 6.8 and a similar result for minimalization, we have:

6.10 Proposition

All the partial recursive functions ]Nk — N are weakly
representable in A,
Remark

If we assume that A is not the degenerate algebra 0, then
n|———>"n" will be an injection and we can strengthen 6.10 by

deleting the word "weakly" (where ¢ is representable iff we

have both the implication in 6.9 and its converse).
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Now let Ry be the realizability tripos on B with designated
truth-values the inhabited subsets of PA (as in (i) of 1.5).
The predicate nf—— {n} on IN determines a canonical subobject
of AN in‘Set[RA], which we shall denote N >— AN, Given a

function ¢NE——= I, let ch:mkxm ——3> PA be

9

k!
Then ch is a strict, single-valued relation from Nk to N. Clearly

R(p(z,m) = { <"n'1',...:n ' > | @(K):m }.

if ¢ is weakly representable in A, ch will also be total and so
represent a function N s N in Se‘t[Rﬂ] which we shall denote
by f¢'. In particular the zero and successor functions on N

give maps 0':1 —=> N and "8":N —> N.

6.11 Proposition

|'01 rs1
1 = N = N is a natural number object in Set[REL].
Proof
Given 1 —i—> (X,=) —Ff—2 (X,=) in Set[RA], repres—

ented by *,xp—> F(x) and x,x'}p——> @(x,x') say, define
H:IlN XX —> PA inductively by
H(0,x) = [ 0eNAF() T,
H(n+1,x) = [ (1) ENAx'( H(n,x")AG(x",x)) ]
for ncl, x €X. Using 6.8 we can show that H represents a map

h:N ——> (X,=) in Set[Ry] which makes

commute and that h is the unique such .map, (For example,
to .see that it is single-valued choose a,a',b€A such that for
all x,x',x"€ X _

a € [F(x)AF(x') = x = x' ],

a'€ [ G(x",x)AG(x",x") = x =4 x']
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and b € [[X=XX'AG(X,X") - G(x',x") 1.
Then using 6.8 obtain ¢ € A such that
{ c<y,z> = a<(3,r)1 ,(Z)1> if ¥, =0,
e<y,z> = a'< b<ec <(y1)0,(z1)0>,(y1)1 >, (zy ) > if y0="n+1’,

Hence c€ [ H(n,x)A H(n,x') = x=,xx‘], all n€N, x€X.)

[]

6.12 Proposition

The formula (of Heyting Arithmetic) expressing partial
recursive application of numbers, {n}(m)= k, may be interpreted
in Set[Rﬁ_] vy || Appp | >——=> NXNXN where Appﬂ:]N A2 ——> PA
is the predicate

Appm(n,m,k) = {<W,x>| {n}{m)=k}.
Proof

First note that if cp'.lNk —— 1 is primitive recursive, then

the corresponding primitive recursive function in Set[Rm] is

precisely the map ‘¢ L

—= N defined before 6.11 (this
follows from the definition in 6.11 of N and the initial functions,
by induction on ‘the description of ¢).

Now {n}(m) =k may be taken to be Jy (Mn,m,y)=1A0(y) =k)
where Kleene's T and U are primitive recursive, This is inter-
preted in Set[Rﬂ] by

[ dyeN(Ryp(n,m,y,1) ARyly,k) )i
which equals

{ <%,n,n,y 1y, k> | T(n,m,y)=1 and U(y)=k }
and this is isomorphic to the given predicate Appﬁ, since

n,mp————-> the least y such that T™{n,m,y) =1

is partial recursive and hence by Proposition 6.10 is weakly

representable,

[
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Thus in Set[Rm] we have a combinatory algebra, namely N with
partial recursive application: let P be the realizability tripos
on this algebra, with designated truth-values given (as in (i)
of 1.5) by the inhabited elements of PN. The hypotheses of

Theorem 6.2 apply to

Set —————> Set[R,] A > Set[Ry 1LP],
Ry P
and so we have that P.A;;). is a Set-tripos with Set[P"Algg]
equivalent to Set[RlA][P].
Now since

P(Ag, T

iR

Set[R&](ARAI X N,
{p ERG(IAN) | ¢ is a strict relation for AIxN},

1

we may replace P'AI%AP by P/, where

P(I) = {p:IxlN—> PA| Ry Vi,n(p(i,n)= n€N) }
(and for f:I——>J, P'f(go) =@e(fxid) ). Let us calculate the
pre-order on each P(I).

Recaliing the definition of the realizability implication
~p:PN % PN ——> PN from 1.5, we find that for ¢, V€ P{I), ¢ -p¥
is the predicate .

(1) (¢ -*F;q’)(i,n) =[ne€la Vm(cp(i,m) + Jk (App(n,m,k) A Y(i,k))) ]

with App defined as in Proposition 6.12, Then ¢ |'3£ Vv oiff

17 r'?; 9= ¥ iff [ Ja(n€NAVi(e~ ¥)(i,n)) ] is inhabited;

therefore

(2) o IP; Y iff there are n€N,a€ A with a € (¢ -+P:‘l|1 Xi,n), all i€ 1T,
We can now show that P! is actually equivalent to a

realizability tripos:

6.13 Proposition

(1) There is a combinatory algebra, el , with underlying set
N ®x A and application given by

