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Devising and evaluating wearable technology for social dynamics
monitoring

Alessandro Montanari

Summary

The importance of studying social interactions has been proven useful in several fields.
In the workplace, studies have found that allowing mixing among di↵erent groups could
improve team coordination and productivity. Architectural studies have analysed how
physical spaces can potentially increase unplanned interactions. Other areas such as epi-
demiology have also benefited from tracking face-to-face contacts to study the spread of
disease. Although technology has progressed significantly, the automated and accurate
measurement of human interactions with mobile devices is still lagging. The main short-
comings have to do with accuracy of the captured data and with the communication
modalities considered. Additionally, non-verbal behaviours during social interactions (e.g.
body posture, orientation and interaction distance) have been often neglected, with a few
exceptions, even if traditional sociology has highlighted their importance. In this disserta-
tion we address these challenges by developing two wearable research platforms to monitor
di↵erent dimensions of social interactions.

First, we study the extent to which Bluetooth Low Energy could detect proximity in
indoor environments. We analyse all the relevant protocol parameters and measure their
impact on power consumption, on custom as well as on commercial devices. We assess its
accuracy with a 4-week long deployment illustrating its sustainability for social dynamics
studies. With the contacts and mobility data collected during the deployment we study the
relationship between social contacts and space design, focusing on a modern architectural
concept, Activity-Based Working (ABW). We uncover several patterns and we show how
they could be the result of the correct adoption of ABW principles. However, we also
discover that the employees might not have fully embraced the ABW concepts entirely,
leading to mismatches between principles and actual space usage.

Given the importance of studying non-verbal behaviour during social contact we then
devise a novel wearable device that, by exploiting near-infrared signals, is able to capture
accurate information about distance and angle of interaction between people. We show
how we design the device to be robust to ambient light changes and short occlusions by
leveraging inertial measurement units. With extensive testing we evaluate its accuracy
and robustness. We then explore its potential to study creative processes by deploying it
to capture non-verbal cues during a creative task. We show how data about the relative
orientation between people and their interpersonal distance could be used to predict the
role they have during the interaction and the status of the task.

The platforms developed and the insights drawn in this dissertation provide evidence to
support the use of wearable technologies to monitor social interactions at an unprecedented
level.
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Chapter 1

Introduction

Research has shown that in-person social interactions play a significant role in di↵erent
contexts. In the workplace, serendipitous interactions between members of di↵erent groups
have been demonstrated to be a key factor for team coordination, cohesiveness and pro-
ductivity [98, 36, 109]. Pentland et al. have explored this idea by looking at the level
of Engagement and Exploration employees have in their interactions [161]. Engagement
reflects the energy devoted by team members to their own team while Exploration repre-
sents how teams interact with one another. Productive and creative teams are the ones
that are able to strike a balance between the two: they periodically seek new ideas and
perspectives outside their team and then they bring them back. Architects have studied
how to increase this sort of unplanned interaction by changing the layout and design of
physical spaces. Informal and high-tra�c spaces such as co↵ee areas and photocopiers have
been proven to encourage inter-group serendipitous meetings and their location inside a
building is crucial [33, 195, 65, 111, 209]. However, the design of e�cient workplaces is
not the only application of social interaction monitoring: other areas of study, such as
epidemiology, have also benefited from tracking face to face interactions. Several studies
and deployments have been conducted in order to develop an understanding of the spread
of disease [219, 220].

Furthermore, social interactions could be studied at di↵erent levels. When people interact,
the verbal part of the communication (speaking to each other), is not the only modality
used. Other non-verbal channels, such as body language, facial expressions or character-
istics of the speech, are combined to influence the conversation and its participants. For
example, the outcome of a job interview could improve if both verbal and non-verbal skills
are trained [137]. Patient satisfaction is a↵ected by the physician’s expressiveness which
includes non-verbal behaviours such as more leaning forward, more nodding, more gestures
and more gazing [134]. This means that increasing the awareness that a person has about
her own non-verbal behaviour could be beneficial for her because she could improve her
outcome in certain situations which involve interpersonal interactions (e.g., during job in-
terviews and relations with colleagues and managers). There are also other disciplines that
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1.1. LIMITATIONS OF TRADITIONAL METHODS FOR SOCIAL INTERACTION

MONITORING

demand accurate monitoring of non-verbal behaviours during social contacts. For example,
the related fields of A↵ective Computing [166] and Social Signal Processing [204], which
aim to make machines capable of recognising and managing human social signals (e.g. af-
fect, empathy, turn taking, agreement, etc.), would greatly benefit from advancements in
the tools used to detect and monitor non-verbal cues. In this context, capturing accurate
and meaningful data about social interactions represents the first fundamental step in the
detection and analysis of social signals and, as noted by Vinciarelli et al. [204], one of the
main challenges regards passiveness. In other words, the ability to monitor individuals
unobtrusively and without a↵ecting their behaviour.

1.1 Limitations of traditional methods for social in-
teraction monitoring

Despite the importance of detecting and studying social interactions, sociologists, archi-
tects and health researchers have su↵ered from a crucial limitation: the lack of reliable and
scalable means of tracking social contacts. Scientists using ethnographic research tech-
niques, such as participant observations and surveys, often encounter several limitations.

Usually during observations in indoor settings a researcher considers an area of the build-
ing for a certain period of time annotating all the interactions that take place during that
period. In a similar approach, called shadowing, the annotations are taken while follow-
ing a particular participant, who is the focus of the observation, for a certain period of
time [51]. Typical guidelines require observing a certain area or person repeatedly and at
di↵erent times to ensure data validity and accuracy [76]. Participant observations o↵er
the advantage of being able to collect additional information, along with the occurrence
of the social contacts. For example, it is possible to record whether the participants are
sitting or standing, if the conversation is work related or not, the exact location of the
contact, and other subtle behaviours. However, it also presents several drawbacks. The
main issue lies in the fact that the observations are only snapshots and are temporally
limited; this raises concerns regarding the data not being representative and therefore not
generalisable [25]. A significant number of additional observations would be required to
guarantee validity but given that they are extremely time consuming, repetitions are not
always feasible. Moreover, observers intervene in the environment and participants might
change their behaviour [211].

Surveys scale better, especially if administered online, and reduce interviewer bias and
improve comparability by using standardised questions [25]. However, they are subject to
other biases as participants might not remember their behaviour correctly or because they
prefer to provide socially desirable responses [30, 177]. Participants could also interpret
the questions di↵erently, diminishing data validity. Further, it might be di�cult to obtain
a reasonably high number of responses [25].
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In Section 2.1 we provide a more extensive review of ethnographic methods to study social
interactions and o↵er a discussion about their benefits and drawbacks.

