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ABSTRACT
Secure group messaging protocols, providing end-to-end encryp-

tion for group communication, need to handle mobile devices fre-

quently being offline, group members being added or removed, and

the possibility of device compromises during long-lived chat ses-

sions. Existing work targets a centralized network model in which

all messages are routed through a single server, which is trusted to

provide a consistent total order on updates to the group state. In

this paper we adapt secure group messaging for decentralized net-

works that have no central authority. Servers may still optionally

be used, but they are trusted less. We define decentralized continu-
ous group key agreement (DCGKA), a new cryptographic primitive

encompassing the core of a decentralized secure group messaging

protocol; we give a practical construction of a DCGKA protocol and

prove its security; and we describe how to construct a full messag-

ing protocol from DCGKA. In the face of device compromise our

protocol achieves forward secrecy and post-compromise security.

We evaluate the performance of a prototype implementation, and

demonstrate that our protocol has practical efficiency.
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• Security and privacy→ Key management; Distributed sys-
tems security.
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1 INTRODUCTION
WhatsApp, Signal, and similar messaging apps have brought end-

to-end encryption to billions of users globally, demonstrating that

the benefits of such privacy-enhancing technologies can be enjoyed

by users who are not technical experts. Modern secure messaging

protocols used by these apps have several important characteristics:

Asynchronous: A user can send messages to other users regard-

less of whether the recipients are currently online. Offline

recipients receive their messages when they are next online

again (even if the sender is now offline). This property is

important for mobile devices, which are frequently offline.

Resilient to device compromise: If a user’s device is compro-

mised, i.e., all of that device’s secret key material is revealed

to the adversary, the protocol nevertheless provides forward
secrecy (FS): any messages received before the compromise

cannot be decrypted by the adversary. Moreover, protocols

can provide post-compromise security (PCS) [14]: users regu-

larly update their keys so the adversary eventually loses the

ability to decrypt further communication. As secure messag-

ing sessions may last for years, these properties are impor-

tant for limiting the impact of a compromise.

Dynamic: Group members can be added and removed at any time.

In the case when only two users are communicating, the Signal

protocol [32] is widely used. However, generalizations of this two-

party protocol to groups of more than two users are not straight-

forward. For example, WhatsApp’s group messaging protocol does

not provide PCS [36, 43]. Signal implements group messaging by

sending each message individually to each group member via a

two-party secure channel, which is inefficient for large groups.

Secure group messaging protocols have been the subject of much

recent cryptographic work, which we summarize in Section 3. A

notable example is the Messaging Layer Security (MLS) protocol,

a standard under development by an IETF working group [5, 31],

which provides FS/PCS and is designed to scale to large groups.

However, MLS assumes that all messages modifying the group

state (i.e. adding/removing members or performing key updates for

PCS) are delivered to all members in the same order. If two group

members concurrently modify the group state, one of the requests

must be rejected and retried. This total order is typically enforced

by routing all messages through a centralized, semi-trusted delivery

service; alternatively, a consensus protocol could be used.

There are many systems in which such centralization is undesir-

able. Email is a prominent example of a decentralized communica-

tion method. Anonymity networks such as Tor [16] or Loopix [33]

 

This work is licensed under a Creative Commons Attribution International 4.0 License. 

CCS '21, November 15–19, 2021, Virtual Event, Republic of Korea. 
© 2021 Copyright is held by the owner/author(s). 
ACM ISBN 978-1-4503-8454-4/21/11. 
https://doi.org/10.1145/3460120.3484542   

Session 6D: Authentication and Privacy  CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2024

https://doi.org/10.1145/3460120.3484542
https://doi.org/10.1145/3460120.3484542
https://creativecommons.org/licenses/by/4.0/


rely crucially on the assumption that no single node is able to ob-

serve all network traffic. Protesters use mesh networks, in which

mobile devices exchange messages without any servers, to avoid

censorship [1, 4, 38]. In systems such as these, a protocol that as-

sumes a central node or consensus cannot be used, because it would

defeat the purpose of the underlying network’s decentralization.

In this paper, we present a decentralized, asynchronous secure

group messaging protocol supporting dynamic groups. Our pro-

tocol works with any underlying network without requirements

on message ordering or latency: it can be deployed in peer-to-peer

or anonymity networks; it tolerates network partitions, high la-

tency links, and disconnected operation; and it does not require any

servers or consensus protocol. If servers are optionally used, there

is no need to trust them to order messages correctly, and users can

switch from one server to another (or use multiple servers at the

same time) without worrying about preserving message ordering.

Our protocol provides end-to-end encryption with forward se-

crecy and PCS, even when multiple users concurrently modify the

group state. It is practical, using only efficient and widely deployed

cryptographic primitives. It provides key agreement: messages to

the group need only be encrypted and sent once with small constant

overhead, regardless of group size. Group membership changes and

key updates (for PCS) require effort proportional to the group size.

In this paper we make the following contributions:

• We define Decentralized Continuous Group Key Agreement
(DCGKA), a new security notion for establishing shared sym-

metric keys in dynamic groups. Our definition generalizes

Continuous Group Key Agreement (CGKA) [3] to the decen-

tralized setting.

• We construct a protocol that implements DCGKA (Section 6),

prove its correctness and security (Section 7), and use it to

implement secure group messaging (Section 4).

• We evaluate the performance of a prototype implementation

of our protocol (Section 8), demonstrating that it is efficient

enough for practical deployment.

2 GOALS AND ASSUMPTIONS
In this section we summarize the goals of our protocol and the

threat model for which it is designed.

A secure group messaging protocol allows a group with a given

set of users to be created, allows group members to add and remove

other members, and allows group members to send messages to

the current set of members. We distinguish between application
messages (messages that a user wishes to send to the group) and

control messages (sent by the protocol to update group state). The

protocol must meet the following security goals:

Confidentiality: An application message sent by a group member

can only be decrypted by users who are also members of

the group at the time the message is sent, according to the

sender’s view of the group.

Integrity: Messages cannot be undetectably modified by anyone

but the member who sent them.

Authentication: The sender of a message cannot be forged, and

only members can send messages to the group.

Forward secrecy (FS): After a group member decrypts an appli-

cation message, an adversary who compromises the private

state of that member cannot decrypt that message.

Post-compromise security (PCS): If an adversary compromises

a group member, learning a snapshot of their current private

state (including all secret keys), but the group member re-

tains the ability to send messages, then the adversary can

only decrypt messages until that group member sends a PCS
update message that “heals” the compromise. More precisely,

the adversary cannot decrypt messages sent by any group

member who has processed the PCS update. In case an ad-

versary gains persistent access to a device, PCS ensures that

they lose decryption ability as soon as their persistent access

is revoked (e.g., by a software update) and the group member

sends a PCS update message.

Eventual consistency: All group members receive the same set

of application messages (possibly in different orders), and

all group members converge to the same view of the group

state as they receive the same set of control messages.

Our protocol ensures these security properties in the face of an

adversary who can perform arbitrary active network attacks. If

servers are used to relay messages, the adversary also fully controls

those servers.

We require the protocol to be decentralized, which means that

whenever any subset of users is able to physically exchange mes-

sages, they can communicate via the protocol. For example, consider

a group of protesters split across two physical locations, and as-

sume that devices at each location are able to communicate (e.g.

via a mesh network such as Briar [10] or Bridgefy [1]), but that

long-range communication between the locations is interrupted

(perhaps due to an adversary). This is known as a network par-
tition [19]. In such a scenario, we require that the users at each

location can continue to send and receive application messages, and

to add and remove group members. Messages should be delivered

immediately to local users, and be delivered to remote users as soon

as long-range communication is restored. Such message delay may

present usability challenges, but we think it is preferable to the

alternatives (delaying communication between co-located users, or

dropping messages entirely).

Decentralization implies that we cannot assume messages are

routed through a single server, since that would prevent communi-

cation between co-located users who cannot reach the server but

can connect to each other. It also rules out majority voting or con-

sensus, since a majority of users can reside at most in one location,

leaving a minority in the other location unable to communicate.

2.1 Limitations
Decentralization involves trade-offs, which we summarize in this

section. We also explain some simplifying assumptions we make.

Efficiency. The main practical downside of decentralization is

reduced efficiency. Our protocol’s PCS update and group member-

ship change messages have size 𝒪(n), where n is the number of

group members, while in MLS those messages have size 𝒪(log(n)).
However, in absolute terms, the linear cost is acceptable: in a group

with 128 members, a key update operation in our protocol takes

70 ms of CPU time per client and transmits 40 kB of network traffic.
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MLS allows up to 50,000 members per group; our protocol is

impractical for groups of that size. However, we argue that secure

messaging for groups of thousands of people does not have a plausi-

ble threat model: large groups are more easily infiltrated by agents

of the adversary, making the protocol’s confidentiality properties

irrelevant. We believe that secure messaging is most valuable in

small-to-medium sized groups, for which a 𝒪(n) cost is acceptable.
Our protocol also stores some state for each PCS update mes-

sage until every group member acknowledges the message, so the

state size may grow without bound if some group member never

acknowledges messages. The size of the stored state can be reduced

by using a different protocol (a variant of Sender Keys), but this

increases the cost of membership changes to𝒪(n2). In practice, the

storage cost is negligible on today’s computing devices.

Removed users. When a user is removed in the decentralized

setting, the removed user can continue sending messages to group

members who have not yet received the instruction to remove that

user. However, our protocol prevents removed users from violating

confidentiality with such messages.

Malicious groupmembers. In general, we assume that groupmem-

bers correctly follow the protocol. A group member can send mal-

formed protocol messages that make other group members disagree

on keys, causing denial of service (the same is true of MLS [12]).

However, group members cannot violate the protocol in a way that

prevents them, or any members they add, from being removed from

the group (Section 7).

Scope of device compromise. While we can guarantee all of the

security goals against network attacks at all times, a device compro-

mise inevitably temporarily impacts confidentiality, integrity, and

authentication. For PCS we assume that following a device compro-

mise, the adversary does not use the private state it has acquired

to impersonate the compromised user until that user sends a PCS

update message, as in many PCS protocols [14]. After the compro-

mised user sends a PCS update message, the security properties are

restored. If the adversary does impersonate a user, the compromise

is healed once that user, and any users the adversary added, are

removed from the group (Section 7).

Causal order processing. Messages are processed after all causally
prior protocol messages are received (Section 5.1), in contrast to in-

stant message decryption in Signal. MLS has a similar requirement,

and it is easily satisfied by retransmitting missing messages.

Unique additions. To simplify the presentation of our algorithms,

we assume that user additions are unique: if the same user is added

more than once to the same group, then each user addition results in

a separate protocol instance, and each is associated with a separate

ID. This can be achieved e.g. by including a nonce in the user ID.

Metadata privacy. Some protocols (including MLS) encrypt meta-

data, such as the identity of a user being added to a group. However,

these techniques do not work directly in a decentralized setting.

We leave metadata privacy for future work.

Public Key Infrastructure (PKI). We assume the existence of a PKI

that allows group members to obtain a correct public key for other

users. One approach would be for individual users to authenticate

each other (e.g. by scanning QR codes on each others’ phones if the

users are co-located in person, or by reading out a low-entropy code

over the phone and upgrading it to a shared secret using a PAKE

protocol), and to build a web of trust from these pairwise checks.

Other approaches are possible [39], but details of this decentralized

PKI are outside the scope of this paper.

3 RELATEDWORK
There are many existing secure messaging protocols [39]. Schemes

for two-party communication, providing forward secrecy and PCS

to varying degrees, have been studied extensively over the past few

years, starting with the Signal protocol [32] and its analysis [13],

followed by several new protocols and their analyses [6, 17, 22, 23,

34] as well as a modular analysis and generalization of Signal [2].

Among group messaging protocols for more than two parties,

relatively few are both asynchronous and support dynamic groups,

which we consider critical requirements for practical group messag-

ing on mobile devices. We focus on such protocols in our discussion

below. See Table 1 for a high-level comparison.

Signal groups use a simple protocol: the sender of each applica-

tion message sends the message individually to each other group

member using the two-party Signal protocol [36]. This approach

quickly becomes inefficient in large groups, as every application

message requires n − 1 two-party messages in a group of size n.
Also, care is needed to achieve PCS: using the ordinary Signal pro-

tocol, a group member effectively performs a PCS update only after

receiving a message from every other group member, which would

never happen if one member is always offline.

Sender Keys is another simple protocol, used by WhatsApp [36,

43]. In Sender Keys, each group member generates a symmetric

key for messages they send, and then sends this key individually

to each other group member using the two-party Signal protocol.

For each message sent by this member to the group, a new key

is derived pseudorandomly from the previous key, providing a

ratchet for forward secrecy. Whenever a user is removed, each

remaining group member generates a new key and sends it to

the other remaining members over the same two-party channels.

The protocol could provide PCS by updating keys periodically, but

WhatsApp chooses not to do this.

Like Signal groups, Sender Keys can be adapted to the decentral-

ized setting; the disadvantage is that PCS updates are expensive.

If one user is compromised, all of the sender keys become known

to the adversary. Since each user updates only their own sender

key, to recover from the compromise, each of the n group members

needs to generate a new key and send it to each of the n − 1 other
members, resulting in𝒪(n2)messages over the two-party channels.

Matrix’s end-to-end encryption protocol [29, 40] is a variant

of Sender Keys. It is decentralized, provides PCS, and explicitly

handles concurrent updates and group membership changes. It is

purposely not forward secret, although this could be changed. PCS

updates in Matrix require 𝒪(n2) messages, while our protocol has

𝒪(n) cost. No formal security analysis of the Matrix protocol has

been published to date.

The MLS protocol, mentioned in Section 1, uses the TreeKEM key

agreement protocol [5, 8]. Adding or removing a group member, or

performing a PCS key update, requires broadcasting a message of
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Table 1: Summary of related work as discussed in this paper.

