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Typal Heterogeneous Equality Types
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The usual homogeneous form of equality type in Martin-Löf Type Theory contains identifications between

elements of the same type. By contrast, the heterogeneous form of equality contains identifications between

elements of possibly different types. This short note introduces a simple set of axioms for such types. The

axioms are shown to be equivalent to the combination of systematic elimination rules for both forms of

equality, albeit with typal (also known as “propositional”) computation properties, together with Streicher’s

Axiom K, or equivalently, the principle of uniqueness of identity proofs.
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1 INTRODUCTION
Equality types in the intensional version of Martin-Löf Type Theory [see for example 12, Section 8.1]

are traditionally formulated in terms of an introduction rule (reflexivity) together with a rule for

eliminating proofs of equality and a rule describing how elimination computes when it meets

a reflexivity proof. Some recent work [4, 7] on models of Homotopy Type Theory [17] uses a

formulation of equality types that differs from this in two respects. First, the elimination operation

is replaced by the combination of a simple operation for transporting elements along proofs of

equality, together with an axiom asserting contractibility of singleton types. Secondly, the analogue

of the computation rule for the eliminator, namely that transporting along a reflexivity proof

does nothing, is weakened from a judgemental equality to the existence of an element of the

corresponding equality type; see [9] and Figure 2 in [4]. This formulation is sometimes called a

“propositional” equality type [18], but here I will follow Shulman [14, Section 1.6] for the reasons

given there and refer to typal equality types. Although these changes to the formulation of equality

types affect computation, it seems that they do not change what is provable (see [5] for example) and

they make it easier to construct models. Furthermore, they can lead to surprising simplifications. For

example, Lumsdaine [private communication] has observed that the computation rule is superfluous

(for elimination, but the observation also holds for transport): if a proto-identity type has a transport

operation lacking its typal computation property, then the operation can be corrected to a new one

that does have the computation property (see Lemma 2.1 and the Appendix).

The above remarks apply to the usual, homogeneous notion of equality in which elements of the

same type are compared. The purpose of this paper is to give an analogous treatment of hetero-
geneous equality [2, 11] in the presence of Σ-types and the Axiom K of Streicher [15, Section 1.2].
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25:2 Andrew Pitts

Axioms for typal heterogeneous equality satisfying Axiom K

postulate

_≡≡_ : ∀{l}{A B : Set l} → A → B → Set l

– the derived homogeneous equality

_≡_ : ∀{l}{A : Set l} → A → A → Set l

x ≡ y = x ≡≡ y

postulate

rfl : ∀{l}{A : Set l} (x : A) → x ≡ x

ctr : ∀{l}{A B : Set l}{x : A}{y : B}(e : x ≡≡ y)→ rfl x ≡≡ e

eqt : ∀{l}{A B : Set l}{x : A}{y : B} → x ≡≡ y → A ≡ B

tpt : ∀{l m n}{A : Set l}{B : A → Set m}(C : (x : A) → B x → Set n)

{x x′ : A}{y : B x}{y′ : B x′} → x ≡ x′ → y ≡≡ y′ → C x y → C x′ y′

Axioms for Σ-types with surjective pairing

postulate∑
: ∀{l m}(A : Set l)(B : A → Set m)→ Set (l ⊔ m)

module _ {l m}{A : Set l}{B : A → Set m} where

postulate

_,_ : (x : A) → B x → ∑
A B

fst :
∑

A B → A

snd : (z :
∑

A B)→ B (fst z)

fpr : (x : A)(y : B x) → fst(x , y) ≡ x

spr : (x : A)(y : B x) → snd(x , y) ≡≡ y

eta : (z :
∑

A B)→ (fst z , snd z) ≡ z

– concrete syntax for
∑
-types

syntax
∑

A (𝜆 x → B) =
∑

x : A , B

Fig. 1. The Axioms

Since Axiom K is not compatible with the Univalence Principle of Homotopy Type Theory [17,

Example 3.1.9], the focus here is on the simpler (but still useful!) world of zero-dimensional type

theory. We will see that the axioms in Fig. 1 capture homogeneous and heterogeneous equality

satisfying their usual dependent elimination and (typal) computation properties and Axiom K,

and Σ-types with their usual dependent elimination and (typal) computation properties. It seems

necessary to include Σ-types in order to get Lumsdaine’s result mentioned above (see Remark 2.5);

the axioms we give for such types are standard, except that the equality property of dependent

second projection (spr) is simplified by the use of heterogeneous rather than homogeneous equality.