1.2 Challenges in detecting social interactions with
mobile devices

Several mobile technologies have been proposed to overcome these issues but the automated
and accurate measurement of human interactions is still lagging. The main shortcomings
relate to the accuracy and resolution of the captured data. For example, many systems
use Bluetooth transceivers included in modern smartphones to detect proximity: these
are usually power hungry and do not o↵er fine spatial and temporal granularity as they
sample every few minutes (typically 5 minutes or more) [4, 37, 129, 220, 40]. Similarly, from
the spatial point of view, current systems o↵er a resolution in the order of a few meters,
which although su�cient in urban environments, presents important limitations in indoor
settings. Other systems can provide better accuracy, but rely on dedicated hardware and
require the instrumentation of the building which hinders their widespread adoption [32,
47, 87]. In particular, non-verbal dimensions of social contacts have been studied in very
specific contexts reproduced in contrived settings (e.g. job interviews or public speeches)
and with the use of cameras which limits the flexibility of the system [23, 22, 52, 39, 7].
While other works have addressed the analysis of speech-related non-verbal signals in real
environments [49, 154, 153], very little knowledge is available for other aspects like body
language, distance and angle of interaction in realistic settings.

The scalability and reliability of these monitoring systems are also critical aspects. The
ability to collect longitudinal fine grained data can provide important insights on how
human relations evolve over time and on how organisational structures change. E↵ort
needs to be focused on making the technology easy to deploy and accurate in order to
guarantee a large adoption and collect rich data that could provide a better understanding
of social interaction dynamics. Many of the current systems require instrumentation of
the building which can raise logistic and privacy issues. Some of them also need time
consuming calibration procedures in order to work accurately. The recent development
of wearable devices [170], especially wrist worn fitness trackers and smart watches, o↵ers
interesting opportunities for sensing social interactions which could overcome some of the
issues. These devices are becoming more and more ubiquitous, powerful and enriched with
many sensors and have the advantage of always being co-located with the user. However,
their scarce resources and need to serve the user for other tasks apart from monitoring her
interactions make devising e�cient solutions that capture fine grained data about social
interactions a major challenge.
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1.3 Thesis and substantiation

We have seen how di↵erent fields could benefit from the automatic collection of social
interaction data and what challenges and limitations are encountered when traditional
ethnographic methods or technology are employed for this task. Our thesis is as follows:
to support diverse applications relying on social interaction detection we need to consider
and devise wearable technologies capable of accurately monitoring di↵erent dimensions of
social contact and evaluate their benefits for the understanding of human behaviour. We
corroborate this statement by firstly evaluating the potential of existing wearables for
behavioural sensing, both as data collection platforms and the utility of the data they
gather. Subsequently, by designing a novel data collection platform we demonstrate the
benefits of monitoring and analysing non-verbal cues of social interactions. In particular,
this dissertation addresses the following three research questions:

• Research Question 1. How can we take advantage of radio communication inter-
faces embedded in many commercial wearable devices (i.e., Bluetooth Low Energy)
for the e�cient detection of social contacts in very dynamic environments?

• Research Question 2. How can we leverage data gathered automatically with
wearable devices to analyse team dynamics and the strength of employees’ interper-
sonal ties in relation to space usage and organisational hierarchy?

• Research Question 3. How can we devise a wearable sensing technology suit-
able for the fine granularity detection and analysis of non-verbal cues during social
interactions?

To address these questions we developed two wearable research platforms to gather data
and study social contacts. First, we analysed the potential of Bluetooth Low Energy
(BLE) as a relatively simple and widespread technology to monitor people’s proximity
in indoor environments. Second, we deployed the BLE platform in a very dynamic o�ce
space adopting Activity-Based Working (ABW) principles to study how sensing techniques
can be used to detect behavioural traits and relate them to space design principles and
organisational hierarchy. Third, we devised a novel wearable device able to accurately and
robustly measure some non-verbal aspects of social contacts (i.e., distance and relative
orientation) and we analysed its potential to support the study of creative processes in
small teams.

1.4 Contributions and chapter outline

This dissertation analyses how mobile sensing techniques can be applied to the study of
in-person social interactions. We first studied the potential of emerging wearable devices
with the objective of lowering the data collection burden on users. We discovered how
this technology can shed light on the relationship between social contact and the design of
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o�ce spaces. We then moved beyond detection and analysis of occurrence of social contact
by considering non-verbal dimensions. We proposed a novel research platform that can
be reliably adopted to support organizational science studies by enabling the collection of
non-verbal behaviour during intense problem-focused discussions. The state-of-the-art on
techniques for social interaction monitoring is summarised in Chapter 2 while the rest of
the dissertation answers the three main research questions outlined in the previous section
and makes the following three major contributions:

Contribution 1: Exploring wearable sensing for o�ce analytics

In Chapter 3 we report on the first study of Bluetooth Low Energy radios on a wearable
platform for proximity monitoring and provide insights for social interaction sensing ap-
plications. This technology has been chosen because it is available in all current mobile
devices and it has the potential to simplify large deployments. Moreover, as a short range
low-power radio, it o↵ers several transmit power levels which makes it ideal for fine-grained
interaction sensing by periodically transmitting and listening for beacons without drain-
ing the battery too quickly. We analyse in detail the most common wearable platforms
available: Android Wear and Tizen Wearable. With detailed experiments we study which
BLE parameters can be controlled on these devices and their e↵ect on power consump-
tion. This study leads to the conclusion that despite the fact that the hardware used in
modern wearables o↵ers the key functionality for interaction detection (i.e. the ability to
detect nearby devices and be detected by alternating between transmitting and scanning),
existing firmware and software stacks allow only limited control over the BLE interface.

In order to experiment with Bluetooth Low Energy more freely we build a prototype
wearable platform which can sense proximity between devices and detect the coarse location
by using static beacons in the environment. By deploying this platform we are able to
evaluate BLE in a working environment. We gather data about 25 employees of a very
dynamic company for a period of four weeks. Through data post-processing we investigate
the achievable performances if our system was to run on o↵-the-shelf wearable devices
and understand their strengths and weaknesses. Even if currently commercial wearable
devices do not allow the developer to control every detail of the BLE interface (e.g. it
is not possible to set specific values for certain parameters) they can be employed to
detect proximity with high accuracy (F1 score between 0.81 and 0.97) with a 10-second
granularity. We conclude the chapter by o↵ering guidance to Operating System (OS)
developers and manufacturers on the impact of the limitations of their software stacks and
informing application developers on the flexibility of o↵-the-shelf wearables.
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Contribution 2: Detecting emerging Activity-Based Working traits through
wearable technology

In Chapter 4 we focus on the analysis of the data collected with the BLE research platform
described in the previous section. A recent trend in corporate real-estate is Activity-Based
Working (ABW). The ABW concept removes designated desks but o↵ers di↵erent work
settings designed to support typical work activities1. In this context there is still a need
for objective data to understand the implications of these design decisions. We aim to
contribute by using automated data collection to study how ABW’s principles impact
o�ce usage and dynamics.

Toward this aim we analyse team dynamics in relation to space usage and organisational
hierarchy using data collected by wearable devices in a company adopting ABW princi-
ples. In particular we focus on two core aspects of ABW: (1) absence of allocated desks
which allows employees to flexibly use the o�ce space and (2) freedom of interaction and
collaboration across team boundaries by designing an o�ce which stimulates serendipitous
social contacts among people in di↵erent groups.

