
1

A Conflict-Free Replicated JSON Datatype
Martin Kleppmann and Alastair R. Beresford

Abstract—Many applications model their data in a general-purpose storage format such as JSON. This data structure is modified by
the application as a result of user input. Such modifications are well understood if performed sequentially on a single copy of the data,
but if the data is replicated and modified concurrently on multiple devices, it is unclear what the semantics should be. In this paper we
present an algorithm and formal semantics for a JSON data structure that automatically resolves concurrent modifications such that no
updates are lost, and such that all replicas converge towards the same state (a conflict-free replicated datatype or CRDT). It supports
arbitrarily nested list and map types, which can be modified by insertion, deletion and assignment. The algorithm performs all merging
client-side and does not depend on ordering guarantees from the network, making it suitable for deployment on mobile devices with
poor network connectivity, in peer-to-peer networks, and in messaging systems with end-to-end encryption.

Index Terms—CRDTs, Collaborative Editing, P2P, JSON, Optimistic Replication, Operational Semantics, Eventual Consistency.

F

1 INTRODUCTION

U SERS of mobile devices, such as smartphones, expect
applications to continue working while the device is

offline or has poor network connectivity, and to synchronize
its state with the user’s other devices when the network is
available. Examples of such applications include calendars,
address books, note-taking tools, to-do lists, and password
managers. Similarly, collaborative work often requires sev-
eral people to simultaneously edit the same text docu-
ment, spreadsheet, presentation, graphic, and other kinds
of document, with each person’s edits reflected on the other
collaborators’ copies of the document with minimal delay.

What these applications have in common is that the ap-
plication state needs to be replicated to several devices, each
of which may modify the state locally. The traditional ap-
proach to concurrency control, serializability, would cause
the application to become unusable at times of poor network
connectivity [1]. If we require that applications work re-
gardless of network availability, we must assume that users
can make arbitrary modifications concurrently on different
devices, and that any resulting conflicts must be resolved.

The simplest way to resolve conflicts is to discard some
modifications when a conflict occurs, for example using a
“last writer wins” policy. However, this approach is unde-
sirable as it incurs data loss. An alternative is to let the user
manually resolve the conflict, which is tedious and error-
prone, and therefore should be avoided whenever possible.

Current applications solve this problem with a range of
ad-hoc and application-specific mechanisms. In this paper
we present a general-purpose datatype that provides the
full expressiveness of the JSON data model, and supports
concurrent modifications without loss of information. As
we shall see later, our approach typically supports the
automatic merging of concurrent modifications into a JSON
data structure. We introduce a single, general mechanism (a
multi-value register) into our model to record conflicting
updates to leaf nodes in the JSON data structure. This
mechanism then provides a consistent basis on which ap-

M. Kleppmann and A.R. Beresford are with the University of Cambridge
Computer Laboratory, Cambridge, UK.
Email: mk428@cl.cam.ac.uk, arb33@cl.cam.ac.uk.

plications can resolve any remaining conflicts through pro-
grammatic means, or via further user input. We expect that
implementations of this datatype will drastically simplify
the development of collaborative and state-synchronizing
applications for mobile devices.

1.1 JSON Data Model
JSON is a popular general-purpose data encoding format,
used in many databases and web services. It has similarities
to XML, and we compare them in Section 3.2. The structure
of a JSON document can optionally be constrained by a
schema; however, for simplicity, this paper discusses only
untyped JSON without an explicit schema.

A JSON document is a tree containing two types of
branch node:

Map: A node whose children have no defined order,
and where each child is labelled with a string
key. A key uniquely identifies one of the chil-
dren. We treat keys as immutable, but values as
mutable, and key-value mappings can be added
and removed from the map. A JSON map is also
known as an object.

List: A node whose children have an order defined
by the application. The list can be mutated by
inserting or deleting list elements. A JSON list is
also known as an array.

A child of a branch node can be either another branch
node, or a leaf node. A leaf of the tree contains a primitive
value (string, number, boolean, or null). We treat primitive
values as immutable, but allow the value of a leaf node to
be modified by treating it as a register that can be assigned a
new value.

This model is sufficient to express the state of a wide
range of applications. For example, a text document can be
represented by a list of single-character strings; character-
by-character edits are then expressed as insertions and
deletions of list elements. In Section 3.1 we describe four
more complex examples of using JSON to model application
data.

mk428@cl.cam.ac.uk
arb33@cl.cam.ac.uk

2

1.2 Replication and Conflict Resolution

We consider systems in which a full copy of the JSON doc-
ument is replicated on several devices. Those devices could
be servers in datacenters, but we focus on mobile devices
such as smartphones and laptops, which have intermittent
network connectivity. We do not distinguish between de-
vices owned by the same user and different users. Our
model allows each device to optimistically modify its local
replica of the document, and to asynchronously propagate
those edits to other replicas.

Our only requirement of the network is that messages
sent by one replica are eventually delivered to all other
replicas, by retrying if delivery fails. We assume the network
may arbitrarily delay, reorder and duplicate messages.

Our algorithm works client-side and does not depend on
any server to transform or process messages. This approach
allows messages to be delivered via a peer-to-peer network
as well as a secure messaging protocol with end-to-end
encryption [2]. The details of the network implementation
and cryptographic protocols are outside of the scope of this
paper.

In Section 4 we define formal semantics describing how
conflicts are resolved when a JSON document is concur-
rently modified on different devices. Our design is based
on three simple principles:

1) All replicas of the data structure should automat-
ically converge towards the same state (a require-
ment known as strong eventual consistency [3]).

2) No user input should be lost due to concurrent
modifications.

3) If all sequential permutations of a set of updates
lead to the same state, then concurrent execution of
those updates also leads to the same state [4].

1.3 Our Contributions

Our main contribution in this work is to define an algorithm
and formal semantics for collaborative, concurrent editing
of JSON data structures with automatic conflict resolution.
Although similar algorithms have previously been defined
for lists, maps and registers individually (see Section 2), to
our knowledge this paper is the first to integrate all of these
structures into an arbitrarily composable datatype that can
be deployed on any network topology.

A key requirement of conflict resolution is that after any
sequence of concurrent modifications, all replicas eventually
converge towards the same state. In Section 4.4 and the
appendix we prove a theorem to show that our algorithm
satisfies this requirement.

Composing maps and lists into arbitrarily nested struc-
tures opens up subtle challenges that do not arise in flat
structures, due to the possibility of concurrent edits at differ-
ent levels of the tree. We illustrate some of those challenges
by example in Section 3.1. Nested structures are an impor-
tant requirement for many applications. Consequently, the
long-term goal of our work is to simplify the development
of applications that use optimistic replication by providing
a general algorithm for conflict resolution whose details can
largely be hidden inside an easy-to-use software library.

2 RELATED WORK

In this section we discuss existing approaches to optimistic
replication, collaborative editing and conflict resolution.

2.1 Operational Transformation

Algorithms based on operational transformation (OT) have
long been used for collaborative editing applications [5], [6],
[7], [8]. Most of them treat a document as a single ordered
list (of characters, for example) and do not support nested
tree structures that are required by many applications. Some
algorithms generalize OT to editing XML documents [9],
[10], [11], which provides nesting of ordered lists, but these
algorithms do not support key-value maps as defined in this
paper (see Section 3.2). The performance of OT algorithms
degrades rapidly as the number of concurrent operations
increases [12], [13].

Most deployed OT collaboration systems, including
Google Docs [14], Etherpad [15], Novell Vibe [16] and
Apache Wave (formerly Google Wave [11]), rely on a single
server to decide on a total ordering of operations [17], a
design decision inherited from the Jupiter system [8]. This
approach has the advantage of making the transformation
functions simpler and less error-prone [18], but it does not
meet our requirements, since we want to support peer-to-
peer collaboration without requiring a single server.

Many secure messaging protocols, which we plan to use
for encrypted collaboration, do not guarantee that different
recipients will see messages in the same order [2]. Although
it is possible to decide on a total ordering of operations
without using a single server by using an atomic broad-
cast protocol [19], such protocols are equivalent to consen-
sus [20], so they can only safely make progress if a quorum
of participants are reachable. We expect that in peer-to-peer
systems of mobile devices participants will frequently be
offline, and so any algorithm requiring atomic broadcast
would struggle to reach a quorum and become unavailable.
Without quorums, the strongest guarantee a system can give
is causal ordering [21].

The Google Realtime API [22] is to our knowledge the
only implementation of OT that supports arbitrary nesting
of lists and maps. Like Google Docs, it relies on a single
server [17]. As a proprietary product, details of its algo-
rithms have not been published.

2.2 CRDTs

Conflict-free replicated datatypes (CRDTs) are a family of
data structures that support concurrent modification and
guarantee convergence of concurrent updates. They work
by attaching additional metadata to the data structure, mak-
ing modification operations commutative by construction.
The JSON datatype described in this paper is a CRDT.

CRDTs for registers, counters, maps, and sets are well-
known [3], [23], and have been implemented in various de-
ployed systems such as Riak [24], [25]. For ordered lists, var-
ious algorithms have been proposed, including WOOT [26],
RGA [27], Treedoc [28], Logoot [29], and LSEQ [30]. Attiya
et al. [31] analyze the metadata overhead of collaboratively
edited lists, and provide a correctness proof of the RGA
algorithm. However, none of them support nesting: all of

3

the aforementioned algorithms assume that each of their
elements is a primitive value, not another CRDT.

The problem of nesting one CRDT inside another (also
known as composition or embedding) has only been studied
more recently. Riak allows nesting of counters and registers
inside maps, and of maps within other maps [24], [25].
Embedding counters inside maps raises questions of se-
mantics, which have been studied by Baquero, Almeida and
Lerche [32]. Almeida et al. [33] also define delta mutations
for nested maps, and Baquero et al. [34] define a theoretical
framework for composition of state-based CRDTs, based on
lattices. None of this work integrates CRDTs for ordered
lists, but the treatment of causality in these datatypes forms
a basis for the semantics developed in this paper.

Burckhardt et al. [35] define cloud types, which are similar
to CRDTs and can be composed. They define cloud arrays,
which behave similarly to our map datatype, and entities,
which are like unordered sets or relations; ordered lists are
not defined in this framework.

On the other hand, Martin et al. [36] generalize Lo-
goot [29] to support collaborative editing of XML docu-
ments – that is, a tree of nested ordered lists without nested
maps. As discussed in Section 3.2, such a structure does not
capture the expressiveness of JSON.