(n,a)(n',a') = (n(n"),a<W",a'>),
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(ii) If R, p denotes the realizability tripos on e A with
designated truth~values the inhabited subsets of XA, then
Re p ™ P’ as Set-triposes. Thus Set[R&][P] o Set[ReJA] .
EProof
(i) By Proposition 6.10 we can find u € A which weakly
represents partial recursive application on W, i.e.
n(m)=%k = u<n,m>="K.
Then writing y=z for <u<(y)0,(z)0> , (y),| z> , we can take the
K and S combinators for el to be
(K,Ax.K(x),) and (8, Axyz.(x) z(y*z)).
(i1) Given ¢:I-——> P(Ix4A), let lp:IXIN —— PA be
1p(i,n) = {<M"a> | (n,a)€oq(i)}.
Since the unpairing combinator Eyis in [ 1¢{i,n) 2, né€N 1
all 1€ I,n€N, we have lg eP(1),

If ¢'€ ReE&(I) as well, and ¢ fr ¢', then there are n€lN,a€ A
with (n,a) € ¢i “,p9'i, all i€I. Then fron the description (1)
of ~p’ given above, we have |

Ax, <<, (x)o yu< "n",(x)0>>,<"n"',a> x> €(1ly ~»1le')(i,n)
all i €I. Hence by (2) 1lo 1 lp'. Since the assignment
g —> 1¢ is clearly natural in I, we therefore have a Set-
indexed functor 1:R, z—> P,

Furthermore 1 is full, For if 1l¢ bg le', then by (1) and (2)

there are n€lN and a€ A with
a € {M}a Q (J_cp(i,m) -+ |J (app(n,m,k) Alq)'(i,k)))
all i €I, Hence (a)0= ' and givelg (m,b) € (i) we have
(a)1<"m-', b> € App(n,m,k) Ale'(i,k),
some kK EN: so n(m) =k and ((a).|<"m",b>)1= <™(n)', ¢ > where
(n(m),e) € ¢*(i). Therefore (n,?\b.(((a)1b)1 )1 )€ i oA ',
all 1€1I, and hence ¢ F; o',
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Given ¥ €P(I), define r¥:I ——= P(xA) by
rf (i) = {(n,a)| a€¥(i,n)}.
Now belr¥(i,n) iff there is a€ A with b=<W,a>
and (n,a)€r¥ (i),
1ff there is a €A with b=<%,a >
and a €Y(i,n).
So P, € [Vi,n(ir¥(i,n) - ¥(i,n) J, and choosing an £ in
IVi,n( ¥(i,n) » n€N) ], we have Aa.< f(a),a> in
[Vi,n( ¥(i,n} » 1r¥(i,n}]. Therefore 1r¥4 ¥ in RA(IXIN),
so they determine the same map ARLI‘L(I) ——> PN in Set{R,] and
hence 1rY 4 F ¥ in P(I).
It follows that l:RdN————e>lf is an equivalence of Set-
indexed categories.

L]

6.14 Remark

The results of 6.11,6.12 and 6.13 apply to realizability
triposes whose designated truth-values are given as in (i) of
1.5. Let us note what happens if they are given as in (ii) of
1.5:

Suppose that A is a combinatory algebra in a topos E with

natural number object 1 0O NE 58 NE’ and that we
have a choice of numerals NE — ' > A (and s,p,d:l—> A)

for A. Let A be a subalgebra of E(1,A), and Rbe the realizabif‘l.ity

tripos on A with designated truth-values given as in (ii) of |

1.5 by A. If we suppose that o', 5,p,d €A (which will be the |

case if they are defined as after 6.7), then every partial

recursive function is weakly represented by an element of A.

Then defining N >——> ARNE in E[R] as above, the equivalent_s?

of Propositions 6.11 and 6.12 go through for this case.
Let P denote the realizability E|R]-tripos on N with

designated truth-values now given as in (ii) of 1.5 by the
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subalgebra of standard numerals N-= {SnO:‘i—-—i;‘- N | newW }

(which by 5.3(ii), happen to be all the global sections of N

in E[R]). Then consider E[R]}[P]. The proof of 6.13(1) shows

that if we define eA in E as before, it is a combinatory algebra
with NXA as a subalgebra. Then just as in 6.13(ii) we can prove:

Proposition

The E-tripos P°A§p is equivalent to the realizability
tripos R’ on e with designated truth-values given (as in (ii)
of 1.5) by the subalgbra NXA of E(1,eA) In particular

E[R][P] * E[R'], a realizability topos.

]
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7. THUE BEFFECTIVE TOPOS CONSTRUCTION

In this final chapter we will use the results of the previous
chapters to study the construction which sends a topos #, with
natural number object, to the effective topos eE defined from it.
We obtain two principal results:

Firstly we show that EF———= eE is the object part of a
functor which is left adjoint to the inclusion of a subcategory
into a certain category that will be defined presently. This gives
a categorical characterisation of the effective topos construction,
i.e. the topos eE (or more precisely the functor /\:E—> eB
defined in Chapter 3) has a particular "universal property'.

Secondly we show that the extent to which the construction
E—> eE fails to be idempotent is measured by a monad. The
algebras for %his monad are identified for the special case of

realizability toposes.,.