Our findings show that the o�ce fosters interactions across team boundaries and among
the lower levels of the hierarchy, suggesting strong lateral communication. Employees also
tend to have low space exploration on a daily basis which is instead more prevalent during
an average week and strong social clusters seem to be resisting the ABW principles of space
dynamics which should instead motivate people to move inside the o�ce to select the best
workstation for the current task. With the availability of two additional data sets about
social encounters in traditional o�ces we highlight traits emerging from the application of
ABW’s principles. In particular, we observe how the absence of designated desks might be
responsible for more rapid dynamics inside the o�ce.

Contribution 3: Automatic measurements of interaction proxemics

In Chapter 5 we introduce our e↵orts to devise an automatic system capable of recording
non-verbal cues during social interactions. Proxemics of social interactions (e.g., body
distance, relative orientation) influences many aspects of our everyday life: from patients’
reactions during interaction with physicians to success in job interviews, to e↵ective team-
work. Traditionally, interaction proxemics has been studied via questionnaires and par-
ticipant observations, imposing a high burden on users, low scalability and precision, and
potential biases. Technology employed for this task has mostly relied on cameras deployed
in the environment which could raise potential privacy issues and complicates data collec-
tion due to the instrumentation e↵ort required.

Chapter 5 presents a novel wearable technology for measuring interaction proxemics with
fine granularity as part of non-verbal behaviour cues. Our approach employs near-infrared

1Section 2.3.1 provides an overview of ABW’s core principles.
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light to monitor both the distance and relative body orientation of interacting users. We
leverage the characteristics of near-infrared light (i.e., line of sight propagation) to accu-
rately and reliably identify interactions; a pair of collocated photodiodes aid the inference
of relative interaction angle and distance. We achieve robustness against temporary block-
age of the light channel (e.g., by the user’s hand or clothes) by designing sensor fusion
algorithms that exploit inertial sensors to obviate the absence of light tracking results. We
fabricate wearable tags and conduct real-world experiments. Results show the accuracy of
our system in tracking body distances and relative angles. The framework achieves less
than 6� error 95% of the time for measuring relative body orientation and 2.3-cm – 4.9-cm
mean error in estimating interaction distance.

In Chapter 6 we provide an initial exploration of the possibilities o↵ered by our novel
device in the understanding of complex and often abstract processes, comprising multiple,
interrelated sets of human actions such as creativity in an organizational environment.
To this aim we deployed our tags to track users’ non-verbal behaviours when conducting
collaborative group tasks. In particular we explored the possibility of predicting, using only
proxemics information (i.e., angle and distance between pairs of participants), two aspects
of team dynamics: (1) task role, the verbal role assumed by each participant, (2) task
timeline, the di↵erent procedural phases of the creative task. Results with 64 participants
show that distance and angle data can help assess individual’s task role with 80% accuracy,
and identify the task timeline with 92% accuracy.

The last chapter of this dissertation (Chapter 7) reflects on the results and insights provided
and outlines potential developments for future research.
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Chapter 2

Related Work

In the previous chapter we highlighted the importance of monitoring and studying social
interactions in di↵erent fields. In this chapter we delve deeper into the techniques used
for such task. We provide a review of ethnographic research approaches (Section 2.1)
as well as of automatic techniques developed recently (Section 2.2). We distinguish the
automatic approaches in the ones capable of detecting the occurrence of the contacts and
their location indoors and the ones capable of recording more subtle non-verbal behaviours.
We conclude the chapter (Section 2.3) with a discussion of two application areas that have
been considered in this thesis: the study of how social contact relates to the design of o�ce
spaces and the analysis of non-verbal behaviour in small groups.

2.1 Ethnographic methods for measuring social inter-
actions

In order to test hypothesis and refine theories, social scientists use a variety of methods to
measure human behaviour and in particular social interactions. These methods typically
include surveys, participant observations and audio/video recordings,. These approaches
allow to record di↵erent modalities (visual, verbal, non-verbal, etc.) and have di↵erent re-
quirements in terms of time and cost. Additionally they provide information at potentially
di↵erent levels of granularity and quality. Once the data has been collected it needs to be
annotated in order to transform the collected information into systematic data that can be
used for the subsequent steps of analysis and interpretation. This is commonly a lengthy
operation that could take several weeks or months and it is usually performed by multiple
coders. We will now focus on the measurement techniques and briefly discuss each of them.

With surveys or self reports researchers gather information about social dynamics by asking
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participants to complete a predefined set of questions which could be more or less structured
and quantified [138]. Questions asked depend on the behaviour that the researchers are
interested in studying and can include information about frequency of di↵erent kind of
interactions (e.g., face-to-face planned or unplanned, work or not work related), strength
of relationship with others or their influence on work activities [177], location where most of
the interactions happen, relative orientation and preferred interpersonal distance [104], and
more. This strategy is commonly retrospective in the sense that surveys are administered
some time after the occurrence of social contacts. The period that is covered by the survey
could vary across studies but usually it does not consist of a single contact but rather a
considerable period in the past (e.g., one week or one month). This highlights one of the
potential drawbacks of self reports: recall bias. Participants might recall better most recent
events and therefore weigh these more compared to older ones, which might be forgotten
completely [138]. This is particularly problematic in environments where contacts are short
and frequent. People might be engaged in many interactions during the day and hence fail
at correctly remembering every single event or important information about them (e.g.,
location inside the building, topic, etc.). In some situations, participants might provide
answers that they perceive as socially desirable for example by emphasising the perceived
favourable behaviour or by diminishing the unwanted behaviour, negatively a↵ecting the
analysis and interpretation of the results [30, 177]. Additionally, participants might not
interpret the questions as the researchers expected, causing again potential problems in
the analysis of the data [25].

Another strategy used in social sciences is participant observations which consists in having
observers (typically more than one) watch participants involved in social interactions and
record useful information to study their behaviour [138]. Similarly, shadowing focuses on
a particular participant who is followed for a period of time and is the only subject of
the observation [51]. Information recorded by this approach include the exact start/end
times of social contacts, the people involved, the location inside the building, the nature
of the contact (social or work related), the participant’s individual contribution to the
conversation and much more. The presence of observers might be known to the participants
or they might be hidden from them. The recorded information could include many (or
potentially all) of the participants’ actions and behaviours or it might focus only on specific
events which might never happen during the observation period. Through observations
researchers are able to collect fine grained information that are di�cult, if not impossible,
to capture with retrospective surveys. For example, these include subtle behaviours like
changes in the tone of voice or slight body movements. This however requires extensive
training of the observers in order to equip them with the required knowledge to produce
high quality coded information as the social contacts are happening. The requirement of
having multiple observers is another measure to ensure valuable and correct information
is recorded. Nevertheless, multiple observers could potentially have a negative impact on
the participants which might lead to a change in their behaviour because they are aware of
being observed [211]. Hidden observers on the other hand, might raise ethical issues. The
rich information provided by observations is however temporally limited and restricted to
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few sessions [25]. This is a severe drawback of this strategy because their high cost usually
prevents long and repeated sessions.