Although CRDTs for registers, maps and ordered lists
have existed for years in isolation, we are not aware of
any prior work that allows them all to be composed into
an arbitrarily nested CRDT with a JSON-like structure.

2.3 Other Approaches
Many replicated data systems need to deal with the prob-
lem of concurrent, conflicting modifications, but the solu-
tions are often ad-hoc. For example, in Dynamo [37] and
CouchDB, if several values are concurrently written to the
same key, the database preserves all of these values, and
leaves conflict resolution to application code – in other
words, the only datatype it supports is a multi-value regis-
ter. Naively chosen merge functions often exhibit anomalies
such as deleted items reappearing [37]. We believe that
conflict resolution is not a simple matter that can reasonably
be left to application programmers.

Another frequently-used approach to conflict resolution
is last writer wins (LWW), which arbitrarily chooses one
among several concurrent writes as “winner” and discards
the others. LWW is used in Apache Cassandra, for example.
It does not meet our requirements, since we want no user
input to be lost due to concurrent modifications.

Resolving concurrent updates on tree structures has been
studied in the context of file synchronization [38], [39].

Finally, systems such as Bayou [40] allow offline nodes
to execute transactions tentatively, and confirm them when
they are next online. This approach relies on all servers
executing transactions in the same serial order, and decid-
ing whether a transaction was successful depending on its
preconditions. Bayou has the advantage of being able to
express global invariants such as uniqueness constraints,
which require serialization and cannot be expressed using
CRDTs [41]. Bayou’s downside is that tentative transactions
may be rolled back, requiring explicit handling by the ap-
plication, whereas CRDTs are defined such that operations
cannot fail after they have been performed on one replica.

3 COMPOSING DATA STRUCTURES

In this section we informally introduce our approach to
collaborative editing of JSON data structures, and illustrate
some peculiarities of concurrent nested data structures. A
formal presentation of the algorithm follows in Section 4.

3.1 Concurrent Editing Examples
The sequential semantics of editing a JSON data structure
are well-known, and the semantics of concurrently editing
a flat map or list data structure have been thoroughly
explored in the literature (see Section 2). However, when
defining a CRDT for JSON data, difficulties arise due to
the interactions between concurrency and nested data struc-
tures.

In the following examples we show some situations
that might occur when JSON documents are concurrently
modified, demonstrate how they are handled by our algo-
rithm, and explain the rationale for our design decisions.
In all examples we assume two replicas, labelled p (drawn
on the left-hand side) and q (right-hand side). Local state
for a replica is drawn in boxes, and modifications to local
state are shown with labelled solid arrows; time runs down
the page. Since replicas only mutate local state, we make
communication of state changes between replicas explicit
in our model. Network communication is depicted with
dashed arrows.

Our first example is shown in Figure 1. In a document
that maps “key” to a register with value “A”, replica p sets
the value of the register to “B”, while replica q concurrently
sets it to “C”. As the replicas subsequently exchange edits
via network communication, they detect the conflict. Since
we do not want to simply discard one of the edits, and
the strings “B” and “C” cannot be meaningfully merged,
the system must preserve both concurrent updates. This
datatype is known as a multi-value register: although a replica
can only assign a single value to the register, reading the
register may return a set of multiple values that were
concurrently written.

A multi-value register is hardly an impressive CRDT,
since it does not actually perform any conflict resolution.
We use it only for primitive values for which no auto-
matic merge function is defined. Other CRDTs could be
substituted in its place: for example, a counter CRDT for
a number that can only be incremented and decremented,
or an ordered list of characters for a collaboratively editable
string (see also Figure 4).

Figure 2 gives an example of concurrent edits at different
levels of the JSON tree. Here, replica p adds “red” to a map
of colors, while replica q concurrently blanks out the entire
map of colors and then adds “green”. Instead of assigning
an empty map, q could equivalently remove the entire key
“colors” from the outer map, and then assign a new empty
map to that key. The difficulty in this example is that the
addition of “red” occurs at a lower level of the tree, while
concurrently the removal of the map of colors occurs at a
higher level of the tree.

One possible way of handling such a conflict would
be to let edits at higher levels of the tree always override
concurrent edits within that subtree. In this case, that would
mean the addition of “red” would be discarded, since it

4

Replica p: Replica q:

{“key”: “A”} {“key”: “A”}

{“key”: “B”} {“key”: “C”}

{“key”: {“B”, “C”}} {“key”: {“B”, “C”}}

network communication

doc.get(“key”) := “B”; doc.get(“key”) := “C”;

Fig. 1. Concurrent assignment to the register at doc.get(“key”) by replicas p and q.

{“colors”: {“blue”: “#0000ff”}} {“colors”: {“blue”: “#0000ff”}}

{“colors”: {“blue”: “#0000ff”,

“red”: “#ff0000”}}

{“colors”: {}}

{“colors”: {“green”: “#00ff00”}}

{“colors”: {“red”: “#ff0000”,

“green”: “#00ff00”}}
{“colors”: {“red”: “#ff0000”,

“green”: “#00ff00”}}

network communication

doc.get(“colors”).get(“red”)
:= “#ff0000”;

doc.get(“colors”) := {};

doc.get(“colors”).get(“green”)
:= “#00ff00”;

Fig. 2. Modifying the contents of a nested map while concurrently the entire map is overwritten.

{} {}

{“grocery”: []} {“grocery”: []}

{“grocery”: [“eggs”]}

{“grocery”: [“eggs”, “ham”]}

{“grocery”: [“milk”]}

{“grocery”: [“milk”, “flour”]}

{“grocery”: [“eggs”, “ham”, “milk”, “flour”]} {“grocery”: [“eggs”, “ham”, “milk”, “flour”]}

network communication

doc.get(“grocery”) := []; doc.get(“grocery”) := [];

doc.get(“grocery”).idx(0)
.insertAfter(“eggs”);

doc.get(“grocery”).idx(0)
.insertAfter(“milk”);

doc.get(“grocery”).idx(1)
.insertAfter(“ham”);

doc.get(“grocery”).idx(1)
.insertAfter(“flour”);

Fig. 3. Two replicas concurrently create ordered lists under the same map key.

5

Replica p: Replica q:

[“a”, “b”, “c”]

[“a”, “c”]

[“a”, “x”, “c”]

[“y”, “a”, “x”, “z”, “c”]

[“a”, “b”, “c”]

[“y”, “a”, “b”, “c”]

[“y”, “a”, “z”, “b”, “c”]

[“y”, “a”, “x”, “z”, “c”]

network communication

doc.idx(2).delete;

doc.idx(1).insertAfter(“x”);

doc.idx(0).insertAfter(“y”);

doc.idx(2).insertAfter(“z”);

Fig. 4. Concurrent editing of an ordered list of characters (i.e., a text document).

{}

{“a”: {}}

{“a”: {“x”: “y”}}

{mapT(“a”): {“x”: “y”},
listT(“a”): [“z”]}

{}

{“a”: []}

{“a”: [“z”]}

{mapT(“a”): {“x”: “y”},
listT(“a”): [“z”]}

network communication

doc.get(“a”) := {};

doc.get(“a”).get(“x”) := “y”;

doc.get(“a”) := [];

doc.get(“a”).idx(0).insertAfter(“z”);

Fig. 5. Concurrently assigning values of different types to the same map key.

{“todo”: [{“title”: “buy milk”,

“done”: false}]}
{“todo”: [{“title”: “buy milk”,

“done”: false}]}

{“todo”: []}
{“todo”: [{“title”: “buy milk”,

“done”: true}]}

{“todo”: [{“done”: true}]} {“todo”: [{“done”: true}]}

network communication

doc.get(“todo”).idx(1).delete; doc.get(“todo”).idx(1).get(“done”) := true;

Fig. 6. One replica removes a list element, while another concurrently updates its contents.

6

would be overridden by the blanking-out of the entire
map of colors. However, that behavior would violate our
requirement that no user input should be lost due to concur-
rent modifications. Instead, we define merge semantics that
preserve all changes, as shown in Figure 2: “blue” must be
absent from the final map, since it was removed by blanking
out the map, while “red” and “green” must be present, since
they were explicitly added. This behavior matches that of
CRDT maps in Riak [24], [25].

Figure 3 illustrates another problem with maps: two
replicas can concurrently insert the same map key. Here, p
and q each independently create a new shopping list under
the same map key “grocery”, and add items to the list. In
the case of Figure 1, concurrent assignments to the same
map key were left to be resolved by the application, but in
Figure 3, both values are lists and so they can be merged au-
tomatically. We preserve the ordering and adjacency of items
inserted at each replica, so “ham” appears after “eggs”, and
“flour” appears after “milk” in the merged result. There is
no information on which replica’s items should appear first
in the merged result, so the algorithm can make an arbitrary
choice between “eggs, ham, milk, flour” and “milk, flour,
eggs, ham”, provided that all replicas end up with the items
in the same order.

Figure 4 shows how a collaborative text editor can be
implemented, by treating the document as a list of charac-
ters. All changes are preserved in the merged result: “y” is
inserted before “a”; “x” and “z” are inserted between “a”
and “c”; and “b” is deleted.

Figure 5 demonstrates a variant of the situation in Fig-
ure 3, where two replicas concurrently insert the same map
key, but they do so with different datatypes as values:
p inserts a nested map, whereas q inserts a list. These
datatypes cannot be meaningfully merged, so we preserve
both values separately. We do this by tagging each map
key with a type annotation (mapT, listT, or regT for a map,
list, or register value respectively), so each type inhabits a
separate namespace.

Finally, Figure 6 shows a limitation of the principle of
preserving all user input. In a to-do list application, one
replica removes a to-do item from the list, while another
replica concurrently marks the same item as done. As the
changes are merged, the update of the map key “done”
effectively causes the list item to be resurrected on replica
p, leaving a to-do item without a title (since the title was
deleted as part of deleting the list item). This behavior is
consistent with the example in Figure 2, but it is perhaps sur-
prising. In this case it may be more desirable to discard one
of the concurrent updates, and thus preserve the implicit
schema that a to-do item has both a “title” and a “done”
field. We leave the analysis of developer expectations and
the development of a schema language for future work.