To be able to state these results, we first need to examine
from the point of view of combinatory algebras, the effect of
" applying a functor to a natural number object (NNQO) in a topos

B, We will denote this NNO by

0 ,
1 > I "

7.1 Definitions

Recall that if L:E—> P is a functor between toposes (with
NNO), it is called regular if it preserves finite limits and
image factorizations and exact if further it preserves all finite
colimits. Reg (respectively Exact) will denote the (bi)category

of toposes with NNO and regular {(respectively exact) functors
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between them., It is a result of P.J.Freyd that a regular functor

Li:E——> F is exact iff it preserves the NNO,

7.2 The comparison morphism A

Suppose that Li:E——=> F is g functor between toposes which
preserves finite limits. Then there is a comparison morphism

Ap il ——> L(NE) in F, namely the unique morphism making

0 - s .

iR

Ay, g,

] LN, LN
LU)W (NE)——L-(—SS—>’ (E)

commute. Furthermore, if f:Nk—%- N is a primitive recursive

function, then (by induction on the description of f) we have

N
| |7\
\'

(L) —— > 1N
Lf

that

%
\

commutes,
N, with partial recursive application n,m > {n}(m) is
a combinatory algebra in E; let Appyp >—= (NE)3 be the
interpretation of the formuls {n}(m)=k in E. Since this
formula may be faken to be HX(T(Q,E,X)ﬂ AU(y)=k) with T and
U primitive recursive, it follows from the above remark that
Appp factors through L(AppE) in F:
Appp >—> (NF)3
i
; %
v

L(Appy )>—————(IN;) .
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Now L(NE) with application given by L(Appg) is a combinatory

algebra in Ft we will denote this application by

n',n' ———> {o'}¥n')

(n',m" variables of type L(NE)). With this notation, the above

commutative square gives us

(1.3) PEV n,m,k e N({n} )=k » A} Ow)=k) .

We shall be concerned with the following strengthening of this
property of A

[.4 Definition

Say that IsE —> F conserves (partisl recursive) application

iff in F we have
Va,meN  A({n}(w)={An} (Am).
(Recall the meaning of = and B from 1.5.) In view of (7.3),

this is equivalent to saying that
Vaome¥ B{An}'(w) - E{n}(n)
holds in F. Since E{n}{m) can be interpreted in E by
g _
Appg (1) Xl ——>(1y) 2,
we see that L conserves application iff

w
Appp >—> (NF)ZxNF 1 (NF)2

(7.5) "
L( Appg ) >——3>(I;) 2XLNE -—n1——>(L1\1'E) e

is a pullback sqguare in F,

1.6 Lemma
Suppose that LiE——> F conserves application.

o
(i) If n€N ang Wn-———g—%> N denotes the n'P partial recursive

!
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function (i.e. the interpretation of {n}(m)=k ), then there is

a pullback sguare

n ¥
A
L(Wn)> >L(NE)
in P and
¢4
n .
Wn 5 NF
A
L(W ) > L{N,)
n B
L(an)
commutes,

(1i) The comparison morphism ANy —> L(¥y) is a monomorphism.

Proof

(i) Since L(1——n—% NE) =12 > NFL> L'(NE), the result

follows by substituting n for n in 7.4.
(1i) TLet p:NxN EN be a primitive recursive pairing map with
primitive recursive inverse <py,p, :N=NxN, Then if in (1) we
take n€EIlN with

B{n}(m) © pom=p,m,
then W >—> N=NxN is just the diagonal subobject /\: hence

Sy A b
Ng > > N X N
A AXA
L{Np) > > L(N) X L(Ny,)

is a pullback, i.e. A is mono.
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7.7 Lemme
Suppose LsE —— F and KiF—> @ preserve finite limits.

Then
(i) 4if L and X conserve application so does KoL
(ii) 4if L and X°L conserve application so does K;
(1ii) if L is exact, it conserves application.
Proof
These follow immediately from (7.5) and the fact that
AKL:NG-———%> KL(NE) is equal to

A K(A)
Ny ———— K(,) ———> K(1) .

]

We shall denote by Rca the (non-full) subcategory of Reg
whose morphisms are those regular functors which also conserve
application. The next proposition shows that we alredy have a

stock of such functors:

7.8 Proposition

Let E be a topos with NNO, A a combinatory algebra in E
and R a realizability tripos on A (with designated truth-values
given in either of the ways (i) or (ii)} of 1.5). Then the
"eonstant-objects" functor ZXR:E-————%blE[R] is a morphism
in Rca,

Proof

By 3.4 and 3.14, ZSR is regular.

Given a choice of numerals in & (c.f. 6.7), by the analogue
of Proposition 6.1t for R, the comparison morphism A:N—>A (Ny)
is a monomorphism with the corresponding suvbobject of [}(NE)
being canonically represented by the predicate pb—> {m'}

in R(NE). Oimilarly by 6.12, partial recursive application in
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B[R] can be interpreted by HAPPA“ > = N7, where

Appp (n,m,k) = (o, kD] {n}(m)-k}

Hence the formula E{n}(m) is interpreted in E[R] by HEA" > §°

where

By (aom) = KEEYE! () () =k}

Now since (by 6.10) n,m —— {n}(m) is weakly representable
in A, we have

By(o,m) 4+ {aeh| Je{n}(m=k}Aa{ <d, 0y },
i.e. By Ak SEp Al nENAmEN ]| in R(NxN),
where By >—> NyxNp is the 1nterpretatlonﬂln E of E{n}(m)
Thus we have a pullback square

1E] > 3> N2 N

fomg | > AI)

in B{R]. But since N'>;——f>-[1(N ) is A and Iy >~—%>(NE)2 is

m
isomorphic to App, >—=(N ) X N —————%a(N )2, we have a pull-
E B B

back square as in (7.5), as required.

