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Abstract—We demonstrate that a small library of customizable
interconnect components permits low-area, high-performance,
reliable communication tuned to an application, by analogy with
the way designers customize their compute. Whilst soft cores for
standard protocols (Ethernet, RapidIO, Infiniband, Interlaken)
are a boon for FPGA-to-other-system interconnect, we argue
that they are inefficient and unnecessary for FPGA-to-FPGA
interconnect. Using the example of BlueLink, our lightweight
pluggable interconnect library, we describe how to construct
reliable FPGA clusters from hundreds of lower-cost commodity
FPGA boards. Utilizing the increasing number of serial links
on FPGAs demands efficient use of soft-logic, making domain-
optimized custom interconnect attractive for some time to come.

I. INTRODUCTION

FPGA systems are hard to scale. A designer can use the
largest FPGA money can buy, but this comes with a significant
price penalty, as shown in Figure 1. Furthermore, it may only
allow enlargement by a factor of two or four. A large workload
may outgrow the FPGA by a factor of a hundred or more.

Additionally enlarging the FPGA does not necessarily in-
crease resources. If a workload is memory-bound, the number
of external memory interfaces may remain constant as an
FPGA gets larger. Packaging limits constrain the number of
I/O pins, so more DIMMs cannot be attached. Sooner or later
a designer is forced to move to a multi-FPGA system.

In this paper we describe an approach to building FPGA
clusters at scale, using commodity parts to minimize costs
and engineering, and high-bandwidth serial transceivers for
interconnect. We then consider interconnect protocols.

It would be natural to start by using a standard protocol
such as Ethernet and standard soft cores. We assess whether
such a standardized interconnect makes sense, or whether
it is worth building a customized interconnect tailored to
application requirements.

We illustrate this question with BlueLink, a custom FPGA
interconnect toolkit that we designed for a specific application.
We compare this with standard soft intellectual property (IP)
cores to evaluate the merits of a custom approach.

Furthermore we explore how custom interconnect can make
best use of commodity FPGA platforms and continue to scale
in the future.

II. BUILDING AN FPGA CLUSTER

When building a multi-FPGA system, the obvious approach
is to put multiple FPGAs on the same printed circuit board
(PCB). After all, FPGAs have hundreds of general-purpose
I/O (GPIO) pins which can be used to connect them.

However there are a number of pitfalls to a multi-FPGA
PCB. Firstly, designing such a board is a complex task. FPGAs

have upward of 1000 pins to route, many high speed. For
example, the Altera Stratix V PCIe Development board has
16 layers [3], which makes it costly to design and fabricate.
FPGA power design is also complex – this single-FPGA
board has 21 power rails with the highest current being
28 amps. This requires complex design and simulation – for
professional designers a board takes about one man-year of
design effort. FPGAs are typically found in advanced ball grid
array packages, which also makes manufacturing difficult. In
addition there is the headache of managing the whole process
of parts procurement, production, test and debug.

Secondly, many such boards (especially commercial prod-
ucts) are not regular – each FPGA is not connected to the
same peripherals. This requires a separate synthesis run for
each FPGA in a cluster, which makes it difficult to scale to
large numbers of FPGAs. Testing such boards is difficult, a
fault may cause the whole board to fail, and repair is complex.

For example, Mencer et al. [11] used 64 Spartan 3 FPGAs
on a large 8-layer PCB (320×480 mm). With 64-bit con-
nections at 100 MHz between FPGAs they achieved 6.4 Gbps
inter-FPGA bandwidth. They had to employ fault tolerance
because replacing a faulty device is difficult. Furthermore,
the engineering required for such boards makes them niche
commercial products with high price tags. The DINI Group
quote ‘below 0.1¢ per [ASIC] gate’ for a ‘130 million ASIC
gate’ system containing 20 Stratix IV 530 devices – which
makes the board cost around US$130,000 [5].

Meanwhile, FPGA evaluation boards have become a com-
modity. These are commonly sold to engineers to prototype
designs before final products, but they are increasingly being
used as standalone platforms for research and development.
Non-recurrent expenditure (NRE) from design and tool costs
is amortized across the thousands of boards being shipped,
reducing unit cost. If a board fails, it can simply be swapped
out for another costing a few hundred or thousand dollars. It
therefore makes economic sense to build a cluster with many
commodity cards with some kind of interconnect. If this allows
use of smaller FPGA parts, that ship in greater numbers and
have better yield, it will further reduce cost. For example, in
Figure 1 Cyclone V parts are roughly one sixth of the price
of the comparable Stratix V.

