
From Secure Messaging to Secure Collaboration

Martin Kleppmann, Stephan A. Kollmann,
Diana A. Vasile, and Alastair R. Beresford

Department of Computer Science and Technology, University of Cambridge, UK
{mk428,sak70,dac53,arb33}@cl.cam.ac.uk

Abstract. We examine the security of collaboration systems, where sev-
eral users access and contribute to some shared resource, document, or
database. To protect such systems against malicious servers, we can build
upon existing secure messaging protocols that provide end-to-end secu-
rity. However, if we want to ensure the consistency of the shared data in
the presence of malicious users, we require features that are not avail-
able in existing messaging protocols. We investigate the protocol failures
that may arise when a new collaborator is added to a group, and discuss
approaches for enforcing the integrity of the shared data.

Keywords: group communication · collaborative editing · secure messaging

1 Introduction

Secure messaging apps with end-to-end encryption, such as Signal, WhatsApp,
iMessage and Telegram, have broken into the mainstream: for example, Whats-
App alone has 1.3 billion monthly active users [16]. The success of these apps
demonstrates that it is feasible for protocols with strong security properties to
be deployed at internet-wide scale, and that their benefits can be enjoyed by
users who are not technical experts.

However, secure messaging alone is not su�cient for protecting all forms of
sensitive data exchange. Some communication takes the form of collaborating
on some shared resource, such as a document, or database. For example, jour-
nalists collaborate on sensitive investigations by interviewing sources, analysing
documents, and sharing their notes and drafts with colleagues [11,12]; lawyers
collaborate on contracts and other sensitive documents while communicating
with their clients under legal privilege [10]; and medical records are maintained
by several specialists involved in treating a patient. Most currently deployed sys-
tems for these forms of collaboration rely on a server that is trusted to maintain
the confidentiality and integrity of the data.

In this paper we discuss how existing protocols for secure messaging can be
leveraged to bring end-to-end security to scenarios in which several users col-
laborate on a database or a set of shared documents. We give a brief overview
of existing algorithms and technologies, report on lessons learnt from our ini-
tial implementation of secure collaboration software, and highlight some open
problems that we hope will stimulate further work in the information security
community.



2 M. Kleppmann, S.A. Kollmann, D.A. Vasile, A.R. Beresford

2 Threat Model and Security Objectives

We assume that the collaboration software has any number of users, each of
whom may have one or more devices (which may be desktop or laptop computers,
or mobile devices such as tablets and smartphones). Users and their devices may
form groups of collaborators, and the collaborators in each group have shared
access to a particular document or dataset. Each collaborating device maintains
a copy (replica) of the shared data on its local storage.

Devices may frequently be o✏ine and unable to communicate, for example
because they might be mobile devices with poor cellular data coverage. We
require that devices should be able to modify their local copy of the data even
while o✏ine, and send their changes to other devices when they are next online.

The system may also include some number of servers, which store messages
for any recipient devices that are o✏ine, and forward them to those devices
when they are next online. Devices may communicate with each other directly
(e.g. via a LAN, Bluetooth, or peer-to-peer over the Internet), or indirectly
via servers. Furthermore we assume the existence of a public key infrastructure
(PKI) through which users and devices can authenticate each other.

We consider the following types of adversary:

Network Attacker. This adversary has full control over any network via which
devices communicate, including the ability to observe and modify all tra�c.

Malicious Server. This adversary controls any messages sent via or stored on
a server, including the ability to observe and modify any messages.

Malicious User. This adversary is able to create any number of devices that
may participate in group collaboration, and which may deviate arbitrarily
from the protocol specification.

In the face of these adversaries we seek the following security properties:

Confidentiality. The data shared between a group of collaborators cannot be
obtained by an adversary who is not a member of that group.

Integrity. The data shared between a group of collaborators cannot be modified
by an adversary who is not a member of that group.

Closeness. A user or device can become a group member only by explicitly
being added by a group administrator.

Convergence. When any honest group members communicate, their local copies
of the shared data converge towards a consistent state (even if some other
group members are malicious).