Protocol

Central

server not

needed

Broadcast

messages

Update &

remove costs:
1

PCS & FS
PCS in face of

concurrent updates

Sender Per recipient

Signal groups ✓2 ✗ 𝒪(n) 𝒪(1) ½ (PCS issues)
3

[Optimal]
3

Sender Keys (WhatsApp) ✓2 ✓ 𝒪(n) 𝒪(n) FS only
4

[Optimal]
4

Matrix ✓ ✓ 𝒪(n) 𝒪(n) PCS only Optimal
3

MLS (TreeKEM) ✗ ✓ 𝒪(logn) 𝒪(1) ½ (FS issues) Only one sequence heals

Re-randomized TreeKEM ✗ ✓ 𝒪(logn) 𝒪(1) ✓

Causal TreeKEM ✓2 ✓ 𝒪(logn) 𝒪(1) ½ (severe FS issues) Any sequence heals

Concurrent TreeKEM ✓2 ✓ 𝒪(t + t log(n/t)) 𝒪(1) PCS only After two rounds

Our DCGKA protocol ✓ ✓ 𝒪(n) 𝒪(1) ✓ All but last can be concurrent

1
Costs are the number of public-key cryptographic operations performed. The total size of messages broadcast equals the “Sender” column

except for Sender Keys and Matrix, which have total broadcast network cost 𝒪(n2). t denotes the number of mutually concurrent messages.

2
Does not specify how to determine group membership in the face of concurrent additions and removals.

3
Optimal PCS in the face of concurrent updates is possible by using a 2-party protocol with optimal PCS+FS in place of pairwise Signal.

4
Optimal PCS in the face of concurrent updates is possible at the given costs, but not used in practice.

size 𝒪(log(n)). This is achieved by arranging group members into

a binary tree, with one leaf per group member, and each member

knowing the secret keys on their leaf node’s path to the root.

In large groups, MLS update messages are smaller than those in

our protocol; the downside is that MLS is inherently centralized.

MLS allows several PCS updates and group membership changes

to be proposed concurrently, but they only take effect after being

committed, and all users must process commits strictly in the same

order. A proposal also blocks application messages until the next

commit. In the case of a network partition like that described in

Section 2, it is not safe for one subset of users to perform a commit,

because a different subset of users may perform a different commit,

resulting in a group state inconsistency that cannot be resolved. As

a result, MLS typically depends on a semi-trusted server to deter-

mine the sequence of commits. There is a technique for combining

concurrent commits [8, §5], but this approach does not apply to

commits that add or remove group members, and it provides weak

PCS guarantees for concurrent updates.

Alwen et al. [3] introduce Re-randomized TreeKEM to strengthen

TreeKEM’s forward secrecy. That protocol is even harder to de-

centralize: group members update each other’s secret keys so that

each secret key is only used once, allowing them to be deleted for

forward secrecy, but this approach breaks if multiple concurrent

messages are encrypted under the same public key.

In the other direction, Causal TreeKEM modifies TreeKEM to

require only causally ordered message delivery (see Section 5.1), at

the cost of even weaker forward secrecy [41, §4]. Like our work,

Causal TreeKEM describes how to handle dynamic groups in the

decentralized setting, although the protocol description is largely

informal. Also, its post-compromise security is weaker than for our

DCGKA protocol: after multiple compromises, all compromised

group members must send PCS updates in sequence, while our

protocol allows all but the last update to be concurrent.

Bienstock, Dodis, and Rösler [9, §6] also propose a concurrency-

aware variant of TreeKEM (“Concurrent TreeKEM” in Table 1). This

I1
PRG

Encm1

PRG

Encm2

PRG

Encm3I2
PRG

Encm4
. . .

k1

k2

k3

k4

I1
PRG

Dec m1

PRG

Dec m2

PRG

Dec m3 I2
PRG

Dec m4
. . .

k1

k2

k3

k4

sender recipient

c1

c2

c3

c4

Figure 1: Ratchet for forward secret and PCS encryption of
messagesm1,m2, . . . based on a sequence of secrets I1, I2, . . . .

protocol achieves PCS updates whose cost scales with the number

of previous concurrent messages, matching MLS’s 𝒪(log(n)) when
all messages are totally ordered. However, it assumes that PCS

updates occur in fixed rounds, with all messages from one round

received before the start of the next round, and the authors do not

consider forward secrecy or dynamic groups.

Our definition of DCGKA security is based on CGKA, introduced

by Alwen et al. [3].

4 PROTOCOL OVERVIEW
We now introduce our protocol for decentralized secure group

messaging. We begin in this section by presenting a high-level

overview of the system architecture, before diving into the details

in the following sections.

Like many other messaging protocols, we begin with a ratchet,
which provides forward secrecy by encrypting each message with

a different key. Figure 1 illustrates the ratchet for encrypting the

sequence of messagesm1,m2, . . . sent by one particular user. The

sender of the messages initializes the ratchet with an update secret
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I1. When this user wishes to send messagemi , we use a pseudoran-

dom generator (PRG) to deterministically generate a symmetric key

ki and a new ratchet state from the current ratchet state.We encrypt

mi using ki in an authenticated encryption scheme with associated

data (AEAD), where the associated data includes the message index

i . The resulting ciphertext ci is broadcast to all group members.

We then delete I1, ki and the old ratchet state from memory, pre-

venting an adversary from obtaining ki if the user is subsequently
compromised. This construction has been formalized as forward
secure AEAD [2, §4.2].

From time to time, the sender may replace the ratchet state with

a fresh update secret I2, I3, . . . . This enables PCS: an adversary

who has learned the ratchet state from a past device compromise,

but who does not know the update secret, then loses the ability

to decrypt subsequent messages. The schedule for update secrets

can be chosen independently from the messages sent; for example,

a user could apply a PCS update once per day, and rely on the

PRG ratchet for messages sent over the course of a day. Thus, an

adversary loses decryption ability shortly after a device compromise

ends (e.g., due to a software update).

In a group messaging context, each group member has their own

ratchet for the sequence of messages they send. To decrypt those

messages, each group member maintains a copy of the ratchet for

every other group member. As long as each group member obtains

the same sequence of update secrets for each sender, and changes

their copy of the ratchet state at the appropriate times, they will

be able to decrypt the sender’s ciphertexts c1, c2, . . . . For forward
secrecy, recipients also delete update secrets, keys, and ratchet state

from memory as soon as they have been used.

With this construction, we have reduced the problem of secure

group messaging to the problem of generating a sequence of update

secrets I1, I2, . . . for each group member. That is the responsibility

of a DCGKA protocol, defined in Section 6.1. For example, in the

Sender Keys protocol (Section 3), a group member picks a fresh

random update secret, then sends it to every other group member

using a two-party secure messaging channel (e.g. the Signal proto-

col). Sender Keys has the downside that to heal a compromise, each

group member must send a new update secret to every other group

member, resulting in 𝒪(n2) messages via the two-party channels.

Our DCGKA protocol, described fully in Section 6, reduces the

number of messages for a PCS update to𝒪(n) as follows. To initiate
a PCS update, a user generates a fresh random value called a seed
secret, and sends it to each other group member via a two-party

secure channel, like in Sender Keys. On receiving a seed secret, a

group member deterministically derives from it an update secret for

the sender’s ratchet, and also an update secret for its own ratchet.

Moreover, the recipient broadcasts an unencrypted acknowledg-

ment to the group indicating that it has applied the update. Every

recipient of the acknowledgment then updates not only the ratchet

for the sender of the original update, but also the ratchet for the

sender of the acknowledgment. Thus, after one seed secret has been

disseminated via n − 1 two-party messages, and confirmed via n − 1
broadcast acknowledgments, each group member has derived an

update secret from it and updated their ratchet. To further reduce

cost, some of these messages can be delayed and batched without

weakening the security properties (see Section 8).

User A:

A1 : create {A, B }

A2 : update

User B:

B1 : ack A1

B2 : add C

B3 : ack C2

B4 : ack C3

User C:

C1 : ack B2

C2 : update

C3 : remove A

Figure 2: Sequence of group state changes at each user.

user A’s rachet state

"A"

KDF KDFIA

"A"

KDF KDFI ′A
. . .

user B’s rachet state

"B"

KDF KDF IB

"B"

KDF KDF I ′B
. . .

seed secret in

A’s PCS update

seed secret in

B’s PCS update

Figure 3: Different group members apply the same seed se-
crets to their KDF ratchets, but in different orders.

To remove a group member, the user initiating the removal

performs a PCS update in which the update secret is sent to all group

members except the removed one. To add a group member, each

existing group member sends the new user a copy of state needed

to derive their future update secrets (see Section 6 for details).

Different group members may receive messages in different or-

ders; care is required to ensure that each sender’s ratchet is never-

theless updated with the same sequence of update secrets at each

groupmember. We achieve this by constructing a sequence of group

state changes for each group member, as illustrated in Figure 2. In

this example, user A first creates a group containing A and B. User
B acknowledges the group creation and then adds C . User C ac-

knowledges being added by B, then performs a PCS update (which

is acknowledged by B), and then removes A from the group (also

acknowledged by B). Concurrently A performs a PCS update, but it

is not acknowledged by B or C before A’s removal takes effect.

In Figure 2, each box is a group state change that results in an

update secret being applied to the ratchet for that particular user,

and a message being broadcast to the group. The network protocol

we describe in Section 5.1 ensures that messages from the same

sender are processed in the order they were sent. Thus, if B first

broadcasts B1 (the acknowledgment of A1), then broadcasts B2 (the
addition of C), and so on, then all group members will first process

B1, then B2, etc., and so all group members will update their copy

of B’s ratchet with the same sequence of update secrets.

Figure 3 shows in detail how we generate the sequence of update

secrets for each group member. We use a second ratchet, based on a

key derivation function KDF, in addition to the ratchet from Figure 1.

While the Figure 1 ratchet moves forward for every application

message sent, the Figure 3 ratchet moves forward every time we

produce an update secret for a given group member. Formally, this

ratchet can be modeled as a PRF-PRNG [2, §4.3].

In the example of Figure 3, users A and B concurrently initiate a

PCS update. Each user generates a random seed secret and sends

it to the group. To incorporate a seed secret into its ratchet, a user
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first uses a KDF to combine the seed with their user ID, producing

a member secret, and then combines the member secret with their

ratchet state in a second invocation of the KDF (the reason for using

two KDF invocations is explained in Section 6.2). In Figure 3, userA
first applies the seed secret fromA’s own update, producing update

secret IA, and then applies B’s seed secret when acknowledging

the receipt of B’s update, producing update secret I ′A. User B first

applies the seed from their own update, producing IB , then applies

A’s seed secret when acknowledging its receipt, producing I ′B .

5 BUILDING BLOCKS
Our protocol makes use of several underlying modules and services,

which we discuss in this section. We mostly use existing published

algorithms, so we only briefly outline their required properties here.

5.1 Authenticated Causal Broadcast (ACB)
In a decentralized setting, the same messages may be delivered in a

different order to different users. For example, during a network

partition, users immediately receive messages from people on their

side of the partition, but messages from the other side may be

delivered much later. While we cannot guarantee that users will

see all messages in the same order, we provide a weaker ordering

guarantee called causal broadcast.

Definition 1. The causal order is a partial order ≺ on messages.

m1 ≺m2 (m1 causally precedesm2) if one of the following holds:

• m1 andm2 were sent by the same group member, and that

member sentm1 before sendingm2;

• m2 was sent by group member x , andm1 was received and

processed by x before sendingm2;

• there existsm3 such thatm1 ≺m3 andm3 ≺m2.

We say m1 and m2 are concurrent if m1 ⊀ m2 and m2 ⊀ m1.

Causal broadcast requires that before processingm, a groupmember

must process all preceding messages {m′ | m′ ≺ m}. Algorithms

typically implement causal broadcast using vector clocks [18, 30]

or by including hashes of causal predecessors in each message [24],

and by requesting retransmission of any dropped or corrupted

messages. The vector clocks/hashes also help prevent replay attacks.

Our causal broadcast module authenticates the sender of each

message, as well as its causal ordering metadata, using a digital

signature under the sender’s identity key. This prevents a passive

adversary from impersonating users or affecting causally ordered

delivery [24]. On every PCS update, a user generates a new identity

keypair and broadcasts it (signed by the old key), so that an adver-

sary who has compromised the user loses the ability to impersonate

them [15, §5]. Because our algorithm knows the current set of group

members (Section 5.2) it can reject messages from non-members.

Our DCGKA protocol uses two types of messages: broadcast
messages are sent to all members of the group, while direct messages
are sent to one specified recipient. We make this distinction only

for reasons of efficiency; our security properties hold regardless

of who receives which message. Even if the underlying network

supports only unicast, a gossip protocol [27] or multicast tree [20]

can disseminate a broadcast message to all group members at con-

stant cost per node. If the network only supports broadcast, then

all direct messages can be bundled into a single broadcast message

and sent to the entire group. Each group member can then pick out

the direct message intended for them from the broadcast message.

5.2 Decentralized Group Membership (DGM)
In a decentralized setting, it is not always obvious who the current

group members are. For example, say user A removes user B from

the group, while concurrently B removes A. Some users may first

process A’s removal of B and then ignore B’s operation (because B

is no longer a group member at that point), while other users may

first process B’s removal of A and then ignore A’s operation. If this

sort of situation is not handled carefully, users could end up with

inconsistent views of the group membership.

Matrix implements one approach for resolving such conflicts: it

first sorts membership changes so that revocations happen before

other changes, then sorts by a timestamp included in each message,

and applies changes in that order [21]. Another approach is to use

Conflict-free Replicated Data Types (CRDTs) [35, 37]. For space

reasons we elide a detailed discussion of these algorithms.

Instead, we assume a Decentralized Group Membership (DGM)
function that takes a set of membership change messages and their

causal order relationships, and returns the current set of group

members. The result must be deterministic and depend only on the

causal order, not the exact order in which a given user received the

messages. This function may also take permissions into account (e.g.

allowing only admins to add or remove members). For simplicity

we store the set of all membership changes that have occurred in a

group’s history, although in practice it is possible to discard details

of members who were added and then removed again.