A. Application Partitioning

When building a cluster, we must consider the applications
that will run on it before we design its interconnect.

Some applications do not require any communication be-
tween FPGAs. These can be described as loosely coupled.
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Fig. 1. FPGA pricing trends. Devices cluster in two board categories: smaller budget ranges with a lower cost per logic element, and premium parts which are
considerably more expensive for the same number of elements. Within the budget range larger parts are cheaper per element. In some families in the premium
range larger devices are disproportionately more expensive. Economics suggests that a cluster should use budget ranges wherever possible or alternatively
smaller premium devices. Data: digikey.com [4]; we plot the median price for a given model and size, combining options of package and speed grade into a
single point.

MapReduce fits this model, while FPGA examples include
Bitcoin mining or OpenCL-based accelerators. The FPGA
needs only a connection to a host PC, Scale is achieved by
buying more PCs with FPGAs. Such a cluster is easy to build.

Other applications are tightly coupled. One example is
gate-level system-on-chip simulation. This is very latency-
dependent: nodes operating in lock-step require single-cycle
interconnect latency. This makes partitioning a hard problem,
compounded by many possible fine-grained partitions.

To allow scale, it is better to use a coarser-grained ar-
chitecture. If the number of possible partition combinations
is reduced, partitioning becomes simpler. A higher level of
abstraction may also permit relaxation of latency requirements,
though latency can still be a major bottleneck. Lower area
efficiency is mitigated as it is easier to add more hardware.

Additionally, a tiled approach can reduce FPGA synthesis
time. If the FPGA bitfile is the same for each node, it only
needs to be synthesized once. Different behaviour for each
node can then be configured with different software, datasets
and runtime configuration.

B. Physical Interconnect

We wish to build a cluster at scale, using hundreds of
FPGAs on multiple boards. If connections between FPGAs
are required, how should such a cluster be interconnected?

The simplest approach would be to use GPIO pins. These
can be driven either single-ended or with low-voltage differ-
ential signalling (LVDS). However, the frequency they can
be driven at is limited, about 1 GHz in LVDS mode. Long
parallel links are affected by signal integrity (constrains cable
geometry for a good quality signal) and skew (signals arrive
at different times). This means such cables are typically short
(centimetres) and must employ careful (expensive) construc-
tion. This limits the size of cluster that can be built. Kono et
al. [8] achieved a data rate of 4 Gbps per link using HSMC
connectors on Terasic DE4 boards and expensive proprietary
ribbon cabling. With only two ports per board their cluster
was forced to use a ring topology.

FPGAs now incorporate increasing numbers of high-speed
serial transceivers. A device can have up to 96 transceivers
each capable of up to 56 Gbps (though 14 Gbps is a more
realistic maximum for lower cost parts). Many commodity I/O
standards have shifted from parallel to serial interconnect (such
as USB, SAS, SATA, PCI Express, etc). This means there are
now cheap passive multi-gigabit serial cables on the market.
Active repeater and optical cables are also available for longer
distances. Such cables can be used as physical-layer bit-pipes,
without using the intended protocol along them. All that is
required is point-to-point cabling between whatever connectors
the board manufacturer provided.



Therefore we suggest that a cluster can be built at scale
with the following properties:
• Commodity FPGA boards, to reduce cost and develop-

ment time.
• Serial interconnect using FPGA transceivers.
• Low-cost commodity passive copper cabling between

boards. If necessary, optical cabling for longer distances.
• Multi-hop routing, so that a fully-connected network is

not required.

III. CUSTOM COMMUNICATION?

The question that remains is: what protocol should be used
on the interconnect? Should you follow a standard, or is
it worth designing your own? An FPGA designer may be
comfortable with the idea of custom compute, where their
compute is optimized for the workload. This is usually more
effective than simply using a standard CPU soft-core on
their FPGA. A natural extension of this would be custom
communication, where communication is similarly optimized.
Is it worth optimizing your communication, or is a standard
core sufficient?

We shall consider a number of application examples, and
the interconnect protocol that we designed for them. We will
then compare our protocol with existing standards to identify
the merits and pitfalls of each approach.