O

7.9 Definition

As a particular instance of Proposition 7.8 we may take A
to be NE and R o have designated truth-values given (as in
(ii) of 1.5) by the subalgebra of standard numerals
{s"0:1 ——> NEInGIN}. Hencefoward we will denote this E-tripos
by RE; the topos E[RE] will be denoted eE and called the

(external) effective topos on E.(The internal effective topos

on E, obtained by taking designated truth-values to be inhabited
elements of PNp is thus a filter-power of eB.) Thus by 7.8,

the "constant-objects" functor Az:E ——> eE is a morphism in Rea.
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7.10 Lemma
Any exact functor LieE——> F is determined up to iso-

morphism by the composite

g—8 o gL

> P,
Proof

Just as in the proof of Theorem 4.8, since I preserves
finite limits and colimits, it is determined by what it does to
constant objects and subobjects of them. But such a subobject
||| >—= A(I) (vhere ¢:I ——> PN in BE) is obtained by

pulling back from the generic such:

foll > = A(I)
pb Ao
| idpy > > A (BN).

So I is determined by the restriction 1, */\ and by what it does
to || ddgy [| >—= A(PN).

Now if < m,n'™:Ey — N‘XPNEis the membership relation
on N, in E, regarding the singleton map {o}:NE-———Eh PNy as a
‘predicate in RE(NE) we have idpy = EI'n'RB'n({-}) in RE(PNE) (sincei.
(3 ({+}em))p = U{{ng}]n'g_;g } = |J {{n}In€p} = p). Thus in

|
i idpy | >——= A (PN;) is the image along An' of the pull-

Il

pack of f| {«} | >—= A(N},) along A

/ " ldPN "\ i
A (PNg)
\ Aley) _’/A,I'/-r B i

pb Am

i} ll\
| Ang).
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Hence T is determined by what it does to [ {-}]>—= A (Ny)
and by LA,
But just as in Proposition 6.11, we have [{-}] = N, the

natural number object in ek and

JANY _ As _
AQ) ——— Ay) ——> Alg)
PR P IS

commutes. But L preserves the natural number object and hence
up to isomorphism L(N >-—> ANg) must be the comparison
morphism K:NF————%9-1¢§(NE). Thus L is determined by LA as
required.

U

7,11 Theorem

If ItE——> F is a regular functor which conserves
application, then there is an exact functor ILieE——= F such
that

[SE ek

/

commutes up to isomorphism, and up to (unigue) isomorphism L is

B L

the unique morphism with this property. Thus Ef——3 ell extends
to a (pseudo-)functor reflecting Rca into Exact.
Proof

Pirst note that if such an L exists, then by Lemma 7.5 it
is unique up to isomorphism. Furthermore, to show that L does

exist we just reverse the proof of that lemma: “thus. " we
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first define L on subconstant objects in the only possible way
and then use the presentation of objects and maps in el in terms
of these subconstant objects to extend T, to the whole of eE. In
other words, L is the composite

el = B[Rg] —3—3> E[SubyeLoP] — X s,

where l:RE ———%B-SubE°IOP ig an B-indexed functor and the

comparison functor K was defined in 3.8. This guarantees that

LuAE L. Of course SUbF'LOP need not be a tripos, but if we can
show that 1 preserves 1,Aand 3, then the induced functor 1 will
preserve finite limits and epimorphisms; since K always preserves
these, we will thus have that T =Kol is regular. Then to
show that T is actually exact, we can just check that it
preserves the NNO of eE,

For an object I of E we have

Rp(I)= B(I,PNp) 2 Suby (N % I).
We will simplify the description of l:Ry——> Subg=L°? by
using these bijections to identify predicates in RE(I) with
subobjects of NE><I. Under this identification the pre-order
beéomes
(7.12) R FpR' iff there is n€Nwith

Bk Vo,i(R(m,1) = Jk({n}(m)=k AR'(k,1)) ), and in

this case say that n_demonstrates that R p R'.

Now given R >—=> NxI in &, define 1I(R) >—=> 11 in F
as the image of a pullback:

2 Tk
LR LNE)(LI

pb Axid

> N, X LI

\ 1(R) /
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Thus in F we have
(M) 'lIR(i-.') = 3 n NF IR(An,i'),
and evidently this definition makes 11 natural in I.

We check:
(i) lI is order-preserving. For suppose that n€ll demonstrates
that R -y R'. Applying L to (7.12) and substituting along
AxidsN x LI —> LN XLI we thus have:

IR(Mm,1') ~ J k'eIN({In} (Am)=k' A IR' (k',1')).

0 ~ N ?\'—> LN and L conserves

Now since L{1 —2—=N) = 1
application, we also have:
{Ln}"(Am)=k' » 3 kel {n}(m)=k Mk’
Combining these two gives that in I
3 meNIR(Am,i') » 9 keNIR'(Ak,i'),
i.e. that lIR < lIR' as subobjects of LI.
(ii) 1{ preserves T. Por the top element of RE(I) is just the
greatest subobject of Ny XI, and by (7.13), 1; sends this to
the corresponding subobject of LI.
(iid) 1; preserves A. For the meet of R(p,i) and R'(n,i) in
R;(1) is R(pyn,i) AR'(pyn,i), where p,sN—> N (i=1,2) are
primitive recursive unpairing functions. Thus by 7.2 and (7.13)
this meet is sent by lI to
JkeN(IR(A(pgn) ,4') A IR (M(pyn) ,4") ),
which using the pairing bijection p:N XN 2 N inverse to <P0’p1>
is the same as
JiceN IR(AK, 1) A Imel IR' (m,d'),
which in turn is 1IRAlIR'.
(iv) 1; preserves I, Given f:I——> J in E and R(p,1i) in
RE(I), IF(R) is 3;_51(fi._=i AR(n,i)). Since L is regular we