3.2 JSON Versus XML

The most common alternative to JSON is XML, and col-
laborative editing of XML documents has been previously
studied [9], [10], [11]. Besides the superficial syntactical
differences, the tree structure of XML and JSON appears
quite similar. However, there is an important difference that
we should highlight.

CMD ::= let x = EXPR x ∈ VAR
| EXPR := v v ∈ VAL
| EXPR.insertAfter(v) v ∈ VAL
| EXPR.delete
| yield
| CMD; CMD

EXPR ::= doc
| x x ∈ VAR
| EXPR.get(key) key ∈ String
| EXPR.idx(i) i ≥ 0
| EXPR.keys
| EXPR.values

VAR ::= x x ∈ VarString
VAL ::= n n ∈ Number

| str str ∈ String
| true | false | null
| {} | []

Fig. 7. Syntax of command language for querying and modifying a
document.

doc := {};
doc.get("shopping") := [];
let head = doc.get("shopping").idx(0);
head.insertAfter("eggs");
let eggs = doc.get("shopping").idx(1);
head.insertAfter("cheese");
eggs.insertAfter("milk");

// Final state:
{"shopping": ["cheese", "eggs", "milk"]}

Fig. 8. Example of programmatically constructing a JSON document.

JSON has two collection constructs that can be arbitrarily
nested: maps for unordered key-value pairs, and lists for
ordered sequences. In XML, the children of an element form
an ordered sequence, while the attributes of an element are
unordered key-value pairs. However, XML does not allow
nested elements inside attributes – the value of an attribute
can only be a primitive datatype. Thus, XML supports maps
within lists, but not lists within maps. In this regard, XML is
less expressive than JSON: the scenarios in Figures 3 and 5
cannot occur in XML.

Some applications may attach map-like semantics to the
children of an XML document, for example by interpreting
the child element name as key. However, this key-value
structure is not part of XML itself, and would not be en-
forced by existing collaborative editing algorithms for XML.
If multiple children with the same key are concurrently
created, existing algorithms would create duplicate children
with the same key rather than merging them like in Figure 3.

3.3 Document Editing API

To define the semantics for collaboratively editable data
structures, we first define a simple command language that
is executed locally at any of the replicas, and which allows
that replica’s local copy of the document to be queried and
modified. Performing read-only queries has no side-effects,

7

but modifying the document has the effect of producing
operations describing the mutation. Those operations are
immediately applied to the local copy of the document,
and also enqueued for asynchronous broadcasting to other
replicas.

The syntax of the command language is given in Fig-
ure 7. It is not a full programming language, but rather
an API through which the document state is queried and
modified. We assume that the program accepts user input
and issues a (possibly infinite) sequence of commands to the
API. We model only the semantics of those commands, and
do not assume anything about the program in which the
command language is embedded. The API differs slightly
from the JSON libraries found in many programming lan-
guages, in order to allow us to define consistent merge
semantics.

We first explain the language informally, before giving
its formal semantics. The expression construct EXPR is used
to construct a cursor which identifies a position in the
document. An expression starts with either the special token
doc, identifying the root of the JSON document tree, or a
variable x that was previously defined in a let command.
The expression defines, left to right, the path the cursor
takes as it navigates through the tree towards the leaves:
the operator .get(key) selects a key within a map, and
.idx(n) selects the nth element of an ordered list. Lists are
indexed starting from 1, and .idx(0) is a special cursor
indicating the head of a list (a virtual position before the
first list element).

The expression construct EXPR can also query the state
of the document: keys returns the set of keys in the map at
the current cursor, and values returns the contents of the
multi-value register at the current cursor. (values is not
defined if the cursor refers to a map or list.)

A command CMD either sets the value of a local vari-
able (let), performs network communication (yield), or
modifies the document. A document can be modified by
writing to a register (the operator := assigns the value
of the register identified by the cursor), by inserting an
element into a list (insertAfter places a new element
after the existing list element identified by the cursor, and
.idx(0).insertAfter inserts at the head of a list), or by
deleting an element from a list or a map (delete removes
the element identified by the cursor).

Figure 8 shows an example sequence of commands that
constructs a new document representing a shopping list.
First doc is set to {}, the empty map literal, and then the
key "shopping" within that map is set to the empty list [].
The third line navigates to the key "shopping" and selects
the head of the list, placing the cursor in a variable called
head. The list element “eggs” is inserted at the head of the
list. In line 5, the variable eggs is set to a cursor pointing
at the list element “eggs”. Then two more list elements are
inserted: “cheese” at the head, and “milk” after “eggs”.

Note that the cursor eggs identifies the list element by
identity, not by its index: after the insertion of “cheese”,
the element “eggs” moves from index 1 to 2, but “milk”
is nevertheless inserted after “eggs”. As we shall see later,
this feature is helpful for achieving desirable semantics in
the presence of concurrent modifications.

4 FORMAL SEMANTICS

We now explain formally how to achieve the concurrent
semantics outlined in Section 3. The state of replica p is
described by Ap, a finite partial function. The evaluation
rules of the command language inspect and modify this
local state Ap, and they do not depend on Aq (the state of
any other replica q 6= p). The only communication between
replicas occurs in the evaluation of the yield command,
which we discuss later. For now, we concentrate on the
execution of commands at a single replica p.

4.1 Expression Evaluation
Figure 9 gives the rules for evaluating EXPR expressions in
the command language, which are evaluated in the context
of the local replica state Ap. The EXEC rule formalizes the
assumption that commands are executed sequentially. The
LET rule allows the program to define a local variable, which
is added to the local state (the notation Ap[x 7→ cur]
denotes a partial function that is the same as Ap, except
that Ap(x) = cur). The corresponding VAR rule allows
the program to retrieve the value of a previously defined
variable.

The following rules in Figure 9 show how an expression
is evaluated to a cursor, which unambiguously identifies
a particular position in a JSON document by describing a
path from the root of the document tree to some branch or
leaf node. A cursor consists only of immutable keys and
identifiers, so it can be sent over the network to another
replica, where it can be used to locate the same position in
the document.

For example,

cursor(〈mapT(doc), listT(“shopping”)〉, id1)

is a cursor representing the list element "eggs" in Figure 8,
assuming that id1 is the unique identifier of the operation
that inserted this list element (we will discuss these identi-
fiers in Section 4.2.1). The cursor can be interpreted as a path
through the local replica state structure Ap, read from left
to right: starting from the doc map at the root, it traverses
through the map entry “shopping” of type listT, and finishes
with the list element that has identifier id1.

In general, cursor(〈k1, . . . , kn−1〉, kn) consists of a (pos-
sibly empty) vector of keys 〈k1, . . . , kn−1〉, and a final key
kn which is always present. kn can be thought of as the
final element of the vector, with the distinction that it is
not tagged with a datatype, whereas the elements of the
vector are tagged with the datatype of the branch node
being traversed, either mapT or listT.

The DOC rule in Figure 9 defines the simplest cur-
sor cursor(〈〉, doc), referencing the root of the document
using the special atom doc. The GET rule navigates a
cursor to a particular key within a map. For exam-
ple, the expression doc.get("shopping") evaluates to
cursor(〈mapT(doc)〉, “shopping”) by applying the DOC and
GET rules. Note that the expression doc.get(...) implic-
itly asserts that doc is of type mapT, and this assertion is
encoded in the cursor.

The rules IDX1...5 define how to evaluate the expression
.idx(n), moving the cursor to a particular element of a
list. IDX1 constructs a cursor representing the head of the

8

cmd1 : CMD Ap, cmd1 =⇒ A′p
EXEC

Ap, 〈cmd1 ; cmd2 ; . . . 〉 =⇒ A′p, 〈cmd2 ; . . . 〉
DOC

Ap, doc =⇒ cursor(〈〉, doc)

Ap, expr =⇒ cur
LET

Ap, let x = expr =⇒ Ap[x 7→ cur]

x ∈ dom(Ap)
VAR

Ap, x =⇒ Ap(x)

Ap, expr =⇒ cursor(〈k1, . . . , kn−1〉, kn) kn 6= head
GET

Ap, expr .get(key) =⇒ cursor(〈k1, . . . , kn−1,mapT(kn)〉, key)

Ap, expr =⇒ cursor(〈k1, . . . , kn−1〉, kn) Ap, cursor(〈k1, . . . , kn−1, listT(kn)〉, head).idx(i) =⇒ cur ′
IDX1

Ap, expr .idx(i) =⇒ cur ′

k1 ∈ dom(ctx) ctx (k1), cursor(〈k2, . . . , kn−1〉, kn).idx(i) =⇒ cursor(〈k2, . . . , kn−1〉, k′n)IDX2
ctx , cursor(〈k1, k2, . . . , kn−1〉, kn).idx(i) =⇒ cursor(〈k1, k2, . . . , kn−1〉, k′n)

i > 0 ∧ ctx (next(k)) = k′ ∧ k′ 6= tail ctx (pres(k′)) 6= {} ctx , cursor(〈〉, k′).idx(i− 1) =⇒ ctx ′
IDX3

ctx , cursor(〈〉, k).idx(i) =⇒ ctx ′

i > 0 ∧ ctx (next(k)) = k′ ∧ k′ 6= tail ctx (pres(k′)) = {} ctx , cursor(〈〉, k′).idx(i) =⇒ cur ′
IDX4

ctx , cursor(〈〉, k).idx(i) =⇒ cur ′

i = 0IDX5
ctx , cursor(〈〉, k).idx(i) =⇒ cursor(〈〉, k)

keys(ctx) = { k | mapT(k) ∈ dom(ctx) ∨ listT(k) ∈ dom(ctx) ∨ regT(k) ∈ dom(ctx) }

Ap, expr =⇒ cur Ap, cur .keys =⇒ keys
KEYS1

Ap, expr .keys =⇒ keys

map = ctx (mapT(k)) keys = { k | k ∈ keys(map) ∧ map(pres(k)) 6= {} }
KEYS2

Ap, cursor(〈〉, k).keys =⇒ keys

k1 ∈ dom(ctx) ctx (k1), cursor(〈k2, . . . , kn−1〉, kn).keys =⇒ keys
KEYS3

ctx , cursor(〈k1, k2, . . . , kn−1〉, kn).keys =⇒ keys

Ap, expr =⇒ cur Ap, cur .values =⇒ val
VAL1

Ap, expr .values =⇒ val

regT(k) ∈ dom(ctx) val = range(ctx (regT(k)))
VAL2

ctx , cursor(〈〉, k).values =⇒ val

k1 ∈ dom(ctx) ctx (k1), cursor(〈k2, . . . , kn−1〉, kn).values =⇒ val
VAL3

ctx , cursor(〈k1, k2, . . . , kn−1〉, kn).values =⇒ val

Fig. 9. Rules for evaluating expressions.

list, and delegates to the subsequent rules to scan over the
list. IDX2 recursively descends the local state according to
the vector of keys in the cursor. When the vector of keys is
empty, the context ctx is the subtree of Ap that stores the list
in question, and the rules IDX3,4,5 iterate over that list until
the desired element is found.