IV. APPLICATION CASE STUDIES

The compute and communication requirements of an FPGA
cluster may be different from other clusters such as datacen-
ters or PC-based scientific compute. The following examples
describe two applications that are suited to FPGA clusters and
their communication requirements.

A. Memory interconnect

Consider a massive multiprocessor system using shared
memory. A number of CPU cores (such as NIOS-II/Microblaze
or custom processors) are located on each FPGA. Each FPGA
board has up to 16 GB of DRAM. When a CPU core needs
to access memory on another board, it must request a cache
line from the other board. Each cache line might be 256 bits,
which is set by the width of the interface to the memory
controller. Thus a memory read consists of sending a 64-bit
address and receiving a 256-bit response, or writing a 64-bit
address and 256-bit value. Superscalar CPU architecture can
mask a limited amount of memory latency, up to a few tens
of cycles. A lost or further delayed memory transaction will
cause a CPU to give an incorrect result or stall.

B. Neural computing

The human brain has approximately 1011 neurons with 1014

synaptic connections. Each neuron fires at about 10 Hz. In
some neuron models, neuron updates can be represented by
a simple differential equation, but there are approximately
1015 synaptic messages per second. To achieve real-time
operation the network must compute the state of every neuron,
accounting for its 103 incoming messages, every millisecond.

The need for timely delivery of large numbers of small,
low-latency messages rules out classical CPUs, which do not
have enough compute, and GPUs, which do not have enough
communication, but is a good target for FPGAs.

Using the Izhikevich neuron model, each synaptic message
can be represented by 48 bits [12]. Critical neuron parameters
fill the FPGA BRAM, so space for packet buffers (for both
message coalescing and retransmits) is very limited. With
128K neurons per FPGA, each FPGA generates 1.28M 48-bit
synaptic messages per millisecond with a real-time deadline
of arriving by the end of the next millisecond.

Worst-case throughput is therefore 1.28 billion messages
per second from each FPGA. Due to spatial locality, some
of these messages are for neurons that reside on the same
FPGA and so can be stored in off-FPGA DRAM – the exact
proportion depends on the neural network being simulated.
The throughput requirements are therefore some percentage
of the worst case.

V. INTERCONNECT REQUIREMENTS

In these application examples payload sizes are small (48 to
256 bits) and the application is latency-critical. Furthermore,
the application does not have inbuilt support for retransmis-
sion: if a cache line request is dropped a CPU will simply stall,
while a dropped neural message will introduce inaccuracy into
a simulation.

When building our FPGA cluster, these applications led us
to the following interconnect requirements:

1) Small message sizes: The interconnect must be able to
efficiently deal with messages between 32 and 256 bits.

2) Low latency: Cluster applications are often more con-
strained by latency than bandwidth.

3) Reliable: With thousands of links each running at giga-
bits per second, errors are inevitable and could cause crashes
or invalidate results.

4) Hardware-only: The interconnect must support reliable
message delivery in hardware, without leaving reliability to
software layers (as in TCP/IP).

5) Lightweight: The interconnect must use minimal FPGA
area. This leaves more space for compute and permits use of
smaller cheaper FPGAs.

6) Ubiquitous: The interconnect must maximize use of
FPGA transceiver resources. More links and higher link rates
means more bandwidth and fewer hops to cross a cluster.

7) Interoperable: The interconnect should be able to con-
nect FPGAs of different types to build a heterogenous cluster.

VI. BLUELINK: A CUSTOM INTERCONNECT TOOLKIT

To address the communication requirements of applications
we created the BlueLink interconnect toolkit. An overview of
BlueLink is shown in Figure 2. It has five major layers, written
in Bluespec SystemVerilog:

1) Serial Transceiver: A hard core provided by an FPGA
manufacturer. It is assumed that it implements 8b10b coding
and can be configured to send and receive 32-bit words with
a 4-bit k symbol indicator. BlueLink makes no assumptions
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about the properties of a transceiver beyond its ability to suc-
cessfully send and receive these 8b10b symbols. Alternatively
another coding scheme such as 64b66b could be used. We have
used Altera Stratix IV and Stratix V transceivers – it should be
straightforward to use transceivers from other manufacturers.