have in F that



[92]

lI(EIfR)(i") o dneN Ji'eLI(If(L1') = j' A IR(An,i') )
@ Ji'%eLI (LE(L") =4" A 1R(m,L1") ).
Thus lI(ElfR)E HLf(llR) as subobjects of LJ,
We have thus shown that 1 and hence L = K¢l are regular.
It remains to prove that L preserves the NNO of eB. Bub the
latber is given as a subconstant object [[{-}yl >—= Aylg.
So T sends it to {| 1y{+}yll >—> INg. Since {«}sNy—= Bl

corresponds to the diagonal subobject AN:NE — NEXNE,

we have
. Dy
L, > > LN XL |
pb Axid
<id ,A> s
Ny > > Np X LNy, > LN

i.e, 1y{+}y is the image of AslNp —> LNg. But by Lemma 7.6(ii)

A is a monomorphism: hence L preserves the NNO.

With Theorem 7.11 we thus have the promised_characterisa‘bion
of the effective topos construction: Al —=> ¢E is universal
amongst regular functors from E which "conserve application'.

In particular any such functor LiE —= F can be extended
to a functor eL:eE —= eF (which is actually exact).

Now by 4.9(ii), /A\:E —=> eE is the direct image part of
a geometric inclusion r)E:E L > ghE, So given a geometric
morphism f:¥ —>> &, when can we extend it to a geometric
morphism efsef ——= el making

ef

el
g M

F £ > R
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commute vp to isomorphism? Note that since (ef)*:eE-———%> el

would be exact, by Lemma 7.10 such an ef is determined by the
restriction (ef)?(qE)*:E————%a el', Indeed, since £* is exact

Z}F°f*:E————%> eF is in Rca, and so by Theorem 7.11 there is

a unique functor (ef)*:eE—~——€> el making

ell

B (e£)”
AN v

el

commute. However we need some further assumption about £ to

ensure that this functor has a right adjoint:

7,14 Definition

Say that a geometric morphism f:F —= E between toposes

with NNO conserveg application iff its direct image part

foi:F—> E does so {(c.f. 7.4). (By 7.7(iii), its inverse
image part f*, being exact, always conserves application.)
This condition on fy can be stated equivalently as a

condition on its left adjoint f*. For under the isomorphism
A:Np = f*(NE), the comparison morphism R:NE————€> Ty (V) is
identified with the unit of the adjunction f*4 fy, at N,
MgV ——> f*f*N. Hence f eonserves application iff

Appg > > N2 X N s

1 | J

* . * * T
£4f Appy >—> Tuf Nxfyf N — > £, £ N2

is a pullback square in B; equivalently, for any pair of
. * *
olements of N in E at stage I, a,b:I —— %N, if k B{f a}(f b)

at stage f*I in F, then already k E{a}(b) at stage I in E.
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7.15 Proposition

Any f:F——> E which conserves application extends to a

geometric morphism ef:eF ——> ek making

efl

eF — 25— B
| N
M N
f

¥ - — i
commute up to isomorphism.--
Proof

As we saw before 7.14, we already have a candidate for
(ef)*, given to us by Theorem 7.11. We can simplify its
description and show 1t has a right adjoint by proceeding
ag follows:

Recall from 3.12 that there is a hyperconnected geometric
morphism h:eF::F[RF]-———é> E[f*RF]. We will define a geometric
moyphism g:fyRp —> RE of B-triposes, which by Proposition
4.7 induces a geometric morphism @:ELf Rzl ——> E[RE]==eE:'then.
ef will be the composite goh., !

Just as in the proof of T.11, we identify predicates in
R (I) with subobjects R >—— NxI in E. Similarly since

£,Rp(I) = B(I,2,PN) = Subp{N x £ 1),
we can identify predicates in £4Rp(I) with subobjects

* .
S > Nxf I in F. The pre-order on these predicates 1is

just as in (7.12).

Then define @ 'Ry (I)-———€> f*RL(I) by sending R >——> NLXI |
to £*R >—> £*(NgXI) XNX£ I; and define gy:LyRp(I)——> Ry(l) |
by sending S >h—%9-NFxf Iep (N XI) to the pullback of f£,8 along‘

the unit of the adjunction £* 4 fx at NEXI.
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i >—————> £, £ (NpxI)

(|c16) pb y)NxI
pu(8) >———> N, XI,
80 that in E we have
vxS(n,1) + £,80n,nd).
I'rom these definitions we get:
*
(1) ¢ preserves +,T and A. This follows directly from the
*
fact that f is an exact functor which thus in particular
preserves the NNO,
*
(11) ¢ 048 Fr 8, all 8 in f*RF(I). For, transposing the square

‘ *
in (7.16) across the adjunction f <+ f, gives that
*
—
S f (NExI)
id

£ pyS > £ (NxI)

commutes. Hence ¢ 9,3< S as subobjects of NFxf*I, and thus
(éh indéx for) the identity partial recuréive function demon-—
strates that ¢ guS b S.
(iii) If Q*R ty S then R f-; P42« The argument is similar to
that in part (i) of the proof of Theorem 7.,11. Thus if n€W
demonstrates that Q*R 8, i.e. we have