The axioms in the figure are pleasingly simple compared to the usual formulation in terms of

elimination and computation properties, and may aid finding newmodels of heterogeneous equality

types.

The implementation of intensional Martin-Löf Type Theory provided by Agda 2.6 [1] is used

to state the axioms and develop their properties. More precisely, we just make use of Agda’s

implementation of a countably infinite, non-cumulative hierarchy of universes Set l, where l
ranges over a type Level of universe levels whose closed normal forms are in bijection with the
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Typal Heterogeneous Equality Types 25:3

natural numbers. The universes are closed under dependent function types (written in Agda as

(x : A) → B ) and inductive types. The use of a whole hierarchy of universes is necessary; for

example, the function eqt in Fig. 1 takes a heterogeneous equality type x ≡≡ y in universe Set l
and produces a homogeneous one A ≡ B in the universe one level up, which is denoted Set(lsuc l)
in Agda. We also use Agda’s notation for infix and for implicit arguments. For example, the function

_≡≡_ in Fig. 1 takes five arguments, the first three of which are implicit and the last two of which

are infix. In particular, Agda’s ability to infer the values of implicit arguments (or of unspecified

explicit arguments, which are denoted by an underscore, _ ) is used quite aggressively in what

follows, in order to be able to see the wood from the trees.

Although the code in this paper has been checked by Agda, some parts of it that are not essential

for understanding the development have been hidden; the complete (non-literate) Agda code can

be found at [https://doi.org/10.17863/CAM.47902].

2 THE AXIOMS AND THEIR PROPERTIES
Figure 1 postulates a family of types _≡≡_ in all universes, together with some operations on them

that together capture a typal version of heterogeneous equality. Heterogeneous equality types were

introduced by McBride [11, Section 5.1.3] under the name of “John Major equality”. Unlike ordinary,

homogeneous equality types, such a type x ≡≡ y relates elements x and y of possibly different

types, A and B say. The intention is that elements of type x ≡≡ y denote proofs that not only are x
and y equal, but so also are their types A and B. The figure defines homogeneous equality _≡_ as
the special case of _≡≡_ when the types of the two arguments are already known to be the same.

Axiom rfl says that ≡ is reflexive. Axiom ctr is a heterogeneous version of the contractibility

property of singleton types (cf. center in Figure 2 of [4]). Axiom eqt says that heterogeneously equal
things have (homogeneously) equal types. Axiom tpt is a form of the transport property of equality

(cf. T in Figure 2 of [4]) involving both homogeneous and heterogeneous equalities. Finally,

∑
, _,_,

fst, snd, fpr, spr and eta axiomatize dependent product types satisfying surjective pairing.

We begin with some simple lemmas establishing the basics of equational logic for ≡≡, namely

chain-reasoning using reflexivity (already an axiom), symmetry, transitivity and congruence prop-

erties. These are given in Fig. 2.

The axioms in Fig. 1 are notably lacking a “regularity” property for tpt, that is, a proof of type
tpt (rfl x) (rfl y) z ≡ z. But such a thing is needed if we are to derive the expected elimination

and (typal) computation rules for _≡≡_ and _≡_. To get those, one can define a “corrected” form

of transport that has this regularity property, using a simplified version of a trick due to Peter

Lumsdaine [unpublished]. In fact, it is enough to produce a function coercing proofs of equality

of types e : A ≡ B into functions coe e : A→ B and which satisfies the heterogeneous regularity

property that coe e x ≡≡ x (so that, given how we define ≡ in terms of ≡≡, the usual form of

regularity, coe (rfl A) x ≡ x, is just the special case of this when e is rfl A).