IDX5 terminates the iteration when the index reaches
zero, while IDX3 moves to the next element and decrements
the index, and IDX4 skips over list elements that are marked
as deleted. The structure resembles a linked list: each list
element has a unique identifier k, and the partial function
representing local state maps next(k) to the ID of the list
element that follows k.

Deleted elements are never removed from the linked
list structure, but only marked as deleted (they become so-

called tombstones). To this end, the local state maintains a
presence set pres(k) for the list element with ID k, which is the
set of all operations that have asserted the existence of this
list element. When a list element is deleted, the presence set
is set to the empty set, which marks it as deleted; however,
a concurrent operation that references the list element can
cause the presence set to be come non-empty again (leading
to the situations in Figures 2 and 6). Rule IDX4 handles
list elements with an empty presence set by moving to the
next list element without decrementing the index (i.e., not
counting them as list elements).

The KEYS1,2,3 rules allow the application to inspect the
set of keys in a map. This set is determined by examining the
local state, and excluding any keys for which the presence
set is empty (indicating that the key has been deleted).

9

Finally, the VAL1,2,3 rules allow the application to read
the contents of a register at a particular cursor position,
using a similar recursive rule structure as the IDX rules. A
register is expressed using the regT type annotation in the
local state. Although a replica can only assign a single value
to a register, a register can nevertheless contain multiple
values if multiple replicas concurrently assign values to it.

4.2 Generating Operations
When commands mutate the state of the document, they
generate operations that describe the mutation. In our se-
mantics, a command never directly modifies the local replica
state Ap, but only generates an operation. That operation is
then immediately applied to Ap so that it takes effect locally,
and the same operation is also asynchronously broadcast to
the other replicas.

4.2.1 Lamport Timestamps
Every operation in our model is given a unique identifier,
which is used in the local state and in cursors. Whenever
an element is inserted into a list, or a value is assigned to a
register, the new list element or register value is identified
by the identifier of the operation that created it.

In order to generate globally unique operation identifiers
without requiring synchronous coordination between repli-
cas we use Lamport timestamps [42]. A Lamport timestamp
is a pair (c, p) where p ∈ ReplicaID is the unique identifier
of the replica on which the edit is made (for example, a
hash of its public key), and c ∈ N is a counter that is stored
at each replica and incremented for every operation. Since
each replica generates a strictly monotonically increasing
sequence of counter values c, the pair (c, p) is unique.

If a replica receives an operation with a counter value c
that is greater than the locally stored counter value, the local
counter is increased to the value of the incoming counter.
This ensures that if operation o1 causally happened before
o2 (that is, the replica that generated o2 had received and
processed o1 before o2 was generated), then o2 must have
a greater counter value than o1. Only concurrent operations
can have equal counter values.

We can thus define a total ordering < for Lamport
timestamps:

(c1, p1) < (c2, p2) iff (c1 < c2) ∨ (c1 = c2 ∧ p1 < p2).

If one operation happened before another, this ordering is
consistent with causality (the earlier operation has a lower
timestamp). If two operations are concurrent, their order
according to < is arbitrary but deterministic. This ordering
property is important for our definition of the semantics of
ordered lists.

4.2.2 Operation Structure
An operation is a tuple of the form

op(

id : N× ReplicaID,

deps : P(N× ReplicaID),

cur : cursor(〈k1, . . . , kn−1〉, kn),
mut : insert(v) | delete | assign(v) v : VAL

)

where id is the Lamport timestamp that uniquely identifies
the operation, cur is the cursor describing the position in
the document being modified, and mut is the mutation that
was requested at the specified position.

deps is the set of causal dependencies of the operation.
It is defined as follows: if operation o2 was generated by
replica p, then a causal dependency of o2 is any operation
o1 that had already been applied on p at the time when o2

was generated. In this paper, we define deps as the set of
Lamport timestamps of all causal dependencies. In a real
implementation, this set would become impracticably large,
so a compact representation of causal history would be used
instead – for example, version vectors [43], state vectors [5],
or dotted version vectors [44]. However, to avoid ambiguity
in our semantics we give the dependencies as a simple set
of operation IDs.

The purpose of the causal dependencies deps is to im-
pose a partial ordering on operations: an operation can
only be applied after all operations that “happened before”
it have been applied. In particular, this means that the
sequence of operations generated at one particular replica
will be applied in the same order at every other replica.
Operations that are concurrent (i.e., where there is no causal
dependency in either direction) can be applied in any order.

4.2.3 Semantics of Generating Operations
The evaluation rules for commands are given in Fig-
ure 10. The MAKE-ASSIGN, MAKE-INSERT and MAKE-
DELETE rules define how these respective commands mu-
tate the document: all three delegate to the MAKE-OP rule
to generate and apply the operation. MAKE-OP generates a
new Lamport timestamp by choosing a counter value that
is 1 greater than any existing counter in Ap(ops), the set of
all operation IDs that have been applied to replica p.

MAKE-OP constructs an op() tuple of the form described
above, and delegates to the APPLY-LOCAL rule to process
the operation. APPLY-LOCAL does three things: it evalu-
ates the operation to produce a modified local state A′p, it
adds the operation to the queue of generated operations
Ap(queue), and it adds the ID to the set of processed
operations Ap(ops).

The yield command, inspired by Burckhardt et al. [35],
performs network communication: sending and receiving
operations to and from other replicas, and applying opera-
tions from remote replicas. The rules APPLY-REMOTE, SEND,
RECV and YIELD define the semantics of yield. Since any
of these rules can be used to evaluate yield, their effect is
nondeterministic, which models the asynchronicity of the
network: a message sent by one replica arrives at another
replica at some arbitrarily later point in time, and there is
no message ordering guarantee in the network.

The SEND rule takes any operations that were placed in
Ap(queue) by APPLY-LOCAL and adds them to a send buffer
Ap(send). Correspondingly, the RECV rule takes operations
in the send buffer of replica q and adds them to the receive
buffer Ap(recv) of replica p. This is the only rule that
involves more than one replica, and it models all network
communication.

Once an operation appears in the receive buffer Ap(recv),
the rule APPLY-REMOTE may apply. Under the precondi-
tions that the operation has not already been processed and

10

Ap, expr =⇒ cur val : VAL Ap, makeOp(cur , assign(val)) =⇒ A′p
MAKE-ASSIGN

Ap, expr := val =⇒ A′p

Ap, expr =⇒ cur val : VAL Ap, makeOp(cur , insert(val)) =⇒ A′p
MAKE-INSERT

Ap, expr .insertAfter(val) =⇒ A′p

Ap, expr =⇒ cur Ap, makeOp(cur , delete) =⇒ A′p
MAKE-DELETE

Ap, expr .delete =⇒ A′p

ctr = max({0} ∪ {ci | (ci, pi) ∈ Ap(ops)} Ap, apply(op((ctr + 1, p), Ap(ops), cur ,mut)) =⇒ A′p
MAKE-OP

Ap, makeOp(cur ,mut) =⇒ A′p

Ap, op =⇒ A′p
APPLY-LOCAL

Ap, apply(op) =⇒ A′p[queue 7→ A′p(queue) ∪ {op}, ops 7→ A′p(ops) ∪ {op.id}]

op ∈ Ap(recv) op.id /∈ Ap(ops) op.deps ⊆ Ap(ops) Ap, op =⇒ A′p
APPLY-REMOTE

Ap, yield =⇒ A′p[ops 7→ A′p(ops) ∪ {op.id}]

SEND
Ap, yield =⇒ Ap[send 7→ Ap(send) ∪ Ap(queue)]

q : ReplicaID
RECV

Ap, yield =⇒ Ap[recv 7→ Ap(recv) ∪ Aq(send)]

Ap, yield =⇒ A′p A′p, yield =⇒ A′′p
YIELD

Ap, yield =⇒ A′′p

Fig. 10. Rules for generating, sending, and receiving operations.

that its causal dependencies are satisfied, APPLY-REMOTE
applies the operation in the same way as APPLY-LOCAL,
and adds its ID to the set of processed operations Ap(ops).

The actual document modifications are performed by
applying the operations, which we discuss next.

4.3 Applying Operations

Figure 11 gives the rules that apply an operation op to a
context ctx , producing an updated context ctx ′. The context
is initially the replica state Ap, but may refer to subtrees of
the state as rules are recursively applied. These rules are
used by APPLY-LOCAL and APPLY-REMOTE to perform the
state updates on a document.

When the operation cursor’s vector of keys is non-empty,
the DESCEND rule first applies. It recursively descends the
document tree by following the path described by the keys.
If the tree node already exists in the local replica state,
CHILD-GET finds it, otherwise CHILD-MAP and CHILD-
LIST create an empty map or list respectively.

The DESCEND rule also invokes ADD-ID1,2 at each tree
node along the path described by the cursor, adding the
operation ID to the presence set pres(k) to indicate that the
subtree includes a mutation made by this operation.

The remaining rules in Figure 11 apply when the vector
of keys in the cursor is empty, which is the case when
descended to the context of the tree node to which the
mutation applies. The ASSIGN rule handles assignment of
a primitive value to a register, EMPTY-MAP handles as-
signment where the value is the empty map literal {},
and EMPTY-LIST handles assignment of the empty list [].

These three rules for assign have a similar structure: first
clearing the prior value at the cursor (as discussed in the
next section), then adding the operation ID to the presence
set, and finally incorporating the new value into the tree of
local state.

The INSERT1,2 rules handle insertion of a new element
into an ordered list. In this case, the cursor refers to the
list element prev , and the new element is inserted after
that position in the list. INSERT1 performs the insertion by
manipulating the linked list structure. INSERT2 handles the
case of multiple replicas concurrently inserting list elements
at the same position, and uses the ordering relation < on
Lamport timestamps to consistently determine the insertion
point. Our approach for handling insertions is based on the
RGA algorithm [27]. We show later that these rules ensure
all replicas converge towards the same state.