We propose encoding the shared data and any modifications as messages,
and using a secure group messaging protocol to exchange them among collab-
orators. Existing secure group messaging protocols maintain the confidentiality
and integrity properties in the presence of all types of adversary [4,15]. Close-
ness is sometimes weaker in existing protocols: for example, WhatsApp does not
guarantee closeness in the presence of a malicious server [13]. However, group
key agreement protocols that ensure closeness have been studied previously [7],
so we do not consider this property further in this paper.



From Secure Messaging to Secure Collaboration 3

Thus, when building a secure collaboration protocol on top of a secure mes-
saging protocol, the primary security goal is to ensure convergence in the pres-
ence of the aforementioned adversaries.

3 Convergence of Shared State

Since we allow the data on a device’s local storage to be modified while the
device is o✏ine, independent modifications on di↵erent devices can cause their
copies of the shared data to become inconsistent with each other. Fortunately,
this problem has been studied extensively in the distributed systems literature.
We propose using Conflict-free Replicated Data Types or CRDTs [8,14], a family
of algorithms that provide abstractions and protocols for automatically resolving
conflicts due to concurrent modifications.

CRDTs provide a consistency property called strong eventual consistency,
which guarantees that whenever any two devices have seen the same set of up-
dates (even if the updates were delivered in a di↵erent order), the data on those
devices is in the same state [6,14]. This property implies that the state of a
device is determined entirely by the set of updates it has seen.

Thus, we can achieve the convergence property for collaborative data by
encoding every update as a message and sending it to other devices via a secure
group messaging protocol. On each device, we use a CRDT to interpret the set
of messages delivered to that device, and derive its local copy of the shared data
from those messages. Now, the problem of achieving convergence is reduced to
ensuring that all honest group members receive the same set of messages.

In the context of secure messaging protocols, ensuring that group members
receive the same set of messages is known as transcript consistency [4,15]. (Some-
times transcript consistency is taken to mean that all group members must re-
ceive the same sequence of messages in the same order; for our purposes, it
is su�cient to require the weaker property that collaborators must receive the
same set of messages, regardless of order.) Not all messaging protocols provide
this property; for example, Signal does not ensure transcript consistency in the
presence of a malicious user [13]. However, the property can be implemented as
a separate layer on top of an existing messaging protocol.

A simple approach based on a hash function is illustrated in Figure 1: when-
ever a device sends a message to the group (e.g. message m4), it includes a hash
of the last message it sent (m2), and the hashes of any other messages it received
in the intervening period (m3). A recipient accepts an incoming message only
after it has received all prior messages that it depends on, which are referenced
by their hashes. Assuming preimage resistance of the hash function, whenever
two devices observe the same message, then they must have also received the
same set of prior messages (namely those that are transitively reachable through
their hash references).

The construction in Figure 1 is similar to the internal structure of a Git
repository [3], in which each commit references the hash of one or more parent
commits.



4 M. Kleppmann, S.A. Kollmann, D.A. Vasile, A.R. Beresford

m1 m2 m4

update1 H(m1) update2 H(m2) H(m3) update4

H(m1) update3 H(m3) H(m2) update5 . . .

m3 m5

Fig. 1. Chaining messages by referencing hashes of previous messages.

4 Adding New Collaborators

The approach in Section 3 ensures convergence in a static group of collaborators,
where all members are added when a group is created. In this setting, every
message in the history of the group is delivered to every member device. However,
if the membership is dynamic – that is, if group members can be added or
removed – additional challenges arise.

With most group messaging protocols, when a new member is added, that
member is able to receive any messages that were sent after they were added,
but no prior messages. However, in the context of collaboration on some shared
data, receiving later messages is not su�cient: the new member also requires a
copy of the shared data to which any subsequent updates can be applied.

The simplest solution is to give the new member the full update history: that
is, the administrator who invites the new member also sends the new member
a copy of all past messages sent in the group. If a hash-chaining construction
like in Figure 1 is used, the new member can check the integrity of this message
history by computing the hashes of the messages and comparing them to the
referenced hashes.