Lemma 2.1. The axioms in Fig. 1 imply the existence of a coercion function

coe : ∀{l}{A B : Set l} → A ≡ B → A → B

satisfying a heterogeneous regularity property:

coeIsRegular : ∀{l}{A B : Set l}(e : A ≡ B)(x : A)→ coe e x ≡≡ x

Proof. First we define the type of functions that are injective with respect to ≡ and note that

the identity function is one such:

Inj : ∀{l}(A B : Set l) → Set l

Inj A B =
∑

f : (A→ B) , ∀{x y}→ f x ≡ f y → x ≡ y

ACM Trans. Comput. Logic, Vol. 21, No. 3, Article 25. Publication date: March 2020.

https://doi.org/10.17863/CAM.47902


25:4 Andrew Pitts

symm : ∀{l}{A B : Set l}{x : A}{y : B} → x ≡≡ y → y ≡≡ x

symm e = tpt (𝜆 _ y → y ≡≡ _) (eqt e) e (rfl _)

proof_ : ∀{l}{A B : Set l}{x : A}{y : B} → x ≡≡ y → x ≡≡ y

proof p = p

_≡≡[_]_ : ∀{l}{A B C : Set l}(x : A){y : B}{z : C}→
x ≡≡ y → y ≡≡ z → x ≡≡ z

x ≡≡[ e ] f = tpt (𝜆 _ z → x ≡≡ z) (eqt f) f e

_qed : ∀{l}{A : Set l}(x : A) → x ≡ x

x qed = rfl x

cong : ∀{l m}{A : Set l}{B : A→ Set m}(f : (x : A) → B x){x y : A} →
x ≡ y → f x ≡≡ f y

cong f {x} e = tpt (𝜆 _ z → f x ≡≡ f z) e e (rfl (f x))

cong2 : ∀{l m n}{A : Set l}{B : A→ Set m}{C : (x : A) → B x → Set n}

(f : (x : A)(y : B x) → C x y){x x′ : A}{y : B x}{y′ : B x′} →
x ≡ x′ → y ≡≡ y′ → f x y ≡≡ f x′ y′

cong2 f {x} {_} {y} e e
′ = tpt (𝜆 x′ y′ → f x y ≡≡ f x′ y′) e e′ (rfl (f x y))

cong3 : ∀{k l m n}{A : Set k}{B : A→ Set l}{C : (x : A) → B x → Set m}

{D : (x : A)(y : B x) → C x y → Set n}

(f : (x : A)(y : B x)(z : C x y) → D x y z)

{x x′ : A}{y : B x}{y′ : B x′}{z : C x y}{z′ : C x′ y′} →
x ≡ x′ → y ≡≡ y′ → z ≡≡ z′ → f x y z ≡≡ f x′ y′ z′

cong3 f {x} {_} {y} {_} {z} e e
′ =

tpt (𝜆 x′ y′ →∀{z′} → z ≡≡ z′ → f x y z ≡≡ f x′ y′ z′) e e′ (cong2 (f x) (rfl y))

Fig. 2. Equational reasoning for heterogeneous equality

id : ∀{l}{A : Set l} → A → A

id x = x

idInj : ∀{l}(A : Set l) → Inj A A

idInj _ = (id , id)

Next we use tpt to define a function coercing equalities into injective functions:

icoe : ∀{l}{A B : Set l} → A ≡ B → Inj A B

icoe {l} {A} e = tpt (𝜆 _ C → Inj A C) (rfl (Set l)) e (idInj A)

The injectiveness of icoe e is used as follows. Applying the operation tpt to the type family

fsticoe : ∀{l}{A : Set l}(x : A)(B : Set l)(e : A ≡ B)→ Set l

fsticoe x B e =
∑

y : B , (fst (icoe (rfl B)) y ≡ fst (icoe e) x)

we can transport the element (e , rfl (fst (icoe (rfl A)) x) of type fsticoe x A (rfl A) along
e : A ≡ B and ctr e : rfl A ≡≡ e to give an element of type fsticoe x B e. The first projection of

this element gives the value of the desired coercion along e at x :
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coe e x = fst (tpt (fsticoe x) e (ctr e) (x , rfl _))

and its second projection can be used along with the injectiveness property of icoe to get the

regularity property of this coercion:

coeIsRegular {_} {A} e x = tpt (𝜆 _ e′ → coe e′ x ≡≡ x) e (ctr e) coerfl

where

coerfl : coe (rfl A) x ≡ x

coerfl = snd (icoe (rfl A)) (snd (

tpt (fsticoe x) (rfl A) (ctr (rfl A)) (x , rfl _)))

□

An immediate corollary is that the axioms imply the uniqueness of identity proofs (UIP) and hence
Streicher’s Axiom K [15]. (We will see in Sect. 3 that in fact it is only the tpt function that contains

an implicit use of Axiom K.)