5.3 Two-Party Secure Messaging (2SM)
Definition 2. A bidirectional two-party secure messaging scheme

consists of three algorithms 2SM-Init, 2SM-Send, and 2SM-Receive:

Initialization: 2SM-Init(ID1, ID2) takes two IDs: ID1 is the local

user and ID2 is the other party. It returns an initial protocol

state σ . The 2SM protocol must use a Public Key Infrastruc-

ture (PKI) or key server to map these IDs to public keys. In

practice, the PKI should include ephemeral prekeys, as intro-
duced by Signal [28]. This allows users to send messages to a

new group member, even if that member is currently offline.

Send: 2SM-Send(σ ,m) takes a state σ and a plaintext messagem,

and outputs a new state σ ′ and a ciphertext c .
Receive: 2SM-Receive(σ , c) takes a state σ and a ciphertext c , and

outputs a new state σ ′ and a plaintext messagem.

The Signal protocol is a popular implementation of 2SM, but it

does not suffice for our purposes because it heals from a compromise

only after several rounds of communication, not with each message

sent. Instead, we use a protocol with optimal forward secrecy and

PCS [23, §2.2], described formally in an extended version of this

paper [42]. The security of 2SM is formalized in Appendix B.

6 DECENTRALIZED CONTINUOUS GROUP
KEY AGREEMENT (DCGKA)

DCGKA generates a sequence of update secrets for each group

member, which are used as input to a ratchet to encrypt/decrypt

application messages sent by that member, as described in Section 4.
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Only group members learn these update secrets, and fresh secrets

are generated every time a user is added or removed, or a PCS

update is requested. The DCGKA protocol ensures that all users

observe the same sequence of update secrets for each groupmember,

regardless of the order in which concurrent messages are received.

6.1 The DCGKA Abstraction
Definition 3. A decentralized continuous group key agreement
scheme consists of the algorithms DCGKA = (init, create, add,
remove, update, process). Except for init, all of the algorithms take

a state γ and further arguments as specified below.

Initialization: init(ID) takes the ID of the current user, and re-

turns an initial state γ .
Group creation: create(γ , IDs) takes a state γ and a set of users

IDs, and creates a new group with those members.

Member addition: add(γ , ID) takes a state γ and a user ID, and

adds that user to the group.

Member removal: remove(γ , ID) takes a state γ and a user ID,

and removes that user from the group.

PCS update: update(γ ) takes a state γ and performs a key update.

Message processing: process(γ , sender, control, dmsg) is called

when a control message is received. It takes a state γ , the
user ID of the message sender (authenticated as discussed in

Section 5.1), a control message control, and a direct message

dmsg (or ε if there is no associated direct message).

create, add, remove and update return a tuple of four variables

(γ ′, control, dmsgs, I ), where γ ′ is a new state for the current user,

control is a control message that should be broadcast to the group

(or ε if no message needs to be sent), dmsgs is a set of (u,m) pairs
wherem is a direct message that should be sent to user u, and I
is a new update secret for the current user. process returns a 5-

tuple (γ ′, control, dmsgs, Is , Ir ), where Is is an update secret for the

sender of the message being processed, Ir is an update secret for

the recipient, and the other variables are as before.

The control message and direct messages must be distributed to

the other group members through Authenticated Causal Broadcast

as discussed in Section 5.1, calling the process function on the

recipient when they are delivered. If direct messages are sent along

with a control message, we assume that the direct message for

the appropriate recipient is delivered in the same call to process.
Our algorithm never sends a direct message without an associated

broadcast control message.

6.2 Our DCGKA Protocol
Figure 4 contains the full specification of our protocol. The variable

γ denotes the state, which consists of the variables initialized in

the function init. The notation 2sm[·] ← ε means that 2sm is a

dictionary where every key is initially mapped to the default value

ε , representing the empty string.

Every control message is a triple of the form (type, seq, content).
The message type is one of "create", "ack", "update", "remove",
"add", or "add-ack". The seq field is a sequence number, which

consecutively numbers successive control messages from the same

sender. The content depends on the type. The process function

unpacks the message tuple and then calls one of the six func-

tions process-create, process-ack, process-update, process-remove,
process-add, or process-add-ack, depending on the message type.

To simplify the presentation, we assume that each ID added to

the group is unique. We also assume the DGM (Section 5.2) is such

that create, add, and remove messages have the usual sequential

semantics from their sender’s perspective, and that users can only

be added by add messages targeting them, not as a side-effect of

other messages (e.g., a remove “undoing” a concurrent remove).

6.2.1 Helper Functions. We start by explaining several helper func-

tions that appear in the right-hand column of Figure 4.

encrypt-to uses 2SM (Section 5.3) to encrypt a direct message

for another group member. The first time a message is encrypted

to a particular recipient ID, the 2SM protocol state is initialized on

line 2 and stored in γ .2sm[ID]. We then use 2SM-Send on line 4 to

encrypt the message, and store the updated protocol state in γ .
decrypt-from is the reverse of encrypt-to. It similarly initializes

the protocol state on first use, and then uses 2SM-Receive to decrypt
the ciphertext, with the protocol state stored in γ .2sm[ID].

update-ratchet generates the next update secret for group mem-

ber ID. It implements the outer KDF of the ratchet illustrated in

Figure 3. The ratchet state is stored in γ .ratchet[ID]; we use a

HMAC-based key derivation function HKDF [25, 26] to combine

the ratchet state with an input, producing an update secret and a

new ratchet state.

member-view computes the set of group members at the time of

themost recent controlmessage sent by user ID. It works by filtering
the set of group membership operations to contain only those seen

by ID, and then invoking the Decentralized Group Membership

function DGM (Section 5.2) to compute the group membership.

generate-seed generates a seed secret using KGen, a secure

source of random bits, then calls encrypt-to to encrypt it for each

other group member using the 2SM protocol. It returns the updated

protocol state and the set of direct messages to send.

6.2.2 Group Creation. A group is created in three steps: 1. one user

calls create and broadcasts a control message of type "create"
(plus direct messages) to the initial members; 2. each member pro-

cesses that message and broadcasts an "ack" control message;

3. each member processes the ack from each other member.

The create function constructs the "create" control message

and calls generate-seed to generate the set of direct messages to

send. It then calls process-create to process the control message

for this user (as if it had received the message) before returning.

process-create returns a tuple including an updated state γ and an

update secret I ; we use these and ignore the rest of the tuple.

process-create is called both by the sender and each recipient

of the "create" control message. It first records the information

from the create message in γ .history, which we use to track group

membership changes, and then calls process-seed.
process-seed first uses member-view to determine the set of

users who were group members at the time the control message

was sent, and hence the set of recipients of the message. It then

attempts to obtain the seed secret: 1. if the control message was

sent by the local user, the last call to generate-seed placed the seed

secret in γ .nextSeed, so we read that variable and then delete its

contents (lines 2–3); 2. if the control message was sent by another
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init(ID)

1 : γ .myId← ID

2 : γ .mySeq← 0

3 : γ .history← ∅

4 : γ .nextSeed← ε

5 : γ .2sm[·] ← ε

6 : γ .memberSecret[·, ·, ·] ← ε

7 : γ .ratchet[·] ← ε

8 : return γ

process(γ , sender, controlMsg, dmsg)

1 : (type, seq, info) ← controlMsg

2 : if type = "create" then

3 : return process-create(γ , sender, seq, info, dmsg)

4 : else if type = "ack" then etc . . .

create(γ , IDs)

1 : control← ("create", ++γ .mySeq, IDs)

2 : (γ , dmsgs) ← generate-seed(γ , IDs)

3 : (γ , _, _, I , _) ← process-create(γ , γ .myId, γ .mySeq, IDs, ε )

4 : return (γ , control, dmsgs, I )

process-create(γ , sender, seq, IDs, dmsg)

1 : op← ("create", sender, seq, IDs)

2 : γ .history← γ .history ∪ {op}

3 : return process-seed(γ , sender, seq, dmsg)

process-ack(γ , sender, seq, (ackID, ackSeq), dmsg)

1 : if (ackID, ackSeq) was a create/add/remove then

2 : op← ("ack", sender, seq, ackID, ackSeq)

3 : γ .history← γ .history ∪ {op}

4 : s ← γ .memberSecret[ackID, ackSeq, sender]

5 : γ .memberSecret[ackID, ackSeq, sender] ← ε

6 : if s = ε ∧ dmsg = ε then return (γ , ε , ε , ε , ε )

7 : if s = ε then (γ , s) ← decrypt-from(γ , sender, dmsg)

8 : (γ , I ) ← update-ratchet(γ , sender, s)

9 : return (γ , ε , ε , I , ε )

update(γ )

1 : control← ("update", ++γ .mySeq, ε )

2 : recipients← member-view(γ , γ .myId) \ {γ .myId}

3 : (γ , dmsgs) ← generate-seed(γ , recipients)

4 : (γ , _, _, I , _) ← process-update(γ , γ .myId, γ .mySeq, ε , ε )

5 : return (γ , control, dmsgs, I )

process-update(γ , sender, seq, _, dmsg)

1 : return process-seed(γ , sender, seq, dmsg)

remove(γ , ID)

1 : control← ("remove", ++γ .mySeq, ID)

2 : recipients← member-view(γ , γ .myId) \ {ID, γ .myId}

3 : (γ , dmsgs) ← generate-seed(γ , recipients)

4 : (γ , _, _, I , _) ← process-remove(γ , γ .myId, γ .mySeq, ID, ε )

5 : return (γ , control, dmsgs, I )

process-remove(γ , sender, seq, removed, dmsg)

1 : op← ("remove", sender, seq, removed)

2 : γ .history← γ .history ∪ {op}

3 : return process-seed(γ , sender, seq, dmsg)

add(γ , ID)

1 : control← ("add", ++γ .mySeq, ID)

2 : (γ , c) ← encrypt-to(γ , ID, γ .ratchet[γ .myId])

3 : op← ("add", γ .myId, γ .mySeq, ID)

4 : welcome← (γ .history ∪ {op}, c)

5 : (γ , _, _, I , _) ← process-add(γ , γ .myId, γ .mySeq, ID, ε )

6 : return (γ , control, {(ID, welcome)}, I )

process-add(γ , sender, seq, added, dmsg)

1 : if added = γ .myId then

2 : return process-welcome(γ , sender, seq, dmsg)

3 : op← ("add", sender, seq, added)

4 : γ .history← γ .history ∪ {op}

5 : if γ .myId ∈ member-view(γ , sender) then

6 : (γ , s) ← update-ratchet(γ , sender, "welcome")

7 : γ .memberSecret[sender, seq, added] ← s

8 : (γ , Isender) ← update-ratchet(γ , sender, "add")

9 : else Isender ← ε

10 : if sender = γ .myId then return (γ , ε , ε , Isender, ε )

11 : control← ("add-ack", ++γ .mySeq, (sender, seq))

12 : (γ , c) ← encrypt-to(γ , added, ratchet[γ .myId])

13 : (γ , _, _, Ime, _) ← process-add-ack(γ , γ .myId,

14 : γ .mySeq, (sender, seq), ε )

15 : return (γ , control, {(added, c)}, Isender, Ime)

process-add-ack(γ , sender, seq, (ackID, ackSeq), dmsg)

1 : op← ("ack", sender, seq, ackID, ackSeq)

2 : γ .history← γ .history ∪ {op}

3 : if dmsg , ε then

4 : (γ , s) ← decrypt-from(γ , sender, dmsg)

5 : γ .ratchet[sender] ← s

6 : if γ .myId ∈ member-view(γ , sender) then

7 : (γ , I ) ← update-ratchet(γ , sender, "add")

8 : return (γ , ε , ε , I , ε )

9 : else return (γ , ε , ε , ε , ε )

process-welcome(γ , sender, seq, (adderHistory, c))

1 : γ .history← adderHistory

2 : (γ , γ .ratchet[sender]) ← decrypt-from(γ , sender, c)

3 : (γ , s) ← update-ratchet(γ , sender, "welcome")

4 : γ .memberSecret[sender, seq, γ .myId] ← s

5 : (γ , Isender) ← update-ratchet(γ , sender, "add")

6 : control← ("ack", ++γ .mySeq, (sender, seq))

7 : (γ , _, _, Ime, _) ← process-ack(γ , γ .myId, γ .mySeq,

8 : (sender, seq), ε )

9 : return (γ , control, ε , Isender, Ime)

generate-seed(γ , recipients)

1 : γ .nextSeed ←$KGen; dmsgs← ∅

2 : foreach ID ∈ recipients do

3 : (γ ,msg) ← encrypt-to(γ , ID, γ .nextSeed)

4 : dmsgs← dmsgs ∪ {(ID,msg)}

5 : return (γ , dmsgs)

process-seed(γ , sender, seq, dmsg)

1 : recipients← member-view(γ , sender) \ {sender}

2 : if sender = γ .myId then

3 : seed← γ .nextSeed; γ .nextSeed← ε

4 : else if γ .myId ∈ recipients then

5 : (γ , seed) ← decrypt-from(γ , sender, dmsg)

6 : else

7 : return (γ , ("ack", ++γ .mySeq, (sender, seq)), ε , ε , ε )

8 : foreach ID ∈ recipients do

9 : γ .memberSecret[sender, seq, ID] ← HKDF(seed, ID)

10 : senderSecret← HKDF(seed, sender)

11 : (γ , Isender) ← update-ratchet(γ , sender, senderSecret)

12 : if sender = γ .myId then return (γ , ε , ε , Isender, ε )

13 : control← ("ack", ++γ .mySeq, (sender, seq))

14 : members← member-view(γ , γ .myId)

15 : forward← ∅

16 : foreach ID ∈ members \ (recipients ∪ {sender}) do

17 : s ← γ .memberSecret[sender, seq, γ .myId]

18 : (γ ,msg) ← encrypt-to(γ , ID, s)

19 : forward← forward ∪ {(ID,msg)}

20 : (γ , _, _, Ime, _) ← process-ack(γ , γ .myId, γ .mySeq,

21 : (sender, seq), ε )

22 : return (γ , control, forward, Isender, Ime)

encrypt-to(γ , recipient, plaintext)

1 : if γ .2sm[recipient] = ε then

2 : γ .2sm[recipient] ← 2SM-Init(γ .myId, recipient)

3 : (γ .2sm[recipient], ciphertext) ←

4 : 2SM-Send(γ .2sm[recipient], plaintext)

5 : return (γ , ciphertext)

decrypt-from(γ , sender, ciphertext)

1 : if γ .2sm[sender] = ε then

2 : γ .2sm[sender] ← 2SM-Init(γ .myId, sender)

3 : (γ .2sm[sender], plaintext) ←

4 : 2SM-Receive(γ .2sm[sender], ciphertext)

5 : return (γ , plaintext)

update-ratchet(γ , ID, input)

1 : (updateSecret, γ .ratchet[ID]) ←

2 : HKDF(γ .ratchet[ID], input)

3 : return (γ , updateSecret)

member-view(γ , ID)

1 : ops← {m ∈ γ .history | m was sent or acked by ID

2 : (or the user who added ID, ifm precedes the add)}

3 : return DGM(ops)

Figure 4: Our DCGKA Protocol.
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user, and the local user is one of its recipients, we use decrypt-from
to decrypt the direct message containing the seed secret (lines 4–

5); 3. otherwise we return an "ack" message without deriving an

update secret (lines 6–7). Case 3 may occur when a group member

is added concurrently to other messages, which we discuss later.