However, sending the full update history has two downsides. Firstly, it may
be much larger than a copy of the current state, and thus ine�cient to store
and transmit. Secondly, the full update history includes every past version of
the data, including any content that has been deleted and is no longer part of
the current state. For privacy reasons, the existing collaborators may not want
to expose the full details of former versions of the data to the new collaborator.

5 Checking the Integrity of Snapshots

If it is not acceptable to send the full update history to a new collaborator, a
snapshot of the current state of the shared data must be sent instead. However,
a naive snapshot protocol would lose the convergence property in the presence of
a malicious user: namely, the user who sends the snapshot may send data that
does not match the true current state, and thus cause the new collaborator’s
state to diverge from the rest of the group. For example, the malicious user
could claim that another user wrote something that, in fact, they never wrote.



From Secure Messaging to Secure Collaboration 5

We are exploring protocols that allow the new collaborator to verify that a
snapshot is consistent with the prior editing history of the shared data, without
revealing the full update history to the new collaborator. Approaches include:

1. The snapshot can be sent to all group members, not just the new collab-
orator. Existing group members can then check the integrity of the snap-
shot, and vote on whether they believe the snapshot to be correct or not. A
Byzantine consensus protocol [2,5] can make this voting process resilient to
malicious users, provided that a quorum (typically, more than 2/3) of voting
members is honest. However, this approach requires members to be online
in order to vote. If members use mobile devices that are frequently o✏ine,
as proposed in Section 2, a voting protocol may introduce prohibitive delays
before the snapshot integrity is confirmed.

2. As an alternative, the new collaborator could initially trust the first snapshot
it receives, and then run a consistency-checking protocol in the background.
This protocol would not prevent the new collaborator from seeing an in-
consistent snapshot, but it could ensure that any inconsistency is eventually
detected, provided that the new collaborator eventually communicates with
an honest group member. This approach is analogous to Certificate Trans-
parency [9], which does not prevent certificate authorities from misissuing
certificates, but which deters such behaviour by making it detectable and
irrefutable.

3. There may be cryptographic constructions that allow the creator of the snap-
shot to prove to the new collaborator that the snapshot is consistent with
the full message history, without revealing the message history. For exam-
ple, we are currently exploring the use of redactable signatures and one-way
accumulators [1] for this purpose.

In general, we may di↵erentiate fail-safe and fail-secure approaches to snap-
shot integrity checking. A fail-secure (or fail-closed) approach in this context
means that the new collaborator must wait until the integrity of the shared data
has been fully verified, e.g. using some voting protocol or cryptographic proof,
before they are allowed to see it. On the other hand, a fail-safe (or fail-open)
approach would allow the new collaborator to immediately see the snapshot —
even if it might be incorrect — and resolve any inconsistencies after the fact.

6 Conclusions

End-to-end encryption is now in regular use by over 1 billion people for se-
cure messaging. Yet, end-to-end encryption is not currently used by collabora-
tive applications where multiple people modify some shared resource, such as
a document or database. In this paper we have outlined a method of building
collaborative apps on top of secure messaging protocols, providing not only con-
fidentiality and integrity in the face of network attackers and malicious servers,
but also the properties of closeness and convergence. Handling the insider threat
of a malicious collaborating user is more challenging, and we highlighted snap-
shot integrity as a particular issue which requires further work to fully address.



6 M. Kleppmann, S.A. Kollmann, D.A. Vasile, A.R. Beresford

References

1. Benaloh, J., De Mare, M.: One-way accumulators: A decentralized alternative
to digital signatures. In: Workshop on the Theory and Application of Crypto-
graphic Techniques. pp. 274–285. Springer (May 1993). https://doi.org/10.1007/3-
540-48285-7 24

2. Castro, M., Liskov, B.H.: Practical Byzantine fault tolerance. In: 3rd USENIX
Symposium on Operating Systems Design and Implementation (OSDI) (Feb 1999)

3. Chacon, S., Straub, B.: Pro Git. Apress, second edn. (2014), https://git-scm.com/
book/en/v2

4. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-
ends encryption: Asynchronous group messaging with strong security guarantees.
Tech. Rep. 2017/666, IACR Cryptology ePrint (Jul 2017), https://eprint.iacr.org/
2017/666