BlueLink can use all the transceivers available on an FPGA
board, over any physical medium. Currently SATA, PCIe,
SMA, SFP+ copper and SFP+ optical cabling has been tested.

2) Physical: Transforms a FIFO-like stream of words from
the Link layer into a continuous stream of words for the serial
transceiver. Idle symbols and any alignment symbols required
by the serial transceiver are inserted and removed as needed.

3) Link: Serializes 128-bit flits into 32-bit words on trans-
mit and aligns these words back into flits on receive. Also per-
forms clock crossing between the main FPGA clock domain
and the transmit and receive clock domains of each transceiver.

4) Reliability: Implements reliable transmission with order-
ing and back-pressure.

5) Routing and switching: Uses a hop-by-hop routing
scheme to direct packets to a given FPGA.

6) Application: Provides primitives for applications.
The Reliability and Application layers are described in

further detail below.
The unit of reliable data transmission is a flit with a 64-

bit payload and 12-bit addressing field. This is expanded to
120 bits by the reliability layer by addition of a 32-bit CRC, a
sequence number and an acknowledgement field. The physical
layer adds a further 8-bit header, so that 128-bit flits are sent
and received by the FPGA transceivers, often split into 4×32-
bit words.

A. Reliability layer

The reliability layer is the first layer in the stack which does
more than transforming and aligning symbols. It is tailored to
meet the requirements identified in Section V.

It implements a reliable communication channel with FIFO
semantics, providing a similar service to the TCP layer of the
TCP/IP stack. However it is customized for small message
sizes and low FPGA area. This means it must be economical
with both header fields and memory buffers.

Reliability is implemented using a CRC and sequence
number in each flit, which are validated by this layer in the
receiving BlueLink block. A 32-bit CRC is used because the
probability of false-negative is high in a large cluster with
billions of flits per second. An acknowledgement number may
also be appended to a flit to acknowledge correct receipt of
a flit with that sequence number. If the receiver receives a
flit which either fails the CRC or that is out of sequence,
it does not send an acknowledgement. If there are pending
acknowledgements to be sent but no input flits, a flit with no
payload is sent for each acknowledgement.

Reliability is window-based, with transmitted flits that have
not yet been acknowledged being stored in a replay buffer. If
a flit is not acknowledged after a timeout (because the receiver
detected an error or because an acknowledgement was lost),
the flit at the head of the replay buffer is sent continuously
until it is acknowledged, followed by every other flit in the
buffer until the whole window of flits has been acknowledged.
New flits are then accepted from the input. With 4-bit sequence
and acknowledgement numbers the replay buffer only needs to
hold 8×64-bit flits to store a whole retransmission window, a
major contributor to the reduction in FPGA area requirements
compared to other protocols that have longer flits/packets and
larger windows.

Backpressure is achieved by sending acknowledgements
with a flag to indicate that no more flits can be accepted.
This prevents any further flits being transmitted, and so leads
to the BlueLink block’s input FIFO becoming full.

B. Application abstractions

A BlueLink block provides an Avalon Streaming interface to
its clients. We have implemented a number of application ab-
stractions to the BlueLink interconnect which match different
communication paradigms and levels in the design hierarchy,
to simplify partitioning applications over FPGA clusters.

1) Bluespec FIFO: Bluespec SystemVerilog is a dataflow
hardware description language. Hardware modules are often
connected using a FIFO abstraction rather than Verilog wires.
This enables them to be easily decoupled while adding mini-
mal logic overhead. BlueLink provides a Bluespec FIFO type
that can be used to join two modules on different FPGAs. The
only overhead is 10-20 extra cycles of latency compared with
an on-chip FIFO.

2) Packets: BlueLink is also usable as a packet-based
interconnect from software on custom processors. Hardware
provides access to flit send and receive buffers. Traditional
polling or interrupt mechanisms may be used to inform an
application of packet delivery.

3) Blocking reads and writes: A lower-latency alternative
to polling or interrupts is for a read or write to the flit buffer
to block an application until it is performed successfully. This
has lower overhead than polling as it is not necessary to spin in



a loop until an operation can be performed. There is, however,
a deadlock risk. Additionally it is possible to indicate a target
FPGA by using part of the address of a write, which allows
a flit to be sent in a single clock cycle.