Next, process-seed derives independent member secrets for each
group member from the seed secret (lines 8–10) by combining the

seed secret and each user ID using HKDF (like in Figure 3). The

secret for the sender of the message is stored in senderSecret, and
those for the other group members are stored in γ .memberSecret;
the latter are used when we receive acknowledgments from those

users. We only store the member secrets, and not the seed secret,

so that if the user’s private state is compromised, the adversary

obtains only those member secrets that have not yet been used.

The sender’s member secret is used immediately to update their

KDF ratchet and compute their update secret Isender (line 11), using
update-ratchet. If the local user is the sender of the control message,

we are now finished and return the update secret (line 12). If we

received the seed secret from another user, we construct an "ack"
control message to broadcast, including the sender ID and sequence

number of the message we are acknowledging (line 13).

Lines 14–19 of process-seed are relevant only in the case of

concurrency, so we skip them for now and return to them later.

The last step is to compute an update secret Ime for the local user,

which we do on lines 20–21 by calling process-ack.
process-ack is also called by other group members when they

receive the "ack" message. In this function, ackID and ackSeq are

the sender and sequence number of the acknowledged message.

First, if the acknowledged message was a group membership oper-

ation, we record the acknowledgment in γ .history (lines 1–3). We

do this because the member-view function needs to know which

operations have been acknowledged by which user.

Next, line 4 of process-ack reads from γ .memberSecret the ap-
propriate member secret that was previously derived from the seed

secret in the message being acknowledged. The member secret is

then deleted for forward secrecy (line 5). Line 6–7 are relevant only

in the case of concurrency, so we skip them for now. On lines 8–9

we update the ratchet for the sender of the "ack" and return the

resulting update secret.

6.2.3 PCSUpdate and Removing GroupMembers. Functions update
and remove are similar to create: they also call generate-seed to

encrypt a new seed secret to each group member. The difference is

that the set of group members is determined using member-view
on line 2 of update and remove, and in the case of remove, the
user being removed is excluded from the set of recipients of the

seed secret. Moreover, the control message they construct has type

"update" or "remove" respectively.

Similarly, process-update and process-remove are analogous

to process-create. process-update omits updating γ .history, while
process-remove adds a remove operation to the history. Both then

call process-seed, which works like during group creation.

6.2.4 Adding Group Members. To add a new group member, an

existing group member calls the add function, passing in the ID of

the user to be added. This function constructs a control message of

type "add" to broadcast to the group (line 1), and awelcomemessage

that is sent to the new member as a direct message (lines 2–4). The

welcome message contains the current KDF ratchet state of the

sender, encrypted using 2SM, and the history of group membership

operations to date (necessary so that the new member can evaluate

the DGM function). It is possible to avoid sending an unbounded

history of membership operations, but we omit this optimization

for the sake of clarity. On line 5 we call process-add to compute

the update secret for the user performing the addition.

process-add is called by both the sender and each recipient of

an "add" message, including the new group member. On lines

1–2, if the local user is the new group member being added, we

call process-welcome (see below) and return. Otherwise we extend

γ .history with the add operation (lines 3–4). Line 5 determines

whether the local user was already a group member at the time the

"add" message was sent; this is true in the common case, but may

be false if multiple users were added concurrently. We discuss the

common case first, and return to concurrency later.

On lines 6–8 we twice update the ratchet for the sender of the

"add" message. In both calls to update-ratchet, rather than us-

ing a random seed secret, the ratchet input is a constant string

("welcome" and "add" respectively). It is sufficient to use constants

here because all existing group members are allowed to know the

next update secrets following the add operation. The value returned

by the first ratchet update is stored in γ .memberSecret as the added
user’s first member secret; the result of the second ratchet update

becomes Isender, the update secret for the sender of the "add". On
line 10, if the local user is the sender, we return that update secret.

Otherwise, we need to acknowledge the "add" message, so on

line 11 we construct a control message of type "add-ack" to broad-
cast (note that add has its own acknowledgment type, whereas

create, update and remove all use "ack"). We then use 2SM to

encrypt our current ratchet state to send as a direct message to

the added user, so that they can decrypt subsequent messages we

send (line 12). Finally, we call process-add-ack to compute the local

user’s update secret Ime, and return it with Isender (lines 13–15).
process-welcome is the second function called by a newly added

group member (the first is the call to init that sets up their state).

Here, adderHistory is the adding user’s copy of γ .history sent

in their welcome message, which is used to initialize the added

user’s history (line 1). c is the ciphertext of the adding user’s

ratchet state, which we decrypt on line 2 using decrypt-from. After

γ .ratchet[sender] is initialized, we can call update-ratchet twice on
lines 3–5 with the constant strings "welcome" and "add": exactly
the same ratchet operations as every other group member performs

in process-add. As before, the result of the first update-ratchet call
becomes the first member secret for the added user, and the second

returns Isender, the update secret for the sender of the add operation.
Finally, the new group member constructs an "ack" control mes-

sage (not "add-ack") to broadcast on line 6, and calls process-ack
to compute their first update secret Ime. process-ack works as de-
scribed previously, reading from γ .memberSecret the member se-

cret we just generated, and passing it to update-ratchet. The previ-
ous ratchet state for the new member is the empty string ε , as set
up by init, so this step initializes the new member’s ratchet. Every

other group member, on receiving the new member’s "ack", will
initialize their copy of the new member’s ratchet in the same way.

By the end of process-welcome, the new group member has ob-

tained update secrets for themselves and the user who added them.
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ack w/

forward

Figure 5: A updates while concurrently C adds D, and B re-
ceives the add message before the update. When B receives

the update, B considers D to be a group member, but D will be

unable to derive B’s new update secret. To resolve this, B forwards

its member secret to D in its ack message.

They then use those secrets to initialize the ratchets for application

messages, illustrated in Figure 1, allowing them to send messages

and decrypt messages from the user who added them. The ratchets

for other group members are initialized by process-add-ack.
process-add-ack is called by both the sender and each recipi-

ent of an "add-ack" message, including the new group member.

On lines 1–2 we add the acknowledgment to γ .history, like in

process-ack. If the current user is the new group member, the

"add-ack" message is accompanied by the direct message that

we constructed in process-add; this direct message dmsg contains

the encrypted ratchet state of the sender of the "add-ack", so we

decrypt it on lines 3–5.

On line 6 of process-add-ack, we check if the local user was

already a group member at the time the "add-ack"was sent (which
may not be the case when there are concurrent additions). If so,

on line 7 we compute a new update secret I for the sender of

the "add-ack" by calling update-ratchet with the constant string

"add". In the case of the new member, the ratchet state was just

previously initialized on line 5. This ratchet update allows all group

members, including the new one, to derive each member’s update

secret for the add operation, but it prevents the new group member

from obtaining any update secret from before they were added.

6.2.5 Handling Concurrency. We have explained all of the func-

tions in Figure 4, except for skipping a few lines that are related to

handling concurrency. In particular, care is required when an add
operation occurs concurrently with an update, remove, or another
add operation. We now discuss those details.

We want all intended recipients to learn every update secret,

since otherwise some users would not be able to decrypt some

messages, despite being a group member. For example, consider a

group with members {A,B,C} as illustrated in Figure 5, and say

A performs an update while concurrently C adds D to the group.

WhenA distributes a new seed secret through 2SM-encrypted direct

messages, D will not be a recipient of one of those direct messages,

since A did not know about D’s addition at the time of sending.

D will therefore execute lines 6–7 of process-seed, and it cannot

derive any of the member secrets for this update. When B updates

its KDF ratchet using A’s seed secret, it will compute an update

secret that D does not know, and D will not be able to decrypt B’s
subsequent application messages.

In this example, B may receive the add and the update in either

order. If B processes A’s update first, the seed secret from A is al-

ready incorporated into B’s ratchet state at time time of adding D;
since B sends this ratchet state to D along with its "add-ack" mes-

sage, no further action is needed. On the other hand, if B processes

the addition of D first (as in Figure 5), then when B subsequently

processes A’s update, B must take the member secret it derives

from A’s seed secret and forward it to D, so that D can compute

B’s update secret for A’s update.
This forwarding takes place on lines 14–19 of process-seed,

which is called as part of processing an "update" or "remove"
message. Recall that on line 1 we set recipients to be the set of

group members at the time the update/remove was sent, except for

the sender. On line 14 we then compute the current set of members

according to the local node. The set difference on line 16 thus com-

putes the set of users whose additions have been processed by the

local user, but who were not yet known to sender of the update.
If there are any such users, we construct a direct message to

each of them. One of the member secrets we computed on line 9

is the member secret for the local user. On lines 17–19 we 2SM-

encrypt that member secret for each of the users who need it. This

set forward is sent as direct messages along with the "ack" (the

dashed arrow in Figure 5). The recipient of such a message handles

this case on line 7–8 of process-ack, where the forwarded member

secret is decrypted and then used to update the ratchet for the

"ack" sender. Note that this forwarding behavior does not violate

forward secrecy: an application message can still only be decrypted

by those users who were group members at the time of sending.

Another scenario that needs to be handled is when two users are

concurrently added to the group. For example, in a group consisting

initially of {A,B}, say A adds C to the group, while concurrently

B adds D. User C first processes its own addition and welcome

message, and then processes B’s addition of D. However, since C
was not a group member at the time B sent its "add" message, C
does not yet have B’s ratchet state, so C cannot derive an update

secret forB’s "add"message. The condition on line 5 of process-add
is false and so C does not derive an update secret on lines 6–8.

When B finds out about the fact thatA has addedC , B sendsC its

ratchet state as usual (line 12 of process-add), soC can initialize its

copy of B’s ratchet as before (lines 4–5 of process-add-ack). Simi-

larly, whenD finds out about the fact thatA has addedC ,D sends its

ratchet state to C along with the "add-ack" message. The existing

logic therefore handles the concurrent additions: after all acks have

been delivered,C and D have both initialized their copies of all four

ratchets, and so they are able to decrypt application messages that

any group member sent after processing their addition.

7 DCGKA SECURITY ANALYSIS
We capture the security properties of DCGKA and the adversary’s

capabilities formally in the security game in Appendix A. In sum-

mary, the adversary is given access to oracles to cause group mem-

bers to call the protocol algorithms, deliver messages in causal

order, and compromise group members, revealing their current

state. The adversary is also given a transcript of all messages sent.

However, due to the underlying Authenticated Causal Broadcast,

the adversary is not allowed to modify messages, deliver them out
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of causal order, or forge the sender at the DCGKA level. The game

is a key indistinguishability game, in which the adversary may

challenge update secrets, revealing either the actual update secret
or a random value, depending on a random bit b. We show that any

adversary has only a negligible advantage in guessing b.
We do not allow the adversary to send arbitrary messages signed

by a compromised user: as discussed in Section 2.1, we assume

that group members correctly follow the protocol, and we do not

provide post-impersonation security. However, the adversary may

perform arbitrary membership changes. To prevent trivial attacks

in which the adversary compromises a group member and then

decrypts a message intended for that member, the adversary wins

the game only if a safety predicate dom-safe evaluates to true on the
queries made by the adversary. This predicate is defined formally

in Figure 13 in Appendix C.

If the adversary compromises multiple users, and these users

then perform concurrent PCS updates or removals, then the com-

promise is not healed until after a subsequent dominating update

or removal, which is a message that causally succeeds all of them.

dom-safe captures this fact. For example, if multiple users are re-

moved concurrently, and a group member sends an application

message after receiving both remove messages but no subsequent

updates or removals, then the removed users can collude to decrypt

the application message. This slightly weaker-than-optimal post-

compromise security is not a problem in practice because group

members can always detect such a situation and choose to send a

PCS update before their next application message, if no other group

member has done so already. Also, note that if the adversary only

compromises a single group member, that member is healed by

their next PCS update, even if there are other concurrent updates

(in contrast to some proposed techniques for MLS [8, §5], [41]).

We define a non-adaptive (t,q,n)-adversary for the DCGKA game

to be an adversary A that runs in time at most t , makes at most q
queries, references at most n IDs, and must specify the sequence

of queries it plans to make in advance, before seeing the result of

any queries. Given a DGM scheme DGM, we say that our protocol

is non-adaptively (t,q,n, dom-safe,DGM, ϵ)-secure if for all non-
adaptive (t,q,n)-adversaries A, the advantage

AdvDCKGA,dom-safe,DGM
dcgka-na

(A) := 2

����Pr[A wins] −
1

2

���� ≤ ϵ

(Definition 5 in Appendix A).