Video and audio recording is a method used to study human behaviour that gained pop-
ularity with the lowering cost of technology, despite being used already in the 70s [138].
Video cameras allow the comprehensive recording of what happens in their field of view
and the stored data could then be coded and analysed by researchers at a later stage. This
allows flexibility in the kind of coding performed given that the same recording could po-
tentially be used to extract di↵erent information (e.g., verbal and non-verbal behaviour).
Additional benefits include the possibility of pause and rewind the recording enabling more
complex coding schemes compared to participant observations where most of the coding
needs to be done “online” by the observer. Moreover, it simplifies the coding from multiple
people since they are not required to be all present at the time of recording. Issues faced
when using this approach are similar to the ones encountered with participant observa-
tions. For example, unless multiple cameras are installed, the recorded data will contain
only one point of view, similarly to when a single observer is present (although the observer
can typically move freely in the environment). Participants might change their behaviour
because they are aware of being video recorded and they know that the data could poten-
tially be stored for a long time [211]. This also raises privacy concerns which should be
taken into consideration when installing the equipment. Similarly to participant observa-
tions this method could be expensive and could also incur in equipment breakdowns with
consequent data loss. However, it is typically more convenient to cover a large area (e.g.
a large o�ce space) with cameras rather than with observers for a long period of time.

For studies that target non-verbal behaviours, other strategies have been used in addition
to the ones discussed above. Sommer [193] in reviewing works on personal space, lists
several techniques used for the measurement of these behaviours. For example, in field
studies, strangers approach participants in natural settings (unaware of being recorded) at
di↵erent distances or in various situations and observers record the participants’ reactions.
In simulations instead participants are aware of being tested and they are asked to place
human figures (e.g., photographs, silhouettes, dolls or manikins) as to resemble social
contacts, or they are asked to stop at a comfortable distance while approaching a third
person or a person surrogate.

The reviewed techniques rely typically on intensive manual labour which represent an im-
portant challenge for social scientists [124]. This is particularly problematic when studying
non-verbal behaviours due to the additional time required to annotate subtle behaviours.
The limited time and funds available often results in limiting the range of behaviours stud-
ied [124]. Researchers have highlighted how social scientists would benefit from automatic
ways of detecting and recording human behaviours, simplifying longer data collection ses-
sions in natural settings [204, 9, 124]. In the next section we review technologies developed
to support the study of social contacts by providing automatic systems to detect and
monitor social interactions.
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2.2 Technology for social interaction monitoring

In this section we focus on related work that employ technology to study social contacts.
First, we analyse methods and technologies that detect and record the occurrence of con-
tacts in Section 2.2.1. Second, in Section 2.2.2 we review research that developed techniques
to automatically detect non-verbal behaviours during social interactions.

2.2.1 Automatic detection of social contacts

The detection of fairly long lived interaction (in the order of several tens of seconds) has
been accomplished by technology reasonably successfully. Bluetooth Classic has often
been at the basis of these platforms mainly due to its availability on consumer devices,
which makes it extremely suitable to large deployments [4, 220, 88, 59]. However, several
works [37, 129] have tried to improve the temporal and spatial granularity of traces collected
with Bluetooth Classic. In fact, Bluetooth’s main drawbacks reside in the high power
consumption and low granularity of the traces. Usually, it is sampled every few minutes [4,
88, 59] to avoid draining the battery too quickly and the range of transmission is around
10m [220].

Other technologies have also been proposed, for instance, based on IEEE 802.15.4 low
power radio standard [68], RFID [44], Zigbee radio [132], infrared sensors [47, 154] and
hybrid approaches with radio and ultrasound sensors [158, 87]. These devices o↵er better
performance (e.g. temporal granularity from 20s to 2s with still reasonable battery con-
sumption) but are not suitable for wide scale and long term adoption because they rely on
dedicated hardware which needs to be deployed just for the purpose of the study. In fact,
problems have been reported with the usability of these devices [177].

Cabrera-Quiros et al. used a custom wearable device to detect social contacts in various
mingling events [40, 38, 41]. The device is capable of recording triaxial acceleration at 20Hz
and binary proximity to other devices using a radio interface. However, the authors do
not provide any detail about the hardware implementation, the communication protocol
used or the energy requirements, making a comparison with the data collection platforms
developed in this dissertation not feasible.

Another source of data used to sense social interactions with consumer devices is the
microphone. Lee et al. used the microphone in smartphones to monitor the conversation
between several people by matching the volume signature captured by each phone with a
topography database built during a learning phase [120]. This approach has the benefit
of monitoring the actual interaction and conversation between people rather than only
their co-location but it is limited to capturing only relatively long interactions because
it requires an initial training phase which is proportional to the number of members and
it needs to be re-trained if the position of the phones or the participants change. Zhang
et al. exploited the Doppler e↵ect to detect the trajectories of approaching people and
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adopted voice profiling to confirm the occurrence of a conversation [223]. By monitoring
the actual conversation, however, these approaches are sensitive to false positives if other
nearby users are in a di↵erent conversation. Also, the use of microphones might raise
ethical and privacy issues, preventing the wide adoption of the system. Tan et al. are able
to detect co-location in a privacy friendly way by using audio silence patterns [196]. The
power consumption, however, is an important problem which prevents the system to be run
continuously. Additionally, co-location detection works only in the presence of su�ciently
loud acoustic events which contributes to generating the pattern of silence, and this is not
always the case if we consider particular contexts such as libraries or exam rooms.

Several works have combined di↵erent existing technologies to detect social interactions and
collect multimodal datasets. In the SALSA dataset four cameras and Sociometric badges
were used to record 18 participants for 60 minutes during a poster session and a cocktail
party [7]. The authors conducted several experiments on the manually annotated dataset,
such as people tracking and pose estimation from visual data, speaker recognition and f-
formation detection. For the f-formation task the authors report a marginal improvement
in F1 score when visual information is combined with proximity data from the Sociometric
badges. Similarly cameras and Sociometric badges were used by Zhang et al. to monitor
a team of six people for four months during a space exploration simulation and study
social cohesion [224]. The MatchNMingle dataset is a larger multimodal dataset which
includes data from 92 participants recorded in natural settings for about 2 hours [39]. The
multimodal data includes acceleration and binary proximity from wearable devices used
by the participants and videos recorded by several cameras deployed in the environment
(including audio). The wearable devices used for data collection are based on the MyriaNed
wireless sensor nodes [57]. They use a Nordic nRF23L01+ radio module operating in the
2.4GHz spectrum, hence having similarities, at the physical level, with Bluetooth. However,
this module does not provide any received signal-strength indicator (RSSI) and therefore
proximity is determined only by the reception of packets from nearby devices without the
possibility to estimate the distance from them. The combination of mobile devices and
cameras allows to collect rich information about social contacts, including also subtle non-
verbal cues. However, the presence of cameras might raise potential privacy issues among
participants and limit the data collection coverage given that data can be recorded only in
previously instrumented areas.