5. Correia, M., Veronese, G.S., Neves, N.F., Verissimo, P.: Byzantine con-
sensus in asynchronous message-passing systems: a survey. Interna-
tional Journal of Critical Computer-Based Systems 2(2), 141–161 (2011).
https://doi.org/10.1504/IJCCBS.2011.041257

6. Gomes, V.B.F., Kleppmann, M., Mulligan, D.P., Beresford, A.R.: Verify-
ing strong eventual consistency in distributed systems. Proceedings of the
ACM on Programming Languages (PACMPL) 1(OOPSLA) (Oct 2017).
https://doi.org/10.1145/3133933

7. Kim, Y., Perrig, A., Tsudik, G.: Communication-e�cient group key agreement.
In: 16th IFIP Information Security Conference (SEC). pp. 229–244 (Jun 2001).
https://doi.org/10.1007/0-306-46998-7 16

8. Kleppmann, M., Beresford, A.R.: A conflict-free replicated JSON datatype. IEEE
Transactions on Parallel and Distributed Systems 28(10), 2733–2746 (Apr 2017).
https://doi.org/10.1109/TPDS.2017.2697382

9. Laurie, B., Langley, A., Kasper, E.: RFC 6962: Certificate transparency. IETF,
https://tools.ietf.org/html/rfc6962 (Jun 2013)

10. Lerner, A., Zeng, E., Roesner, F.: Confidante: Usable encrypted email: A case study
with lawyers and journalists. In: 2nd IEEE European Symposium on Security and
Privacy. pp. 385–400 (Apr 2017). https://doi.org/10.1109/EuroSP.2017.41

11. McGregor, S.E., Charters, P., Holliday, T., Roesner, F.: Investigating the computer
security practices and needs of journalists. In: 24th USENIX Security Symposium
(Aug 2015)

12. McGregor, S.E., Watkins, E.A., Al-Ameen, M.N., Caine, K., Roesner, F.: When
the weakest link is strong: Secure collaboration in the case of the Panama Papers.
In: 26th USENIX Security Symposium (Aug 2017)

13. Rösler, P., Mainka, C., Schwenk, J.: More is less: On the end-to-end security of
group chats in Signal, WhatsApp, and Threema. Tech. Rep. 2017/713, IACR Cryp-
tology ePrint (Jan 2018), https://eprint.iacr.org/2017/713

14. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: 13th International Symposium on Stabilization, Safety, and Security of
Distributed Systems (SSS). pp. 386–400 (Oct 2011). https://doi.org/10.1007/978-
3-642-24550-3 29

15. Unger, N., Dechand, S., Bonneau, J., Fahl, S., Perl, H., Goldberg, I., Smith, M.:
SoK: Secure messaging. In: IEEE Symposium on Security and Privacy. pp. 232–249
(May 2015). https://doi.org/10.1109/SP.2015.22

16. WhatsApp Inc.: Connecting one billion users every day (Jul 2017), https://blog.
whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day

https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-48285-7_24
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2
https://eprint.iacr.org/2017/666
https://eprint.iacr.org/2017/666
https://doi.org/10.1504/IJCCBS.2011.041257
https://doi.org/10.1145/3133933
https://doi.org/10.1007/0-306-46998-7_16
https://doi.org/10.1109/TPDS.2017.2697382
https://tools.ietf.org/html/rfc6962
https://doi.org/10.1109/EuroSP.2017.41
https://eprint.iacr.org/2017/713
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1109/SP.2015.22
https://blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day
https://blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day


From Secure Messaging to Secure Collaboration
(Transcript of Discussion)

Martin Kleppmann, Stephan A. Kollmann,
Diana A. Vasile, and Alastair R. Beresford

Department of Computer Science and Technology, University of Cambridge, UK

Frank Stajano: Among the people who come up with these conflict reso-
lution algorithms, is there agreement about what to do in a situation where the
edits look fundamentally incompatible to a normal person? For example, while
we are o✏ine, I delete a paragraph, whereas you add a word in the middle of
that paragraph.