Theorem4. LetDGM be a DGM function satisfying the assumptions
stated in Section 6.2, and assume user additions are unique. Model
HKDF as a random oracle, let λ be the bit length of random values
output by KGen and HKDF, and let the 2SM protocol be (t ′,q, ϵ2sm)-
secure in the sense of Appendix B. Then the protocol in Figure 4 is
non-adaptively (t,q,n, dom-safe,DGM, ϵ)-secure, for t ≈ t ′ and

ϵ = 2q

(
n2ϵ2sm + qnt2

−λ +

(
qn

2

)
2
−λ

)
.

The proof appears in Appendix C. The basic idea is that each

dominating message’s seed secret is only sent to current group

members over uncompromised 2SM channels, and hence those seed

secrets are unknown to the adversary. The same then holds for the

challenged update secrets, each of which directly incorporates some

dominating message’s seed secret. Forward secrecy is guaranteed

by the group members’ KDF ratchets and by deleting secrets after

use.

Malicious group members and impersonating adversaries. Our
analysis assumes that all group members correctly follow the pro-

tocol, and that the adversary does not use compromised state to

impersonate a group member. Malicious members can trivially

cause a denial of service by sending different seed secrets to differ-

ent users in an update message, causing their ratchets to become

inconsistent. Likewise, an impersonating adversary may cause the

group to ignore future PCS updates from the impersonated user, or

add other devices they own to the group.

However, malicious members and impersonating adversaries

cannot violate the protocol in a way that allows them to decrypt

messages after they, and any devices they add, are removed from

the group (unlike the “double-join” attacks on early versions of

MLS [8, §5]). Informally, when a userA is removed, the other group

members distribute a fresh seed secret over 2SM channels. Prior

messages by A have no effect on these 2SM channels, even if A
violates the protocol, so A is not able to obtain the seed secret.

8 PERFORMANCE
In this section we examine the performance of our protocol as a

function of n, the number of group members.

8.1 Asymptotic Performance Analysis
In general, causal broadcast requires additional metadata in every

message to establish the causal ordering. The size of this metadata

is proportional to the number of concurrently sent messages by

different group members—𝒪(n) in the worst case [11]. However,

we are able to reduce this overhead to zero because our DCGKA

protocol does not require acks to be delivered in causal order with

respect to each other. Instead, DCGKA only requires that each group

member’s messages are delivered in order, and that acknowledg-

ment messages are delivered after the message they acknowledge.

The acknowledgment messages and the sequence numbers that are

already contained in DCGKA messages in plaintext are sufficient

to ensure this order.

Additionally, Authenticated Causal Broadcast requires a signa-

ture to authenticate the sender of each message, adding a constant-

size overhead to each message. The AEAD for application messages

and 2SM encryption for direct messages also add a constant over-

head. Each direct message requires a constant number of public-key

operations on both the sender and the recipient side.

Each create, update, or remove DCGKA operation broadcasts

one constant-size control message and sends 𝒪(n) constant-size
direct messages. Each other group member replies by broadcasting

a constant-size acknowledgment, resulting in 𝒪(n) network traf-

fic overall. The operation requires 𝒪(n) public key operations at

the sender, and 𝒪(1) public key operations for each other group

member.

Add operations send one constant-size control message and one

direct message (the welcome message to the new user), and require

𝒪(1) public key operations at the sender. Each other group member

broadcasts a constant-size acknowledgment and sends one constant-

size direct message to the new member, resulting in 𝒪(n) network
traffic overall. The acknowledgments require in total 𝒪(n) public
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key operations by the added user and 𝒪(1) public key operations

by each other group member. In the above protocol description, the

welcome message contains the history of group membership opera-

tions and acks, but in practice the acks can be replaced with a DAG

representation of the causal order, as in Matrix’s DGM scheme [21],

plus a description of the maximal messages acknowledged by each

user. The welcome message thus has size ranging between 𝒪(n′)
(no concurrency) and 𝒪((n′)2) (maximum concurrency), where n′

is the total number of users that have participated in the group

since it was created. This approach is practical for the group sizes

we target, as demonstrated by the protocol’s use in Matrix.

As an optimization, a group member can choose to delay sending

acknowledgments until the next time it performs a PCS update or

membership operation, or wants to send an application message. By

coalescing the delayed acknowledgments and the new operation or

message into a single message with a single signature, the number

of public key operations per ack is effectively reduced to zero. This

optimization does not affect the security properties of the protocol.

Our analysis assumes that the underlying network supports

broadcast messaging, or at least that the network cost scales with

broadcast message size instead of only with unicast message size.

Indeed, broadcast messages are more efficient than sending distinct

unicast messages in many networks, by reducing, e.g., the sender’s

network usage, storage cost on intermediate nodes, or inter-server

traffic in a federated system. If the network does not support broad-

cast, each broadcast message must become 𝒪(n) unicast messages.

However, these 𝒪(n) messages need not all be sent independently:

many group members (and, optionally, some number of untrusted

servers) can be involved in disseminating a broadcast message by

using a suitable network topology, e.g. a mesh network, gossip

protocol [27] or multicast tree [20]. These strategies are commonly

used in practical distributed systems to achieve broadcast at con-

stant cost per node, regardless of group size.

The minimum storage requirement of our algorithm is 𝒪(n)
for the current list of group members and the ratchet state for

each member. Three elements of the state can exceed 𝒪(n): the
DGM state (γ .history), member secrets that have not yet been used

because not all group members have acknowledged their source

messages, and the 2SM states. The state size for Matrix’s DGM

scheme was discussed above. The member secrets’ state size is

proportional to the number of acknowledgments that have not yet

been received, which can in principle grow without bound, e.g., if

some group members never come online. The 2SM protocols add

state size bounded by the state size considered so far.

8.2 Implementation and Empirical
Measurements

We have implemented a prototype of our DCGKA algorithm in

around 3500 lines of Java. The implementation is available as an

open-source project on GitHub.
1
We use a Java implementation of

Curve25519 [7];
2
all other cryptographic primitives use the built-

in cryptography providers of the JVM. For the two-party secure

messaging protocol, we use a protocol described informally by Jost

et al. [23, §2.2] as a simplification of their full protocol, which we

1
https://github.com/trvedata/key-agreement

2
https://github.com/trevorbernard/curve25519-java
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Figure 6: The total data volume sent by all clients while ex-
ecuting each type of operation, for groups ranging from 8
to 128 members. Broadcast messages are counted as a single
outgoing message.
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Figure 7: The CPU time (on a single core) to execute an op-
eration, per sender or recipient, for groups ranging from 8
to 128members. The error bars show the standard deviation
over 25 independent executions.

describe formally and prove secure in the extended version of this

paper [42]. We ran the evaluation using OpenJDK 8 on a single

machine with 16 GiB memory and an 8-core Intel i7 processor.

Our implementation demonstrates that the performance of our

protocol is good enough for practical use in medium-sized groups of

up to 128 members, even with an implementation that is not highly

optimized. In our experiments we execute multiple test scenarios

consisting of an initial group setup followed by a single group

membership, PCS update, or message send operation. We measure

the network traffic and CPU time resulting from that operation

(including the processing of messages at all group members, and

including any acknowledgments). We run all clients as separate

threads in a single process and simulate a network by passing

messages between threads as serialized byte arrays. Hash functions

and symmetric encryption use a 128-bit security level.

Figure 6 shows that the total network traffic for creating a group,

adding a group member, or removing a group member grows lin-

early with the group size, as expected. Creating a new group of 128

members results in 43.4 kB being sent, and PCS updates (39.6 kB)

and the group membership operations add (75.5 kB) and remove

(39.3 kB) are in the same order of magnitude. Sending an applica-

tion message incurs a constant overhead of 139 bytes regardless of

group size. For our evaluation we send a 32 byte payload.
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Figure 7 shows that the average computational effort per sender

or recipient does not exceed 100 ms for group creation, PCS up-

date, and membership operations on groups up to 128 members.
3

For groups up to 64 members, the CPU times are less than 50 ms.

Sending and receiving application messages is very fast, taking less

than 1 ms regardless of group size. Comparing these results with

an average mobile network latency of around 50 ms, these results

support our conclusion that DCGKA is practicable for real-world

applications with medium-sized groups.

9 CONCLUSION
In this paper we have shown how to enable secure group messaging

with strong security guarantees (end-to-end encryption with for-

ward secrecy and post-compromise security) in a decentralized and

asynchronous setting. While the basic idea of sending secrets over

two-party secure channels is simple, many details require careful

design in order to meet our objectives: in particular, ensuring that

all group members obtain the same keys when users are added

concurrently with other group members performing PCS updates.

Centralized protocols avoid such challenges by sequencing all

updates through a semi-trusted server or consensus protocol. How-

ever, such centralization is undesirable in many settings, such as

anonymous communication (mix networks), mesh networks, mo-

bile ad-hoc networks, and peer-to-peer settings. By avoiding such

centralization, our protocol allows secure group messaging to be

deployed on any type of network, regardless of its topology. Even

during a network partition, any subset of group members who are

able to physically exchange messages can continue to communicate,

update keys, and add or remove group members as usual. This gives

our protocol much better robustness and censorship resistance than

approaches based on a server that can become a single point of

failure and a target for denial-of-service attacks.

The downside of our protocol is that group membership oper-

ations and PCS key updates have 𝒪(n) cost in computation and

network traffic for a group withnmembers, whereas the centralized

MLS protocol requires only one broadcast message of size 𝒪(logn)
for the same operations [5]. We have shown in Section 8 that our

𝒪(n) cost is acceptable even for groups of over 100 members.

Beyond this paper, there are many open problems and interesting

directions for future work, in particular addressing the limitations

in Section 2.1.
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A SECURITY GAME FOR DCGKA
The correctness and security of a DCGKA scheme are formally

captured by the security game in Figure 8, with additional predicates

defined in Figure 9. The game definition and our description of it

are based on the CGKA version introduced by Alwen et al. [3, §3.2].

The game is a key indistinguishability game, parameterized by the

random bit b, which determines whether challenges return actual

update secrets or random values. The adversary’s goal is to guess b.
DGM denotes the DGM scheme that we are using to determine

group membership. We assume DGM is such that create, add, and

remove messages have the usual sequential semantics from their

sender’s perspective, and we assume that a user can initially be

added to the group only by an add message for that user. However,

tomake the game definition as general as possible, we do not require

each ID added to the group to be unique, and do we not impose

restrictions on re-adding previous users. In particular, a user may

be removed and re-added, possibly indirectly (e.g., due to a remove

message “undoing” a concurrent remove), or added multiple times

concurrently.

The relation ≺ denotes the causal order on messages, as defined

in Section 5.1.

Initialization. The init oracle sets up the game and all the vari-

ables needed to keep track of the execution. The random bit b is

used for real-or-random challenges. The dictionary γ keeps track

of all of the users’ states, while counter[ID] stores the number of

messages that have been sent so far by ID. Note that these counters
are never reset, unlike the variable ctr in the CGKA security game,

which is reset with each CGKA epoch. controlMsgs[ID, c] stores the
c-th control message generated by ID, while directMsgs[ID, c, ID′]
stores the corresponding direct message intended for ID′. Corre-
sponding to controlMsgs[ID, c], I[ID, c] stores the update secret

output by the sender, needsResponse[ID, c] stores whether recipi-
ents are required to return an acknowledgment when processing

controlMsgs[ID, c] (i.e., it is an output of create, add, remove, or
update), and, challenged[ID, c] stores whether I[ID, c] has been

challenged or revealed by the adversary. Additionally, for each

user ID′, delivered[ID, c, ID′] indicates whether controlMsgs[ID, c]
has been delivered to ID′. Finally, if controlMsgs[ID, c] is an add

message for a user ID′, then addTarget[ID, c] is ID′, else it is ε .
Both controlMsgs and directMsgs are marked public, indicating

that they are readable by the adversary.

Group creation. The create-group oracle causes ID0 to create

a group with members ID0, . . . , IDn . It requires that no previous

messages have been sent, i.e., the game has just started (if the

require statement fails, the game aborts and the adversary loses).

To avoid trivial protocols that do not output any update secrets,

create must output a non-ε control message and update secret; if

not, we reveal b to the adversary, indicated by the keyword win.
We store the returned messages and update secret, increment the

sender’s counter, and mark the message as delivered to its sender.