Approaches based on Bluetooth Low Energy

Relatively fewer works have specifically used BLE to collect data about human behaviour.
Townsend et al. tested 4 di↵erent smartphones to asses if they could detect each other
using BLE [201]. Boonstra et al. deployed an Android and iOS app to 14 participants for a
period of one working week to collect data about social contacts [28]. However, the authors
o↵ered a limited evaluation of their system by using only two meetings during the study
period to validate their methodology and they did not collect participants’ locations, which
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is a valuable piece of information when studying social dynamics. Other works instead have
used simple wearable BLE tags, capable of transmitting only, to study mobility patterns
of large gatherings [93, 94]. Radhakrishnan et al. have analysed BLE characteristics on
Android mobile phones for indoor localisation [169]. They implemented a BLE-like duty
cycling on top of the Android BLE stack which already performs duty cycling in accordance
to the BLE specification. In a very recent work Katevas et al. investigated a multi-
modal approach to detect stationary social contacts employing data from the BLE radio,
accelerometer and gyroscope embedded on smartphones [100]. The authors found that
modern mobile operating systems (especially Apple devices1) do not allow to transmit
BLE advertisements when the screen of the mobile device is o↵ and the app is in the
background. To overcome these limitations the authors asked the participants to carry
a small, battery-powered BLE beacon in addition to the smartphone. They found that
the features computed from BLE data is the most important in discriminating between
interacting and non-interacting participants, while the motion-related features contribute
to a lesser extent. Lederman et al. introduced the Open Badges framework [117] later
renamed Rhythm [118] consisting in wearable badges and online applications to measure
interaction patterns in co-located and remote teams. The badges are built on top of
the same chip we used in this dissertation to study the BLE parameters (i.e. Nordic
NRF51822). The authors used the BLE interface to capture proximity between people
(every 60 seconds) and added a microphone to recognise when a user is speaking. The
proximity detection technique uses a fixed threshold on the RSSI values of packets received
from nearby devices [118].

In the last years very small and ultra-wearable devices started becoming popular. In
2018, the most prominent manifestation of these devices is wireless earbuds with embed-
ded sensing and communication capabilities (e.g. Apple AirPods or Samsung Gear IconX).
Commercial devices include a dual-mode Bluetooth/BLE transceiver but usually do not
allow application developers to use the BLE interface for proximity sensing by alternating
transmission and scan or by controlling its parameters. In 2018 the only earbud research
platform which could be used for proximity detection is eSense [103]. Despite not being
capable of scanning for beacons due to the limited battery capacity, eSense allows to con-
tinuously transmit BLE beacons (even during a connection) and to control the beaconing
rate [103, 141]. This allows other devices with larger energy budget (e.g. smartwartches
and smartphones) to detect the presence of eSense devices in the environment.

In Chapter 3 we o↵er an analysis of the low level BLE parameters (as defined in the
standard) to understand if BLE can be employed to collect fine grained and accurate
encounter traces. We then analysed if the approach could be adopted on commercial
wearable devices to free proximity-based systems from the need for custom devices, which
is usually one of the limiting factors of long term studies. Additionally, the availability of
our prototype allowed us to test the impact of these parameters on a large scale deployment.

1Apple devices are typically not the first choice for data collection applications due to the limitations
imposed by the operating system on services running in the background.
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Our study of the BLE parameters provides useful insights not only for wrist-worn devices,
as we focus in Chapter 3, but also for devices with other form factors which use BLE as
their main communication medium.

While BLE specification v4.0 is currently ubiquitous in wearable and mobile devices, the
next version of the specification, marketed as Bluetooth 5 [27], started being supported
in commercial devices in 2017/18 (e.g., Samsung Galaxy S8, Apple iPhone X and Home-
Pod). The new specification will allow to transmit eight times more data in advertising
packets and achieve longer communication range. These are features that could be useful
from a sensing perspective to enable low latency, connection-less communication among
a large number of devices. Additionally, the Bluetooth SIG included in the specification
the capability of measuring the angle of arrival [173] and angle of departure of packets
using multiple antennas on the same device. This permits devices to detect the direction
from which packets are received and potentially the orientation of the device or the user
carrying it. This functionality could complement the infrared technology we devised in
this dissertation (Chapter 5) and other technologies developed for the automatic detection
of non verbal cues, as we will review in the next section.

2.2.2 Automatic detection of non-verbal behaviours

In Section 2.2.1 we reviewed the technologies used to capture meaningful data about social
interactions, like physical proximity and conversation. In this section we focus on previ-
ous works that targeted the automatic detection of non-verbal behaviours during human
contacts. We place particular emphasis on the technical solutions used for this task, while
we will focus on the analysis of the collected data in the following sections.

The automatic recognition of these behaviours has been mainly addressed with cameras
and microphones [204, 205]. Many works focused on speech related cues, like turn-taking
and prosody related features [182, 181] or simple hand-picked features [20] (e.g. total
amount of speech spoken, amount of speech overlapped with others, etc.). Similar audio
cues have also been employed in other works that combined them with visual cues [96,
185, 95, 89, 221]. Researchers relied almost exclusively on visual cues extracted from
tracking motion in videos. For example Jayagopi et al. used motion vectors and residual
coding bitrate to estimate visual activity, which is a binary variable indicating if a person
is visually active or not [96]. On top of this low level feature the authors then computed
aggregated features like total visual activity length and total visual activity turns. Other
works used the same techniques and similar aggregated features to estimate head and body
activity individually [185, 95] or hand fidgeting (i.e. tapping on the table or playing with
glasses) [221]. Alameda-Pineda et al. computed head and body orientation from images by
calculating Histograms of Oriented Gradients (HoG) features for head and body bounding
boxes and then learning a separate classifier for each pose [7, 8]. The two classifiers consider
8 classes which correspond to an angular resolution of 45� for head and body orientation.
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Recent works relied on more sophisticated cameras, like Microsoft Kinect. Batrinca et
al. focused on public speaking training and analysed the correlation between presenters’
automatically extracted non-verbal behaviours (speech characteristics, gestures, and gaze)
with experts’ assessment of the presentation [22]. A Microsoft Kinect, two webcams and
a microphone were used to capture the non-verbal behaviours of each participant while
they were giving a presentation in front of a projected virtual audience. Baur et al. [23]
and Damian et al. [52] also used a Microsoft Kinect to record and then analyse non-verbal
behaviours. In the first work, non-verbal signals, which include posture of the upper trunk,
legs and arms configurations, were captured and analysed by the proposed system and, after
the interaction, statistics were presented to the user in an aggregated format allowing her
to reflect on her behaviours. Damian et al. used similar techniques to analyse the person’s
non-verbal behaviours (speech rate, body energy and openness) during public speaking,
but they also devised a mechanism to provide real-time feedback to the presenter through
a Head Mounted Display [52]. In the last few years, deep learning models have started to
automatically detect and track body joints from images without the need for specialised
cameras [200, 42, 78].

Although camera-based approaches capture semantic rich data of social contacts, they face
several limitations. First, they require considerable e↵ort in instrumenting buildings [43,
221, 89] to enable data collection. An infrastructure-free solution is superior from this
point of view since it allows to collect data even in areas that cannot be instrumented,
like public spaces or during large events. Second, in general the analysis of non-verbal
behaviours through video recording requires a considerable amount of storage space and
processing power, limiting the usability of the system. Finally, cameras raise privacy
concerns from the user and from people being recorded without their consent. This is
particularly true for wearable cameras that are always with the user, even during private
or intimate moments [86].

