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The increasing adoption of wireless sensor network technology in a variety of applications, from agricultural
to volcanic monitoring, has demonstrated their ability to gather data with unprecedented sensing capabil-
ities and deliver it to a remote user. However, a key issue remains how to maintain these sensor network
deployments over increasingly prolonged deployments. In this paper, we present the challenges that were
faced in maintaining continual operation of an automated wildlife monitoring system over a one year period.
This system analyzed the social co-location patterns of European badgers (Meles meles) residing in a dense
woodland environment using a hybrid RFID-WSN approach. We describe the stages of the evolutionary de-
velopment, from implementation, deployment and testing, to various iterations of software optimization,
followed by hardware enhancements, which in turn triggered the need for further software optimization. We
highlight the main lessons learned: the need to factor in the maintenance costs while designing the system;
to consider carefully software and hardware interactions; the importance of rapid prototyping for initial
deployment (this was key to our success); and the need for continuous interaction with domain scientists
which allows for unexpected optimizations.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]: Real-time
and Embedded Systems

General Terms: Algorithms, Design

Additional Key Words and Phrases: Duty Cycling, In-Network Storage, RFID Technology, Wireless Sensor
Networks

1. INTRODUCTION
The deployment of sensor networks in a variety of real-world applications is gradually
turning from a scientific vision into a reality. A number of systems have already been
deployed, ranging from glacier monitoring [Beutel et al. 2009] to real time environmen-
tal and wildlife tracking [Zhang et al. 2004; Mainwaring et al. 2002]. Such systems
have enabled the collection of spatio-temporal data at unprecedented granularities,
and have revolutionized the way in which scientists perform field experiments. At the
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same time, with the onset of new sensor deployments, the need has come to main-
tain sensor networks over prolonged deployment periods. Low effort maintenance and
self-reconfiguration have become the idealistic selling points of wireless sensor net-
works. Network maintenance may involve a number of tasks, such as changing bat-
teries, replacing faulty nodes and collecting data from special-purpose storage or gate-
way nodes. When the maintenance costs exceed user expectations and budget, there
is a need to develop the system and make it sustainable. In this paper, we describe
one such system and present our experience in building and developing a sustain-
able wireless sensor network. Our system consisted of a distributed wireless sensor
network designed to monitor wildlife and environmental conditions in a dense wood-
land environment, in Wytham Woods, Oxfordshire, UK. The system was made up of
three components. The first consists of active RFID transmitters attached directly to
Eurasian badgers (Meles meles) as wearable collars. They were monitored by a second
component consisting of a collection of fixed detection nodes distributed throughout the
woods at key locations close to known badger setts (burrow systems) and latrines. The
third component further complemented the assembly by providing a bed of fixed sen-
sor nodes that were deployed within badger foraging areas to monitor micro-climatic
conditions and their effect on species movement and mobility patterns.

We first describe the initial ‘exploratory’ field-deployable prototype designed to un-
derstand the domain requirements and the usage patterns. We then describe gradual
alterations to initial design based on feedback from the domain scientists (zoologists).
In particular, we evaluate each iteration in terms of maintenance cost and show that
a series of modification phases to the initial commercial off-the-shelf based design,
resulted in ten-fold improvement in maintenance costs, while enabling zoologists to
collect unprecedented quantities of high resolution data on wild badger behavior.

In the first phase, we optimized the system at the software level proposing a novel
sampling approach for the power hungry animal detection nodes, based on reinforce-
ment learning. The idea was to exploit the behavior patterns of observed animals in
order to more efficiently control energy consumption. We also implemented a novel
storage management scheme that took into account data urgency and sink mobility to
allocate sensor data to carefully selected storage nodes. We observed that these pro-
posed software optimizations had a noticeable effect on the maintenance costs, but the
network still required too many hours of hands-on human intervention.

In the second phase, we proceeded to enhance the hardware of the most power-
hungry nodes to reduce their energy consumption. Here we provide details of the new
platform, and how it drastically reduced the need for labor-intensive field trips to re-
place depleting batteries. This optimization led to a dramatic improvement in terms of
maintenance costs. At the same time it triggered another round of software optimiza-
tions - we revisited sampling and in-network storage in the light of the new hardware
capabilities. We validate the hypothesis that evolving hardware significantly impacted
the performance of algorithms running on the nodes. This prompted us to introduce
a more energy-efficient sampling algorithm for detecting badgers, which was not ap-
plicable in the old platform. It furthermore impacted the performance of our storage
management scheme by altering the patterns of sink mobility. The running costs of the
resulting system were reduced to such an extent that it made it realistic for zoologists
to envision network expansion. The data collected throughout our deployment have
the potential to offer zoologists a deep insight into the social life of badgers and on the
correlation of their activities with weather and micro-climatic variations.

The lessons learned in this paper highlight the impact of maintenance costs on sys-
tem design and the evolution, as well as the interplay between hardware and software
optimizations. They also point out the need to take into account domain knowledge and
application requirements to enable successful long-term deployments. The remainder
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Fig. 1. Eurasian badger wearing one of our collars.

of this paper is organized as follows: Section 2 introduces the characteristics and re-
quirements of the badger monitoring application. Section 3 presents the architecture,
design and deployment of our initial monitoring system. Sections 4 and 5 present the
two stages of network evolution. Section 6 illustrates the costs incurred by our vari-
ous stages and existing monitoring techniques. Section 7 analyzes the data collected
and presents our main observations of badger behavior. We discuss related work in
Section 8 while Section 10 summarizes our findings and concludes the paper.

2. WILDLIFE MONITORING APPLICATION
In this section we describe the challenges and requirements of our badger monitoring
application. Badgers (Fig. 1) are nocturnal mammals, spending their days in subter-
ranean multi-entranced burrow systems (so called ‘setts’), and foraging at night. In
the UK, their habitat is typically mixed wood and farmland. Their active nocturnal
period commences when they emerge above ground around dusk. These emergence
times thus vary seasonally, therefore correlating with temperature and day length.
During their active period, badgers visit specific places, such as ‘latrines’, which are
thought to have an important role in their social behavior (see [Neal and Cheeseman
1996] for an introduction to badger biology).

After foraging, they return to their setts, usually around dawn. Separate, spatially
distinct, setts are arranged into social groups. It is thought that badgers move readily
between setts within a social group: typically, they would return to their setts of origin
each night. Zoologists’ understanding of the social bonds between the individuals in
a social group remains incomplete. Badgers are apparently territorial, but to what
extent they actively or passively establish a home-range is poorly understood. Move-
ments are difficult to observe on a fine temporal scale, but systematic cage-trapping,
up to four times per year, has indicated that movement between social groups, at the
population level, appears to be minimal [Macdonald et al. 2008].

Zoologists would like to know more about the movements and social interactions of
these animals: where and for how long they may meet is especially important. Since
GPS receivers function poorly in densely wooded areas, such information is usually
gathered by on-site, night time observation, VHF radio telemetry, and more recently by
remote video surveillance. All these methods are labor intensive and expensive. For ex-
ample, VHF tracking requires at least two people to get accurate location information
on the animal, and it is not often practical to track multiple animals simultaneously.
Despite intensive study of these animals, answers to fundamental questions regarding
socio-spatial dynamics, and foraging-patch use remain elusive. The degree of social-
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Fig. 2. Heterogeneous network consisting of badgers (equipped with RFID collars), detection nodes (fixed
RFID receivers), environmental sensor nodes, zoologists (mobile sinks) and a fixed gateway.

group interaction is only superficially known using current technologies. Given the
role badgers are considered to play in the epidemiology of bovine tuberculosis, and the
full economic implications of this disease, understanding the temporal distribution of
potential disease-carrying contacts, at key resource focal points, such as burrows and
food patches (especially where these are shared with domestic animals) [Macdonald
et al. 2006], is critical. Badgers are also a protected species, vulnerable to persecution,
and emblematic of various conservation organisations. These types of conservation is-
sues are typical for many species, and these risk factors are equally hard to monitor.

Given these requirements we have devised an integrated system for badger mon-
itoring that could further help zoologists understand the social and behavioral im-
plications of badger movements. Fig. 2 shows the heterogeneous nodes and devices
that comprised our system. In this wildlife tracking installation we monitored badgers
equipped with active RFID tags embedded within a small light-weight collar designed
to have minimal impact on badger behavior. RFID receivers, referred to as detection
nodes, were placed in key locations throughout the woods. In addition, we deployed a
number of sensor nodes to monitor temperature and humidity in the same area. Sensor
nodes and detection nodes were all connected through the same network. Our network
also included a single solar powered gateway with cellular connectivity, which was lo-
cated conveniently for 3G coverage and for its own maintenance. As it had cellular
connectivity, it could relay data instantaneously to the end users.

Zoologists also contributed an element to the system as they perform regular trips
to the study site to carry out routine observations and equipment maintenance. Thus,
they acted as mobile sinks and assisted in the task of data collection, relieving the
network from part of its communication load.

The data generated by our network fell into three categories: 1) RFID readings that
reflected badger observations and were captured by detection nodes, 2) environmental
(humidity and temperature) data monitored at regular intervals by fixed sensor nodes;
and 3) network health data that indicated battery levels, memory usage and any sensor
errors.