Here we use the notation directMsgs[ID0, 1] ← dmsgs to mean

directMsgs[ID0, 1, ID′] ← dmsg for each pair (ID′, dmsg) ∈ dmsgs.
To avoid trivial protocols, we set needsResponse[ID0, 1] ← true,
ensuring that other group members will output response messages
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init

b ←$ {0, 1}

∀ID : γ [ID] ← init(ID)

counter[·] ← 0

public controlMsgs[·, ·] ← ε

public directMsgs[·, ·, ·] ← ε

I[·, ·] ← ε

needsResponse[·, ·] ← false

challenged[·, ·] ← false

delivered[·, ·, ·] ← false

addTarget[·, ·] ← ε

reveal(ID, c)

require I[ID, c] , ε

require ¬challenged[ID, c]

challenged[ID, c] ← true

return I[ID, c]

challenge(ID, c)

require I[ID, c] , ε

require ¬challenged[ID, c]

I0 ← I[ID, c]

I1 ←$KGen()

challenged[ID, c] ← true

return Ib

compromise(ID)

return γ [ID]

create-group(ID0, {ID1, . . . , IDn })

1 : require controlMsgs is empty

2 : require ID0 < {ID1, . . . , IDn }

3 : (γ [ID0], control, dmsgs, I ) ←

4 : create(γ [ID0], ID1, . . . , IDn )

5 : if control = ε ∨ I = ε then win

6 : controlMsgs[ID0, 1] ← control

7 : directMsgs[ID0, 1] ← dmsgs

8 : I[ID0, 1] ← I

9 : needsResponse[ID0, 1] ← true

10 : counter[ID0] ← 1

11 : delivered[ID0, 1, ID0] ← true

add-user(ID, ID′)

1 : require valid-member(ID) ∧ ID , ID′

2 : c ← ++counter[ID]

3 : (γ [ID], control, dmsgs, I ) ← add(γ [ID], ID′)

4 : if control = ε ∨ I = ε then win

5 : controlMsgs[ID, c] ← control

6 : directMsgs[ID, c] ← dmsgs

7 : I[ID, c] ← I

8 : addTarget[ID, c] ← ID′

9 : delivered[ID, c , ID] ← true

remove-user(ID, ID′)

1 : require valid-member(ID) ∧ ID , ID′

2 : c ← ++counter[ID]

3 : (γ [ID], control, dmsgs, I ) ←

4 : remove(γ [ID], ID′)

5 : if control = ε ∨ I = ε then win

6 : controlMsgs[ID, c] ← control

7 : directMsgs[ID, c] ← dmsgs

8 : I[ID, c] ← I

9 : needsResponse[ID, c] ← true

10 : delivered[ID, c , ID] ← true

send-update(ID)

1 : require valid-member(ID)

2 : c ← ++counter[ID]

3 : (γ [ID], control, dmsgs, I ) ← update(γ [ID])

4 : if control = ε ∨ I = ε then win

5 : controlMsgs[ID, c] ← control

6 : directMsgs[ID, c] ← dmsgs

7 : I[ID, c] ← I

8 : needsResponse[ID, c] ← true

9 : delivered[ID, c , ID] ← true

deliver(ID, c , ID′)

1 : require controlMsgs[ID, c] , ε

2 : require ¬in-history(ID, c , ID′)

3 : require should-receive(ID, c , ID′)

4 : require causally-ready(ID, c , ID′)∨

5 : add-ready(ID, c , ID′)

6 : (γ [ID′], control, dmsgs, I , I ′) ←

7 : process(γ [ID′], ID, controlMsgs[ID, c],

8 : directMsgs[ID, c , ID′])

9 : if should-decrypt(ID, c , ID′) then

10 : if I , I[ID, c] then win

11 : else if I , ε then win

12 : mustRespond←
(
needsResponse[ID, c] ∧

13 : should-decrypt(ID, c , ID′)
)
∨

14 : adds-member(ID, c , ID′)

15 : if mustRespond ∧ (control = ε ∨ I ′ = ε )

16 : then win

17 : if control , ε then

18 : c′ ← ++counter[ID′]

19 : controlMsgs[ID′, c′] ← control

20 : directMsgs[ID′, c′] ← dmsgs

21 : I[ID′, c′] ← I ′

22 : delivered[ID′, c′, ID′] ← true

23 : delivered[ID, c , ID′] ← true

Figure 8: Oracles of security game for DCGKA(DGM)

and update secrets of their own when processing the create mes-

sage.

Adding, removing, and performing updates. The three oracles

add-user, remove-user, and send-update allow the adversary to

cause some user to call the corresponding algorithm. The predicate

valid-member (defined in Figure 9) ensures that the sender has

received a message before, which implies that they have been added

to the group at some point. In contrast to the CGKA security game,

we do not make any check that the requested group membership

operations are “reasonable”, e.g., the removed user is currently in

the group, besides the check ID , ID′. This is because the DGM
scheme may assign some significance to seemingly redundant or

unreasonable operations.

Delivering control messages. The oracle deliver(ID, c, ID′) deliv-
ers controlMsgs[ID, c] and the directmessage directMsgs[ID, c, ID′]
to user ID′. It first makes several ordering-related checks, which

formalize the precise delivery requirements for messages (discussed

briefly in Section 5.1):

• The predicate in-history is used to ensure that ID′ has not
already been delivered this message or a causally later one.

The latter case can occur if ID′ was already delivered a mes-

sage adding them to the group which is causally greater

than this message, hence should have informed ID′ of any
relevant metadata about this message.

• The predicate should-receive ensures that ID′ is eligible to
receive this message. We dictate that ID′ is eligible to receive
themessage if they consider themselves groupmembers after

receiving the message, taking into account all messages they
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valid-member(ID) := ∃(T ∈ controlMsgs) (delivered[T , ID])

in-history(ID, c, ID′) := ∃(T ∈ controlMsgs)
(
controlMsgs[ID, c] ⪯ T ∧ delivered[T , ID′]

)
should-decrypt(ID, c, ID′) := ID′ ∈ DGM

(
{T ∈ controlMsgs | T ⪯ controlMsgs[ID, c]}

)
should-receive(ID, c, ID′) := ID′ ∈ DGM

(
{T ∈ controlMsgs | T ⪯ controlMsgs[ID, c] ∨ in-history(T , ID′)}

)
causally-ready(ID, c, ID′) := ∀(T ∈ controlMsgs)

(
T ≺ controlMsgs[ID, c] =⇒ in-history(T , ID′)

)
add-ready(ID, c, ID′) := (addTarget[ID, c] = ID′) ∧

∀(T ∈ controlMsgs)
(
(T ≺ controlMsgs[ID, c] ∧ should-decrypt(T , ID′)) =⇒ delivered[T , ID′]

)
adds-member(ID, c, ID′) :=

(
let S = {T ∈ controlMsgs | in-history(T , ID′)} in

(DGM(S ∪ {controlMsgs[ID, c]}) \ DGM(S) , ∅)
)

Figure 9: Predicates used in the security game. Here we use delivered[T , ID] as an abbreviation for delivered[ID′, c ′, ID] when T =
controlMsgs[ID′, c ′], and likewise for inputs to the predicates.

have received already. This rules out confusing situations

in which group members consider themselves not in the

group, but allows them to receive messages besides just the

ones they should be able to decrypt—in particular, messages

concurrent to their own addition. Allowing group members

to receive messages concurrent to their addition allows us

to simplify our DCGKA protocol, since then group members

can learn the metadata (but not update secrets) of group

membership changes and acknowledgments concurrent to

their addition, which are impossible to include in themessage

adding them to the group.

• The predicate causally-ready ensures that ID′ processes mes-

sages in causal order, by requiring them to have received all

causally lesser messages.

The exception to this rule is encoded by add-ready: a group
member may receive a message adding them to the group

without receiving prior messages. In particular, the first mes-

sage a group member receives will always be the message

adding them to the group. However, this would get confus-

ing if a group member was added to the group, removed,

and then re-added later, and they were allowed to receive

the second add message before receiving all messages in

between the first add and remove, since they would later

have to go back and process old messages. To avoid this,

add-ready requires ID′ to first receive any causally prior

messages that they should-decrypt.

These restrictions on the adversary’s ability to deliver messages are

reasonable because they can easily be enforced by the Authenticated

Causal Broadcast layer, as discussed in Section 5.1.
4

After checking these conditions, the oracle delivers the message

to ID′. To ensure correctness, we mandate that the output secret I
is correct (i.e., equal to the update secret returned when its sender

4
The Causal Broadcast layer can enforce the restriction in add-ready by including,

along with each message adding ID′, a vector clock describing the causally maximal

prior messages T satisfying should-decrypt(T , ID′). The Causal Broadcast layer for
ID′ would then delay processing the add message until its own vector clock was at

least as large.

processed the message) if ID′ should be able to decrypt it. This

occurs precisely if they were an intended recipient of the message.

Finally, delivering the message may cause ID′ to return a re-

sponse control message, which is handled like any other gener-

ated message. The variable mustRespond mandates that this re-

sponse exists and has an associated update secret. A response is

required if needsResponse is true, i.e., the delivered message was

output by create, remove, or update, and ID′ should-decrypt the
processed message. A response is also required if the message adds

a group member, from the perspective of ID′, since the added group
member needs an update secret from ID′ in order to decrypt their

application messages; this is checked by adds-member. Note that
adds-member(ID, c, ID′) is not always equivalent to addTarget[ID, c]
, ε , since an add message may have no effect due to previously re-

ceived messages (e.g., concurrent removes in a remove-wins DGM),

or a non-add message may cause a user to be re-added (e.g., a re-

move undoing a concurrent remove—this is possible in Matrix [21]).

If a response is not required, ID′ may choose to output a response

regardless, in which case we do not require their response to have

an associated update secret.

Challenges and compromises. Challenges and compromises are

handled as in the CGKA security game. In order to capture that

update secrets must look random, the adversary is allowed to issue

a challenge for any update secret, using challenge. The adversary
may instead directly reveal the update secret using reveal. To model

forward secrecy and post-compromise security, the adversary is

allowed to learn the current state of any user by calling the oracle

compromise. Note that because of our requirements about when

users output update secrets and response messages, we do not have

to worry about trivial protocols that give the adversary nothing to

challenge.

Avoiding trivial attacks. At the end of the game, a safety predi-
cate P (specified as a parameter to the security game) is evaluated

on the sequence of queries q1, . . . , qq made by the adversary. If

P(qq , . . . , qq ) is false, the adversary loses. The safety predicate is
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safe(q1, . . . , qq ) :=

∀
(
(i, j) s.t. qi =challenge(ID, c) for some ID, c and

qj = compromise(ID′) for some ID′
)( (

delivered[ID, c, ID′] was true at the time of qj
)∨

∃k
(
qk = send-update(ID′) ∧ k > j ∧

message(qk ) ⪯ controlMsgs[ID, c]
)∨

¬should-decrypt[ID, c, ID′]
)

Figure 10: Safety predicate safe and its helper predicate
compromises. Here message(qk ) denotes the control message gen-

erated during the query qk .

meant to prevent trivial attacks, in which the adversary compro-

mises a group member’s state and then uses it directly to decrypt

an update secret. Changing P changes the precise PCS and FS guar-

antees required by the security game.

The particular safety predicate safe in Figure 10 describes optimal
PCS and FS. The predicate says that a compromise is allowed so long

as for each challenged update secret, one of the following holds,

where m denotes the message corresponding to the challenged

update secret:

Forward secrecy The compromised user had already receivedm
before being compromised.

PCS After being compromised, the compromised user sent a PCS

update message, andm’s author had received that message

before sendingm (or the PCS update ism).

Group membership The compromised user was not an intended

recipient ofm. That is,m’s sender did not consider them a

group member at the time they sent m. This implies that

the adversary may freely compromise removed users. Also,

this means that in spite of concurrent group membership

changes, a message’s sender always knows exactly which

users can decrypt that message, and they can always avoid

undesired recipients by sending remove messages immedi-

ately beforehand.

Note that the three clauses in the disjunction correspond to the

three allowed cases above.

Optimal PCS and FS in the decentralized setting includes optimal

PCS in the face of concurrent updates: after multiple compromises,

update secrets must be safe once all compromised group members

update, even if they all update concurrently. However, some proto-

cols only achieve weaker forms of PCS or FS, including our own (cf.

the last two columns in Table 1). Thus we instead prove security of

our DCGKA protocol with respect to the safety predicate dom-safe
defined in Appendix C, which allows slightly sub-optimal PCS in

the face of concurrent updates.

Advantage. In the following, a non-adaptive (t,q,n)-adversary is

an adversaryA that runs in time at most t , makes at most q queries,

references at most n IDs, and must specify the sequence of queries

it plans to make in advance, before seeing the result of any queries.

The adversarywins the DCGKA security game if it correctly guesses

the random bit b in the end and the safety predicate P evaluates

to true on the queries made by the adversary. The advantage of
A against a DCGKA scheme DCGKA with respect to the safety

predicate P and DGM scheme DGM is defined by

AdvDCKGA,P,DGM
dcgka-na

(A) := 2

����Pr[A wins] −
1

2

���� .
Definition 5. ADCGKA schemeDCGKA is non-adaptively (t,q,n,
P,DGM, ϵ)-secure if for all non-adaptive (t,q,n)-adversaries A,

AdvDCKGA,P,DGM
dcgka-na

(A) ≤ ϵ .

B SECURITY GAME FOR TWO-PARTY
SECURE MESSAGING (2SM)

In this section, we define the precise security notion we require

for the 2SM scheme used in our DCGKA protocol. The interface of

a 2SM scheme is defined in Section 5.3. Our definition formalizes

optimal 2-party forward secrecy and PCS, assuming authentic mes-

sage delivery. 2SM schemes meeting this definition are described

by Jost et al. [23] and Durak and Vaudenay [17]. In an extended

version of this paper [42], we formalize an optimized protocol that

is described informally in [23, §2.2], taking advantage of the fact

that we do not require post-impersonation security.

Our 2SM security game is essentially the two-party restriction of

our DCGKA security game, with every message counting as a PCS

update message, except that we use IND-CPA security instead of

secret indistinguishability. The oracles of our security game appear

in Figure 11.

The init oracle sets up the game and all the variables needed

to keep track of the execution. The random bit b is used for IND-

CPA challenges. By a slight abuse of notation, the states of the two

parties, A and B, are initialized using key pairs for some public-key

encryption scheme using a key generation function PKE-Gen(),
instead of using IDs. These key pairs stand in for those returned by

the 2SM scheme’s internal public-key infrastructure (PKI) on the

actual input IDs. Specifically, pkA is the public key for A returned

to B by the PKI, with matching secret key skA known to A, and
likewise for (pkB , skB ). ciphertextsA[c] and plaintextsA[c] store the
ciphertext and plaintext, respectively, for the c-th message sent by

A, and likewise for B. The ciphertexts arrays are marked public,
indicating that they are readable by the adversary, and the parties’

public keys are also given to the adversary. nextSendA gives the

index of the next message A will send, and nextDeliveredA gives

the index of the next message to be delivered from A to B.
After calling init, the adversary is free to call the remaining ora-

cles to simulate message sending and receiving, compromise the

parties’ states, and issue IND-CPA challenges. Note that deliver-A
enforces authentic in-order delivery of messages from B (if the

require statement fails, the game aborts and the adversary loses).

However, messages can be arbitrarily delayed, and messages from

the two parties may be interleaved. deliver-A checks that A cor-

rectly decrypts the original plaintext, enforcing correctness (other-

wise win reveals b to the adversary).