A simple demonstration of this has been achieved by having
a NIOS-II CPU executing code from DRAM located on
another board. When the link cable is unplugged, the CPU
pauses. When the cable is re-attached, the link resynchronizes
and the CPU continues.

4) Remote DMA: A higher-level abstraction maps a wide
range of memory addresses on each FPGA to a hardware
module that performs remote DMA. Any read or write is
translated to a read or write to a region of memory (or a
memory-mapped peripheral) on a remote FPGA. A series of
packets is sent to the hardware module on the remote FPGA,
which performs the operation and returns the result as if it
were a local operation.

Burst reads and writes are supported, enabling block trans-
fers. Since it is not possible or desirable for an application to
be aware of the details of the remote FPGA’s memory map,
such as the word size of a given memory device, bursts are
translated into an appropriate sequence of operations at the
remote device, including using byte enables with writes if a
request does not align with word boundaries.

5) Software pipes: We also have an abstraction layer that
emulates Linux pipe semantics. An application can be tested
on a PC using Linux pipes between processes, then ported to
the cluster and run unchanged.

These different abstractions provides a variety of primitives
for partitioning applications. For example, the FIFO abstrac-
tion allows a hardware dataflow architecture to be split across
FPGA boundaries, while the remote DMA abstraction means
partitions can be viewed as nodes in a cluster-wide shared
memory architecture.

VII. CORES FOR STANDARDIZED PROTOCOLS

IP cores for standard communication protocols are commer-
cially available from a number of vendors.

A natural assumption of someone building an FPGA cluster
would be to use a popular protocol such as Ethernet. Ethernet
is today a switched serial interconnect with data rates up to
100 Gbps. Interface cores, switches and cabling are commodity
items. It is well understood, and is a convenient way to connect
an FPGA cluster to a host PC. Some FPGA clusters such as
the image retrieval accelerator in [10] are loosely coupled with
no inter-FPGA communication. In this case Ethernet to a host
PC may be a good fit for the application.

There are other protocols for which FPGA cores are avail-
able: Serial RapidIO, Infiniband, Interlaken, Fibre Channel,
PCI Express and many more. We compare the characteristics
of a selection of standard cores in Table I.

Notably the field can be divided into those protocols that
have in-built support for reliability by packet retransmission,
and those that do not. The performance of these varies widely,
both in terms of physical link rate1 and area requirements.

1The computation of achievable bandwidth for diverse protocols is complex,
so we use link rate as a simple yardstick in this section. We provide more
detailed case studies in our evaluation in Section VIII.

Ethernet has some restrictions for applications with tighter
coupling. For example, [14] uses 37-bit payloads over Ether-
net. To use the links efficiently these must be aggregated into
packets, which results in latencies of 10 µs or more.

In addition Ethernet provides no native guarantee of packet
delivery. In a cluster there may be thousands of links sending
gigabits per second, so errors are inevitable and reliability is
a necessity. TCP/IP is the conventional reliability mechanism,
but is very expensive to handle in hardware [7]. For instance,
clusters [10] and [14] did not consider it. For latency-sensitive
applications, handling reliability in software is not an option.
An alternative reliability protocol could be implemented on
top of Ethernet – another example of custom communication.

PCI Express is commonly used for connecting FPGAs to
a host PC. However it introduces a lot of complexity, being
an emulation of traditional PCI over switched interconnect.
For this reason FPGAs often have PCIe hard cores – but it is
unusual for an FPGA to have more than one.

Interlaken is commonly used as a backplane interconnect
in high-end switches. It is also very scalable, and relatively
lightweight. There is also an optional retransmission extension.
We tried to implement an Interlaken layer as an alternative to
BlueLink, but came across the constraint that Altera’s Stratix
V core requires groups of eight or twelve bonded links to
implement 50G or 100G channels. This was incompatible
with the physical topology of the commodity Stratix V boards
available to us. Altera also provide an alternative Interlaken
core which requires groups of four or more channels, but it
only works on the Stratix IV and has no reliability support.

Altera’s SerialLite is an example of a lightweight vendor-
provided protocol. SerialLite shares some similarities with
BlueLink: SerialLite II provides packet retransmission of small
packets. However it has been somewhat neglected - while it
has been ported to modern FPGAs, its maximum link rate
is 6 Gbps. Published area numbers are for Stratix II, and it
is a commercial core for which a license is required. It is
also incompatible with non-Altera FPGAs. We managed to
synthesize a 6G SerialLite II core on a Stratix V, but the
licensing restrictions did not allow us to test it on an FPGA.