Theorem 2.2 (UIP and Axiom K). The axioms in Fig. 1 imply that ≡ satisfies

uip : ∀{l}{A : Set l}{x y : A}(e e′ : x ≡ y)→ e ≡ e′

axiomK : ∀{l m}{A : Set l}{x : A}(P : x ≡ x → Set m)(p : P (rfl x)) →
∀ e → P e

axiomKComp : ∀{l m}{A : Set l}{x : A}(P : x ≡ x → Set m)(p : P (rfl x)) →
axiomK P p (rfl x) ≡ p

Proof. Using the functions from Fig 2 and Lemma 2.1 we have:

uip e e′ = tpt (𝜆 _ e′′ → e′′ ≡≡ e′) e (ctr e) (ctr e′)

axiomK P p e = coe (cong2 (𝜆 _ → P) (rfl p) (ctr e)) p

axiomKComp P p = coeIsRegular (cong2 (𝜆 _→ P) (rfl p) (ctr (rfl _))) p

□

The elimination and computation properties of ≡ and ≡≡ then follow:

Theorem 2.3 (Elimination and typal computation properties). The axioms in Fig. 1 imply
that ≡ has the usual elimination and (typal) computation properties of homogeneous equality (in the
form suggested by [13])

≡Elim : ∀{l m}{A : Set l}{x : A}(P : (y : A) → x ≡ y → Set m)

(p : P x (rfl x))(y : A)(e : x ≡ y)→ P y e

≡Comp : ∀{l m}{A : Set l}{x : A}(P : (y : A) → x ≡ y → Set m)

(p : P x (rfl x)) → ≡Elim P p x (rfl x) ≡ p

The axioms also imply that ≡≡ has the elimination and (typal) computation properties of heterogeneous
equality described by McBride [11, Section 5.1.3]

≡≡Elim : ∀{l m}{A : Set l}{x : A}(P : (B : Set l)(y : B) → x ≡≡ y → Set m)

(p : P A x (rfl x))(B : Set l)(y : B)(e : x ≡≡ y) → P B y e

≡≡Comp : ∀{l m}{A : Set l}{x : A}(P : (B : Set l)(y : B) → x ≡≡ y → Set m)

(p : P A x (rfl x)) → ≡≡Elim P p A x (rfl x) ≡ p

ACM Trans. Comput. Logic, Vol. 21, No. 3, Article 25. Publication date: March 2020.
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Proof. Using the functions from Fig 2 and Lemma 2.1 we have:

≡Elim P p _ e = coe (cong2 P e (ctr e)) p

≡Comp P = coeIsRegular (cong2 P (rfl _) (ctr (rfl _)))

≡≡Elim P p _ _ e = coe (cong3 P (eqt e) e (ctr e)) p

≡≡Comp P = coeIsRegular (cong3 P (eqt (rfl _)) (rfl _) (ctr (rfl _)))

□

Note that a corollary of the above two theorems is that _ ≡≡ _ is uniquely determined up to

logical equivalence by the axioms in Fig. 1. In other words, for any other such family of types

_ ≡≡′
_ , there are functions in either direction between x ≡≡ y and x ≡≡′ y ; and because of UIP

these are necessarily mutually inverse up to ≡≡ (or ≡≡′
).

Remark 2.4. ≡≡Elim is the elimination form systematically derived [3] from _ ≡≡ _ and rfl,
regarding them as the formation and introduction rules for an inductive type. As McBride [11,

page 120] points out,≡≡Elim is not very useful, because of the way it’s motive P involves abstraction
over an arbitrary type B. McBride goes on to give another, more useful form of elimination for ≡≡,
but in our setting where ≡ is a special case of ≡≡, that coincides with the eliminator ≡Elim.