Zoologists and network engineers could assign priorities to different data types; a
priority value reflects the tolerable delay between generating sensor data and deliver-
ing them to the user. For example, the detection of badgers dispersing from their natal
setts may be considered very important as it represents potential fission and fusion
within badger society, while also generating the potential for the transmission of so-
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Fig. 3. The badger detection node (left) and the active RFID tag, potted in epoxy and mounted on a collar
(right).

cial, genetic, and disease ‘information’. Zoologists required prompt notification of these
potential dispersal events as soon as they happened, whereas they were able to wait
days for summaries of badger activity data, and weeks for raw badger observations
and environmental data.

3. INITIAL SYSTEM DESIGN
This section discusses the initial design of our animal monitoring system, whose focus
was on strong modularity and portability.

3.1. Sensing
Environmental monitoring: To investigate the potential impact of microclimate on
individual badger behavior, we equipped Tmote Sky nodes with two external SHT-
71 digital temperature and humidity sensors. One of the sensors was buried 30 cm
underground (where it only measured temperature), and the other was mounted at a
1 m height. Ten of these nodes were deployed in the woods and made a measurement
every five minutes. Suitable sensor housing was developed by trial and error to protect
the sensor and also to allow it to record accurate humidity measurements. Our early
packaging resulted in the saturation of the humidity sensor due to local condensation
within the enclosure. We found sealing the digital sensor within hot-melt glue and
shaping heatshrink to act as a shield to restrict wind chill resulted in the best solution.
These devices were configured to either act as standalone data-loggers (which have
very low average current consumption - approximately 30 µA) or as normal network
nodes.
Badger Monitoring: wildlife tracking presents unique challenges, requiring animal
borne tags to be simultaneously small, very reliable, and inexpensive. This influenced
a number of design decisions including the use of a commercial 433 MHz Active RFID
tag 1 over the alternative of designing a custom miniature mote platform. The selected
tags satisfied most design requirements including low cost, miniature size and long
lifetime. The small size of the tags was crucial as it allows much smaller animals than
badgers to be tracked if necessary. Overall, the selection of commercial low cost tags

1http://www.wavetrend.net
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Table I. Tag Specifications

Parameter Value
Transmit frequency 433.92Mhz
Power output 72dbµV/m, 4300µV/m
Modulation ASK
Bandwidth <1Mhz
Stability SAW stabilized
Range 0-100m (determined by choice of antenna and environment)
Lifetime 2-6+ years (depending on tag configuration)

also allowed the team to capitalize on the advantages of a fully tested component and
focus on ground sensor network design, measurements, data collection and analysis.
The tag measured 40x20x3mm in size (without a 123mm external whip antenna), and
was powered by an on-board 3V CR2450 coin cell with an expected minimum lifes-
pan of 2 years at 0.4s transmit interval (see Table I for more detailed specifications).
The tag uses a Proprietary Signaling Scheme and data protocol (L-Series) patented by
Wavetrend. Each RFID tag was hermetically sealed (‘potted’) in waterproof epoxy resin
to protect the tag from environmental and mechanical damage (e.g. chewing by an an-
imal). The collars with potted tags (see Fig. 3) were attached to badgers during routine
trapping sessions, approved by institutional ethical review [Macdonald and Newman
2002] (UK Home Office Licence 30/2138; Natural England Licence 200001537). After
full recovery from sedation badgers were released at their point of capture.

The presence of tagged animals was registered by 26 RFID detection nodes placed at
setts and latrines, covering all main setts in the core study area (see Fig. 4). The detec-
tion range of a tagged animal was circa 0-30m, with the selected 433 MHz frequency
providing longer communication range and lower obstacle fading through dense vege-
tation.

Each detection node consisted of an active RFID reader, a Tmote Sky mote and a cus-
tom designed mote extension board. For each detected tag the reader provided the fol-
lowing information: tag ID, reader ID, serial counter number, received signal strength
(RSSI) and a checksum. The serial counter number facilitated an estimation of the tag
age, which is used to notify the system when the tag is nearing the end of its projected
life-span, based on the counter value reaching a certain threshold. The threshold var-
ied based on the set beacon frequency. The counter also provided each beacon with a
unique ID allowing the system to determine if two readers were detecting the same
beacon (indicating tag is in range of both) or a sequential beacon (indicating tag has
moved between readers). It could potentially support Real Time Location System func-
tionality and limited accuracy for trilateration. RSSI was provided by the reader and
gave an approximate indication of distance from reader. A detailed discussion on the
relationship between RSSI and distance is presented in Section 3.3. Each reader had
2 RJ45 connections for communication. Several RFID readers could be daisy chained
together via a 2-wire RS485 interface with a maximum of 254 readers in the wired
network.

The extension board allowed the interconnection of the mote, RFID reader and pe-
ripheral devices to an RS232-TTL converter, MOSFET switches and the voltage regu-
lators. The output voltage ranged from 6V to 12V and was configurable either through
potentiometers and switches on board or from the mote via a standard I2C interface.
The power management software on the mote duty cycled the peripheral devices in-
cluding the reader, and monitored both mote and reader voltages to shut down the
system should the voltage become low.

It should be noted that animal tracking and static detection and sensor node com-
munication had different requirements in terms of communication range and antenna
configuration, so decoupling the two communication systems was desirable. In partic-
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Fig. 4. Map of the study area showing RFID detection nodes: square = setts; circle = latrines. green =
wooded areas, yellow = open arable areas.

ular, static node communication required extended communication range with prefer-
ably high bandwidth, whereas animal detection required a biologically meaningful
communication range, with a high degree of consistency, which required consistent
antenna orientation and receiver sensitivity of all detection nodes.

3.2. Data Collection
In our initial system design, we distinguish between two types of data - high-volume
data, which consisted of raw badger observations, and low-volume data, which con-
sisted of environmental readings, summaries of badger visits and network status re-
ports.
Compression and local storage: As a result of the large data volumes generated
by the network (typically in excess of 400 000 observations per week) we implemented
a simple delta based compression technique to allow more data to be stored in the
1Mbyte flash memory of the Tmote Sky. This approach, which is application-specific
and computationally lightweight, achieves a 25% higher compression factor than
standard compression methods, like gzip. This technique takes advantage of the large
degree of similarity between successive RFID readings from the same RFID tag. In
essence, the difference between a base RFID observation and subsequent readings is
encoded. Each raw reading occupies 10 bytes in its uncompressed form. The difference
between an observation and the base record could be stored using only 3 bytes of
information. Using this simple scheme, raw data were typically compressed by an
average factor of 2.7x. This compares favorably with the resource hungry gzip (LZ77)
algorithm which only achieves a compression factor of 2.0x on the same dataset. Thus,
by reducing the volumes of data that needed to be buffered within the network, we
were able to extend the memory lifetime of the reader node almost threefold. These
data could be compressed further using dictionary type compression algorithms such
as S-LWZ [Sadler and Martonosi 2006], but the gains would only be marginal and
would require additional node resources.
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Routing: Low-volume data (such as network status messages) were forwarded to the
fixed 3G gateway node using a proactive shortest path routing algorithm. Every node
maintained a routing table containing its distance to the gateway node. Initially the
gateway advertised beacons with distance 0 to itself, and with increasing sequence
(freshness) numbers. The distance from a node to the gateway was evaluated by tak-
ing into account the link qualities along the route. Each node maintained a neighbor-
hood table that reflected statistics of outgoing traffic. The expected transmissions etx
per message from the current node to a neighbor node N were computed as follows
etx(N) = attempted tx(N)/successful tx(N). The distance to the gateway node was de-
fined as the sum of expected transmissions on all links along the route. Note that if all
the links along a route had an etx = 1, the distance was equal to the number of hops
along the route.

Every node broadcasted its distance to the gateway every 30 minutes. Upon receiv-
ing an advertisement from a neighbor N , a node compared the advertised distance
(advDist) to the distance in its local routing table (rtDist). If advDist+etx(N) < rtDist
then it sets rtDist := advDist+etx(N) and sets neighbor N as its next hop. If the route
quality deteriorated significantly, a node simply selected the next best available route.
IPv6 customization and implementation: The multi-priority data collection ap-
proach was implemented using the uIP (micro-IP) IPv6 networking stack [Durvy et al.
2008] as well as X-MAC [Buettner et al. 2006] as the networking stack. To the best of
our knowledge, the WildSensing project is the first project that used an IPv6 network-
ing stack in the context of a delay tolerant wireless sensor network. Here, we describe
our motivation and changes necessary to Contiki’s IPv6 networking stack in order to
achieve an acceptable network performance.

The choice of using Contiki’s uIP networking stack was strongly influenced by the
positive findings of Hui et al. [Hui and Culler 2008]. The added flexibility of using
the IPv6 standard allows us to easily adapt the network to other tasks later during
the network deployment, for example accessing and maintaining individual nodes or
allowing near real-time data streaming from specific nodes within the network. Al-
though the overhead incurred in terms of code size is considerable for the T-Mote Sky
platform (approximately 16KBytes of additional ROM usage for our implementation),
the added modularity and flexibility of the IPv6 network allows us to easily maintain
and extend the network with new functions.