4.3.1 Clearing Prior State

Assignment and deletion operations require that prior state
(the value being overwritten or deleted) is cleared, while
also ensuring that concurrent modifications are not lost, as
illustrated in Figure 2. The rules to handle this clearing
process are given in Figure 12. Intuitively, the effect of
clearing something is to reset it to its empty state by undoing
any operations that causally precede the current operation,
while leaving the effect of any concurrent operations un-
touched.

A delete operation can be used to delete either an ele-
ment from an ordered list or a key from a map, depending
on what the cursor refers to. The DELETE rule shows how

11

ct
x
,
k

1
=
⇒

ch
il
d

ch
il
d
,
op

(i
d
,d
ep
s,
cu
rs
or
(〈
k

2
,.
..
,k

n
−

1
〉,
k
n
),
m
u
t)

=
⇒

ch
il
d
′

ct
x
,
ad
d
Id
(k

1
,i
d
,m

u
t)

=
⇒

ct
x
′

D
E

SC
E

N
D

ct
x
,
op

(i
d
,d
ep
s,
cu
rs
or
(〈
k

1
,k

2
,.
..
,k

n
−

1
〉,
k
n
),
m
u
t)

=
⇒

ct
x
′ [
k

1
7→

ch
il
d
′]

k
∈
d
om

(c
tx
)

C
H

IL
D

-G
E

T
ct
x
,
k

=
⇒

ct
x
(k
)

m
ap
T
(k
)
/∈
d
o
m
(c
tx
)

C
H

IL
D

-M
A

P
ct
x
,
m
ap
T
(k
)
=
⇒
{}

lis
tT

(k
)
/∈
d
o
m
(c
tx
)

C
H

IL
D

-L
IS

T
ct
x
,
lis
tT

(k
)
=
⇒
{n

ex
t(
h
ea
d
)
7→

ta
il
}

re
gT

(k
)
/∈
d
om

(c
tx
)

C
H

IL
D

-R
E

G
ct
x
,
re
gT

(k
)
=
⇒
{}

pr
es
(k
)
∈
d
o
m
(c
tx
)

P
R

E
SE

N
C

E
1

ct
x
,
pr
es
(k
)
=
⇒

ct
x
(p
re
s(
k
))

pr
es
(k
)
/∈
d
o
m
(c
tx
)

P
R

E
SE

N
C

E
2

ct
x
,
pr
es
(k
)
=
⇒
{}

m
u
t
6=

d
el
et
e

k
ta

g
∈
{m

ap
T
(k
),
lis
tT

(k
),
re
gT

(k
)}

ct
x
,
pr
es
(k
)
=
⇒

p
re
s

A
D

D
-I

D
1

ct
x
,
ad
d
Id
(k

ta
g
,i
d
,m

u
t)

=
⇒

ct
x
[p
re
s(
k
)
7→

p
re
s
∪
{i
d
}]

m
u
t
=

d
el
et
e

A
D

D
-I

D
2

ct
x
,
ad
d
Id
(k

ta
g
,i
d
,m

u
t)

=
⇒

ct
x

va
l
6=
[
]
∧

va
l
6=
{
}

ct
x
,
cl
ea
r(
d
ep
s,
re
gT

(k
))

=
⇒

ct
x
′ ,
p
re
s

ct
x
′ ,
ad
d
Id
(r
eg
T
(k
),
id
,a
ss
ig
n
(v
a
l)
)
=
⇒

ct
x
′′

ct
x
′′
,
re
gT

(k
)
=
⇒

ch
il
d

A
SS

IG
N

ct
x
,
op

(i
d
,d
ep
s,
cu
rs
or
(〈
〉,
k
),
as
si
gn

(v
a
l)
)
=
⇒

ct
x
′′
[r
eg
T
(k
)
7→

ch
il
d
[i
d
7→

va
l
]]

va
l
=
{
}

ct
x
,
cl
ea
rE
le
m
(d
ep
s,
k
)
=
⇒

ct
x
′ ,
p
re
s

ct
x
′ ,
ad
d
Id
(m

ap
T
(k
),
id
,a
ss
ig
n
(v
a
l)
)
=
⇒

ct
x
′′

ct
x
′′
,
m
ap
T
(k
)
=
⇒

ch
il
d

E
M

P
T

Y
-M

A
P

ct
x
,
op

(i
d
,d
ep
s,
cu
rs
or
(〈
〉,
k
),
as
si
gn

(v
a
l)
)
=
⇒

ct
x
′′
[m

ap
T
(k
)
7→

ch
il
d
]

va
l
=
[
]

ct
x
,
cl
ea
rE
le
m
(d
ep
s,
k
)
=
⇒

ct
x
′ ,
p
re
s

ct
x
′ ,
ad
d
Id
(l
is
tT

(k
),
id
,a
ss
ig
n
(v
a
l)
)
=
⇒

ct
x
′′

ct
x
′′
,
lis
tT

(k
)
=
⇒

ch
il
d

E
M

P
T

Y
-L

IS
T

ct
x
,
op

(i
d
,d
ep
s,
cu
rs
or
(〈
〉,
k
),
as
si
gn

(v
a
l)
)
=
⇒

ct
x
′′
[l
is
tT

(k
)
7→

ch
il
d
]

ct
x
(n
ex
t(
p
re
v
))

=
n
ex
t

n
ex
t
<

id
∨

n
ex
t
=

ta
il

ct
x
,
op

(i
d
,d
ep
s,
cu
rs
or
(〈
〉,
id
),
as
si
gn

(v
a
l)
)
=
⇒

ct
x
′

IN
SE

R
T

1
ct
x
,
op

(i
d
,d
ep
s,
cu
rs
or
(〈
〉,
p
re
v
),
in
se
rt
(v
a
l)
)
=
⇒

ct
x
′ [
n
ex
t(
p
re
v
)
7→

id
,
n
ex
t(
id
)
7→

n
ex
t
]

ct
x
(n
ex
t(
p
re
v
))

=
n
ex
t

id
<

n
ex
t

ct
x
,
op

(i
d
,d
ep
s,
cu
rs
or
(〈
〉,
n
ex
t)
,i
n
se
rt
(v
a
l)
)
=
⇒

ct
x
′

IN
SE

R
T

2
ct
x
,
op

(i
d
,d
ep
s,
cu
rs
or
(〈
〉,
p
re
v
),
in
se
rt
(v
a
l)
)
=
⇒

ct
x
′

Fi
g.

11
.R

ul
es

fo
ra

pp
ly

in
g

in
se

rt
io

n
an

d
as

si
gn

m
en

to
pe

ra
tio

ns
to

up
da

te
th

e
st

at
e

of
a

re
pl

ic
a.

12

ctx , clearElem(deps, k) =⇒ ctx ′, pres
DELETE

ctx , op(id , deps, cursor(〈〉, k), delete) =⇒ ctx ′

ctx , clearAny(deps, k) =⇒ ctx ′, pres1 ctx ′, pres(k) =⇒ pres2 pres3 = pres1 ∪ pres2 \ depsCLEAR-ELEM
ctx , clearElem(deps, k) =⇒ ctx ′[pres(k) 7→ pres3], pres3

ctx , clear(deps,mapT(k))
=⇒ ctx 1, pres1

ctx 1, clear(deps, listT(k))
=⇒ ctx 2, pres2

ctx 2, clear(deps, regT(k))
=⇒ ctx 3, pres3

CLEAR-ANY
ctx , clearAny(deps, k) =⇒ ctx 3, pres1 ∪ pres2 ∪ pres3

k /∈ dom(ctx)
CLEAR-NONE

ctx , clear(deps, k) =⇒ ctx , {}

regT(k) ∈ dom(ctx) concurrent = {id 7→ v | (id 7→ v) ∈ ctx (regT(k)) ∧ id /∈ deps}
CLEAR-REG

ctx , clear(deps, regT(k)) =⇒ ctx [regT(k) 7→ concurrent], dom(concurrent)

mapT(k) ∈ dom(ctx) ctx (mapT(k)), clearMap(deps, {}) =⇒ cleared , pres
CLEAR-MAP1

ctx , clear(deps,mapT(k)) =⇒ ctx [mapT(k) 7→ cleared], pres

k ∈ keys(ctx)
∧ k /∈ done

ctx , clearElem(deps, k)
=⇒ ctx ′, pres1

ctx ′, clearMap(deps, done ∪ {k})
=⇒ ctx ′′, pres2CLEAR-MAP2

ctx , clearMap(deps, done) =⇒ ctx ′′, pres1 ∪ pres2

done = keys(ctx)
CLEAR-MAP3

ctx , clearMap(deps, done) =⇒ ctx , {}

listT(k) ∈ dom(ctx) ctx (listT(k)), clearList(deps, head) =⇒ cleared , pres
CLEAR-LIST1

ctx , clear(deps, listT(k)) =⇒ ctx [listT(k) 7→ cleared], pres

k 6= tail∧
ctx (next(k)) = next

ctx , clearElem(deps, k)
=⇒ ctx ′, pres1

ctx ′, clearList(deps,next)
=⇒ ctx ′′, pres2CLEAR-LIST2

ctx , clearList(deps, k) =⇒ ctx ′′, pres1 ∪ pres2

k = tailCLEAR-LIST3
ctx , clearList(deps, k) =⇒ ctx , {}

Fig. 12. Rules for applying deletion operations to update the state of a replica.

this operation is evaluated by delegating to CLEAR-ELEM. In
turn, CLEAR-ELEM uses CLEAR-ANY to clear out any data
with a given key, regardless of whether it is of type mapT,
listT or regT, and also updates the presence set to include
any nested operation IDs, but exclude any operations in
deps .

The premises of CLEAR-ANY are satisfied by
CLEAR-MAP1, CLEAR-LIST1 and CLEAR-REG if the
respective key appears in ctx , or by CLEAR-NONE (which
does nothing) if the key is absent.

As defined by the ASSIGN rule, a register maintains a
mapping from operation IDs to values. CLEAR-REG updates
a register by removing all operation IDs that appear in deps
(i.e., which causally precede the clearing operation), but
retaining all operation IDs that do not appear in deps (from
assignment operations that are concurrent with the clearing
operation).