Remark 2.5 (The role of Σ-types). One of the strengths of machine-checked mathematics is that it

aids the detection of logical dependency. Although we included the equations fpr, spr and eta for

Σ-types in Fig. 1, they have not been used for the results so far, as may be verified by commenting

them out from this literate Agda file and re-checking it up to this point.

So only the weak form of dependent product given by

∑
, _,_, fst and snd in the figure is used

to define the regular version of coercion in Lemma 2.1 and then prove Theorems 2.2 and 2.3. It

would be nice if there was some way to define

∑
, _,_, fst and snd just using dependent function

types and universes.

However, the extra equations fpr, spr and eta for
∑

are of course very natural. Let us record

the fact that they enable one to define the usual elimination rule for dependent products, with a

typal computation rule:∑
Elim : ∀{l m n}{A : Set l}{B : A → Set m}(C :

∑
A B → Set n)

(c : (x : A)(y : B x) → C (x , y))(z :
∑

A B)→ C z∑
Elim C c z = coe (cong C (eta z)) (c (fst z) (snd z))∑
Comp : ∀ {l m n}{A : Set l}{B : A → Set m}(C :

∑
A B → Set n)

(c : (x : A)(y : B x) → C (x , y))(x : A)(y : B x) →∑
Elim C c (x , y) ≡ c x y∑

Comp C c x y = let z = (x , y) in

proof

coe (cong C (eta z)) (c (fst z) (snd z))

≡≡[ coeIsRegular _ _ ]
c (fst z) (snd z)

≡≡[ cong2 c (fpr x y) (spr x y) ]
c x y

qed
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3 CONSISTENCY OF THE AXIOMS
We have seen that the axioms in Fig. 1 suffice to define dependent products and both heterogeneous

and homogeneous equality types with uniqueness of identity proofs, all satisfying the usual

elimination properties, albeit with typal computation rules. Conversely it is not hard to see that

the elimination and computation rules in Theorem 2.3 and Remark 2.5, together with Axiom K,

imply the axioms in Fig. 1. Instead of doing that, in this section we just check that the axioms are

provable from inductive definitions of equality and dependent product types. One can make these

inductive definitions in Agda as follows:

data _≡≡_ {l}{A : Set l} : {B : Set l} → A → B → Set l where

rfl : (x : A) → x ≡≡ x

data
∑

{l m}(A : Set l)(B : A → Set m) : Set (l ⊔ m) where

_,_ : (x : A) → B x → ∑
A B

– the derived homogeneous equality

_≡_ : ∀{l}{A : Set l} → A → A → Set l

x ≡ y = x ≡≡ y

Then Agda’s implementation of dependent pattern matching enables straightforward definitions of

the functions from Fig. 1, as follows:

ctr : ∀{l}{A B : Set l}{x : A}{y : B}(e : x ≡≡ y)→ rfl x ≡≡ e

ctr (rfl x) = rfl (rfl x)

eqt : ∀{l}{A B : Set l}{x : A}{y : B} → x ≡≡ y → A ≡ B

eqt {_} {A} (rfl _) = rfl A

tpt : ∀{l m n}{A : Set l}{B : A → Set m}(C : (x : A) → B x → Set n)

{x x′ : A}{y : B x}{y′ : B x′} → x ≡ x′ → y ≡≡ y′ → C x y → C x′ y′

tpt _ (rfl _) (rfl _) y = y

module _ {l m}{A : Set l}{B : A → Set m} where

fst :
∑

A B → A

fst (x , _) = x

snd : (z :
∑

A B) → B (fst z)

snd (_ , y) = y

fpr : (x : A)(y : B x) → fst (x , y) ≡ x

fpr x _ = rfl x

spr : (x : A)(y : B x) → snd (x , y) ≡≡ y

spr _ y = rfl y

eta : (z :
∑

A B) → (fst z , snd z) ≡ z

eta (x , y) = rfl (x , y)
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Since we know from the previous section that these functions entail Axiom K, the above definitions

have to use Agda’s default –with-K option to switch the existing implementation of dependent

pattern matching [6] back to the original version due to [8], which is known to imply Axiom K [10].