£*R(m,4) = JeeN({n}(m)=k A 3(k,4) )
in F, then applying f, and substituting along g gives

£42 RmL) = FE'ef,N({nn}(mm)=k' A £48(k',ni) )
in E. But since f conserves application

{nu}pm)=k' - JkeN({n}(m)=k A nk=k');
and since 1) is natural

R(m,1) = L4 Rlym,ni).
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Combining these gives
R(m,1) - FkeW({n}(m=k A fS(nk,ni) ),
so that n demonstrates that R P
In view of (i) to (1ii), we have that @*,@* constitute
a geometric morphism of triposes ¢:f*RF-+——€>-RE 28 required.
It remains to check that the composites (efquTﬁZB and
(ﬂEvf)*l[Bare isomorphic functors B —> F, But (ef)”

*
preserves constant objects (since both § and n* do) and A\

is the direct image part of the inclusion 1), Hence
o~ * r~ * * [d *
NE(e2) A = np(np)t® & £ 2 £p(ng)y & £¥05

and therefore ef=qF = qﬁ-f.

L1

The following lemma records some straightfoward con-

sequences of Definition 7.14 (compare them with Lemma 7.7):

7017 Lemma,

Let V,¥,G be toposes with NNO, and

¢—E& sp—Lf o3
geometric morphisms.
(1)  If £ and g conserve application, then so does f.g.
(ii) If f.g conserves application, so does f.

(iiil) If f is a surjection, it conserves application.

(]

7.18 Definition

Lemma 7.17 implies that toposes with NNO, geometric
morphisms that conserve application and natural trans-—
formations between such form a bicategory, which we shall

denote by prba'
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If f:F——= E is a morphism in this bicategory, then so
ig the geometric morphism ef:eF-————=> ek constructed in 7.15:
for f and fp cmserve application, hence by 7.17(i) so does
efen)p = Np°f, and then by 7.17(ii) ef does as well, It follows
from Lemma 7.10 that e is a pseudo-functor Topba———%—:>Topca
(i.e. e(idy) =id_p and e(fsg) 2ef-eg, coherent isomorphisms};
and by Proposition 7.15 we have that v is a natural trans-

formation id — e.

7.19 Theorem

There is a natural transformation Miee —> e which makes
(e,n,H) into a monad on T°pca' which we shall call the

effective monad.

Proof

First note that by the results of Chapter 6, eeli is a
realizability topos: for recall that if eNp is the combinatory

algebra in E with underlying object NEKNE and application
(n,m)(n',m') = (n(n"),n<n',mn>),
then by 6.14, eeB=eE[R;]~E[R'], where R’ is the realizability
tripos on eNE with designated truth-values given by the sub-
algebra NpXNy = {(_snO,smO) | n,mcWN},
Define maps MiPN ——= P(NXN} and Mg:P(NxN) —> PN in E

by

il

M*(p) = {(n,m)| n€pAmEN},
and Hye(a) = {<n,m>[ (n,m)€q}.
One checks easily that p*,P* constitute a geometric morphism of
Li-triposes F:R'_T__> RE, inducing a geometric morphism}] of
toposes as in 4.7. Then let M, be

eeB ¥ E[R']—E—é- E[Ry] = eB.
Since F preserves constant objects and since under the equiv-
alence eeE ¥ E[R'], AptE ——> E[(R’] is identified with

o e .meE)*

> cel,
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we have that

(7.20) FEeOp) s 2 (N g)u(Ng)y.

Hence (PE"r]eE)tmE)* = O:E'(neE)"z(VE)* 2 (D)« =(ideE)*'(nE)*’ S0
that by Lemma 7.10

L
eE ¢ el > cell
id . Mg
ell 2
ek

commutes up to isomorphism. In particular PL is a surjection
and so by Lemma 7.17(iii), conserves application,
Similarly using (7.20), Lemma 7.10 and the fact that
( * o * .
ef) Ny )y for any £, it follows that My is natural in

E{up to isomorphism) and that

e(M.) ' e{Mn)
el —-—‘E—‘———B’ cel ceell B > eeE
ideE HE and HeE ’JE
7
el eel . = el
Mg

commute up to (coherent) isomorphism.

What are the algebras for the effective monad? Note that

there is no algebra structure on the topos of sets since

eSet =Eff has only finite copowers of 1, so that there can be
no geometric morphism €:edet —> Set, In general a character-
ization of the algebras seems hard. However, if we restrict the
monad to realizability toposes (of combinatory algebras in Set)
we can completely characterize the algébras: we shall see that
up to isomorphism, each realizability topos admits at most one
algebra structure and that it does admit one when it contains

Bff as a sheaf subtopos in a specially simple wWay.
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7.21 The effective monad restricted to realizability toposesg

If A is a combinatory algebra in Set, for simplicity we
shall denote the realizability tripos on A (with designated
truth-values the inhabited subsets of A) just by A again., We
shall also assume that a geometric morphism f:A——>B
between such triposes has had its inverse image functor stan-
dardized along the lines of Remark 4.10(ii), i.e. £*:PB —> PA
is given by _ ' o

£*(q) = |J{£(v)| vEq)

where fiB ——> PA gatisfies B
(a) f(b) is inhabited, each b€ B; and

(b) there is u€A such that if b(b') =b" then u€. fb -, (fb'>, fb"),
all b,b',b" €B,