SerialLite III is a modern version that runs at 10 Gbps and
beyond, however the protocol has been changed to support
forward error correction preventing single bit errors. Across a
cluster, where there may be thousands of links, cabling faults
causing more substantial errors are likely so this protection is
insufficient for our requirements. It is therefore only useful as
a layer that does not guarantee correct packet transmission.

Aurora is Xilinx’s equivalent to SerialLite, but has no
reliability layer. This was used in systems such as an FPGA
cluster [2] and a SoC prototyping system [9]. In both cases
bit errors limited the usable link rate.

It became clear that using standard IP cores in an FPGA
cluster can be fraught with practical difficulties:

1) Configuration constraints: Available parameters such as
link rate and number of bonded lanes may not be appropriate.

2) Fitting requirements: A standard may require particular
clock frequencies, PLLs or clock routing.

3) Bonded links: Useful on a custom PCB with skew-free
parallel lanes between FPGAs. A commodity board and serial



cabling may not have suitable configuration, either not enough
lanes, unsuitable placement, or skew over different cables.
Bonding can reduce the dimensions of the cluster compared
with single links, adding hops and thus latency.

4) Manufacturer specific: Some protocols such as Serial-
Lite and Aurora are only supported by one FPGA manufac-
turer. It is possible to implement these protocols on other
FPGAs by reimplementing their specifications, but this would
involve another core vendor or a custom implementation.

5) FPGA support: A core may only support some FPGA
families, may be withdrawn in new tools, or not updated for
new devices. It may require extensive reworking or prohibit
using a newer FPGA.

6) Licensing: Designers must license IP cores from ven-
dors, which can be expensive and can make evaluation dif-
ficult, particularly as a simulation of a link does not capture
physical effects and so a license may be required for evaluation
on a physical FPGA.

VIII. EVALUATION

We evaluated BlueLink by synthesizing it on a Stratix V
GX FPGA on a Terasic DE5-Net board and comparing with
an implementation of Altera’s existing 10G Ethernet MAC.
The Stratix V platform was chosen to make a fair comparison
between Ethernet and other existing standards that use 10G
links – BlueLink is also capable of using lower-speed, lower-
cost FPGAs at 3G or 6G where Ethernet is often limited
to 1G. Ethernet does not provide reliable transmission while
BlueLink does, so in practice another layer would be required
above Ethernet. We attempted implementations of SerialLiteII
and Interlaken but these were frustrated as described above.

Area comparison can be seen in Table II. 10G BlueLink
uses 65% of the logic and registers of 10G Ethernet – indeed
40G BlueLink using bonded lanes will fit in about the same
area as a single 10G Ethernet MAC. BlueLink also uses 15%
of the memory of 10G Ethernet. Compared with standard cores
on Stratix V in Table I, BlueLink is more efficient than all the
standards that support reliability and the majority that do not.

To consider throughput, we show the overhead of BlueLink
and Ethernet-based packet structures in Figure 3. Our focus
is on small packets, but BlueLink has higher throughput up
to 256 bits. Using IP and/or TCP over Ethernet for reliability
only serves to add additional overhead.

Figure 4 shows the latencies of BlueLink and Ethernet. We
compare the latency of a link where the input queue is empty,
and one where the link constantly receives input as fast as it
can transmit. Both are tested on short physical links that have
low error rates. Despite addition of a reliability layer with CRC
checking, BlueLink’s latency is about equivalent to Ethernet
in the fully-loaded case. In the lightly-loaded case, BlueLink’s
latency is much lower as flits can be accepted in a single cycle,
rather than the nine cycles that Altera’s Ethernet core takes.
As more transceivers are used on an FPGA it becomes more
likely that links can be operated in this state where they are
not fully loaded.
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Any FPGA system designer is faced with an
area/performance tradeoff. This is particularly acute in modern
FPGAs which have many transceivers. For comparison we
take a Stratix V GX A7 FPGA, which is the lowest cost
Stratix V that Terasic sell on an evaluation board. This FPGA
has 48 transceivers each rated at 14.1 Gbps. We consider
the situation that the designer wishes to use all the available
transceivers. In Figure 5 we plot the FPGA area required for
the different standards against the raw bandwidth provided.
All standards are limited to 10 Gbps per lane because this
is the limit of commodity cabling (in theory BlueLink and
SerialLite III will go higher). As can be seen, many standards
have a considerable area penalty compared to a lightweight
custom protocol such as BlueLink.