At the end of the game, the predicate 2SM-safe in Figure 12

is evaluated on the sequence of queries q1, . . . , qq made by the

adversary, and if it is false, the adversary loses. This is to prevent

trivial attacks, in which the adversary compromises a user’s state
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init

1 : b ←$ {0, 1}

2 : (pkA , skA) ←$PKE-Gen()

3 : (pkB , skB ) ←$PKE-Gen()

4 : σA ← 2SM-Init(skA , pkB )

5 : σB ← 2SM-Init(skB , pkA)

6 : public ciphertextsA[·], ciphertextsB [·] ← ε

7 : plaintextsA[·], plaintextsB [·] ← ε

8 : nextSendA , nextSendB ← 1

9 : nextDeliveredA , nextDeliveredB ← 1

10 : return (pkA , pkB )

compromise-A

1 : return σA

send-A(m)

1 : plaintextsA[nextSendA] ←m

2 : (σA , ciphertextsA[nextSendA]) ← 2SM-Send(σA ,m)

3 : nextSendA + +

deliver-A

1 : require nextDeliveredB < nextSendB

2 : (σA ,m) ← 2SM-Receive(σA , ciphertextsB [nextDeliveredB ])

3 : if m , plaintextsB [nextDeliveredB ] then win

4 : nextDeliveredB + +

challenge-A(m0,m1)

1 : require |m0 | = |m1 |

2 : send-A(mb )

Figure 11: Oracles of security game for 2SM (A only; oracles
for B are analogous).

2SM-safe(q1, . . . , qq ) :=

∀
(
(i, j) s.t. qi =challenge-C(m0,m1) for some

C ∈ {A,B} and qj = compromise-C for C , C
)(

(qi ’s ciphertext was delivered by the time of qj )∨
∃k

(
(qk = send-C(m) or challenge-C(m′

0
,m′

1
)) ∧

k > j ∧ (qk ’s ciphertext was delivered

by the time of qi )
) )

Figure 12: Safety predicate 2SM-safe. Note the similarity to safe
in Figure 10.

and then uses it directly to decrypt amessage. Specifically, 2SM-safe
says that a compromise is allowed so long as for each challenged

ciphertext c , one of the following holds.

Forward secrecy The compromised user had already received c
before being compromised.

Per-message PCS After being compromised, the compromised

user sent a message, and the other user had received that

message before sending c .

An adversary wins the 2SM security game if it correctly guesses

the random bit b in the end and the safety predicate 2SM-safe in
Figure 12 evaluates to true on the queries made by the adversary.

Definition 6. A non-adaptive (t,q)-adversary is an adversary A

that runs in time t , makes at most q queries, and must specify the

sequence of queries it plans to make in advance, before seeing the

result of any queries. The advantage of A against a 2SM scheme

2SM is

Adv2SM
2sm-na

(A) := 2

����Pr[A wins] −
1

2

���� .
Definition 7. A 2SM scheme is non-adaptively (t,q, ϵ)-secure if for
all (t,q)-adversaries A,

Adv2SM
2sm-na

(A) ≤ ϵ .

C DCGKA SECURITY PROOF
We now prove the security of our DCGKA protocol (Theorem 4).

As described in Section 7, we achieve slightly suboptimal PCS in

the face of concurrent updates. We formalize the weakened security

property that we do achieve by replacing the predicate safe in the

DCGKA security game with the predicate dom-safe defined in

Figure 13. Like safe, dom-safe says that a challenge is allowed so

long as each compromise falls into one of three cases (the cases in

the disjunction): forward secrecy, PCS, or group membership.

Forward secrecy is unchanged from safe. For PCS, dom-safe
differs from safe in that for each challenge qi , all update messages

message(qk ) providing PCS must be causally prior to a “dominat-

ing” update (or remove or create) message message(qd ) that is
itself causally prior to the challenged message. If multiple group

members are compromised and then update concurrently, but no

such dominating message has been sent, then we do not guarantee

security. Indeed, the adversary can decrypt each of the concurrent

updates’ seed secrets by using a different compromised member’s

state. Such a dominating message always exists if there are multiple

sequential updates (the last one dominates), but it does not exist if

multiple group members update concurrently and no subsequent

updates have been sent.

For group membership, instead of allowing the adversary to com-

promise users who should not decrypt the challenged message, we

only allow the adversary to compromise users who should also not

decrypt the dominating message message(qd ). This is because if
multiple users are removed concurrently without a subsequent dom-

inating message, then the adversary (or the users in collusion) can

decrypt each of the concurrent remove messages’ seed secrets by

using a different removed user’s state. Similarly, if a user is removed

as a side-effect of an add message due to the DGM scheme, that add

message does not actually include a fresh secret, so confidentiality

is not guaranteed until the next update or remove message. We also

do not allow the adversary to compromise users who are added to

the group in between the dominating message and the challenged

message, except as permitted by the usual forward secrecy and PCS,

since those users may be able to decrypt the challenged message.

Given this safety predicate, the basic idea of our security proof

is that all 2SM instances used bymessage(qd ) are uncompromised,

hence qd ’s seed secret is unknown to the adversary. The same then

holds for the challenged update secret, since that secret factors

Session 6D: Authentication and Privacy  CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2041



dom-safe(q1, . . . , qq ) :=

∀
(
i s.t. qi =challenge(ID, c) for some ID, c

)
∃d

( (
qd = send-update(−), remove-user(−), or

create-group(−)
)
∧(

message(qd ) ⪯ controlMsgs[ID, c]
)
∧

∀
(
j s.t. qj = compromise(ID′) for some ID′

)( (
delivered[ID, c, ID′] was true at the time of qj

)∨
∃k

(
qk = send-update(ID′) ∧ k > j ∧

message(qk ) ⪯ message(qd )
)∨ (

¬should-decrypt(message(qd ), ID
′) ∧

∄a
(
qa = add-user(−, ID′)∧

message(qa ) ⊀ message(qd )

message(qa ) ⪯ controlMsgs[ID, c]
) ) ))

Figure 13: Safety predicate dom-safe for our protocol.
message(q) denotes the control message generated during q.

into qd ’s seed secret via the key ratchet. Later compromises by the

adversary are foiled by forward secrecy, which we guarantee by

using the key ratchet and deleting secrets after use.

Lemma 8 (Correctness). Let DGM be a DGM protocol satisfying
the restrictions in Section 6.2, and assume user additions are unique.
Then our DCGKA protocol is correct. That is, for any adversary, none
of the win clauses in the security game will ever be triggered. This
holds even if we relax the requirement of causally ordered delivery to
the weaker ordering requirement described in Section 8.1, by replacing
the causal order ≺ in the security game with the partial order ≺ack
defined by the transitive closure of the rules:
• controlMsgs[ID, c] ≺ack controlMsgs[ID, c ′] for all ID and
all c < c ′.
• T ≺ack T

′ wheneverT ′ is an ack or add-ack message acknowl-
edging T .

Proof. Claim 1: All 2SM protocol messages decrypt correctly.
This claim follows from the correctness of the 2SMprotocol, since

for each pair of users ID, ID′, all 2SM messages from ID to ID′ are
delivered in order. Note that we initialize the 2SM protocol instances

γ .2sm[·] as needed in functions encrypt-to and decrypt-from.

Claim 2: All calls to member-view are correct in the following
sense: whenever a user ID calls member-view(γ , ID′) for some ID′

(possibly ID′ = ID) while processing a control messageT , the returned
set of group members is

DGM
({
T ′ | in-history(T ′, ID′) was true immediately

after ID′ generated T
})
.

A single exception is the call on line 2 of remove, in which case
the removed user’s removal is not reflected in the return value of
member-view, but they are correctly removed by line 2 (this is correct

by the DGM restriction requiring removes to be have as expected at
their sender).

To prove this claim, it suffices to prove that in the claim’s scenario,

ID’sγ .history contains at least themetadata of all suchT ′ that affect
group membership (create, add, and remove messages, plus acks

and add-acks of such messages). The claim follows since lines 1–2

ofmember-view serve to pick out precisely the given set ofT ′ from
γ .history.

First suppose ID has not sent or received any messages prior

to sending or receiving T . There are only three possibilities: ID
is processing their own create message (via line 3 of create); ID
is processing another user’s create message; or ID is processing a

welcome message. (The valid-member checks on line 1 of oracles

add-user, remove-user, and send-update rule out their correspond-
ing protocol functions, and the causally-ready ∨ add-ready check

on lines 4–5 of oracle deliver only permit create or welcome mes-

sages in this scenario.) In the first and second possibilities, the claim

holds due to lines 1–2 of process-create. In the third possibility, the

claim holds by line 1 of process-welcome and by inductively ap-

plying our claim to the adding user; note in this case that the add

message is included in adderHistory due to lines 3–4 of add.
Now suppose ID has sent or received at least one message prior

toT . By our assumption that ID is added at most once,T is not a wel-

come message. Thus either ID is the author ofT , or causally-ready(
T , ID) was true on line 4 of oracle deliver. In both cases, it fol-

lows inductively that all desired T ′ except T itself are contained

in γ .history. Finally, if T affects group membership, then one can

check that in every case, it is added to γ .history before the call to
member-view (e.g., lines 1–2 of process-remove), with the permit-

ted exception of line 2 in function remove.
Claim 3: We have the invariant: for each pair of users ID, ID′

with states γ ,γ ′, respectively, at any time, letting T be the most re-
cent control message sent by ID′ that ID has received and such that
should-decrypt(T , ID) holds, γ .ratchet[ID′] has the same value that
γ ′.ratchet[ID′] had immediately after generating T .

Initially, this invariant is true as all users’ ratchet states are all

ε . Subsequently, we break into cases depending on T . It suffices to

prove that ID calls update-ratchet(γ , ID, input)with the same input
as ID′ did when processingT , since only calls to update-ratchet(γ ,
ID,−) updateγ .ratchet[ID′], such calls only occur while processing
messages from ID′, and such messages are delivered in order due

to line 4 in oracle deliver and the definition of ≺
ack

.

If T is a create, update, remove, or ack message, except for acks

generated by process-welcome, then both ID and ID′ derive the

same member secret for ID′, hence update the ratchet states identi-
cally. Note that for an ack message, we make use of the assumption

that ID received the acknowledged message before the ack, hence

ID has the member secret available. We also use the fact that if T is

an ack and ID could not decrypt the acknowledged message, then

ID′ forwards their member secret to ID in the direct message, due

to lines 16–19 of process-seed (this fact depends on Claim 2). Add

and add-ack messages, and acks generated by process-welcome,
are similar, noting that all recipients ratchet their states forward

even if they were not intended recipients of an add message, but

with some special cases concerning the added user:
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• All group members in the added user’s view of the group (af-

ter processing the addition) receive the added user’s member

secret: they can compute it directly from the adder’s ratchet.

Here we use our DGM restriction that the add message be-

haves as expected at its sender, which implies that the added

user’s view of the group, DGM(adderHistory), equals the
adder’s view of the group plus the added user.

• The added user knows all other group member’s previous

ratchet states when processing their add/add-ack: these are

forwarded to the added user in the add message (in the

adder’s case) or in the add-ack messages (all others).

Using these claims, we are now ready to prove that none of the

win clauses in the security game are ever activated.

The win clauses outside of deliver mandate that the protocol

always returns non-ε control messages and update secrets from

create, add, remove, and update. Non-ε control messages are ob-

vious. For create, remove, and update, the update secret is non-ε
because process-seed will always take the return path on line

12 with I
sender

, ε . For add, the update secret is non-ε because
γ .myId ∈ member-view(γ ,γ .myId) on line 5 of process-add. (It is
always the case that γ .myId ∈ member-view(γ ,γ .myId), due to

Claim 2: the should-receive check in oracle deliver, plus the se-

quential semantics DGM restriction and the ID , ID′ check in

oracle remove-user, together ensure that a user can never have a

history that makes them not a group member.)

We next consider the win clause on line 16 of oracle deliver,
which mandates nontrivial response messages and update secrets

Ime after receiving a decryptable create, remove, or update mes-

sage, or any add message. This is easily checked for add mes-

sages. For decryptable create, remove, and update messages, their

process- functions all use the response message and its update se-

cret returned by process-seed. Claim 2 guarantees that because

should-decrypt holds, recipients on line 1 of process-seed must

contain γ .myId. Hence lines 4–5 are activated. Also, line 2 of oracle
deliver ensures that users are not delivered their own messages,

so line 12 of process-seed is not activated. Thus process-seed re-

turns a nontrivial response message. Furthermore, lines 8–9 of

process-seed set γ .memberSecret[sender, seq,γ .myId], so that its

call to process-ack on lines 20–21 returns nontrivial Ime. Hence

process-seed returns a nontrivial response update secret as well.

Finally, from the proof of Claim 3, it is easy to see that for each

message T considered in that claim, ID also outputs the correct

update secret when processingT . Indeed, the proof shows that each
call to update-ratchet gets the correct inputs, so it obviously out-

puts the correct updateSecret. It is easy to check that this output

is always used correctly to output update secrets by the calling func-

tion, using Claim 2 to justify thatγ .myId ∈ member-view(γ , sender)
if and only if should-decrypt holds. Likewise, when should-decrypt
does not hold, these functions return ε for the update secret. Thus
the win conditions on lines 10–11 of oracle deliver are never trig-
gered. □

Proof of Theorem 4. By the correctness lemma, it suffices to

prove security in a modified security game with all win clauses

removed. We will prove security with the causal order replaced by

the relaxed order ≺
ack

.