Let RTrip denote the bicategory of such realizability triposes
and geometric morphisms (the 2-structure being given by the pre-—
order: f g < il &PB g ). Note that the degenerate combinatory
algebra 0 gives an initial object for RTrip in the sense that
for each /A there is a geometric morphism Oﬂ:tl) —> A, unique up
to isomorphism (where Oﬂk:A ——> P1 maps each a€ A to the unique
*€1), |

Now as in Proposition 4.7, each f:fA ——> B induces a geo-
metric morphism of toposes fi:Set[ A ] — = Set[ B]. In particular

0,:0 ——> A induces the inclusion Set Set[ 0 Je——> Set[ A ]

A
of 5.3(ii), whose direct image part is the "constant-objects"

funector. Then since

72} ——f——>'lB
& :
0

commutes up to isomorphism, so does
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Set[ A ] —> Set[lB]

\/

But by Proposition 7.8, GEL and 6lB conserve application, and

hence by Lemma 7.17 so does f, Therefore we can define
eF:Set( A ]——= Set[ B ] as in Proposition 7.15. Now by 6.13,
eSet[ A] = Set[eA ] (the distinction between internal and
external effective tripos disappearing in Set), and similarly
for B. Then since ef preserves constant objects, by Theorem
4.8 it is induced by a geometric morphism efieA—> e B

of realizability triposes. We find that

ef:NxB ———> P(WxA4)
is given by _ (n,b) B——> {n}x£(p).
Thus (ef)¥(q) = U {ef(n,b)|[{n,b) Cq} = {(n,a) | Sb(aﬁfbA(n,b)GQ}:
and we may take (ef), to be
(ef)4lp) = {(n,p)| bEL(p )},
where p 1is {a| (n,a) €p}.

Thus e:Top,, — TOpGa restricts to a  functor e from
RTrip to itself. The monadic structure similarly restricts:
‘qm: A —>el
U Wxp ——> PA

(n,a) b——= { <™, a>}

and we can take (fp)y:PA ——> P(WXA) to be ppb—>> Nxp;

is given by

and Mpieeh —> el
P!A‘ Wxp —3 P{NxNxA)

(n,a) ,‘—_—% {(nrn’a)}

and we can take (}JEL)*:P(INKINKA) — > P(NxA) to be given by

is given by

sending q to {(n,a)]| ((n)o,(n)1 ,a) €Eq}. (Note that pairing in e A

can be taken to be < (n,a),(n',a')>=(<n,n'>,<a,a'™), and
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we can take as numerals ™Mm'= (n,P.I), where P1=?\a.(a)1 is
wnpairing; hence we may assume that oA is WxWN xA with

application (m,n,a)(nm',n',a') = (mm' ,ném',n'),a(n’ aty,a).)

7.22 Theorem
(1) If 6:eA —> & is an algebra structure map for the effective

monad on RTrip, then 9*."—:0;. Thus up to isomorphism each &
admits at most one algebra structure..
(ii) The combinatory algebra A admits an algebra structure iff
there is a map wth —> N and elements v€ A, u,i,r€N such
that

(a) afa')=a" = ulea)(aa')=aa",

(b) fal= v(a),

.(c) o™ = i{n},

(d) r(i(n))=n,
all a,a',a" €A and nEN,
Proof

(i) Suppose ©:elh —=> A is an algebra structure map. Thus

Y)
A > e A ee A ed > e A
idy » e and Pﬂl B
_ 8 7
& el — A

commute up to isomorphism. In particular we have
0 < OxMg)eMy & Ma-
We must show conversely that Y)Es_ Ox s i.e, that S*QZ < id.
Using the description of OIA given in7,21, this means we mus’t
show that €< ,a> [-(n,a){(n,a)}. Now 6* preserves A, 80.
(1) <% ,a> 4 I_(n,a) e ABa.

Also © preserves the natural number object of Set[A ], so e*

preserves numerals, 1l.e.

(2) e’ —||—n{(n,P1)}.,
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Finally since r);e* ¥ id, there is téA such that t<'nm’,a'™ =2

whenever (m,a') € 8a; this implies that

(3) {(np))ada b, ,y{(n,a)}.

So combining (1),(2) and (3) we get the required result.

(ii) First suppose that 9ielh —>> L is an algebra structure

map. Composing with eQp:IN= eb ——> el gives a geometric

morphism ¢ =8°:60,: IV — A, with ¢:A ——> PN given by
p(a) = {m| 9a' (m,a*)€6(a)}.

Using (1) it is not hard to see that we may take the direct

image part of ¢ to send p&EWN to

(4)  ee(o) = (] nep).

*
Then since ¢*4 ¢,, there is vEA with vE€ P~p P19 P, all pEA,
Hence if a€ A then v(a) € {'| n€¢(a)}; so we may find a map

ath ——> N such that v(a) = Taa? and aa€ ¢(a), all a€ A. Also
(p* preserves numerals, so there is g€ ¢(™') - {n}, .all nCN. Then
An.g(f(n)) € 9(a) »{aa}, and aa€ p(a). Therefore ¢(a) - F, {aa}.
Thus (a) follows from the corresponding property ((b) of7.21)} for
9; similarly (e¢) and (d) follow from the fact that (p* preserves
nunerals; and we already have (b).