A. Application example

We used BlueLink as a key enabler for the Bluehive neural
computation engine [12]. BlueLink was implemented on the
DE4 Stratix IV 230 GX FPGA board from Terasic, which was
chosen to maximise the number of DDR2 memory channels
available. This is the middle of the Stratix IV range, much
cheaper than high-end parts. To connect the boards we de-
signed and open-sourced [17] a PCB to break out transceivers
using PCI Express connectors into 6 Gbps SATA links (Figure
7). This enabled us to create a pluggable topology of low-cost
SATA cables. Additional SATA cables were used directly in
the FPGA boards’ own SATA sockets.



System Raw external Configuration Constituent LUTs Registers Memory
link rate lane rate bits

Systems with reliable transmission
TCP/IP (in hardware) + Ethernet [7] 10G 1 lane 10G <30000 Not quoted Not quoted
TCP datapath acceleration [6] (Virtex 6) 10G excluding CPU/MAC/PHY 6875 3889 221184
SerialLite II (Stratix II 16 bit CRC) 6G 1 lane 6G 1448 1236 90624

24G 4 lanes 6G 2573 1659 176640
PCIe hard IP 5G 1x Gen 2 5G 100 100 0

40G 8x Gen 2 5G 200 200 0
PCIe soft IP (Stratix IV) 5G 1x Gen 2 5G 5500 4100 82944

20G 4x Gen 2 5G 7100 5100 239616
Serial RapidIO 5G 1x 5G 5700 7885 737280

20G 4x 5G 7200 10728 901120
Fibre Channel (Stratix IV) [13] 8G 1x 8G 3300 3900 6144
Infiniband [15] 40G LLC+TCA QDR 4x 10G 64105 63185 1584846
Systems that do not implement reliable transmission
Infiniband [15] 40G TCA QDR 4x 10G 36658 39912 1536807
SerialLite II (Stratix II) 6G 1x 6G 863 818 50688
SerialLite III ab 120G 12 lanes 10.3125G 5600 6200 983040
Aurora 8B/10B [16] 12G 4 lanes 3G 3473 3319 75776
Aurora 64B/66B [16] 14G 1 lane 14G 1600 1600 37920
Aurora 64B/66B [16] 56G 4 lanes 14G 3500 3900 43172
1000Mb Ethernet MAC (external PHY) 1G 1 port RGMII 125Mx4 DDR 1184 1704 204976
1000base-X Ethernet MAC 1G 1 lane 1.25G 1805 2365 204976
10/100/1000Mb Ethernet MAC (ext. PHY) 1G 1 port RGMII 125Mx4 DDR 3155 3522 328064
10/100/1000Mb Ethernet MAC (ext. PHY) 1Gx12 12 port GMII 125Mx8 SDR 27360 29272 1479168
10Gb Ethernet MAC 10G 1 lanes 10.3125G 2001 3077 0
40Gb Ethernet MAC 40G 4 lanes 10.3125G 13600 23500 184320
100Gb Ethernet MAC 100G 10 lanes 10.3125G 45100 87700 573440
Interlaken 100G a 124G 12 lanes 10.3125G 18900 36800 778240
Interlaken 50G a 50G 8 lanes 6.25G 12200 26300 942080
Interlaken 20G (Stratix IV) 25G 4 lanes 6.25G 12229 16774 479232
a Figures not available for optional reliability extension b Provides insufficiently robust optional single bit error protection

TABLE I
PUBLISHED AREA OF STANDARD INTERCONNECT CORES. DATA IS FOR STRATIX V DEVICES AND FOR ALTERA CORES FROM [1] UNLESS OTHERWISE

STATED. IN EACH CASE THE MINIMAL DESIGN HAS BEEN TAKEN – EXCLUDING PERFORMANCE COUNTERS AND OTHER OPTIONS.