Data were disseminated towards storage nodes on a local hop-by-hop basis, instead
of an end-to-end basis. Typically, TCP/IP connections are used in IPv6 networks to
ensure reliable data transmissions, which require an additional overhead for estab-
lishing a connection and requires the end nodes to negotiate costly retransmissions.
To avoid this overhead we used local UDP connections to transmit data along each hop
towards the storage node. Upon receiving a package from a child node, the parent node
returned a UDP ACK message to confirm reliable data transfer. Messages were stored
in onboard flash and then only marked for deletion once an ACK message was received
from the parent indicating successful custody transfer. In this way, data were relayed
reliably, without the energetic expense of establishing and maintaining an end-to-end
TCP connection.

We made three noteworthy changes to the original code in order to accommodate the
low-power delay tolerant needs of our network. The majority of changes involved opti-
mizing the stack to accommodate the largely static network topology, as expected in the
WSN. Firstly, we reduced the frequency of IPv6 processes updating neighborhood vari-
ables, from 1000 Hz to 1 Hz, resulting in a reduction in processor power. Secondly, the
frequency of neighbor detection messages, namely solicitation and advertising mes-
sages, was reduced such that the duty cycled MAC-layer could respond in a timely
manner. In a standard IPv6 network, a node attempts to detect new neighbors every
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10 ms, which congests the duty cycled MAC which is only able to transmit a few times
per second. Consequently the neighbor detection period was reduced to three seconds.
Thirdly, the neighborhood cache entries were set to be valid for 24 hours. Typically, a
IPv6 networking stack defines the neighbor entry validity as milliseconds, which in our
case of infrequent messages would result in new neighbor messages being transmitted
for the vast majority of data packages.

While the three modifications to the frequency of updates were not explicitly bound
by the IPv6 standard, the variables were specified to be set in milliseconds, rather than
seconds. The changes were therefore most likely not conforming to the RFC4861 stan-
dard, though they should allow correct interoperation with a standard IPv6 network.
Overall, the changes dramatically reduced the typical overhead incurred by an IPv6
network in a delay tolerant setting and allowed a flexible yet energy efficient network
deployment.
MAC layer: We decided to use X-MAC [Buettner et al. 2006] at the MAC layer, a
preamble based protocol in which senders indicate their intent to send data by fre-
quently transmitting short wake up messages. Nodes periodically woke up, and if they
heard a preamble, indicating a packet was addressed to them, they responded with an
acknowledgement. This terminated the wakeup phase and the packet was sent. Nodes
were configured to wake up every 500 ms and listen for 5.8 ms. This resulted in an
effective basic duty cycle of 1.1%.

3.3. Quantifying node detection range
In order to establish the effective range at which an RFID detection node could re-
ceive transmissions from animal collars, it was necessary to conduct a number of field
experiments. Theoretically, RSSI follows a log-law relationship with distance, but in
natural habitats objects such as vegetation absorb or scatter radio signals. In order to
quantify the relationship between RSSI and node-tag distance for all records, and so
determine the average nodes detection range (all tagged badgers, at all nodes, during
our study), we performed ‘walk-tests’ on a sample of tags and nodes specifically cho-
sen to represent the extremes of detection performance of the system. Individual tags
were attached to a model badger (8kg of minced meat modeled into the body, neck and
head shape of a badger and wrapped in plastic sheeting), carried at badger walking
height (suspended on ropes), along 50m transects away from and towards nodes. The
models were expected to attenuate tag transmissions in a similar way to live badgers
(note models, termed phantoms, are commonly used in human dosimetry trials) and so
provide a realistic analogue for deployed tag performance on live badgers.

Old tags, previously worn by badgers, should logically loose capacity to generate a
signal due to possible antenna damage and weakening batteries. Therefore, to capture
a representative sample of tag affects, two old previously worn tags and two new un-
worn tags were tested. The more vegetation in the environment the greater the chance
that radio signals will be attenuated and so, to capture a representative sample of
node effects, we tested tags at 9 (out of 26) node sites ranging from the most open to
the most over-grown. Four transects, radiating out at 0◦, 90◦, 180◦ and 270◦ to the
node antenna were walked at each site. Node-tag distance was recorded every 2m on a
laptop and synchronized with RSSI from the tags as it was recorded simultaneously by
the node. General Linear Models (GLMs) were used to investigate/calibrate the effect
of individual tags and node sites on the relationship between received signal strength
and node-tag distance.

The graph in Fig. 5 shows the results from the walk-tests. In all, over 7500 tag
transmissions were recorded. At these large sample sizes the standard GLM output of
probability (’p-values’) are uninformative and so instead we emphasize effect sizes in
terms of the proportion of variation explained (r2). The ability of nodes to detect tags
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Fig. 5. Variation in RSSI of RFID detection nodes with distance.

did not seem to be biased by individual tags or nodes: there was a negligible effect of
individual tag (F3,12, r2=2.7%) and node (F8,12, r2=1.1%) on RSSI. The dominant effect
was that of node-tag distance (F1,12, r2=46.0%). That is, as expected, signal strength
decreased with node-tag distance. The results from these tests demonstrate that detec-
tions do not need to be calibrated for individual badgers or sites. In order to establish a
nodes average detection ‘range’ all data from the tests were pooled with the following
results: 95% of all detected transmissions were within 31.5m of a node, 90% within
27.9m and 80% within 22.5m. These thorough tests were necessary to establish the
biological meaning of a transmission recorded by a detection node.

3.4. Gateway Link
In order to transfer information from the field to the end-user, a solar powered 3G back-
haul link was used, shown in Fig. 6. The emphasis was on making the gateway modular
and flexible, thus commercially available (COTS) components were used where possi-
ble. The 3G connection was provided by a WiFi router with an external USB ‘dongle’
modem. A serial port forwarder converted RS-232 serial data from the node to TCP/IP
packets. These were then sent over the 3G connection to a remote server where they
were parsed and stored in a database.

The gateway node itself was a T-mote SKY which was equipped with a 256 MB SD
memory card for buffered storage in the event of link failure. The gateway stored all
incoming network packets, as well as any log/error messages that it generated. The
node’s serial port was forwarded over a TCP connection to a database server.

4. EVOLUTION STAGE 1: IMPROVING SENSING AND DATA COLLECTION
In this section we discuss how we started evolving our initial system design by intro-
ducing algorithmic improvements. The main weaknesses of our initial design were the
high energy consumption of the badger detection nodes (RFID readers), and the heavy
communication load around the fixed gateway. As shown in SectionSection 6, about
one visit a week was necessary to change batteries and keep the system running.
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Fig. 6. Deployed 3G Link. The solar panel provides power for the link which is housed within the box on
the right-hand side of the picture.

4.1. Adaptive Sensing
RFID readers were the major source of power consumption on detection nodes. Despite
being powered by a 12V 18Ah battery, without duty cycling they only lasted for one
week. Increasing the lifetime of readers was therefore critical for large-scale long-lived
deployments.

An obvious way to save energy was to duty cycle the RFID reader by periodically
turning it on for a fixed duration of Ton seconds every Tinterval seconds. Nevertheless,
setting optimal parameters was not straightforward: a high frequency sampling may
have been too wasteful, whereas low frequency sampling may have lost important con-
tacts. Tuning also requires knowledge of badger activity, which may not be known in
advance.

We thus devised an adaptive duty cycling approach, which dynamically adapted
the parameters Ton and Tinterval taking into account badger activity. We formulated
the problem in terms of reinforcement learning [Kaelbling et al. 1996], and suggested
a control strategy that adjusted node duty cycles based on animal arrival patterns
[Dyo and Mascolo 2008]. The initial values of Ton and Tinterval were set to reflect the
target duty cycle and the hardware capabilities of the detection nodes. For example,
to achieve a target duty cycle of about 9%, Ton was set to 30s with the initial value of
Tinterval at 330s. For efficiency reasons, Ton was chosen to be significantly longer than
reader boot time Tboot, which was 10s.

The approach was composed of two main components: the short-term and the long-
term adaptation components. Short-term adaptation extended the awake time Ton of
the reader by a fixed short period of Text seconds each time badger activity was de-
tected (i.e., a tag was in range). The short-term adaptation exploited the temporal
burstiness of badger arrivals, as detection of a beacon was usually a good predictor
of activity. The drawback of the periodic sampling technique, even in the presence of
short-term adaptation, was that it assumed uniform badger activity throughout the
day. However, it is rare that animals or humans remain continuously active through-
out a day but rather follow a 24-hour circadian rhythm, which may vary depending
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on the environmental conditions [Aschoff 1965]. Badgers, for instance, are nocturnal
animals that are inactive during the day, which means that sampling during the day
may be wasteful.