Fix a non-adaptive (t,q,n) adversary A. Let q1, . . . , qq be the

sequence of queries made by A. Without loss of generality these

queries satisfy dom-safe. Similarly, we assume the adversary never

fails a require clause. Then in terms of the bit b sampled at the

beginning of the game,

AdvDCGKA,dom-safe,DGM
dcgka-na

=��� Pr[A outputs 1 | b = 1] − Pr[A outputs 1 | b = 0]

���.
We now proceed with a hybrid argument. Let H0

denote the

original game, and let c ≤ q be the number ofchallenge queries. At
the top level, we pass through c hybrid games H1, . . . ,Hc

, where

in the i-th hybrid, the first i challenge queries return a random

value regardless of b (among other changes). Then Hc
does not

depend on b, so the adversary’s advantage is 0. Thus it remains

to bound the adversary’s ability to distinguish between the games

H0, . . . ,Hc
(i.e., between the distributions corresponding to these

games with each fixed value of b).
We explain the step from H0

to H1
; the remaining steps are

analogous, giving ϵ a factor of 2c ≤ 2q.
Let q

chall
be a challenge query, letmessage(q

chall
) be the control

message generated during q
chall

, and let ID
chall

be that message’s

sender. By assumption, the conclusion of dom-safe holds for q
chall

.

Let q
dom

be the update, remove, or create query guaranteed by

dom-safe, and likewise define message(q
dom
) and ID

dom
.

Informally, our argument is that the seed secret ofmessage(q
dom
)

is unknown to the adversary, hence can be replaced with a ran-

dom value independent of all other information available to the

adversary. Also, the challenged update secret (i.e., the update se-

cret of message(q
chall
)) incorporates this seed secret in a way that

preserves confidentiality.

To formalize this argument, we start by considering the path of

HKDF applications leading from the seed secret of q
dom

to the chal-

lenged update secret. First suppose ID
chall

was an intended recipi-

ent ofmessage(q
dom
), i.e., should-decrypt(message(q

dom
), ID

chall
).

Then the seed secret of q
dom

was first used to derive a mem-

ber secret for ID
chall

. This member secret was input into (each

group member’s copy of) ID
chall

’s KDF ratchet. That KDF ratchet

may have received other inputs, until eventually, one of its output

updateSecret’s was used as the challenged update secret.
5

More generally, it is possible that ID
chall

was not an intended re-

cipient ofmessage(q
dom
), instead being added to the group causally

afterwards. In this case, there is a user ID1 that was an intended re-

cipient of message(q
dom
), such that causally after message(q

dom
),

ID1 added a user ID2, who added a user ID3, etc., through IDa =

ID
chall

for somea ≥ 1. Then the (groupmembers’ copies of the) KDF

ratchet of ID2 was initialized using an updateSecret output by ID1’s

KDF ratchet (see lines 2 and 4 of add and line 4 of process-welcome),
sometime after ID1’s KDF ratchet input their member secret from

message(q
dom
). The KDF ratchet of ID3 was likewise initialized

5
Each of the HKDF applications in update-ratchet has two inputs and two outputs.

For the purpose of defining the path, we only consider one input and one output.

Specifically, we only consider the input that is a function of message(qdom)’s seed
secret, and the output that the challenged update secret is a function of (there is always

exactly one such input and output).
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using an updateSecret output by ID2’s KDF ratchet, etc., through

IDa = ID
chall

. Finally, ID
chall

’s KDF ratchet possibly received some

other inputs, eventually outputting the challenged update secret as

some updateSecret.
Having described the path of HKDF applications leading from

the seed secret of q
dom

to the challenged update secret, we now

step through two hybrid games. In the first hybrid game H0.1
, we

replace all 2SM plaintexts that are values on this HKDF path, with

random values of the same lengths. Next, we note that the HKDF
path can be thought of as one path in a tree of HKDF applications,

with the seed secret of q
dom

at the root, and with one node for each

value that is a function of the seed secret.
6
We step fromH0.1

toH1

by replacing all values at siblings of path nodes, plus the challenged

update secret, with random values of the same lengths.

It remains to bound the adversary’s ability to distinguish H0.1

from H0
, and H1

from H0.1
.

Let ID1, . . . , IDa = ID
chall

be as above. By following the path

described above and considering which values are sent in 2SM

messages, one checks that in H0.1
, the plaintexts of the following

2SM messages have been replaced:

• All direct messages for message(q
dom
). Indeed, these mes-

sages have the seed secret of q
dom

as plaintext, and that is

the first value on the path.

• All direct messages for ID1’s ack ofmessage(q
dom
), if ID1 ,

ID
dom

. Indeed, such messages contain ID1’s member secret

for message(q
dom
), and that is the second value on the path.

• For each 1 ≤ b ≤ a, all direct messages sent along with

add and add-ack messages sent by IDb between the times of

q
dom

and the addition of IDb+1 (or qchall, if b = a), inclusive.
Indeed, these messages contain a copy of IDb ’s ratchet state

(line 2 of process-add) that appears on the path. Note that

this includes, for each 1 ≤ b < a, the direct message sent

from IDb to IDb+1 as part of the add message for IDb+1.

We claim that by the security of our 2SM protocol, the adver-

sary’s advantage in distinguishing H0.1
from H0

is at most n2ϵ2sm,
noting that n2 upper bounds the number of 2SM channels and q
upper bounds the number of queries to each 2SM channel. To prove

this, observe that if A could distinguish between one of the 2SM

channels’ altered and original transcripts, then we could make an

adversary that wins the 2SM security game, as follows:

• The 2SM adversary internally simulates a DCGKA game to

A, with the exception of function calls involving the affected

2SM protocol.

• Whenever the simulated DCGKA game calls 2SM-Send on

an unaltered message for the altered 2SM protocol, the 2SM

adversary instructs the corresponding 2SM player to send

that message, and it uses the resulting ciphertext in the sim-

ulation.

• Whenever the simulated DCGKA game calls 2SM-Send on

a message that is altered in H0.1
, the 2SM adversary calls

challenge for that party, inputting the original and altered

6
For the HKDF applications in update-ratchet, which have two outputs, we make

separate child nodes in the tree for the two outputs. They are both children of the

node corresponding to whichever of the two inputs depends onmessage(qdom)’s seed
secret (there is always exactly one such input, hence why this is a tree, not a DAG).

plaintexts. It uses the resulting ciphertext in the DCGKA

simulation.

• Whenever the simulated DCGKA game calls 2SM-Receive
for the altered 2SM protocol, the 2SM adversary calls deliver
for the corresponding party, and also uses the original plain-

text in the simulated game.

• Whenever the simulated DCGKA game calls compromise
on one of the two affected parties, the 2SM adversary calls

compromise for the corresponding party. It uses the returned
state as the corresponding entry in the compromised party’s

γ .2sm.

Depending on the value of the bit b in the 2SM game, the simulated

DCGKA game corresponds to either H0
, or H0

with a single 2SM

channel altered, so long as we can prove that the safety predicate

2SM-safe is satisfied. Assuming safety for now, it follows that the

DCGKA adversary’s advantage in distinguishing the single altered

channel is at most ϵ2sm . Repeating this argument at most n2 times,

once for each altered 2SM channel, takes us from H0
to H0.1

.

We now prove that 2SM-safe is satisfied at the end of the 2SM

security game played as above. We need to prove that for each chal-

lenge q′i and compromise q′j of opposite parties in the 2SM game, ei-

thermessage(q′i )was delivered by the time of q′j , or the compromise

was healed causally before q′i . Let qi and qj denote the correspond-
ing queries in the DCGKA game. We have qj = compromise(ID′)
for some ID′. For qi , there are three cases, corresponding to the

three types of altered messages.

Case 1: qi = qdom.
In this case, ID′ must be an intended recipient of message(
q
dom
) besides ID

dom
, since create, update, and remove each

pass that set to generate-seed. Here we use the correct-

ness of member-view(γ ,γ .myId) from Claim 2 in the proof

of Lemma 8. Thus the third case in dom-safe cannot hold.
The first case in dom-safe guarantees that message(q

dom
),

hence message(q′i ), was delivered by the time of q′j , since
message(q

dom
) ⪯

ack
message(q

chall
). The second case guar-

antees that the compromise was healed causally before q′i .
Case 2: qi = deliver(message(qdom), ID1) and message(q′i ) is a

direct message for the resulting ack.
Such direct messages only arise from lines 16–19 of process-
seed, which forward ID1’s member secret from message(
q
dom
) to group members who were not intended recipients

ofmessage(q
dom
). In particular, the recipient ofmessage(q′i )

must have been added concurrently to message(q
dom
) but

prior to q
chall

, again ruling out the third case in dom-safe.
We can then proceed as in Case 1 above. Note that this ack

message must be ⪯
ack

message(q
chall
)—in particular, in this

case, we cannot have q
chall
= q

dom
, since ID

chall
, ID1.

Case 3: qi is an add-user query, or a deliver query resulting in an
add-ack message, with sender IDb for some 1 ≤ b ≤ a, between
the times of qdom and the addition of IDb+1 (or qchall, if b = a),
inclusive, andmessage(q′i ) is the corresponding direct message
to the added user.
We obviously have message(q

dom
) ≺

ack
message(qi ) ⪯ack

message(q
chall
). Thus the second and third cases in dom-safe

Session 6D: Authentication and Privacy  CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2044



cannot hold. Meanwhile, the first case in dom-safe guaran-
tees that message(qi ), hence message(q′i ), was delivered by

the time of q′j .

This completes the hybrid step from H0
to H0.1

.

It remains to bound the adversary’s ability to distinguishH1
from

H0.1
. Recall that H1

is the same as H0.1
, except that we replace

all values at siblings of the path from message(q
dom
)’s seed secret

to the challenged secret, plus the challenged update secret, with

random values of the same lengths.

Claim: InH0.1
, with the exception of q

chall
’s return value, all in-

formation known to the adversary that depends onmessage(q
dom
)’s

seed secret only depends on the values at siblings of path nodes

in the HKDF tree. Formally, all random variables revealed to the

adversary, with the exception of q
chall

’s return value, can be writ-

ten as deterministic functions of the values at siblings of path

nodes in the HKDF tree together with a single value independent

of message(q
dom
)’s seed secret (encompassing all other random

values used in the protocol).

We prove this claim below. Given this claim, the adversary’s

advantage in distinguishingH1
fromH0.1

is at most their advantage

in distinguishing between:

(i) A set of values sampled by choosing a random s and putting

that s through the same series of HKDF applications used

to compute the replaced values from message(q
dom
)’s seed

secret.

(ii) A set of independent random values of the same lengths as

the above values.

Since we model HKDF as a random oracle and none of the replaced

values are ancestors of each other in the tree, the adversary can

only distinguish between these distributions by inverting an HKDF
application, or if there is an input collision. Note that the total

number of HKDF applications used in (i) is at most qn, s and all of

theHKDF outputs are at least λ bits long, and allHKDF applications
have distinct inputs barring collisions between λ bit values. Thus

the adversary’s probability of inverting an HKDF application is at

most qnt2−λ , and the probability of an input collision is at most(qn
2

)
2
−λ

. In total, the adversary’s advantage in distinguishing H1

form H0.1
is at most qnt2−λ +

(qn
2

)
2
−λ

, proving the theorem.

Proof of claim.We consider all information available to the adver-

sary. When we say that a value is “independent of the seed secret”,

we formally mean that the random variables corresponding to all

such values are jointly independent ofmessage(q
dom
)’s seed secret.

Except for 2SM protocol messages and states, one easily checks

that all values appearing in the DCGKA protocol (messages, state,

and outputs) that depend on message(q
dom
)’s seed secret are de-

rived through a series of HKDF applications. Thus all such values

appear in theHKDF tree described above. The last value in the path,

namely, the challenged update secret, is at a leaf node, since that

update secret is not used except to be returned as an update secret.

Thus all values in the tree not on the path must be deterministic

functions of the values at siblings of path nodes in the HKDF tree

and values independent of the seed secret.

Then to prove the claim, it suffices to prove that none of the val-

ues on path are available to the adversary (i.e., no random variables

available to the adversary are defined to equal a random variable

on the path), and that 2SM protocol messages and states satisfy the

claim. The latter holds because in H0.1
, all 2SM plaintexts on the

path have been replaced with random values, so all 2SM plaintexts

satisfy the claim, from which obviously all 2SMmessages and states

do as well.

To prove that none of the values on path are available to the

adversary, we consider all values available to the adversary.

Messages All direct portions of DCGKA messages are 2SM mes-

sages. All broadcast portions of DCGKA messages are public

metadata. Neither of these include values on the path, or

indeed, in the HKDF tree at all.

Return values of compromise queries Wealready discussed 2SM

states. It remains to consider the state variables γ .nextSeed,
γ .memberSecret, and γ .ratchet revealed by compromise
queries.

There are three kinds of compromises allowed by dom-safe,
corresponding to the three cases in the disjunction. The first

case is that the compromised user had message(q
chall
) in

their history at the time of the compromise. One checks

that in every instance where a value on the path is used

to derive a new value, the original value is deleted immedi-

ately. Also, when the challenged update secret is returned,

it is deleted immediately. Thus a user who has previously

returned the challenged update secret must have no path

values in their state. Additionally, if a user ID who was not

an intended recipient of message(q
chall
) has the message in

their history, then ID
chall

must have received the add mes-

sage for ID after sending message(q
chall
), so ID

chall
did not

forward any ratchet states on the path to ID (and likewise

for ID1, . . . , IDa−1). In either case, the compromised state

satisfies the claim.

The second case is that the compromise was followed by an

update ⪯
ack

message(q
dom
). In particular, the compromised

user did not havemessage(q
dom
) in their history. Then their

state cannot possibly contain any path secrets.

The third case is that the compromised user was not an

intended recipient ofmessage(q
dom
), and they were also not

added to the group by a messagem satisfying

message(q
dom
) ⊁

ack
m ⪯

ack
message(q

chall
).

It follows that they are not ID
dom

, the generator of the seed

secret; and one checks that they cannot have been forwarded

any values on the path by other users (cf. the three cases

in the 2SM-safe verification above). Hence their state never

contained any path secrets.

Return values of reveal queries and other challenge queries
The challenged variable in the security game ensures that

the challenged update secret is never revealed. None of the

other path secrets are update secrets.

□
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