Relative device positioning

Another related line of work is on sensing the relative position and orientation between
devices. Particularly for short-range positioning, existing work has explored the use of
ultrasound (18 – 20 kHz, or 40 kHz) and infrared. Ultrasound methods measure time-of-
flight of acoustic signals to position devices by multilateration [84, 167, 143, 128], estimate
device orientation by measured phase o↵set [168] or positions of multiple devices [85].
These systems, however, require either additional RF radio [84, 167, 143], or the aid of
multiple nodes (pre-deployed anchor nodes with known locations [128, 168] or multiple
peer nodes [85]). Ultrasound has also been combined with RF signals to measure distances,
using the time-di↵erence-of-arrival technique. As examples, the iBadge [158] applies this
principle to capture interactions between kids, teachers and objects in a kindergarten
classroom; Opo [87] further boosts the ranging accuracy (5-cm accuracy) with a temporal
fidelity of 2 seconds. However, despite o↵ering high accuracy in a small device (especially
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for Opo) these devices are capable of measure only distance between nearby devices and
not their relative orientation.

Infrared-based systems have commonly been used in robotics, which measure the reflected
infrared light to detect surrounding obstacles and distances [24], or use static stereo-
cameras to track moving objects that carry active tags emitting infrared signals [15, 5].
Similarly to our work, Frantal et al. measured infrared incident angle using 12 photodi-
odes each facing a di↵erent direction [69]. Its resulting form factor however, makes it not
suitable in our context where a smaller and more portable device is preferable.

In Chapter 5 we present a system that enables wearable tags to continuously and un-
obtrusively track each other without any infrastructure support and without relying on
potentially privacy invasive cameras. We show how we measure both distance and angle
of contact directly with data exchanged between wearable devices with higher accuracy
compared to previous technologies. We demonstrate how we design our system to ensure
reliability and energy e�ciency.

2.3 Application areas

In this section we review previous work that examined the two application areas we consider
in this dissertation: 1) analysis of social dynamics in workplaces using data gathered with
automatic methods and 2) the automatic analysis of proxemics in small groups. Before
focusing on the two application areas, in the following section we provide an overview of
the core design principles of Activity-Based Working (ABW). This creates the foundation
for the work we present in Chapter 4 where we analyse how the application of two core
ABW’s principles might be responsible for social and mobility dynamics captured with
wearable devices.

2.3.1 Activity-Based Working overview

Understanding the communication and collaboration patterns of employees is critical for
the e�cient and e↵ective operation of the organization and could lead to improvement in
productivity and exchange of innovative ideas [11, 110, 161, 36, 195]. For this reason, in
the field of architecture, increasing e↵ort is invested into the design of spaces that could
potentially promote more frequent and serendipitous face-to-face contacts [12].

In recent years, the increase of knowledge-intensive firms led to the emergence of Activity-
Based Working (ABW) concepts to design o�ces that better support modern workforces.
The concept of ABW is complex and each organization can adapt it to its specific needs
and possibilities. However, three core principles are common to di↵erent implementations
of the concept: (1) absence of allocated desks, (2) availability of diverse spaces and set-
tings including those for concentration and collaboration and (3) allowing interaction and
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collaboration to spread across team boundaries. The idea is that employees can choose
the workstation that best matches the current task they have to complete and their per-
sonal preferences, possibly even switching between workstations during the day [13]. As a
result, o�ces designed with ABW principles usually consist of a mix of di↵erent types of
areas: isolated and quiet workstations for focused individual work, large and open settings
where serendipitous interactions can flourish and meeting rooms for private discussions.
In Chapter 4 we focus on these central principles and introduce a methodology based on
technology and analysis techniques which is able to help in understanding the degree of
e↵ectiveness of these principles.

Activity-Based Working with unallocated desks is still an exception rather than the norm in
corporate workplaces: a one-year study of working environments in 2016 showed that only
4% of the surveyed workplaces embraced ABW [121]. Given that this “agile” working style
is on the rise, however, our work takes a further step towards understanding its impact on
workplaces. Some previous work has analysed companies adopting ABW principles using
traditional ethnographic methods of participant observations and surveys. In a recent
study where more than 500 workplaces were surveyed (with ABW and without), Leesman
found that ABW environments deliver performance improvements only when the employees
correctly embrace the central principle of mobility. However, most of the employees who
work in an ABW o�ce still keep habits typical of traditional workplaces and present rather
static work styles [121]. Appel-Meulenbroek et al. surveyed and observed four organizations
with ABW and similarly found that most of the people use up to two di↵erent types of
spaces, never switch work location during an average day and concluded that the o�ces
are not always used as intended [13]. By contrast, Meijer et al. focused on workers’ health
and productivity and found that ABW had some positive e↵ects on general health in the
long term [140]. With the work presented in Chapter 4 we aim to contribute to the study
of this new kind of workplaces and work practices.

2.3.2 Analysis of social contacts in the workplace

Automatic systems have been used to study human behaviour in the workplace. We have
reviewed the technologies and approaches employed in previous works in Section 2.2.1. In
this section we cover works that focused on the analysis of data gathered with automatic
methods.

Brown et al. deployed RFID-based systems to collect face-to-face contacts to study how
di↵erent cultures interact with others in di↵erent job roles and the impact of physical space
on social interactions [32, 33]. The work presented in [33] is the only one we are aware
of that analysed, using wearable sensors, the e↵ect of vertical structure on social contacts
in a research facility without ABW. The authors reported no significant impact of the
management structure on social connectivity, confirming the need to study these dynamics
in various settings to better understand the generalizability of the findings.
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The Sociometer, first introduced by Choudhury et al., was a very prolific wearable device
used for many deployments [47]. Olgúın et al. continued the development and presented
the SocioMetric badges which rely on similar sensors and have been employed in several
organizations to study interaction patterns and peoples’ behaviour [154, 155]. Other de-
ployments of the same technology investigated how social interactions can a↵ect productiv-
ity [209] and how they relate to electronic communication [215]. Lepri et al. employed the
SocioMetric badges to collect a multilayer dataset comprising di↵erent information sources
(sensor data, surveys and experience sampling) about fifty-three employees of an Italian
research centre [126]. Do et al. used the same dataset to develop a model to automatically
discover and label social activities (e.g. co↵ee breaks and meetings) starting from social
contacts and location information [56]. In a di↵erent context, Zhang et al. combined
cameras and Sociometric badges to monitor a team of six people for four months during a
space exploration simulation [224]. The authors studied the group task and social cohesion
also using daily surveys. While the participants were working as a team, the isolated and
confined environment they were living in constitutes a peculiar scenario which is hardly
representative of classic o�ce settings.

While all of the above mentioned studies investigate settings with fixed desk assignments
(e.g., research laboratories, call centers and banks), in Chapter 4 we focus on a very dy-
namic o�ce where employees have flexibility in where, how and when they work, resulting
in an unusually dynamic workplace environment. To the best of our knowledge, only one
work used technology to study this kind of workplaces. Ianeva et al. used RFID tags
embedded in employees’ badges to monitor occupancy of spaces [91]. The authors found
that three kinds of areas (cafeteria, private booths and meeting rooms) were consistently
under-occupied, revealing a mismatch between intended and actual use of these areas.
With our work in Chapter 4 we go one step further in the analysis of ABW workplaces by
including data about proximity contacts between employees. This allows us to study ABW
principles concerning communication and collaboration and to link usage of space with in-
terpersonal contacts. In Table 2.1 we o↵er a closer comparison with related works that
not only used a similar data collection methodology but also studied environments similar
to the one we considered (companies and research institutes) and conducted alike analysis
(e.g. collaborations patterns and role of o�ce space). We omit an in-depth comparison
with other works that have studied completely di↵erent environments such as conferences,
schools, museums and hospitals. The table highlights that we are studying a company that
adopts ABW principles and has a dynamic working style, while the majority of previous
work focused on traditional o�ce spaces with allocated desks. Our aim with Chapter 4 is
to provide an understanding of peoples’ behaviour in this kind of company. By contrast,
most previous work focused on the relationship between social contacts and productivity.