The long-term adaptation component learned daily patterns of badger activity and
adapted the interval Tinterval accordingly. We defined a target daily budget B as the
amount of seconds that a badger detection node should spend in active state per day.
Each day was divided into N equal time slots. Then, each node computed the expected
number of sightings E(d, t) during a day d for timeslot t and assigned a budget B(d, t),
proportional to E(d, t), to each timeslot:

B(d, t) = B
E(d, t)∑N
i=1E(d, i)

. (1)

This is the equivalent of ‘bidding’ more resources in what has been a productive
timeslot in previous days. We constrained B(d, t) in the range [Bmin, Bmax] in order to
still explore all timeslots, even if they had not recently experienced any sighting, and
to constrain the maximum number of times the node wakes up within a given time
slot. Since in a timeslot of length T the reader was to be active only for B(d, t) seconds,
we have that B(d, t)/T = Ton/Tinterval and the node could adjust the duty cycle in each
timeslot by setting the interval Tinterval = T Ton

B(d,t) between successive wake ups. On
the first day, the budget was spread uniformly throughout all N timeslots, since there
was no information about sightings. Then, the expected number of sightings E(d, t) in
timeslot t of a particular day d was evaluated as follows:

E(d, t) = α×O(d− 1, t) + (1− α)× E(d− 1, t) (2)
where O(d − 1, t) is the actual number of sightings that were observed in the same

timeslot on the previous day and α is a weight in the range [0, 1] which controls how
rapidly new information is incorporated into the filter. Small values of α gave more
weight to past history, but made the adaptation process slow and unable to capture
sudden changes, whereas large values will make it very reactive to short term changes
and less able to capture long term patterns.

Simulation-based evaluation: The evaluation of the adaptive duty cycling tech-
nique has been performed both through simulation and real deployment. Throughout
our evaluation, we used N = 24 1-hour timeslots, that is T = 3600s. Within each
timeslot, the detection node turned the reader on and off to achieve the target duty
cycle using Eq. 1. The on-time Ton was selected to be 30s, the initial interval Tinterval =
330s (which corresponded to a budget B = 7854s and a duty cycle of about 9%), and the
extension time Text = 300s. The [Bmin, Bmax] range was set to [B/120, B/24] ≈ [65, 327].
We used a fixed duty cycling algorithm, where a node woke up and went to sleep at
fixed intervals of time, as a baseline. The algorithms were implemented in Tossim 2.0.2
simulator and evaluated by replaying the real data recorded by the always-on node. We
made 10 simulation runs for each algorithm with random node offsets.

Fig. 7 shows the performance of the always-on, fixed duty cycling and adaptive algo-
rithms respectively. The always-on node detected all 76707 encounters at 100% duty
cycle. The fixed duty cycling node detected 7773 encounters at 9% duty cycle.

The short-term adaptation version detected 50262 (65%) encounters at 10% duty
cycle resulting in much higher encounters per duty cycle than always-on and fixed
nodes. The duty cycle of the short-term algorithm was 1% higher compared to a fixed
algorithm due to extension of the wake-up time when the activity was expected. The
combination of short-term and long-term adaptation techniques resulted in slightly
fewer encounters (46214) than a short-term version because of longer sleep intervals
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Fig. 7. Simulation results. Comparison of detected encounters and encounters per effective duty cycle for
a) always-on b) fixed c) short-term adaptation d) short-term and long-term adaptation.

during inactive periods, causing some encounters to be missed. However, the overall
duty cycle reduced to 5% showing the effectiveness of long-term adaptation.

Deployment-based evaluation: In order to evaluate our duty cycling technique in
a real deployment, we placed two detection nodes with the same hardware and antenna
orientation next to each other. One of the nodes was always on, whereas the other
executed our adaptive duty cycling technique. In addition, we processed data from the
always-on node to simulate a fixed schedule. The adaptive node was configured to work
at 9% duty cycle.

The evaluation was based on 833 hours of summer (July) deployment data from
both nodes. Data were periodically retrieved from both nodes manually. The results
are summarized in Fig. 8. The fixed duty cycling node captured 7201 sightings while
using 10% of the power of the always-on node. The adaptive duty cycled node detected
54568 (73%) of all sightings, while consuming approximately 8.2% of the energy.

4.2. Delay-tolerant data collection
The initial design of the data collection algorithm was based on the principle that
raw RFID data are high-volume but low-priority, and could be stored locally at sensor
nodes. The remaining data had higher priority and were forwarded to the 3G gateway
using a tree-based routing algorithm. This initial approach is similar to related work
on prioritizing data traffic and taking into account routing costs to determine whether
to discard data, store it locally, or forward it to the gateway [Werner-Allen et al. 2008].

Here we added a further step using a delay-tolerant data collection approach, which
leveraged the movement of zoologists and other environmental scientists to efficiently
collect sensor data. Not only did we prioritize data based on their urgency, but we also
prioritized nodes based on the frequency with which mobile sinks visited them. In this
way, we forwarded data to carefully selected storage nodes, purely based on data and
node priorities.

Data priorities: When data were generated, they were assigned a data priority
class that represented the latency allowed until they had to be delivered to the end-
user. Our network generated observations of tagged badgers captured by the detection
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Fig. 8. Deployment results. Comparison of detected sightings, effective duty cycle and the sightings per
effective duty cycle for a) always-on b) fixed c) adaptive nodes.

nodes, and environmental sensor data (temperature and humidity). Nodes also cre-
ated heartbeat messages that reflected their current operational status. This included
information such as remaining battery level, memory usage and network statistics.
The motivation behind our delay tolerant networking approach was the fact that the
majority of the generated data do not have strict latency constraints. It was impera-
tive however, that all data were eventually collected. In order to maximize the battery
lifetime of nodes in the network, we used a distributed storage and delivery method,
where messages were directed to different destinations based on their tolerable de-
lay. In our system, we offered three priority classes, but this could be extended to any
arbitrary number. The three priority classes were as follows:

Priority class 1 represented data with urgent latency requirements (maximum of a
few hours delay). These data were forwarded to the 3G-router node for direct access
by the researchers. Data of this class could either represent an unusual event or
a network status report to ensure the network functioned correctly throughout the
deployment.

Priority class 2 represented data with medium latency requirements (maximum of
a few days delay). These data were forwarded to frequently visited storage nodes for
opportunistic collection. Data of this class could be summaries of badger visits.

Priority class 3 represented data with no latency constraints (delays of weeks are
acceptable). All that was required was that they were eventually collected. Data of
this class, such as raw sensor data, could remain in memory until collected through a
direct download.

Priorities were not only assigned to raw sensor data, but also to composite events or
aggregated data. For example, raw badger information may have had priority 3, but
when unusually high activity was observed around a certain set this composite event
could be assigned priority 1, and would therefore be forwarded to the fixed gateway for
immediate delivery. Data priorities could also be either fixed or dynamic, for example,
they could vary depending on the zoologists’ needs and the data collected from the
sensor network.
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Fig. 9. Example routing trees as found in our deployment: (left) Routing tree for priority 1 data, (right)
Routing trees for priority 2 data.
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Fig. 10. Results from the network test: (a) Distribution of node duty cycles for the centralized storage
approach. (b) Distribution of nodes duty cycles for the distributed storage approach.

Node priorities: Our priority based in-network storage management approach
was very simple and effective. Initially, each node was assigned a priority class PN

based on the frequency it was expected to be visited by mobile sinks for data collection.
Some nodes (such as those close to roads and paths) were regularly in contact with
a mobile sink and thus contributed a small delay. Other nodes that were placed in
rarely visited remote locations were subject to a greater delay.

The more frequently visited a node was, the lower the expected data delivery time,
and the lower the assigned node priority class. In our system, the 3G gateway was
assigned a priority class 1 as it could offer the lowest data delivery latency. Nodes that
were visited at least once every three days by mobile sinks acted as temporary data
storage nodes of priority class 2. The remaining nodes in the network had priority class
3.

In our storage management scheme, a data item of priority PD was stored at the
closest node with priority PN , where PN ≤ PD. Messages with the data priority class
of 1 were directed towards the 3G enabled gateway, which allowed users to access them
with little delay. Data of priority class 2 were stored at the closest node that had pri-
ority 1 or 2. Data of priority class 3 were stored locally at the node where they were
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generated. Note that node priorities could change dynamically in response to changes
in sink mobility. If a node became visited less often, some of the messages that it used
to store may then have needed to migrate to another node depending on their priorities.

By asking domain experts to classify data into priority groups, we mapped data to
suitable storage nodes, and in this way we ensured that they were delivered on time
and with the lowest communication cost. As a data item remained stored at a node, it
gradually aged, and its remaining tolerable delay decreased. As a result, it dynamically
changed priority and was forwarded to another suitable storage node

Priority- and mobility-aware routing: Once data were assigned a priority and
were compressed, they were forwarded to the appropriate destination node, namely
3G gateway nodes of priority 1 or storage nodes of priority 2. Every node maintained
a routing table containing the following information for each of the available priority
classes:

priority next hop seq. no. dest. node distance
1 NA 30 NE 3
2 NB 34 NF 1

The next hop simply represented the neighbor to which the data of a certain priority
were forwarded. The sequence number (seq. no.) and destination node (dest. node) fields
were used to deal with loops occurring in the network. The sequence number was
issued by the destination node and represented the freshness of routing information
concerning that node, as in DSDV [Perkins and Bhagwat 1994].

We evaluated the distance to a destination node, taking into account the link qual-
ities along the route, in exactly the same way as we evaluated distance to the gateway
in Section 3.2. Every node periodically broadcasted its routing table information for
each priority class. In our network, we set this broadcast period to 30 minutes. Note
that a single advertisement contained routing information for all priority classes. The
size of advertisements did not increase with the number of destination nodes, but only
in proportion to the number of priority classes. Therefore, the routing overhead of
building multiple trees, instead of one, was negligible. Fig. 9 shows the routing trees
that were formed in our real deployment for priority 1 and 2 data.