Clearing maps and lists takes a similar approach: each
element of the map or list is recursively cleared using
clearElem, and presence sets are updated to exclude deps .
Thus, any list elements or map entries whose modifications
causally precede the clearing operation will end up with

empty presence sets, and thus be considered deleted. Any
map or list elements containing operations that are concur-
rent with the clearing operation are preserved.

4.4 Convergence
As outlined in Section 1.2, we require that all replicas auto-
matically converge towards the same state – a key require-
ment of a CRDT. We now formalize this notion, and show
that the rules in Figures 9 to 12 satisfy this requirement.

Definition 1 (valid execution). A valid execution is a set
of operations generated by a set of replicas {p1, . . . , pk}, each
reducing a sequence of commands 〈cmd1 ; . . . ; cmdn〉 without
getting stuck.

A reduction gets stuck if there is no application of rules
in which all premises are satisfied. For example, the IDX3,4

rules in Figure 9 get stuck if idx(n) tries to iterate past the
end of a list, which would happen if n is greater than the
number of non-deleted elements in the list; in a real imple-
mentation this would be a runtime error. By constraining
valid executions to those that do not get stuck, we ensure
that operations only refer to list elements that actually exist.

13

Note that it is valid for an execution to never perform
any network communication, either because it never in-
vokes the yield command, or because the nondeterministic
execution of yield never applies the RECV rule. We need
only a replica’s local state to determine whether reduction
gets stuck.

Definition 2 (history). A history is a sequence of operations in
the order it was applied at one particular replica p by application
of the rules APPLY-LOCAL and APPLY-REMOTE.

Since the evaluation rules sequentially apply one op-
eration at a time at a given replica, the order is well-
defined. Even if two replicas p and q applied the same
set of operations, i.e. if Ap(ops) = Aq(ops), they may
have applied any concurrent operations in a different order.
Due to the premise op.deps ⊆ Ap(ops) in APPLY-REMOTE,
histories are consistent with causality: if an operation has
causal dependencies, it appears at some point after those
dependencies in the history.

Definition 3 (document state). The document state of
a replica p is the subtree of Ap containing the document:
that is, Ap(mapT(doc)) or Ap(listT(doc)) or Ap(regT(doc)),
whichever is defined.

Ap contains variables defined with let, which are local
to one replica, and not part of the replicated state. The
definition of document state excludes these variables.

Theorem. For any two replicas p and q that participated in a
valid execution, if Ap(ops) = Aq(ops), then p and q have the
same document state.

This theorem is proved in the appendix. It formalizes
the safety property of convergence: if two replicas have
processed the same set of operations, possibly in a different
order, then they are in the same state. In combination with
a liveness property, namely that every replica eventually
processes all operations, we obtain the desired notion of
convergence: all replicas eventually end up in the same
state.

The liveness property depends on assumptions of repli-
cas invoking yield sufficiently often, and all nondeterminis-
tic rules for yield being chosen fairly. We will not formalize
the liveness property in this paper, but assert that it can
usually be provided in practice, as network interruptions
are usually of finite duration.

5 CONCLUSIONS AND FURTHER WORK

In this paper we demonstrated how to compose CRDTs for
ordered lists, maps and registers into a compound CRDT
with a JSON data model. It supports arbitrarily nested lists
and maps, and it allows replicas to make arbitrary changes
to the data without waiting for network communication.
Replicas asynchronously send mutations to other replicas
in the form of operations. Concurrent operations are com-
mutative, which ensures that replicas converge towards the
same state without requiring application-specific conflict
resolution logic.

This work focused on the formal semantics of the JSON
CRDT, represented as a mathematical model. We are also
working on a practical implementation of the algorithm, and

will report on its performance characteristics in follow-on
work.

Our principle of not losing input due to concurrent
modifications appears at first glance to be reasonable, but
as illustrated in Figure 6, it leads to merged document
states that may be surprising to application programmers
who are more familiar with sequential programs. Further
work will be needed to understand the expectations of
application programmers, and to design data structures that
are minimally surprising under concurrent modification. It
may turn out that a schema language will be required to
support more complex applications. A schema language
could also support semantic annotations, such as indicating
that a number should be treated as a counter rather than a
register.

The CRDT defined in this paper supports insertion,
deletion and assignment operations. In addition to these,
it would be useful to support a move operation (to change
the order of elements in an ordered list, or to move a
subtree from one position in a document to another) and
an undo operation. Moreover, garbage collection (tombstone
removal) is required in order to prevent unbounded growth
of the data structure. We plan to address these missing
features in future work.

ACKNOWLEDGEMENTS

This research was supported by a grant from The Boeing
Company. Thank you to Dominic Orchard, Diana Vasile,
and the anonymous reviewers for comments that improved
this paper.

REFERENCES

[1] S. B. Davidson, H. Garcia-Molina, and D. Skeen, “Consistency in
partitioned networks,” ACM Computing Surveys, vol. 17, no. 3, pp.
341–370, Sep. 1985.

[2] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg,
and M. Smith, “SoK: Secure messaging,” in 36th IEEE Symposium
on Security and Privacy, May 2015.

[3] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in 13th International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS), Oct.
2011, pp. 386–400.

[4] A. Bieniusa, M. Zawirski, N. Preguiça, M. Shapiro, C. Baquero,
V. Balegas, and S. Duarte, “Brief announcement: Semantics of
eventually consistent replicated sets,” in 26th International Sym-
posium on Distributed Computing (DISC), Oct. 2012.

[5] C. Ellis and S. J. Gibbs, “Concurrency control in groupware
systems,” in ACM International Conference on Management of Data
(SIGMOD), May 1989, pp. 399–407.

[6] M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhäuer, “An integrat-
ing, transformation-oriented approach to concurrency control and
undo in group editors,” in ACM Conference on Computer Supported
Cooperative Work (CSCW), Nov. 1996, pp. 288–297.

[7] C. Sun and C. Ellis, “Operational transformation in real-time
group editors: Issues, algorithms, and achievements,” in ACM
Conference on Computer Supported Cooperative Work (CSCW), Nov.
1998, pp. 59–68.

[8] D. A. Nichols, P. Curtis, M. Dixon, and J. Lamping, “High-latency,
low-bandwidth windowing in the Jupiter collaboration system,”
in 8th Annual ACM Symposium on User Interface Software and
Technology (UIST), Nov. 1995, pp. 111–120.

[9] A. H. Davis, C. Sun, and J. Lu, “Generalizing operational trans-
formation to the Standard General Markup Language,” in ACM
Conference on Computer Supported Cooperative Work (CSCW), Nov.
2002, pp. 58–67.

14

[10] C.-L. Ignat and M. C. Norrie, “Customizable collaborative editor
relying on treeOPT algorithm,” in 8th European Conference on
Computer-Supported Cooperative Work (ECSCW), Sep. 2003, pp. 315–
334.

[11] D. Wang, A. Mah, S. Lassen, and S. Thorogood. (2015, Aug.)
Apache Wave (incubating) protocol documentation, release 0.4.
Apache Software Foundation. [Online]. Available: https://people.
apache.org/∼al/wave docs/ApacheWaveProtocol-0.4.pdf

[12] D. Li and R. Li, “A performance study of group editing algo-
rithms,” in 12th International Conference on Parallel and Distributed
Systems (ICPADS), Jul. 2006, pp. 300–307.

[13] A.-N. Mehdi, C.-L. Ignat, G. Oster, H.-G. Roh, and P. Urso,
“Evaluating CRDTs for real-time document editing,” in 11th ACM
Symposium on Document Engineering (DocEng), Sep. 2011, pp. 103–
112.

[14] J. Day-Richter. (2010, Sep.) What’s different about the
new Google Docs: Making collaboration fast. [On-
line]. Available: https://drive.googleblog.com/2010/09/whats-
different-about-new-google-docs.html

[15] AppJet, Inc. (2011, Mar.) Etherpad and EasySync technical
manual. [Online]. Available: https://github.com/ether/etherpad-
lite/blob/e2ce9dc/doc/easysync/easysync-full-description.pdf

[16] D. Spiewak. (2010, May) Understanding and ap-
plying operational transformation. [Online]. Avail-
able: http://www.codecommit.com/blog/java/understanding-
and-applying-operational-transformation

[17] M. Lemonik, Personal communication, Mar. 2016.
[18] A. Imine, P. Molli, G. Oster, and M. Rusinowitch, “Proving cor-

rectness of transformation functions in real-time groupware,” in
8th European Conference on Computer-Supported Cooperative Work
(ECSCW), Sep. 2003, pp. 277–293.

[19] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and
multicast algorithms: Taxonomy and survey,” ACM Computing
Surveys, vol. 36, no. 4, pp. 372–421, Dec. 2004.

[20] T. D. Chandra and S. Toueg, “Unreliable failure detectors for
reliable distributed systems,” Journal of the ACM, vol. 43, no. 2,
pp. 225–267, Mar. 1996.

[21] H. Attiya, F. Ellen, and A. Morrison, “Limitations of highly-
available eventually-consistent data stores,” in ACM Symposium
on Principles of Distributed Computing (PODC), Jul. 2015.

[22] Google, Inc. (2015) Google Realtime API. [Online]. Available:
https://developers.google.com/google-apps/realtime/overview

[23] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “A com-
prehensive study of convergent and commutative replicated data
types,” INRIA, Tech. Rep. 7506, 2011.

[24] R. Brown, S. Cribbs, C. Meiklejohn, and S. Elliott, “Riak DT map: a
composable, convergent replicated dictionary,” in 1st Workshop on
Principles and Practice of Eventual Consistency (PaPEC), Apr. 2014.

[25] R. Brown. (2013, Oct.) A bluffers guide to CRDTs in
Riak. [Online]. Available: https://gist.github.com/russelldb/
f92f44bdfb619e089a4d

[26] G. Oster, P. Urso, P. Molli, and A. Imine, “Data consistency for P2P
collaborative editing,” in ACM Conference on Computer Supported
Cooperative Work (CSCW), Nov. 2006.

[27] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee, “Replicated abstract data
types: Building blocks for collaborative applications,” Journal of
Parallel and Distributed Computing, vol. 71, no. 3, pp. 354–368, 2011.

[28] N. Preguiça, J. Manuel Marquès, M. Shapiro, and M. Letia, “A
commutative replicated data type for cooperative editing,” in
29th IEEE International Conference on Distributed Computing Systems
(ICDCS), Jun. 2009.