Other contexts have also been studied with automatic methods, for example learning en-
vironments [177, 59], high schools [191, 135], clinical wards [130], family communities [4],
conferences [192, 133, 44, 88] and mingling scenarios [7, 39, 8]. These are very di↵erent
settings from the o�ce environments we consider in this dissertation: they present partic-
ular patterns of proximity and dynamics centred around the peculiar characteristics of the
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environments (e.g. classrooms and class schedules or visits to patients).

2.3.3 Automatic analysis of proxemics behaviour in small groups

In this section we provide an overview of the vast literature in the area of automatic
proxemics behaviour analysis, also referred to as Social Signal Processing (SSP) [160].
Several social aspects have been considered in previous work, for example, social emotions,
role recognition and social attitudes [204]. We concentrate on the body of work that tackled
the automatic recognition of roles during social interactions and meeting phases given the
similarity with the objective we set in this thesis and the work we present in Chapter 6.

Role recognition

The analysis of speech and lexical choices are among the main approaches employed for
role recognition [205]. Several works consider formal settings, like radio news and talk-
shows, where roles are defined by the function of each individual, for example, anchorman,
interview participant or guest. Salamin et al. were able to achieve a considerable accuracy
(from 76% to 99%) in classifying these roles in about 50 hours of audio recording. The
authors’ approach relied on turn-taking behaviour (accounts for how people participate
in conversations) and prosodic behaviour (i.e., the way people talk) [182]. Vinciarelli
used two di↵erent approaches to automatically recognise the role of speakers during radio
news bulletins [203]. The author identified six roles that were used to label all speakers.
The first approach was based on Social Network Analysis while the second relied on the
distribution of speakers’ interventions. The best accuracy was achieved by combining
the two approaches which resulted in 85% of the recording time correctly classified with
speaker’s role. Salamin et al. extended and improved the same two methods and analysed
three datasets: two included a collection of radio news bulletins and radio talk-shows while
the third consisted of simulated corporate meetings where the participants acted di↵erent
roles other than the ones played in their real lives [181]. The authors were able to achieve
an overall accuracy of 85% (percentage of recording time correctly labelled) for the first
two datasets and 45% for the third one. The main di↵erences between these works and
our approach presented in Chapter 6 concern the collected data and the setting of focus.
In our study we relied exclusively on physical non-verbal cues (i.e., relative orientation and
distance between participants) and we focused on spontaneous interactions where people
could assume any role and change it during the meeting. We attempted to predict the
various roles a person might assume and not only a single label assigned to the participant.
The setting we considered (a creative challenge) despite being constrained in terms of the
task that has to be completed, represented a more informal meeting with fewer constraints
on the behaviour of people as opposed to news broadcasts and talk-shows.

Considering works that try to predict roles that are dynamic during the meeting and not
predefined for the entire duration, Banerjee et al. proposed a taxonomy of meeting states
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and participant roles and used C4.5 Decision Trees to predict them during meetings between
faculty, sta↵ and students at an American university [20]. The objective of predicting
meeting states was similar to our Task Timeline prediction, however with di↵erent target
labels. The authors adopted empirical features, like the number of speaker changes, the
number of speakers talking during a given time interval, the total time spoken, etc., and
achieved an accuracy of up to 51% for the meeting state and up to 53% for the participant
role prediction. Contrary to our study, the authors relied exclusively on speech-related
features and had a lower number of target labels: 5 for the participants roles and 4 for
the meeting states. In our case instead we predicted 5 and 9 labels for roles and timeline
(similar to meeting state) respectively.

Few works have taken a multi-modal approach to role recognition. Zancanaro et al. used
cameras and microphones to analyse the roles played by team members in relation to the
tasks the group had to face (“Task Area”) and in relation to the functioning of the group
(“Socio-Emotional Area”) [221]. Using the behavioural traits of speech activity (presence
or absence) and fidgeting (“the amount of energy in a person’s body and hands”, e.g.
tapping on table) the authors were able to predict the manually coded “Task Area” and
“Socio-Emotional Area” roles of 10 participants with accuracy between 65% and 68% (F-
score between 0.52 and 0.55) using Support Vector Machines. The work was later extended
by Dong et al. to use influence models, obtaining an increase in accuracy up to 75% [58].
These works present similarities with ours. First, the task chosen by the authors (the
Survival Task [82]), in which participants need to reach consensus on how to survive in
a disaster scenario, resembles our creative challenge because the participants have a clear
goal and need to co-operate to achieve it. Despite the fact that the dataset used by the
authors included data about a person’s body and hands energy (automatically gathered
with computer vision techniques) the participants did not need to move to complete the
task therefore physical non-verbal behaviour was probably less prominent. Second, similar
to our approach, the authors did not assume that the same participant would play the
same role for the duration of the task and predicted the instant roles as they varied during
the discussion. The best accuracy, of 75%, in the detection of roles was achieved in the
second version of the work [58] using influence models. In the Task Role detection we
achieved better results with an accuracy of 84.9% and F-score ranging from 0.42 to 0.88
(Table 6.5).

Other analysis

Other works relied on non-verbal behavioural cues to study other aspects of social interac-
tions. Jayagopi et al. studied conversational group dynamics (e.g., conversational topics,
leadership styles) [95], and group dominance [96], using non-verbal cues extracted from an
existing dataset with 100-hr meeting recordings [43]. In [89], group cohesion was studied
using hours of audio-visual group meeting data. Hung et al. estimated group formations
in crowded environments using a graph clustering algorithm [90]. The analysis was based
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on video footage of over 50 people presenting scientific work in a poster session. Sanchez-
Cortes et al. inferred emergent leaders using non-verbal cues extracted from audio and
video channels [185]. These prior studies commonly collected richer data (e.g., speaking
turn and prosodic cues, head and body activity) in both visuals and audio, while our tags
(Chapter 5) collect body distances and orientation.
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Chapter 3

Exploring wearable sensing for o�ce
analytics

3.1 Introduction

In Chapter 1 we discussed the importance of studying social interactions and highlighted
its challenges. In this chapter we focus on interactions in the workplace, which play an
important role in team performance and productivity [109, 98]. For example, informal
inter-team interactions have been shown to be an important trait of successful teams [161].
Work interactions can also influence the design of physical spaces [33] or help in developing
an understanding of the spread of diseases [219, 220]. Researchers have relied on surveys
and observations for years to gather data about these phenomena. However, the cost of
observations is high as they usually involve long hours of monitoring. They might also
not scale to high numbers of participants and can therefore only be applied for limited
time periods. Surveys instead scale better but o↵er a much coarser grained view as people
might forget to report [30, 25, 177].