Evaluation: In this section we present results from a 20 day network deployment
period with a total of 24 RFID readers. For half of the time, data were collected us-
ing the previously described distributed storage approach, and for the other half us-
ing a centralized storage approach, as in the initial design. The centralized approach
simply forwarded all data to the 3G node; the distributed approach used three addi-
tional priority-2 storage nodes at which data were temporarily stored for opportunistic
pickup.

In order to have comparable results we utilized a fixed data generation rate for the
network evaluation period. Priority 1 data consisted of network status messages gen-
erated at each node every 30 minutes, which had to be delivered to the end user within
two hours. Priority 2 data consisted of badger activity summaries generated at each
node every 15 minutes with a delivery latency of three days. In the centralized ap-
proach these data were forwarded to the fixed 3G gateway, whereas in the distributed
approach, they were delivered to the nearest storage node that satisfies latency con-
straints 2.

In both centralized and distributed approaches, a very high delivery ratio was
achieved (99.9% of the data were correctly transferred to the appropriate storage or

2In our regular network operation, nodes also generate raw badger readings of priority 3, which are stored
locally for both approaches, and thus do not incur any network overhead.
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Table II. Comparison between the two RFID reader versions.

Version 1 Reader Version 2 Reader
Node Tmote Sky Zigbit Amp
Processor MSP430 AVR atmega1281V
Node RAM 10 kbyte 8 kbyte
Node Flash 48 kbyte 128 kbyte
External Flash 1 Mbyte Up to 2 Gb SD
RFID reader power 900 mW 96 mW
Reader turn on time 10 s 0.1 s
Radio range 50 m 1 km
Cost per unit $590 $320
Mote battery 3 AA none
Reader battery 18 Ah SLA 18 Ah SLA

3G nodes). Furthermore, this was achieved with an average latency of 14.1 seconds
per hop – thus data could be sent over five hops in under 75 seconds on average.

The network status messages, which contained the radio on-time at each node, al-
lowed us to derive the average radio duty cycle of each node over the test period. Fig. 10
shows the distribution of radio duty cycles across the different nodes in the network,
with the two storage management schemes. The centralized approach exhibited 46%
higher duty cycle than the proposed distributed approach in the average case, and 57%
in the worst case at routing hotspots. This shows that by carefully forwarding data of
different priorities to suitable storage nodes, we not only reduced the average energy
consumption, but also balanced the load more evenly in the network. Our benefits
would be much more pronounced if we had forwarded priority-3 data to the gateway in
the centralized approach.

5. EVOLUTION STAGE 2: HARDWARE IMPROVEMENTS
Although the algorithms proposed in Section 4 improved the usability of our initial de-
sign, our approach was limited by hardware - i.e. the RFID detection node. Experience
dictates that rapid field deployment and data gathering are imperative to a system’s
successful iterative design and deployment - experience in the lab does not translate
to success in the field. The detection node was built using off-the-shelf components
enabling quick deployment, however these components turned out too general for our
specific needs.

5.1. Design of the new node
We incorporated feedback from the users of the system (i.e. the zoologists) in order
to make the system more useful. A summary of the major design changes made is
shown in Table II, and a photograph of the new node can be seen in Fig. 11. Although
the ubiquitous Tmote Sky had enabled us to deploy a prototype system rapidly, its
limitations in terms of radio range and usable memory were major constraints. We
did not want to design a new custom node from scratch however, rather we wanted to
incorporate a more modern and flexible module into the design. The salient criteria
were that it should be low cost, power efficient and preferably hand solderable.
The cost and power requirements ruled out an advanced node such as the Imote2.
Instead, we investigated small, wireless enabled modules that could act as the heart
of a generic sensing platform. There were two modules that were a good fit to the
application requirements: the Jennic JN5148 and the Meshnetics (now Atmel) Zigbit
AMP (ATZB-A24-UFLR). Both of these modules were low power, inexpensive (less
than $35 in single quantity) and had an external power amplifier which increased
transmission power by +20dBm. They also came in small form-factor packages with
numerous peripheral pins that could be used to interface with additional components.
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Although the Jennic module had a number of advantages, such as a low power 32 bit
processor as opposed to the 8 bit Atmega1281V in the Zigbit AMP, we used the latter
as it had better community support, especially in Contiki. This allowed us to port
our existing code rapidly from the Tmote SKY platform to the AVR platform, with
minor modifications to the existing RF230 radio driver. The radio range of the new
modules was improved to be in excess of 1 km in woodland at maximum power, a great
improvement that increases the span of the network considerably (note that this is
the transmission range of the radio, and not the detection range of the RFID reader,
which is unchanged). The drawback of transmitting at the highest power level is that
this increases the current consumption from 17 mA to 50 mA.

As the Zigbit AMP is essentially a microcontroller with an embedded radio, we
needed to add additional components in order to satisfy application requirements.
Firstly, we added external memory to the board in order to remove the constraints
present in the initial system. The board is equipped with a 4Mbyte serial dataflash
chip and also a removable mini-SD memory card. At present, this allows the addition
of up to 2 Gbytes of SD based flash, but larger capacities could be supported with
modifications to the SD driver software, allowing high capacity cards to be used. We
also added an RTC with battery backup to allow nodes to maintain their time when
batteries were changed. Currently, nodes are unsynchronized – this is an issue that
will be addressed in subsequent firmware iterations. One problem with the Tmote Sky
is that the onboard sensors are not removable. This is not a problem in an indoors
laboratory setting, but in a real deployment, sensors must be placed externally to the
protective housing. Thus, we incorporated light and temperature sensors, which could
be detached from the main board.

A major change in this version was the switch from the RS-485 version of the RFID
reader to an OEM board. The RS-485 version was a suitable choice for the initial de-
ployment, as it allowed us great flexibility in daisy chaining multiple readers together
and had a simple serial interface. However, the power consumption and slow turn-on
time were issues. These high power requirements necessitated the use of a separate
reader and mote batteries, so that the mote would remain powered even if the reader
exhausted its supply. Switching to the OEM version of the RFID reader negated these
problems. It has a simple synchronous serial TTL interface and a pin that could be
used to trigger an interrupt on the microcontroller when a tag was read. This allowed
us to power down the microcontroller while the reader was active, whereas in the pre-
vious version, we had to maintain the clock for the UART. Furthermore, in the Tmote
Sky, the radio and the UART were multiplexed, which led to a lot of problems with
hardware locking to prevent concurrent access to the peripherals. In the new version,
the RFID reader had its own dedicated pins. The turn-on time for the OEM reader is
under 100ms, and it uses 96 mW when active.

Lastly, we used a simpler power distribution system, with 3V as a common rail. A
small charge pump was used to generate the 5V required for the OEM RFID board.
The nodes can be powered either from a 3V battery or from a 12V battery using a
switching regulator. We also included a small prototyping area on the board, as our
prior experience had shown us that there were often instances where we would want
to connect an additional device (such as a moisture sensor) to a node.

In summary, the new version of the detection node has dropped the power consump-
tion by nearly an order of magnitude. The storage space has been increased to such
an extent that it allows for 40 years of storage at the current generation rates, as
opposed to one week. This will allow us to gather more information and sample en-
vironmental sensors at a much higher resolution. The communication range has also
been increased greatly, which allows the network to cover a much larger area with
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Fig. 11. The second version of the node.

fewer devices. However it must be stated that it was our experience garnered from the
prototype deployment that allowed us to design a well optimized successor.

5.2. Duty Cycling Revisited
Given that the RFID reader on the new node could be powered up in 0.1 s, as opposed to
the 10s for the previous version, the parameters for the learning algorithm presented
in Section 4.1 could be modified. The original Tinterval was set to 330s, with a duty
cycle of 9%. Although this saved a large amount of power, allowing the node to operate
for longer, it had the drawback of not being able to react to the presence of animals
outside of the normal predicted times, as the off time could be quite long (up to an
hour). In order to address this, we modified Ton to be 1s, with Tinterval to be 11s. This
still resulted in a 9% duty cycle, but the short term adaptability could react to the
presence of unusual events, for example a badger emerging during the day. The longest
time for which the reader was off was reduced to less than a minute, which increased
the chances of detecting animals, while still accounting for their nocturnal behavior.

Fig 12 shows the simulation results for the same set of data as in Section 4.1, with
new parameters. The shorter wake up interval resulted in both higher encounter de-
tection and energy efficiencies. The short-term adaptation algorithm detected 91% of
all encounters while working at 9% duty cycle. The combination of short-term and
long-term algorithm resulted in 89% detection rate at much lower 5% duty cycle. The
deployment results conducted with the same parameters are shown in Fig 13.

5.3. Data Collection Revisited
The hardware improvements introduced in Stage 2 had a dual effect on the data col-
lection process. Change in sink mobility patterns: Recall that mobile sinks are domain
scientists that roam through the woods and opportunistically collect data from stor-
age nodes. Some of them are zoologists visiting the network for maintenance purposes,
whereas others are from other disciplines visiting the woods for their own purposes
unrelated to our sensor network. The visits of the former were reduced because hard-
ware optimizations made the change of batteries less frequent. With fewer mobile sink
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Fig. 12. Simulation results. Comparison of detected encounters and encounters per effective duty cycle for
a) always-on b) fixed c) short-term adaptation d) short-term and long-term adaptation.
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Fig. 13. Deployment results with new hardware. Comparison of detected encounters and encounters per
effective duty cycle for a) always-on b) fixed c) adaptive algorithms.

visits, one would expect an increase in the data propagated over multiple hops through
the fixed network, and thus an increase in the average and worst-case communication
cost.