Reply: That’s a good question. There are a few di↵erent consistency models
that people use, but on the whole, they are fairly primitive in terms of what
conflict resolution they do. In your example, where one user deletes an entire
paragraph, another user changes something in the middle of that paragraph — I
actually tried this with Google Docs. The merged result is a document in which
that paragraph is missing, but that one changed word from the middle of the
paragraph is still there. So you’ve essentially got a ‘stranded’ word in the middle
of the document.

Frank Stajano: Are real human beings happy with this way of resolving?
Reply: Well, millions of people seem to be using Google Docs successfully,

so I’m just going to assert that it seems to be good enough in practice. It would
be nice to have a user interface that warns you, saying: “Hey, there were some
edits made here to the same place in the document. You might want to check
this is a valid, merged result.” All the algorithms do is to ensure that everyone
ends up in the same state, and that state doesn’t lose any data, if possible.

Ilia Shumailov: I think the general flow of action is, because they keep the
history of changes, you can always just go back to another change and re-merge
the text yourself. At least that’s what I do every time I have a conflict.

Reply: Yes indeed. They keep the editing history, and you can look back-
ward in the editing history as well. However, from the point of view of our
discussion today, take conflict resolution as a solved problem. I’m just going to
assert that these algorithms work, under the assumption that the same set of
messages are delivered to everybody in the group.

We have proved that for several of these protocols, if several nodes have seen
the same set of operations, but maybe in a di↵erent order, then they converge
towards the same state. What we need to ensure now in the protocol is that
all of the participants see the same set of operations, and that’s where security
protocols come in.

(Presentation continues, describing the threat model and security objectives
from Section 2 of the paper.)

Ian Goldberg: When you define confidentiality rigorously, it’s not enough
to say that non-collaborators cannot access the data, because you could have a



8 M. Kleppmann, S.A. Kollmann, D.A. Vasile, A.R. Beresford

non-collaborator colluding with a collaborator. So you have to rule out colluding
collaborators, and then it gets really complicated really fast. It’s not only a
closed group, you have to deal with what happens when people leave the group,
or what happens if you have two colluding people in the group and one of them
leaves the group. How do you stop that person?

Reply: If there’s existing literature on defining these things, I’d love to hear
more about that.

Ian Goldberg: It’s very complicated. And just in the context of group
messaging, this is active research right now and my group works on that exact
thing. And you have problems involving adding and removing group members.

In the secure messaging realm, what you’re talking about is sometimes called
transcript consistency, and then there are a couple of di↵erent kinds of transcript
consistency. There is global transcript consistency, which is a guarantee that
everyone in the group sees exactly the same messages in the same order. That’s
very hard to do, and the UI for that is ridiculous because you may actually
receive messages out of order, but then some BFT-like protocol runs and it says,
“oh, that message really should have gone there”. And so what is the UI going
to do? You see messages and then this one jumps up four messages? It’s kind of
crazy.

Reply: Yeah, what we want here is a weaker kind of transcript consistency,
which doesn’t enforce ordering, just enforces that the set of messages is the same.

Ian Goldberg: Right. You probably do still want causal transcript con-
sistency, which means a reply to any message will necessarily appear after that
message.

Reply: Yes, but that’s much cheaper to achieve, I think.
Ian Goldberg: Exactly, it’s much easier.
Frank Stajano: I have somewhat similar comments with respect to in-

tegrity, where the fact that non-collaborators cannot modify the content is nec-
essary but insu�cient. For example, if David and I have a shared document
containing the expense reports for our company, and both of us are collabora-
tors and authorised, but neither of us should be able to go back and change some
expenses that we’ve already approved. There may be many other integrity prop-
erties of the document besides the fact that people who are not collaborators
should not be able to modify.

Reply: Yes, absolutely. Underneath the shared document is a message log
containing all of the changes that ever happened. And you can have stronger
integrity properties on that log, so you would not be able to tamper with the
message log, for example.