250 300 350 400 450 500
0

20

40

60

Aggregate bandwidth / Gbps

%
FP

G
A

BlueLink 10G BlueLink 40G
RapidIO 5G RapidIO 20G

Infiniband 40G SerialLiteII 6G
Ethernet 10G Ethernet 40G
Ethernet 100G SerialLiteIII 120G
Interlaken 50G Interlaken 100G

Fig. 5. Stratix V GX A7 logic utilization when instantiating each system
as many times necessary to use all transceiver resources. Protocols in black
implement reliability, those in orange do not, area numbers from Tables I and
II. Multi-lane systems can share area between multiple transceivers and hence
have lower area overall, but have additional fitting and routing constraints that
make them more difficult to use in practice.

We put 16 DE4 boards together into a single Bluehive
box (Figure 6), with the intention of the system scaling to
further boxes using eSATA cables. We are currently working
on building enclosures for 150 FPGAs.

To make a portable version we designed a PCB to join three
FPGA boards using their PCIe 8× connectors (Figure 8) –
this is also able to connect Stratix V FPGAs with 40 Gbps
BlueLink bidirectional channels using groups of 4×10 Gbps
lanes. Boards can also be joined with SFP+ cables.

Each FPGA hosts two custom soft vector processors, each

System LUTs Registers Memory bits
10G BlueLink reliability layer 1663 1277 2090
10G BlueLink link layer 179 413 960
10G BlueLink PHY 167 248 0
10G BlueLink total area 2009 1938 3050
40G BlueLink reliability layer 1965 1355 2090
40G BlueLink link layer 1127 1970 2736
40G BlueLink PHY 289 585 0
40G BlueLink total area 3381 3910 4826
10G Ethernet MAC 2986 3817 20972
10G Ethernet PHY 100 94 0
10G Ethernet total area 3086 3911 20972

TABLE II
AREA OF OUR IMPLEMENTATIONS OF BLUELINK AND ETHERNET ON A
STRATIX V FPGA. BLUELINK USES LESS OF ALL RESOURCES, AND IN

PARTICULAR MEMORY.

driving a DDR2-800 memory channel. These compute neural
state updates and generate synaptic messages. The messages
are then routed via BlueLink to other processors.

The system will successfully simulate two million neurons
in near real-time. The application scales well – the limit on
scaling is primarily compute bound, indicating that network
bandwidth and latency have ceased to become a bottleneck.

IX. CONCLUSION

The case for building an FPGA cluster from commodity
evaluation boards with high-speed transceivers and commodity
cabling is compelling. We have described how this approach
solves a number of economic, physical and practical chal-
lenges faced by the system architect. It would therefore be
a natural assumption that a commodity cluster should use
commodity communication protocols. Our work has shown
that this is not the case.



Fig. 6. Bluehive prototyping system
Fig. 7. PCIe to SATA breakout
board Fig. 8. PCB for BlueLink over PCIe

connectors

Standard intellectual property (IP) cores are seductive. They
give the promise of a ‘drop-in’ interconnect, a black box where
the user need not be concerned with the internals. However,
many FPGA to FPGA applications are different to those for
which the protocols were designed. Library components bring
with them a host of practical limitations that make their use
more complex than might be expected.

We propose custom communication, by analogy with custom
computation. A designer should consider their communication
requirements at the same time as considering their compute
requirements. An interconnect should then be designed from
the ground up to meet the application’s needs.

The interconnect must be lightweight and flexible to maxi-
mize use of FPGA transceivers, a resource which is growing
rapidly in new FPGA families. The interconnect must also
support reliable transmission of messages, because probabili-
ties of error in a cluster are high and applications in hardware
are not designed to handle packet error or loss.

Using the example of BlueLink, a custom interconnect
toolkit we designed for a specific application, we have shown
how FPGA application requirements can differ significantly
from standard networking. Ethernet, which is a natural choice
for networking, imposes significant overhead and latency
penalties for the small messages used in our FPGA application.
It also takes more area and lacks reliable transmission.

We have also evaluated a selection of other interconnect
IP cores. Either they do not support reliability, leave little
area for the application, have bandwidth limitations, or other
restrictions. Resolving these problems can involve additional
layers or wrappers to meet the application’s requirements: an
example of custom communication. A custom approach does
not preclude the use of standard IP cores where they have
useful properties; they may be components in a multi-layer
stack. Design of such a stack should be considered from the
beginning of the project. The designer should not simply reach
for a standard IP core as the panacea for their needs.
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