Change in communication range: the effect of reduced sink mobility was, however,
offset by the significant increase in the communication range of fixed nodes. Recall
that the hardware optimizations introduced in the second stage dramatically increased
the communication range of sensor and badger detection nodes from 50m to 1km. As
a result, all nodes had one-hop connectivity to the fixed 3G gateway, and no longer
needed to make use of mobile sinks.
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Hence, in the second evolution stage, the hierarchy of nodes (based on priorities)
collapsed and the use of mobile sinks to collect data efficiently and relieve the fixed
network, became less relevant. This shows that the benefits of software-level opti-
mizations, such as the priority-based delay-tolerant data collection, are tightly depen-
dent on the hardware used. The priority-based delay-tolerant scheme proposed in Sec-
tion 4.2 yielded significant benefits in the first version of the system, but proved of
little use to the second one. However, we expect it to become relevant again in the near
future, when we proceed to the third evolution stage of the system. Our short-term
plan is to scale-up the network to cover a larger area. The extended network of badger
and environmental sensor nodes will again become a multi-hop network, and the data
collection scheme will be reinstated.

6. NETWORK MAINTENANCE COSTS
In this section, we will describe the evolution of our system in terms of the costs in-
volved. As a baseline, we will also show the approximate cost of conventional VHF
tracking [Kenward 2001]. This involves collaring animals with VHF tags that emit
periodic radio signals. VHF tags are analogue devices achieving individual identifica-
tion by frequency separation, and limiting the number of IDs available. On the other
hand, active RFIDs are digitally encoded allowing more IDs in a given band without
the need for a receiver to scan multiple channels. The VHF tags are detected by re-
ceivers carried by field-workers at a range of tens to thousands of meters (depending
on environmental conditions). Using triangulation (requiring at least two people on the
ground), the approximate location of the animal can be found. Our RFIDs transmitted
at much lower power than VHF tags increasing battery life, while limiting range (c.
30m), so giving a more precise location estimate for tagged animals. VHF tracking
has been a popular method since the late 1960s because it was, and still is in many
circumstances, the only way of tracking wild animals.

Note, although we are comparing the costs between VHF and our system, the data
collected by the two methods are rather different - although they collect the same
information (i.e. the location of a specific animal), our system logs an animal about
twice a second when it is within range of a detection node, while this is not the case
for VHF tracking. The more animals tracked by VHF, the more human trackers are
required on the ground up to the point where the number of trackers risks disturbing
the animals being tracked. Our system instead offers continuous automatic detection
(presence/absence) of the animals at specific locations with minimal interference.

From previously tracking studies of badgers, using VHF, we know that at least one
person is needed to work for about 10 hours a night to track one animal. If we assume
we have enough people to work for 28 days, this would result in 280 hours per person,
costing 2,030 USD using a 7.25 USD/h wage. It is easy to see how this is not feasible in
the long run, especially, because one person can often only track one animal at a time.
It is also not possible to provide continuous tracking (i.e. 24/7) without considerable
costs and man-hour overhead, not to mention the fact that the more people there are
in the woods, the more the animals are disturbed.

Importantly, there are several other methods of animal tracking, such as the GPS
and ARGOS satellite-based systems that we do not include in the direct comparison.
They are inappropriate because of inferior spatial resolution (ARGOS) and reliability
(GPS performs poorly in woodland). Furthermore, ARGOS tags can cost over 1500
USD each and a badger-sized GPS tag lasts for only a few months, whereas our RFID
tags cost in the order of 60 USD each and last for ca. 2 years. Our RFID readers and
sensor motes also contributed to the total cost of our system, however the price of each
detection node was around 300 USD, thus still less than a comparable ARGOS system.
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Table III. Breakdown of the average cost incurred to maintain each stage of the system for 4
weeks. Costs are normalized with respect to the number of animals being monitored.

Visits Battery cost Total cost Detection Cost per detection
(HRs) (USD) (USD) per animal per animal

Stage 1 29.7 156.76 372.5 56107 0.006
(HW only)
Stage 1 10.8 52.9 131.4 40958 0.002
(HW & SW)
Stage 2 2.7 1.04 20.615 56107 0.0003
(HW only)
Stage 2 1.3 0.56 10.3 56107 0.0001
(HW & SW)

We deployed 74 RFID tags and 26 detection nodes, summing to 4440 + 7800 = 12 240
USD, while buying 74 ARGOS tags would have cost us approximately 111 000 USD.

Table III shows the summary of the costs involved in maintaining our system. We
consider the number of man-hours needed, as well as the battery costs for each stage.
The total cost includes the price of monthly up-keep of the system. We also include
how many animal detections we had recorded in a month and how much each of these
recordings cost. In our deployment we had only two main sources of costs, maintenance
visits to the woods by the zoologists and the costs involved in battery consumption and
charging. By maintenance visits, we mean the regular visits to download the data and
change the batteries on the detection nodes. Early in the deployment, we had to go
to the study area more frequently to fix bugs and make small improvements on the
devices. Due to the lack of a remote reprogramming feature, we actually had to go
and manually re-flash the devices - this added extra cost, but was not included in this
evaluation, as it did not majorly contribute to the total maintenance cost of the system.
However, it emphasized the need for a remote reprogramming feature in our future
deployments. Developing the new software and hardware for each stage also added
to the total cost, however this was excluded from our evaluation. There were two PhD
students and two post-doctoral researchers working on the project for 3 years, however
it is difficult to estimate accurately the number of working hours spent developing the
system.

Stage 1 is our initial hardware node deployed. We have logs of how much money we
spent on batteries and how much time we spent in the woods. Each detection node
was made up of an RFID reader and a Tmote Sky. The Tmotes were powered by AA
batteries, while the readers were powered by an 18Ah 12V batteries. We spent about
147 USD on AA batteries and about 8.9 USD (4 times a month, using 0.4 kWh for
20c/kWh) on recharging the reader batteries on all 26 detection nodes. From the logs,
we also see that about 30 hours per month were spent in the woods, summing to 372
USD (again, using 7.25 USD hourly wage). From our database, we collated the total
number of active tags per month during the deployment, as well as the number of de-
tections per month; thus on average, one animal generated 56,107 records per month,
giving a single detection cost of around 0.6 cents. At this point, the bottleneck became
the 1 MB storage on the detection node - without compression, this became full (de-
pending on activity) within a week, however, using our data compression technique,
we were able to extend this to double the lifetime of the nodes, requiring only two field
visit per month, totaling 10 hours. The adaptive duty cycling approach allowed the
battery costs to be reduced to about 53 USD, or 131 USD per month. Slightly fewer
records were generated, but a single record still cost less than in the previous stage i.e.
0.2 cent.

In stage 2 we introduced new hardware that radically increased the lifetime of the
detection node, while yielding the same number of sightings as in stage 1. In our first
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stage 2 deployment, we put the hardware out for testing, without any software en-
hancement (such as duty cycling either the radio or the reader). The node lasted for
2 months on the same battery, and due to its extensive memory capacity, did not re-
quire data download. Since our new hardware used one large, rechargeable, deep cycle
battery, this negated the need to buy AA batteries for the motes. The charging costs of
the large batteries amounted to 0.2 c/kWh x 0.4 kWh x 26 x 0.5 (once in two months) =
1.04 USD per month. On average, one visit lasted for about 5.4 hours, so one visit for
two months resulted in 2.7 hours per month. Since we needed to visit the nodes once
in 2 months, our monthly cost was 2.7 hr x 7.25 USD + 1.04 = 20.615 USD. The cost
of a single detection was reduced to 0.03 cent. It is worth noting, however, that at this
point, the cost of getting to the woods or tagging the animals is actually higher than
the maintenance cost.

The introduction of the enhanced software in Stage 2 (described in Section 5) further
extended the lifetime of our new hardware. We obtained a 2-fold increase in the lifetime
of the node, hence only one visit in every 4 months became necessary. This resulted in
a maintenance cost of 10.3 USD per month, and the cost of a single detection thus
became negligible.

7. DATA ANALYSIS
We have collected over 29 million records since the system became fully operational
in March 2009. This section analyses a subsection of these data (from 14 March 2009
to 19 September 2009) for illustration only, to demonstrate the utility of the system
in generating biologically useful data. In doing so it is important to note that we do
not attempt to infer biological significance from any of our observations, instead our
analyses are purely descriptive. The full dataset, including microclimatic correlates
gathered from sensor nodes, will be subject to zoological analysis elsewhere.

7.1. Data Gathered
Badgers were trapped up to four times a year for a concomitant research project [Mac-
donald and Newman 2002]. This provided an opportunity to put RFID tags on the
animals. There have been 9 trapping sessions since June 2008, during which 74 ani-
mals were tagged. Animals were able to remove 12 tags (collars), which were found on
the ground. More tags were similarly lost, but not found. Whenever possible, these an-
imals were retagged. Over the year, a lot of attention was given to keeping the system
running uninterrupted, i.e., always replacing the batteries and downloading the data
before the nodes stopped functioning. We set up a database where all the records were
uploaded.