More precisely, it is only the matches on the two occurrences of the pattern rfl _ in the definition

of tpt that involve an implicit use of Axiom K (to discharge the unification constraints A � A and

B x � B x); all the other functions can be defined without Axiom K.

4 CONCLUSION
This paper has investigated heterogeneous equality and produced a simple collection of axioms for

its typal form, in the spirit of [9]. The point of view is foundational. From a practical perspective, the

use of heterogeneous equality has much to recommend it for formalizing mathematics in dependent

type theory when assuming uniqueness of identity proofs
1
; but that is another story.

APPENDIX: TYPAL HOMOGENEOUS EQUALITY WITHOUT K
In this appendix, for completeness sake we consider axioms in dependent type theory without

Axiom K for homogeneous equality types

postulate

_≡_ : ∀{l}{A : Set l} → A → A → Set l

following [9]. (Since without Axiom K heterogeneous equality is not very useful, we do not bother

to consider axiomatizing ≡≡ in that setting.) One of the axioms makes use of dependent product

types. Although one could axiomatize those types as we did in the main part of the paper, it is

simpler to use an inductive defintion and corresponding pair patterns:

data
∑

{l m}(A : Set l)(B : A → Set m) : Set (l ⊔ m) where

_,_ : (x : A) → B x → ∑
A B

– concrete syntax for
∑
-types

syntax
∑

A (𝜆 x → B) =
∑

x : A , B

– dependent product projections

module _ {l m}{A : Set l}{B : A → Set m} where

fst :
∑

A B → A

fst (x , _ ) = x

snd : (z :
∑

A B)→ B (fst z)

snd (_ , y) = y

The axioms for homogeneous equality are

postulate

refl : ∀{l}{A : Set l} (x : A) → x ≡ x

cntr : ∀{l}{A : Set l}{x y : A}(e : x ≡ y) → (x , refl x) ≡ (y , e)

sbst : ∀{l m}{A : Set l}(B : A → Set m){x x′ : A}→ x ≡ x′ → B x → B x′

Coquand also considers a regularity axiom for sbst (ax3 in loc.cit.), but one can do without that

by using Peter Lumsdaine’s trick to correct sbst to a version subst for which there is a proof

substIsRegular : ∀b→ subst (refl x) b ≡ b, as follows. The proof begins as for Lemma 2.1 by

considering functions that are injective modulo ≡:

1
Such is the approach of Lean [16] since version 3, for example.
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Inj : ∀{l}(A B : Set l) → Set l

Inj A B =
∑

f : (A → B) , ∀{x y}→ f x ≡ f y → x ≡ y

id : ∀{l}{A : Set l} → A → A

id x = x

idInj : ∀{l}(A : Set l) → Inj A A

idInj _ = (id , id)

But then to construct subst and substIsRegular, one has to work a bit harder than in the proof

of the lemma, because of the lack of uniqueness of identity proofs:

module _ {l m}{A : Set l}(B : A → Set m){x : A} where

Inj2 : {y z : A} → x ≡ y → x ≡ z → Inj (B y) (B z)

Inj2 {y} p q =

sbst (𝜆 z′ → Inj (B y) (B z′)) q

(sbst (𝜆 y′ → Inj (B y′) (B x)) p (idInj (B x)))

sbst2 : {y z : A} → x ≡ y → x ≡ z → B y → B z

sbst2 p q = fst (Inj2 p q)

C : {y : A}(p : x ≡ y)(b : B x) → ∑
c : B y , (sbst2 p p c ≡ sbst2 (refl x) p b)

C p b = sbst C′ (cntr p) (b , refl _)

where

C′ :
∑

y : A , (x ≡ y)→ Set m

C′ (y , p) =
∑

c : B y , (sbst2 p p c ≡ sbst2 (refl x) p b)

subst : {y : A} → x ≡ y → B x → B y

subst p b = fst (C p b)

substIsRegular : (b : B x) → subst (refl x) b ≡ b

substIsRegular b = snd (Inj2 (refl x) (refl x)) (snd (C (refl x) b))
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