(Presentation continues with Sections 3 and 4 of the paper, and posing the
problem of checking the integrity of snapshots.)

Daniel Weitzner: It’s an interesting problem. I wonder if you have a bit
of a concurrency-versus-privacy problem? If the first two users are still actively
editing and at some point – as I think Ilia suggested – they want to go back
in history, then what about the user who was invited later? Does the user who
joined later get to see the history after whatever snapshot you did? Do you end



From Secure Messaging to Secure Collaboration (Transcript of Discussion) 9

up with two di↵erent versions of the document based on when you joined? If
you’ve flattened out all the state then you’ve lost a lot of information for the
first two users.

Reply: Yes, potentially. In particular, if there’s some editing happening
concurrently to the state snapshot being taken—

Daniel Weitzner: Or just afterwards. It doesn’t even need to—
Reply: Yeah, “concurrently” in the distributed sense, that means, they’re

not aware of each other. Then yes, it could absolutely happen that this other
edit can’t be applied to that state, because it’s assuming some kind of metadata
that has been flattened out. That’s absolutely a potential problem, yeah.

Frank Stajano: You say it’s a problem that two thirds of the participants
have to be honest, and online. I’m not sure about online, but is it not going to
be the case that, in order to accept the newly invited guy, the previous guys
have to agree to let him in? And therefore, at the time they say “okay, I think
the new guy is alright”, they could also say “this is the snapshot” (or hash of
snapshot or something like that) that could contribute to the new guy having a
view that they concur on.

Reply: I guess it depends what kind of permission you want to require
for new people to be added. At least with Google Docs, and I think with most
of the group messaging protocols, any one of the existing participants can just
unilaterally invite a new person. So they don’t require any kind of agreement
from the group—

Frank Stajano: If this is the protocol, how can you even start worrying
about privacy if any guy around can invite any of their pals? Then of course
privacy goes out the window, right?

Reply: Well no, it’s already the case that any one user, if they want to,
can just send a copy of the document to their mates, completely outside of the
protocol. There’s no way of constraining what these individual people can do
with their decrypted copy of the data.

Frank Stajano: Then why are you worried that they might see a past edit,
if any of these guys can send it anyway, by your own assertion?

Reply: Well, the intention is that if the existing users don’t want to share
the past state, they have a way of sharing only the current state. Of course, if
they wanted to leak the past state they could do that, but we are trying to avoid
inadvertently leaking that past state when inviting a new user.

Ilia Shumailov: I think the goal is to save yourself from the server, not
from the collaborators.

Frank Stajano: He’s eliminated the server, hasn’t he?
Ilia Shumailov: Yeah, but how do you keep it consistent?
Frank Stajano: Right, yes.
Reply: Keep what consistent?
Ilia Shumailov: The version of the document, all operations.
Reply: These algorithms will work perfectly fine without a server because

they’re tolerant of messages arriving out of order. You can run this on top of
peer-to-peer protocol without any problems really.



10 M. Kleppmann, S.A. Kollmann, D.A. Vasile, A.R. Beresford

Ilia Shumailov: Yeah this is just an optimisation not to share all of the
operations for all of the documents with every new peer. Another interesting
question would then be: what happens when the person who was o✏ine joins in
with a completely separate state of operations? Does that imply that, in order
to impose new rules as a malicious user, you start DoSing all of the legitimate
users? And then all of the non-legitimate users can form a current consensus
with the online users, and distribute their own version of the document.

Reply: I guess that could happen, yes. I hadn’t really considered users
DoSing each other, but it’s conceivable.

Alexander Hicks: This question is related to what you were discussing
with Frank a few minutes ago. If you only want to share the latest state, I’m
going to take the example of Google Docs here — it’s a bit contrived, but can’t
you just create a new document, copy and paste what you want, and you’ve
shared the latest state successfully? And you can even have access to your past
edits by going back to your other doc if you want, without any risks. Obviously,
it’s maybe not practical to always open a new document, but it seems like it’s
doable at least.