7.2. A Window into Badger Movement Patterns
One of the advantages of our automatic monitoring system has been that we were
able to capture data with high temporal resolution from our fixed detector sites. This
allowed us to produce records of daily badger activity for future zoological analyses.

A density plot of badger ‘sightings’ is shown in Fig. 14(a). The horizontal axis shows
the time in 24-hour format. The vertical axis shows the day of year. The intensity of
each dot represents the average amount of time that badgers were observed at the
detection nodes.

In the evening, badgers exited their setts (indicated by the strong dark line at dusk
in Fig. 14(b)). They then visited the latrine nodes probably foraging for food in between.
At the end of the night, they returned to their setts, producing a high density of activity
on the right side of Fig. 14(b).

Regarding seasonal trends, and as expected, it can be seen that the length of time
that badgers were out of their setts decreased, reaching a minimum around day 170
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Fig. 14. Badger activity captured at detection nodes. Horizontal axis is time of day and vertical axis is
day of year. (a) Badgers detected at any detection node. (b) Badgers detected at nodes placed near setts. (c)
Badgers detected at nodes placed near latrines.
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(corresponding to June 18). From this point on, the average trip time starts to increase
again, with decreasing day-length.

7.3. Correlation of badger activity with night-length
As badgers are nocturnal mammals, it was expected that there would be a seasonal
variation in their behavior correlating with the number of hours of darkness per night.
A correlation analysis was conducted on 372 nights of data in order to determine
whether indeed there was a significant relationship. We defined a badger trip-length
as the difference in time between when it first emerged (and was observed at any de-
tection node) and when it was last seen within the system for each night. The median
trip-length was then used as a metric, as it is robust to outliers. Fig. 15 shows the vari-
ation in median trip-length and night-length with the day of the year. The four gaps
in data reflect periods when trapping was undertaken. As the badgers are disturbed,
these data have been removed from the analysis. It can be seen that our data suggest
a cyclical trend in badger activity, with a minimum occurring in the middle of the year.
As expected, badger activity appears to have peaked in October and mid-February
with decreases towards the beginning and end of the year. In order to demonstrate
this relationship more clearly, a scatter diagram between trip-length and night-length
was plotted and is shown in Fig. 16. There is a highly significant correlation between
the two variables (ρ(372) = 0.301, p < 0.05). Interestingly, when the data from Jan-
uary and December are removed from the data series, the correlation becomes even
stronger (ρ(318) = 0.605, p < 0.05). This hints that there is possibly another effect
occurring during the winter months; this is currently under investigation.
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H
o
u
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Median Trip lengths
Night length

Fig. 15. Variation in badger trip-length with day of year. The error bars show the interquartile range of
trip-lengths. Also shown is the number of hours of darkness.

7.4. Badger Co-location
We extracted pairwise co-locations between badgers from the detection node records:
our assumption was that two animals were within 0-60m of each other if they were
recorded contemporaneously by the same detection node. Because we do not have any
indication of the type, if any, of social interaction between the animals, we must be cau-
tious in any assumptions we infer. Nonetheless, this methodology allows us to provide
a high-level description of co-location patterns.
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Fig. 16. Scatter diagram showing the relationship between trip-length and night-length.

(a) (b) (c)

Fig. 17. Badger social networks: The shade of a node (node = badger) represents the social community it
belongs to while its shape denotes the sett it lives in. Different networks are created by using (a) all co-
locations between animals at setts and latrines, (b) only co-locations at setts, and (c) only co-locations at
latrines.

Since setts and latrines have different social functions for badgers, co-locations are
divided into three datasets according to where they take place: (a) setts and latrines
together; (b) setts only; (c) latrines only. To investigate the broad social structure we
create a weighted social graph for each co-locations dataset where nodes represent
badgers and the weight of each link is proportional to the amount of time for which the
two animals were co-located.

Fig. 17 illustrates the resulting graphs for each dataset, where communities have
been detected using the algorithm described in [Blondel et al. 2008]. The network de-
scribed by all co-locations in Fig. 17(a) depicts 5 discrete algorithm defined ‘commu-
nities’, but each interlinked with one-another. This is not as evident for the network
defined from sett co-locations (Fig. 17(b)) where the 5 similar communities are more
discrete with fewer links between them, giving greater separation. Conversely, for the
network defined from latrine co-locations (Fig. 17(c)), only two communities were in
evidence.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



WILDSENSING: Design and Deployment of a Sustainable Sensor Network for Wildlife Monitoring39:27

8. RELATED WORK
Wildlife and Environmental Monitoring A number of other wildlife monitoring
deployments also exist like Zebranet [Zhang et al. 2004], DuckIsland [Szewczyk et al.
2004] and TurtleNet[Gorlick 2007]. Sikka et al. [Sikka et al. 2006] discuss the de-
ployment of a hybrid network consisting of mobile sensors mounted on farm animals
and fixed sensors measuring soil moisture and weight of food and water consumed by
animals. Selavo et al. [Selavo et al. 2007] describe the deployment of wireless sensor
network for measuring complex light environment in thickets and also use delay tol-
erant networking, fault-tolerant distributed storage and custom hardware. A number
of modified Mica2 motes were deployed by Gilman et al. [Tolle et al. 2005] to mon-
itor the microclimatic conditions and solar radiation in a redwood tree for 44 days.
[Naumowicz et al. 2008] describe the design and deployment of a pilot sensor system
for monitoring seabirds using passive RFID technology. The sensor nodes were based
on a modular MSB platform with a custom extension board. The data were collected
by a base station PC located in the centre of a network deployed in a star topology.
[Rutishauser et al. ] describe the design and field testing of a sensor system to moni-
tor physiology and behavior of wildlife animals. The system consisted of animal-borne
sensor nodes equipped with 3-axis accelerometer, GPS and a short range radio. The
network used delay tolerant routing and fixed relaying nodes for data collection. Barro
Colarado Island ARTs [Kays and Wikelski 2007] is a long standing system for large
scale animal tracking wearing radio-transmitters. The system consists of a wireless
network of seven tall Automated Radio Telemetry System towers (ARTs) deployed on
hilltop towers above the forest canopy. Their system is, however, not as low cost and
easy to deploy as Wildsensing is. Finally, Encounternet is an ongoing project for track-
ing small animals [Burt et al. 2010] and uses 38 base stations deployed in a 2-3km
area to monitor tagged birds.

With respect to these we have developed a highly integrated heterogeneous deploy-
ment which enabled us to gather very large quantities of data. Moreover, the system
was able to customize the distribution of the data depending on the urgency of the
delivery required. The combination of low cost tags and energy efficient ground sensor
network enabled an autonomous and non-intrusive monitoring of wildlife animals at
much larger scale than previously possible.
Duty cycling: [Mainland et al. 2005] propose a machine learning based approach for
adaptive resource allocation for sensor networks. Here, the sensors were modeled as
self-interested agents that attempted to maximize their profit and a simulation based
evaluation was presented.
Data collection: The MRME algorithm [Ekici et al. 2006] scheduled mobile sinks
to visit static nodes before data delays expired. When data were close to expiration,
multi-hop routing was used to guarantee timely data delivery. Unlike our approach,
the MRME algorithm assumed both control over sink mobility and homogeneous data
latency requirements for all data. The SensorScope project [Barrenetxea et al. 2008]
described the deployment of a low duty-cycle sensor network in which a central base
station gathered data. SensorScope used a non-standardized networking stack that
was designed for remote areas that cannot be frequently accessed. Hui et al. [Hui and
Culler 2008] demonstrated the usability of the IPv6 standard for sensor networks as
a flexible networking layer whilst maintaining a very low duty cycle - our choice of
network stack was strongly influenced by their findings.

In Lance [Werner-Allen et al. 2008], each data unit had an associated value, as well
as a cost for multi-hop data delivery to a single basestation. Values and costs were
taken into account to determine download scores, i.e. the priorities of data units for
data delivery. Unlike Lance [Werner-Allen et al. 2008], we not only use priorities to
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rank data units, but also to rank storage nodes. In addition, we sent data of different
priorities to different storage nodes immediately, instead of delaying their delivery to a
single node (the basestation). Jiang et al. [Jiang et al. 2007], propose EMA, an energy
management architecture that enables prioritized enforcement of policy directives. If,
for example, there were sufficient energy resources in the network, a sample-and-send
directive was used, whereas the system gracefully degrades to sample-and-store when
energy resources become scarce. Their framework could be combined with ours to offer
a greater variety of policies. For example, a directive could suggest that when energy
resources are scarce, a class of data must be demoted to a lower priority. As a result,
these data could be delivered to a closer but less frequently visited storage node, and
will incur a lower energy cost. Unlike existing systems, in which prioritization re-
sults in a binary decision (store vs. download), our system uses data priorities to select
among a wide variety of data delivery options.
Evolution: With any design, it is very difficult to ‘get it right’ the first time, despite a
lot of planning and effort. We have shown how our systems developed over time, and
how we have managed to reduce the maintenance cost to a tenth of the initial costs,
while still collecting substantial quantities of data.