[29] S. Weiss, P. Urso, and P. Molli, “Logoot-Undo: Distributed col-
laborative editing system on P2P networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 21, no. 8, pp. 1162–1174, Jan.
2010.

[30] B. Nédelec, P. Molli, A. Mostefaoui, and E. Desmontils, “LSEQ: an
adaptive structure for sequences in distributed collaborative edit-
ing,” in 13th ACM Symposium on Document Engineering (DocEng),
Sep. 2013, pp. 37–46.

[31] H. Attiya, S. Burckhardt, A. Gotsman, A. Morrison, H. Yang, and
M. Zawirski, “Specification and complexity of collaborative text
editing,” in ACM Symposium on Principles of Distributed Computing
(PODC), Jul. 2016, pp. 259–268.

[32] C. Baquero, P. S. Almeida, and C. Lerche, “The problem with
embedded CRDT counters and a solution,” in 2nd Workshop on the
Principles and Practice of Consistency for Distributed Data (PaPoC),
Apr. 2016.

[33] P. S. Almeida, A. Shoker, and C. Baquero, “Delta state replicated
data types,” arXiv:1603.01529 [cs.DC], Mar. 2016. [Online].
Available: http://arxiv.org/abs/1603.01529

[34] C. Baquero, P. S. Almeida, A. Cunha, and C. Ferreira,
“Composition of state-based CRDTs,” HASLab, Tech. Rep., May
2015. [Online]. Available: http://haslab.uminho.pt/cbm/files/
crdtcompositionreport.pdf

[35] S. Burckhardt, M. Fähndrich, D. Leijen, and B. P. Wood, “Cloud
types for eventual consistency,” in 26th European Conference on
Object-Oriented Programming (ECOOP), Jun. 2012.

[36] S. Martin, P. Urso, and S. Weiss, “Scalable XML collaborative
editing with undo,” in On the Move to Meaningful Internet Systems,
Oct. 2010, pp. 507–514.

[37] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: Amazon’s highly available key-value store,” in 21st
ACM Symposium on Operating Systems Principles (SOSP), Oct. 2007,
pp. 205–220.

[38] S. Balasubramaniam and B. C. Pierce, “What is a file synchro-
nizer?” in 4th Annual ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom), Oct. 1998, pp. 98–108.

[39] N. Ramsey and E. Csirmaz, “An algebraic approach to file
synchronization,” in 8th European Software Engineering Conference
(ESEC/FSE-9), Sep. 2001.

[40] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser, “Managing update conflicts in Bayou,
a weakly connected replicated storage system,” in 15th ACM
Symposium on Operating Systems Principles (SOSP), Dec. 1995, pp.
172–182.

[41] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein,
and I. Stoica, “Coordination avoidance in database systems,”
Proceedings of the VLDB Endowment, vol. 8, no. 3, pp. 185–196, Nov.
2014.

[42] L. Lamport, “Time, clocks, and the ordering of events in a dis-
tributed system,” Communications of the ACM, vol. 21, no. 7, pp.
558–565, Jul. 1978.

[43] D. S. Parker, Jr, G. J. Popek, G. Rudisin, A. Stoughton, B. J.
Walker, E. Walton, J. M. Chow, D. Edwards, S. Kiser, and C. Kline,
“Detection of mutual inconsistency in distributed systems,” IEEE
Transactions on Software Engineering, vol. SE-9, no. 3, pp. 240–247,
May 1983.

[44] N. Preguiça, C. Baquero, P. S. Almeida, V. Fonte, and R. Gonçalves,
“Brief announcement: Efficient causality tracking in distributed
storage systems with dotted version vectors,” in 31st ACM Sympo-
sium on Principles of Distributed Computing (PODC), Jul. 2012.

Martin Kleppmann is a Research Associate in
the Computer Laboratory at the University of
Cambridge. His current research project, TRVE
Data, is working towards better security and pri-
vacy in cloud applications by applying end-to-
end encryption to collaboratively editable appli-
cation data. His book Designing Data-Intensive
Applications was published by O’Reilly Media
in 2017. Previously, he worked as a software
engineer and entrepreneur at several internet
companies, including Rapportive and LinkedIn.

Alastair R. Beresford is a Senior Lecturer in the
Computer Laboratory at the University of Cam-
bridge. His research work explores the security
and privacy of large-scale distributed systems,
with a particular focus on networked mobile de-
vices such as smartphones, tablets and laptops.
He looks at the security and privacy of the de-
vices themselves, as well as the security and
privacy problems induced by the interaction be-
tween mobile devices and cloud-based Internet
services.

https://people.apache.org/~al/wave_docs/ApacheWaveProtocol-0.4.pdf
https://people.apache.org/~al/wave_docs/ApacheWaveProtocol-0.4.pdf
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs.html
https://drive.googleblog.com/2010/09/whats-different-about-new-google-docs.html
https://github.com/ether/etherpad-lite/blob/e2ce9dc/doc/easysync/easysync-full-description.pdf
https://github.com/ether/etherpad-lite/blob/e2ce9dc/doc/easysync/easysync-full-description.pdf
http://www.codecommit.com/blog/java/understanding-and-applying-operational-transformation
http://www.codecommit.com/blog/java/understanding-and-applying-operational-transformation
https://developers.google.com/google-apps/realtime/overview
https://gist.github.com/russelldb/f92f44bdfb619e089a4d
https://gist.github.com/russelldb/f92f44bdfb619e089a4d
http://arxiv.org/abs/1603.01529
http://haslab.uminho.pt/cbm/files/crdtcompositionreport.pdf
http://haslab.uminho.pt/cbm/files/crdtcompositionreport.pdf

15

APPENDIX
PROOF OF CONVERGENCE

Theorem 1. For any two replicas p and q that participated in a
valid execution, if Ap(ops) = Aq(ops), then p and q have the
same document state.

Proof. Consider the histories Hp and Hq at p and q re-
spectively (see Definition 2). The rules APPLY-LOCAL and
APPLY-REMOTE maintain the invariant that an operation is
added to Ap(ops) or Aq(ops) if and only if it was applied to
the document state at p or q. Thus, Ap(ops) = Aq(ops) iff
Hp and Hq contain the same set of operations (potentially
ordered differently).

The history Hp at replica p is a sequence of n operations:
Hp = 〈o1, . . . , on〉, and the document state at p is derived
from Hp by starting in the empty state and applying the
operations in order. Likewise, the document state at q is
derived from Hq , which is a permutation of Hp. Both
histories must be consistent with causality, i.e. for all i with
1 ≤ i ≤ n, we require oi.deps ⊆ {oj .id | 1 ≤ j < i}. The
causality invariant is maintained by the APPLY-* rules.

We can prove the theorem by induction over the length
of history n.

Base case: An empty history with n = 0 describes the
empty document state. The empty document is always the
same, and so any two replicas that have not executed any
operations are by definition in the same state.

Induction step: Given histories Hp and Hq of length n,
such that Hp = 〈o1, . . . , on〉 and Hq is a permutation of Hp,
and such that applying Hp results in the same document
state as applying Hq , we can construct new histories H ′p
and H ′q of length n + 1 by inserting a new operation on+1

at any causally ready position in Hp or Hq respectively.
We must then show that for all the histories H ′p and H ′q
constructed this way, applying the sequence of operations
in order results in the same document state.

In order to prove the induction step, we examine the
insertion of on+1 into Hp and Hq . Each history can be split
into a prefix, which is the minimal subsequence 〈o1, . . . , oj〉
such that on+1.deps ⊆ {o1.id , . . . , oj .id}, and a suffix,
which is the remaining subsequence 〈oj+1, . . . , on〉. The
prefix contains all operations that causally precede on+1,
and possibly some operations that are concurrent with on+1;
the suffix contains only operations that are concurrent with
on+1. The earliest position where on+1 can be inserted into
the history is between the prefix and the suffix; the latest
position is at the end of the suffix; or it could be inserted at
any point within the suffix.

We need to show that the effect on the document state
is the same, regardless of the position at which on+1 is
inserted, and regardless of whether it is inserted into Hp

or Hq . We do this in Lemma 8 by showing that on+1 is
commutative with respect to all operations in the suffix,
i.e. with respect to any operations that are concurrent to
on+1.

Before we can prove the commutativity of operations,
we must first define some more terms and prove some
preliminary lemmas.

Definition 4 (appearing after). In the ordered list ctx , list
element kj appears after list element k1 if there exists a (possibly

empty) sequence of list elements k2, . . . , kj−1 such that for all i
with 1 ≤ i < j, ctx (next(ki)) = ki+1. Moreover, we say kj
appears immediately after k1 if that sequence is empty, i.e. if
ctx (next(k1)) = kj .

The definition of appearing after corresponds to the order
in which the IDX rules iterate over the list.

Lemma 2. If k2 appears after k1 in an ordered list, and the list
is mutated according to the evaluation rules, k2 also appears after
k1 in all later document states.

Proof. The only rule that modifies the next pointers in the
context is INSERT1, and it inserts a new list element be-
tween two existing list elements (possibly head and/or tail).
This modification preserves the appears-after relationship
between any two existing list elements. Since no other rule
affects the list order, appears-after is always preserved.

Note that deletion of an element from a list does not
remove it from the sequence of next pointers, but only clears
its presence set pres(k).

Lemma 3. If one replica inserts a list element knew between k1

and k2, i.e. if knew appears after k1 in the list and k2 appears
after knew in the list on the source replica after applying APPLY-
LOCAL, then knew appears after k1 and k2 appears after knew on
every other replica where that operation is applied.

Proof. The rules for generating list operations ensure that k1

is either head or an operation identifier, and k2 is either tail
or an operation identifier.

When the insertion operation is generated using the
MAKE-OP rule, its operation identifier is given a counter
value ctr that is greater than the counter of any existing
operation ID in Ap(ops). If k2 is an operation identifier,
we must have k2 ∈ Ap(ops), since both APPLY-LOCAL
and APPLY-REMOTE add operation IDs to Ap(ops) when
applying an insertion. Thus, either k2 < knew under the
ordering relation < for Lamport timestamps, or k2 = tail.

When the insertion operation is applied on another
replica using APPLY-REMOTE and INSERT1,2, k2 appears
after k1 on that replica (by Lemma 2 and causality). The
cursor of the operation is cursor(〈. . . 〉, k1), so the rules start
iterating the list at k1, and therefore knew is inserted at some
position after k1.