Conversely suppose we have «aiA ——> N and v,u,i,r satisfying
(a) to (d). Define ©:A ——= P(Nx4) by 6(a)= {(aa,a)}. Then by
(a) (and since ©(a) is inhabited), e*(p) = U {6(a)|a€p} defines
a map 8" ;PA——> P(Nx A) preserving F, T, A and 3, Using r and u
we have < T, a> "(n,a) {(n,a)}, so that G*Y);; £ id. Conversely
Ax. <v(x),x> € {a}={<fud',a>}, all a €4, so that id < "?E:S*.
Therefore 9*-| r};_, and thus we have a geometric morphism
Bie A —>A. Since P, € { < ‘aa’,a>}~{a}, we also have r);e*g id,
and thus id = 6°Y)A. Finally note that

(ee)*e(a) = e6(0a,a) = {aa} x06(a) = {(«a,aa,a)},

whilst }Jﬂte(a) = Hp(aa,a) = {(aa,aa,a)}.
Hence ©-e0 & 6_']JA. Therefore © is indeed an algebra structure

L]

map for the effective monad,



[103]

7.2% Remarks

(1) It is not hard to see from the description of ef given
in 7.21 that if f: A¢—> B is an inclusion, then so is
ofie A ——= eB, In particular, applying e to OA:QJ‘-————:'[A,
we get an inclusion eOA:]NC——-—B- e /A. If the topologies on eh
corresponding to Y)A:IA ¢ elh and 0yt N ——==el are d
and K respectively, using 5.4(1) we can show that J+K=Jdg,

the topology corresponding to 0 «———=> ehA. Thus

e0
N 2 - SN |
o
T
D ¢ > [}

is a pullback square in RTrip., (But J; < JAK,)
(11) The proof of T.22(ii) shows that to specify ath —=> N
and v,u,i,r satisfying (a) to (d) is equivalent to specifying
an inclusion ¢:lN & & whose direct image functor is

p ——> {¥| n¢p]
(¢ is an inclusion since (p*cp*(p)= {a? |n€p} 4 i—p p, using i

and r). Thus we may say: A admits an algebra structure if

pb——= {%'|n€p} is the direct image part of an inclusion

N «——>fA,

7.24 Example

Tet A be the set of (total) recursive functions N —= W,

ad let

no,.oo’nk I——))’<n0,...,nk>

be a primitive recursive coding of finite sequences of numbers

as numbers, with primitive recursive uncoding functions (o)k
(k EN). If T €A, let feh be nf—=> < £0,..,.,fn>, Using pr
application on N, we can define a partial application on A by |

flg)=h Vn€WN( hn=fn(zgn) ) (f,g,h€A).
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Then

K:n|——> Axy. (}c)n

and
Sinp—>> ?txyz.(x)nz< (y)0< (z)0> yous ,(y)n<(z) g .,(z)n>>

are "K" ad "S" combinators for A, making it into a combinatory
algebra, A. We can take numerals in A to be the constant functions,‘.
ice. Mimb——> n, |
Now let o:tA —> IV be evaluation at O, i.e. a(f)=rf0. If
f(g)="h in A, then hO =f0(<g0>); so letting u €N be Axy.x<y>,
we have that u satisfies (a) of 7.10(ii). Similarly if v€ A is
?\x.(x)o , then for all f €A and n€ll we have vn(z‘n)‘é(:_fn)'o"z fo,
i.e. v(£f) is defined and equals "f£0'="af’, so that v satisfies
(b). Finally since a(™’) ="M'0= n, we may take i=r=e =Ax.x to
satisfy (c¢) and (d).
Therefore A zdmits an algebra structure for the effective

monad.

To complete the picture as far as the effective monad on

RTrip is concerned, we identify the e-algebra homomorphisms:

7.25 Proposition

Suppose that A,B adnit e-algebra structures and that f:A—> B
is a geometric morphism. Then f is a homomorphism of e-algebras
iff there is some DEB with b €L, {m'n€p} -5 {'|n€p}, all pEW.
Proof

Let the e-algebra structure on A,B be given, as in 7.22(ii),
by maps a:tA—> N, g:B—> I, so that the structure maps are

6:eh ——> &, 8(a)={(aa,a)}
and 6':e B ——> B, 6%Db)={(pb,b)}.
The existence of b€ B with the given property is certainly

necegssary for f to be a homomorphism. For if it is, then



A £ > B
Ry
e o
|
el of = gB
y !
e0‘m eO[B ‘
IN

commutes up %o isomorphism. But 9=e0ﬂ and e'onIB are the inclusions
cp':lN C——-—S&,'q)':'[i\_T ¢ = B remarked upon in 7.23(ii), whose direct
image functors are pl——= {M'|n€ p}. Thus f+g=¢'; in particular
£x{' [n€ p} £, (' |n€ p}. o

Note that we always have {T |n€ p} @P fe{™m'|n€ p}, since
this is equivalent (using the adjunction f A fy) to
f*{’n"lnﬁp} |£Ap {fMm'|n€p}, and £' preserves numerals. So if
conversely there is b EB with the glven property, we have f,p.Spi.

* ¥ * . . N . .
Hence ¢"f 2 o', i.e. {eala€f(b)} 4 F, B(b). From this it
yii}

follows that {(wa,a)la€£(b)} FE, {B(b)}x£(b), i.e. that
* ® * * A
© f Z(ef) (8') (using the description of ef given in 7.21),

Therefore f is a homomorphism,

[]
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