Similarly, the authors of the ZebraNet project [Zhang et al. 2004] describe the differ-
ent stages of hardware upgrade they went through in their deployment. They deployed
3 different sensors, each improving on the capability of their previous ones. The im-
provements included solar panels, changing the radio to a more energy efficient one
and increasing the on-board memory. The Glacsweb Project [Martinez et al. 2009] was
developed to monitoring glacial dynamics through the use of WSN. They have had
yearly deployments from 2001 to 2008 in different regions and countries (including
Norway and Iceland). Their deployments relied on a number of ‘probes’ embedded in
the ice, and a base station, relaying data back from the sensors to the scientists. The
base station turned out to be their single point of failure, they redesigned it from de-
ployment to deployment to improve on reliability and robustness. [Barrenetxea et al.
2008] designed a wireless sensor system for environmental monitoring and deployed it
in a number of environments over the period of two years. The first deployments tested
the hardware, with subsequent deployments focusing on networking layer and in-situ
maintenance.

Although we detail similar evolutions to the aforementioned projects, our overall
aims were different. Here we not only focus on the long-term maintenance of our sys-
tem and general improvement in its reliability, but we also reconcile the inherent rela-
tionships between the necessity for specific software and hardware evolutions and the
resulting cost savings and benefits from such actions.

9. LESSONS LEARNED
Although there is currently a lot of work on building real sensor systems, very few
attempts have been made to deploy them in the field and then maintain and develop
them. In this paper, we provide details of the first distributed active RFID-WSN hy-
brid system for wildlife tracking. We undertook an iterative process of software and
hardware designs and developments, while still maintaining backwards compatibility.
Maintenance Costs. We gained invaluable experience from our deployment. Sys-
tem maintenance is a key to a long-term deployment, and the costs associated with
it should be factored in from the initial design stages. Though our first stage was very
successful in collecting large quantities of high quality data, maintaining it turned
out to be more expensive than initially expected. For a wildlife monitoring application,
continuous operation is essential therefore maintenance is unavoidable.
Software and Hardware Interaction. With software enhancements, we were able
to increase the lifetime of the system, and thus decreased the necessary maintenance,
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Fig. 18. A sheep wearing an original RFID tag.

however this resulted in the hardware becoming our limiting factor, hence our second
lesson: to achieve maximum power efficiency, application-specific hardware is often
necessary. With our second stage, we were able to decrease the maintenance costs to
a fraction of what they were before, while collecting the same amount of data. Op-
timizations that work on some hardware, however, might not perform as well on a
different system, i.e. software optimizations need to take into account the capabili-
ties and the characteristics of the hardware. The introduction of the new hardware re-
sulted in fewer visits to the woods by zoologists, which affected the in-network-storage.
Moreover, once the new hardware was in place the detection node duty cycling could
be improved with finer grain parameters which would not have been possible on the
earlier version of the hardware.
Rapid Initial Prototyping and Deployment. One of our most pertinent results was
the realization that no initial deployment would satisfy all our design requirements.
This suggests that the best approach for long term monitoring systems is to design
a prototype that can be rapidly deployed using commercial off-the-shelf technology.
This is especially important in applications like ours, where no prior data had been
collected on a similar scale in the same environment. Although our initial prototype
suffered from a lot of practical problems, it was easy to get the system working in the
field. Before deploying the system in its final location, the woods, we went through a se-
ries of test-phases. Once the devices proved to be reliable within the lab, they were put
on sheep for further testing. Sheep are much more accessible and easier to handle than
badgers, while providing an environment similar to the final scenario. The original (i.e.
before being prepared for badgers) tags were put on collars, worn by sheep to see how
their bodies influence the detection range, as well as how environmental factors affect
the tags and detection nodes. One of the sheep is shown on Fig. 18, wearing a tag.
Further to the sheep testing, we tested the final tags on model badgers, as explained
in Section 3.3. Rapid prototyping allowed us to collect suitable data to understand how
we could improve the system as a whole. These observations then guided the evolution
of the system, allowing us to dramatically reduce the cost of system maintenance by
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Fig. 19. Simple graphical user interface for the system.

increasing the runtime of devices. Note, no amount of simulation or laboratory testing
is equivalent to problem solving in real deployments. Failures are common, and some
failures, such as animals interfering with equipment are unquantifiable until the sys-
tem is actually deployed. Thus we suggest that researchers deploy an initial version
(even if it is a datalogger) as soon as possible, so that knowledge can be gained about
practical problems.
Gradual versus step-change improvements. In the evolution of a system, a choice
has to be made whether to improve it gradually or to switch over to a new system en-
tirely. The choices made here were influenced by the needs of the application. In our
case, we had to slowly incorporate new improvements, testing them over a period of
months in the field, so as to gather a continuous record of data. This was because any
gaps in the data could significantly reduce their biological significance. Other applica-
tions can tolerate interruptions that allow for all effort to be concentrated on designing
and deploying a new and improved version. This leads naturally to step-changes in
capability and functionality, with all components of the system being upgraded simul-
taneously. This is an important lesson, as it dictates the type of evolutionary strategy
that can be adopted.
Continuous interaction with domain scientists. Our system was built as an ex-
perimental tool, as opposed to a proof of concept. The design of smart protocols and
algorithms to reduce message overhead or energy consumption is only useful if it com-
plies with the requirements of the eventual users of the system. Such interactions
are not only useful to make sure the system works as expected, but also to provide
interesting ideas for optimizations. One such key observation made when discussing
system requirements with the domain scientists was that not all data had real-time
requirements. In response, we formulated a priority based routing approach that re-
duced traffic load, particularly around network hotspots, by forming multiple routing
trees. However, another application specific factor we took advantage of allowed data
to be collected opportunistically by zoologists working in the woods. To reduce these
data volumes, a simple lossless compression algorithm was devised. Further to the im-
provements in the routing design, much simpler enhancements improved the usability
of our system. In our first version, we controlled the devices using a simple command-
line interface. For computer scientists, this is sufficient, however, typing commands in
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the forest turned out to be very uncomfortable and troublesome. Our users had to type
commands under harsh weather conditions - strong wind, rain and cold. This problem
was ameliorated by creating a simple java-based GUI (shown in Fig. 19). This produced
a major improvement, and halved the time it took to deal with each device. By under-
standing the needs of the users, we were able to tailor our system design, extending
the lifetime of devices in the network, whilst still satisfying application requirements.
Remote reprogramming and re-tasking Initially, high level system requirements
were defined from the beginning, however detailed specifications were missing due to
lack of enough information about the problem. It is not uncommon to have limited in-
formation before deployment - many important system parameters become apparent
once data starts flowing in. In our wildlife monitoring scenario, many of the issues
(such as tag-beacon period, radio frequency used, quantities of data stored, etc) be-
came clear only after the first few weeks of the deployment. Our strategy was to try
to prepare for the unknown, and collect everything as frequently as possible. This,
however, makes it very difficult to optimize many parameters (such as duty cycling or
memory usage), and may introduce redundancy. The point is, we had no way of chang-
ing any system parameter on the fly, remotely. What is more, we had no way of fixing
bugs or reinstalling applications on the sensors without actually visiting the devices
in the deployment area, and re-flashing them manually - costing money and time. Al-
though parameter tuning and debugging should ideally happen in the testing phase, it
is inevitable that some things need adjustments or fixing. In a more general case, the
feature of remote reprogramming or re-tasking is essential to fully utilize a deployed
system. Generally, sensor networks (including ours) are mainly application specific -
all the functionalities are hard-coded before deployment. This is acceptable during the
first iteration of a system, since the aim is to get the system working reliably. However,
once sensors (and the software running on them) are mature enough so that develop-
ers do not need to spend most of their time fixing low-level, operating system or driver
related issues, the first priority is not making it work, but rather how to make the
most out of the system we have. We iteratively achieved a huge improvement on our
initial system, however, there is always room for smaller improvements. Furthermore,
considering the second version of our detection nodes had the potential to out-live the
tags attached to the animals highlights the chance that system requirements might
completely change with time - the sensors could be used for something completely
different. This emphasizes the importance of a remote re-tasking or reprogramming
scheme that can re-use an already deployed system. Remote reprogramming and re-
tasking is a hot topic for WSN research[Wang et al. 2006] due to the challenges and
requirements described above. In the scope of this work, we did not focus on this issue,
however this is one of the next problems to address in our future iterations.

10. CONCLUSIONS
We learned a number of interesting lessons. First, network maintenance should not be
an afterthought, but a key consideration in the original design of the system. If not,
then maintaining a sensor network can become far more expensive than building it.
Second, before delving into algorithmic improvements and strenuous testing of new
software, it is important to carefully consider hardware limitations. Sometimes it is
more cost-efficient to replace the hardware platform than to design and test new soft-
ware for an existing platform. Third, the benefits of software optimization (e.g. improv-
ing sampling, storage and data collection algorithms) largely depends on the hardware.
An algorithmic improvement that yields significant benefits on one platform may be
less efficient or even not applicable to another. Fourth, engineering sustainable sen-
sor networks is an iterative process that alternates between hardware and software
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changes. Last, these changes must be performed in a controlled manner so that they
do not disrupt the data collection process.

We believe the results and conclusions in this paper will provide an important in-
sight into the workings of a long-lived outdoor wireless sensor network deployment.
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