If other concurrent insertions occurred between k1 and
k2, their operation ID may be greater than or less than knew ,
and thus either INSERT1 or INSERT2 may apply. In partic-
ular, INSERT2 skips over any list elements whose Lamport
timestamp is greater than knew . However, we know that
k2 < knew ∨ k2 = tail, and so INSERT1 will apply with
next = k2 at the latest. The INSERT1,2 rules thus never
iterate past k2, and thus knew is never inserted at a list
position that appears after k2.

Definition 5 (common ancestor). In a history H , the common
ancestor of two concurrent operations or and os is the latest
document state that causally precedes both or and os.

The common ancestor of or and os can be defined more
formally as the document state resulting from applying a
sequence of operations 〈o1, . . . , oj〉 that is the shortest prefix
of H that satisfies (or.deps ∩ os.deps) ⊆ {o1.id , . . . , oj .id}.

16

Definition 6 (insertion interval). Given two concurrent op-
erations or and os that insert into the same list, the insertion
interval of or is the pair of keys (kbefore

r , kafter
r) such that or.id

appears after kbefore
r when or has been applied, kafter

r appears after
or.id when or has been applied, and kafter

r appears immediately
after kbefore

r in the common ancestor of or and os. The insertion
interval of os is the pair of keys (kbefore

s , kafter
s) defined similarly.

It may be the case that kbefore
r or kbefore

s is head, and that
kafter
r or kafter

s is tail.

Lemma 4. For any two concurrent insertion operations or, os
in a history H , if or.cur = os.cur , then the order at which
the inserted elements appear in the list after applying H is
deterministic and independent of the order of or and os in H .

Proof. Without loss of generality, assume that or.id < os.id
according to the ordering relation on Lamport timestamps.
(If the operation ID of or is greater than that of os, the two
operations can be swapped in this proof.) We now distin-
guish the two possible orders of applying the operations:

1) or is applied before os in H . Thus, at the time when
os is applied, or has already been applied. When
applying os, since or has a lesser operation ID, the
rule INSERT1 applies with next = or.id at the latest,
so the insertion position of os must appear before
or. It is not possible for INSERT2 to skip past or .

2) os is applied before or in H . Thus, at the time
when or is applied, os has already been applied.
When applying or , the rule INSERT2 applies with
next = os.id , so the rule skips past os and inserts or
at a position after os. Moreover, any list elements
that appear between os.cur and os at the time
of inserting or must have a Lamport timestamp
greater than os.id , so INSERT2 also skips over those
list elements when inserting or. Thus, the insertion
position of or must be after os.

Thus, the insertion position of or appears after the inser-
tion position of os, regardless of the order in which the two
operations are applied. The ordering depends only on the
operation IDs, and since these IDs are fixed at the time the
operations are generated, the list order is determined by the
IDs.

Lemma 5. In an operation history H , an insertion operation is
commutative with respect to concurrent insertion operations to
the same list.

Proof. Given any two concurrent insertion operations or, os
in H , we must show that the document state does not
depend on the order in which or and os are applied.

Either or and os have the same insertion interval as
defined in Definition 6, or they have different insertion
intervals. If the insertion intervals are different, then by
Lemma 3 the operations cannot affect each other, and so
they have the same effect regardless of their order. So we
need only analyze the case in which they have the same
insertion interval (kbefore, kafter).

If or.cur = os.cur , then by Lemma 4, the operation with
the greater operation ID appears first in the list, regardless
of the order in which the operations are applied. If or.cur 6=
os.cur , then one or both of the cursors must refer to a list

element that appears between kbefore and kafter, and that
did not yet exist in the common ancestor (Definition 5).

Take a cursor that differs from kbefore: the list element it
refers to was inserted by a prior operation, whose cursor in
turn refers to another prior operation, and so on. Following
this chain of cursors for a finite number of steps leads to
an operation ofirst whose cursor refers to kbefore (since an
insertion operation always inserts at a position after the
cursor).

Note that all of the operations in this chain are causally
dependent on ofirst, and so they must have a Lamport
timestamp greater than ofirst. Thus, we can apply the same
argument as in Lemma 4: if INSERT2 skips over the list
element inserted by ofirst, it will also skip over all of the
list elements that are causally dependent on it; if INSERT1

inserts a new element before ofirst, it is also inserted before
the chain of operations that is based on it.

Therefore, the order of or and os in the final list is de-
termined by the Lamport timestamps of the first insertions
into the insertion interval after their common ancestor, in the
chains of cursor references of the two operations. Since the
argument above applies to all pairs of concurrent operations
or, os in H , we deduce that the final order of elements in the
list depends only on the operation IDs but not the order of
application, which shows that concurrent insertions to the
same list are commutative.

Lemma 6. In a history H , a deletion operation is commutative
with respect to concurrent operations.

Proof. Given a deletion operation od and any other concur-
rent operation oc, we must show that the document state
after applying both operations does not depend on the order
in which od and oc were applied.

The rules in Figure 12 define how a deletion operation
od is applied: starting at the cursor in the operation, they
recursively descend the subtree, removing od.deps from the
presence set pres(k) at all branch nodes in the subtree,
and updating all registers to remove any values written by
operations in od.deps .

If oc is an assignment or insertion operation, the ASSIGN
rule adds oc.id to the mapping from operation ID to value
for a register, and the DESCEND, ASSIGN, EMPTY-MAP and
EMPTY-LIST rules add oc.id to the presence sets pres(k)
along the path through the document tree described by the
cursor.

If od.cur is not a prefix of oc.cur , the operations affect
disjoint subtrees of the document, and so they are trivially
commutative. Any state changes by DESCEND and ADD-ID1

along the shared part of the cursor path are applied using
the set union operator ∪, which is commutative.

Now consider the case where od.cur is a prefix of oc.cur .
Since oc is concurrent with od, we know that oc.id /∈
od.deps . Therefore, if oc is applied before od in the history,
the CLEAR-* rules evaluating od will leave any occurrences
of oc.id in the document state undisturbed, while removing
any occurrences of operations in od.deps .

If od is applied before oc, the effect on presence sets
and registers is the same as if they had been applied in
the reverse order. Moreover, oc applies in the same way as
if od had not been applied previously, because applying a
deletion only modifies presence sets and registers, without

17

actually removing map keys or list elements, and because
the rules for applying an operation are not conditional on
the previous content of presence sets and registers.

Thus, the effect of applying oc before od is the same as
applying od before oc, so the operations commute.

Lemma 7. In a history H , an assignment operation is commuta-
tive with respect to concurrent operations.

Proof. Given an assignment oa and any other concurrent
operation oc, we must show that the document state after
applying both operations does not depend on the order in
which oa and oc were applied.

The rules ASSIGN, EMPTY-MAP and EMPTY-LIST define
how an assignment operation oa is applied, depending on
the value being assigned. All three rules first clear any
causally prior state from the cursor at which the assignment
is occurring; by Lemma 6, this clearing operation is com-
mutative with concurrent operations, and leaves updates by
concurrent operations untouched.

The rules also add oa.id to the presence set identified by
the cursor, and DESCEND adds oa.id to the presence sets on
the path from the root of the document tree described by the
cursor. These state changes are applied using the set union
operator ∪, which is commutative.

Finally, in the case where value assigned by oa is a
primitive and the ASSIGN rule applies, the mapping from
operation ID to value is added to the register by the expres-
sion child [id 7→ val]. If oc is not an assignment operation
or if oa.cursor 6= oc.cursor , the operations are independent
and thus trivially commutative.

If oa and oc are assignments to the same cursor,
we use the commutativity of updates to a partial func-
tion: child [id1 7→ val1] [id2 7→ val2] = child [id2 7→
val2] [id1 7→ val1] provided that id1 6= id2. Since opera-
tion IDs (Lamport timestamps) are unique, two concurrent
assignments add two different keys to the mapping, and
their order is immaterial.

Thus, all parts of the process of applying oa have the
same effect on the document state, regardless of whether oc
is applied before or after oa, so the operations commute.

Lemma 8. Given an operation history H = 〈o1, . . . , on〉 from a
valid execution, a new operation on+1 from that execution can be
inserted at any point in H after on+1.deps have been applied. For
all histories H ′ that can be constructed this way, the document
state resulting from applying the operations in H ′ in order is
the same, and independent of the ordering of any concurrent
operations in H .

Proof. H can be split into a prefix and a suffix, as described
in the proof of Theorem 1. The suffix contains only opera-
tions that are concurrent with on+1, and we allow on+1 to
be inserted at any point after the prefix. We then prove the
lemma case-by-case, depending on the type of mutation in
on+1.

If on+1 is a deletion, by Lemma 6 it is commutative with
all operations in the suffix, and so on+1 can be inserted at
any point within, before, or after the suffix without changing
its effect on the final document state. Similarly, if on+1

is an assignment, by Lemma 7 it is commutative with all
operations in the suffix.

If on+1 is an insertion, let oc be any operation in the
suffix, and consider the cases of on+1 being inserted before
and after oc in the history. If oc is a deletion or assignment,
it is commutative with on+1 by Lemma 6 or Lemma 7
respectively. If oc is an insertion into the same list as on+1,
then by Lemma 5 the operations are commutative. If oc is
an insertion into a different list in the document, its effect
is independent from on+1 and so the two operations can be
applied in any order.

Thus, on+1 is commutative with respect to any concur-
rent operation in H . Therefore, on+1 can be inserted into H
at any point after its causal dependencies, and the effect on
the final document state is independent of the position at
which the operation is inserted.

This completes the induction step in the proof of Theo-
rem 1, and thus proves convergence of our datatype.

	Introduction
	JSON Data Model
	Replication and Conflict Resolution
	Our Contributions

	Related Work
	Operational Transformation
	CRDTs
	Other Approaches

	Composing Data Structures
	Concurrent Editing Examples
	JSON Versus XML
	Document Editing API

	Formal Semantics
	Expression Evaluation
	Generating Operations
	Lamport Timestamps
	Operation Structure
	Semantics of Generating Operations

	Applying Operations
	Clearing Prior State

	Convergence

	Conclusions and Further Work
	References
	Biographies
	Martin Kleppmann
	Alastair R. Beresford

	Appendix: Proof of Convergence