Reply: Yes, the only problem is that there is no way for the new participant
to tell whether the new copy of the document, that copy-and-pasted document,
is actually consistent with what happened previously. So the person who does
the copying and pasting of the document may well manipulate the document at
the same time, and there is nothing stopping them.

Alexander Hicks: True, but then I guess from there on they would be
satisfied they have the latest copy. Unless they’re assuming that you’re also
editing the other copy, but then you can’t really avoid that anyway.

Reply: But if you want the existing collaborators to still be able to continue
editing, all three have now become equal collaborators, so you want to ensure
that all three of them are in the same state. If you copy and paste the entire
document into a new one, that means that all of the other participants also need
to switch over to the new one, and presumably the participants would, in the
process, do some comparison and checking whether the document still agrees
with what they thought it was before the copy-and-paste.

Alexander Hicks: Sure, but you could probably generate some proof of
that without necessarily revealing the past changes.

Reply: Well yes, that’s exactly what we’re trying to work out. Are there
cryptographic techniques that we can use to prove the integrity?

Alexander Hicks: Something like a light client, I guess.
Reply: Like what?
Alexander Hicks: I guess maybe Paddy [Patrick McCorry] can say. . . for

Bitcoin you have light clients, which only verify up to the past few blocks — is
that correct? Something like that could probably work.

Reply: Yes, sounds conceivable. I don’t know very much about Bitcoin.
Ian Goldberg: At the end of the day, you can always just run a SNARK,

right? So you have a circuit that applies a change to a state, yielding another
state, and the SNARK just checks that that was done correctly. It will not be



From Secure Messaging to Secure Collaboration (Transcript of Discussion) 11

cheap to generate, but it will be cheap to check. And then you can just, along
with the latest state, carry a proof that this latest state was generated correctly,
without revealing any of the inputs.

Reply: Yes, that would be interesting to try.
Patrick McCorry: This is sort of similar to state channels, where everyone

agrees on the new state, so it’s n out of n – everyone has to sign it. And when the
new person joins, everyone has to agree to that as well. Is it the same process here
when someone joins the collaboration? Do you require everyone’s authorisation?

Reply: No. At the moment, the way we’re thinking about this is that any
one member of the group can add new members without having to coordinate
with the others. That works nicely if these are mobile devices that are o✏ine
most of the time, where we really don’t want to have to wait for someone else to
come online. Even more so if, for example, one of the devices has been dropped
in the toilet by somebody, and so it is never going to come back online again. In
that case, we can at most wait for some kind of quorum, but we wouldn’t want
to have to wait for everybody.

Ilia Shumailov: Well, then that definitely completely destroys your tech-
nique here. You said that you wanted two out of three legitimate users. Then
you just add a lot of users who have copied state from you, and just say “okay,
this is the new state”. Right?

Reply: Yes certainly, if you allow arbitrary Sybil identities to be created,
then any sort of majority voting seems a bit meaningless. Though the nice thing
with these redactable signatures is that they don’t depend on any majorities:
we can verify the signatures with respect to all of the previous users without
waiting for any communication with them.

Ilia Shumailov: Oh, so that implies that with each one of them, you actu-
ally make a confirmation that this is the document.

Reply: Yes.
Ilia Shumailov: Well, does that not imply that if I add a bunch of copies

of myself and claim that this is the new document, it’s still going to work? What
happens in the case of conflict?

Reply: Editing conflicts within the document are on a separate layer above
this. Here, at this layer, we just need to ensure that everyone sees the same set
of messages.

Ilia Shumailov: So, if I clone myself a number of times, and then I say,
“okay, this is the new document”, what happens with the guy who comes in?

Reply: In this snapshot, part of the information are the user IDs of who
wrote what. Those user IDs might be a hash of their public key, for example. So
if you don’t have the private key for the other participants, you wouldn’t be able
to impersonate edits from the other people. You could still make a brand new
document, in which only you have made the edits, and there have been no edits
from others. For that document you would still need some kind of checking with
the other participants, and they would at that point say: “hey no, this isn’t the
document that we were working on – this is something completely di↵erent”.


	From Secure Messaging to Secure Collaboration