Usually two contrasting needs have to be satisfied when trying to capture such interactions
automatically: (1) the need to collect accurate and reliable data and (2) the need to
have large deployments to get a clearer picture of human behaviour. Existing solutions
usually tend to tackle one problem or the other. Bluetooth-based systems for example can
rely on widespread adoption but are usually power hungry and do not o↵er fine grained
data [4, 37, 129, 220]. On the other hand, systems based on custom built devices can
provide fine granularity but require dedicated hardware which hinder adoption [32, 47, 87].
The recent interest in wearable devices [170] has brought us to question if those devices
are able to fulfill both needs. In particular we directed our attention towards Bluetooth
Low Energy (BLE) which is embedded in all current wearables. We envision an interaction
sensing system that can be easily installed on a wearable device like a smart watch thus
extending its functionality to interaction sensing and o↵ering widespread adoption. The
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system will be able to both gather data about interactions for o✏ine analysis but also data
which can be analysed in real-time and fed as recommendation or temporal statistics to
workers. However, before this can become a reality there are fundamental questions which
need to be answered. Namely: How accurate could BLE proximity detection be? What
could be the expected lifetime of this system on an o↵-the-shelf device? How can it be
employed for social interaction sensing and space occupancy monitoring?

In this chapter, we analyse the potential of BLE to monitor people proximity as a first step
towards a social interaction sensing system. The objective is to assess its capabilities, first
by analysing its parameters and their impact on both accuracy and power consumption,
and then, from a practical perspective, with a large user study in a real workplace. The
specific scenario we consider is the one that takes into consideration o�ce based social
interactions. In such a setting, serendipitous interactions, where, say, a user glances from
an o�ce doorway, might be meaningful and indicative of productivity [161, 36]. This is, of
course, in addition to prolonged and repeated interactions.

Current hardware, available in modern wearables and smart watches, o↵ers the key func-
tionality for proximity detection: the ability to detect nearby devices and be detected by
them by alternating between transmitting and scanning. While the manufacturers have
recently updated device firmware and software stacks to support this kind of behaviour
there are still several limitations that prevent an accurate study of all the key factors in-
volved in proximity monitoring. In particular, mobile operating systems do not allow the
application developer to freely control all the BLE parameters. Thus, we build and use a
custom made wearable prototype in which we are in control of all parameters. This allows
us to study in detail the interplay of all the BLE parameters and their impact on power
consumption. Using our prototype we collect proximity traces in a commercial organisa-
tion with 25 participants. We are then able, through data post-processing, to investigate
the achievable performance if our system were to run on o↵-the-shelf wearable devices and
understand their strengths and weaknesses. This leads us to the important conclusion that
large scale proximity studies are viable, even at the accuracy level required by domain
scientists, with o↵-the-shelf devices.

To the best of our knowledge, this is the first study of BLE radios on a wearable plat-
form for proximity monitoring which provides useful insights for social interaction sensing
applications. This chapter also o↵ers guidance to operating systems (OS) developers and
manufacturers on the impact of the limitations of their application program interfaces
(APIs) and informs application developers on the flexibility of o↵-the-shelf wearables. Our
contributions are:

• a detailed analysis of BLE parameters that play a central role in proximity detection;

• the first analysis of BLE capabilities and limitations on commercial wearable devices
(Android Wear and Tizen);

• an extensive experimental validation with lab experiments and a longitudinal user
study with 25 participants in an o�ce environment. We confirm the BLE suitability
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for accurate proximity monitoring with detection F1 score between 0.81 and 0.97
with a 10-second granularity. Ground truth observation for around 19 hours was
performed to support our evaluation.

• a discussion on the restrictions imposed by OS developers on the use of BLE for
proximity detection.

Chapter Outline. Section 3.2 introduces the wearable platform we developed in order
to experiment with BLE and describes how the di↵erent BLE parameters a↵ect proximity
detection and their impact on power consumption. In Section 3.3 we analyse to what
extent BLE parameters can be controlled on two popular wearable operating systems and
the resulting power consumption. Section 3.4 describes the deployment of our wearable
platform to evaluate the capabilities of custom and commercial devices for proximity de-
tection. In Section 3.5 we discuss the results achieved during the deployment and provide
guidelines for devices’ manufacturers. Section 3.6 concludes the chapter summarising our
contributions.

3.2 Proximity sensing with BLE

In this section we first provide a brief introduction about the BLE modes of operation
and introduce our wearable platform. We then discuss the di↵erent BLE parameters and
we present a detailed analysis of their impact on proximity detection accuracy and energy
consumption using our platform.

3.2.1 BLE modes of operation

BLE provides two modes of communication: connection based and broadcast based [26].
The first requires two devices to establish a connection before exchanging data. This is not
suitable for proximity sensing as it can introduce delays and is also restricted to a limited
number of devices.

By contrast, the broadcast mode allows a Broadcaster to send data to several Observers
simultaneously without establishing a connection. The Broadcaster periodically sends data
on three predefined BLE advertisement channels (37, 38 and 39) as shown in Figure 3.1.
The standard advertisement packet contains a 31-byte payload (maximum size) which
describes the Broadcaster. Thus, the time required to transmit it on the three channels is on
the order of few milliseconds. To adjust the transmission frequency, the BLE specification
defines a parameter called Advertising Interval. It specifies the time between the start of
two consecutive advertisements. The Advertising Interval can vary from 20 ms to 10.24
seconds (advertisements are perturbed in time using a pseudo-random value between 0 and
10 ms). On the other hand, the Observer listens on a advertising channel for the duration
of the Scan Window at every Scan Interval. At each Scan Window, the Observer listens
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Broadcaster Time

Advertising
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Observer Time37 38 39
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Interval

Scan
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Advertising
Delay

Figure 3.1: Operation in Broadcaster and Observer roles according to BLE Specification
v4.0 [26]. The Broadcaster sends the advertising data on the three advertising channels
(37, 38 and 39). The Observer detects the advertised data when the scanning channel is
aligned with the advertising channel.

39 Time37 38

Broadcaster Observer Broadcaster Observer Broadcaster Observer

Figure 3.2: Alternate between Broadcaster and Observer roles. The device alternates
between advertising data and listening for incoming data.

on a di↵erent advertisement channel, until all three are used and then repeats. When
the current scan channel is aligned with the current advertising channel of another device,
the Observer receives the advertisement packet from the Broadcaster and thus detects its
presence.

The key for proximity detection resides in the fact that each device should be able to al-
ternate between the Broadcaster and Observer roles periodically. For example, Figure 3.2
depicts the desired behaviour where the two roles are interleaved periodically: when a
device is in Broadcaster role, it transmits an advertisement that can be detected by other
devices and when it is in Observer role, it can detect other devices by listening for adver-
tisements.

Although BLE is supported by most wearables, including smartwatches, OSs running on
these devices prevent complete access to all BLE parameters. In order to analyse the e↵ect
of BLE parameters on sensing accuracy, we developed a prototype that allows us to freely
control every parameter.
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Accelerometer

I2C
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Card

SPI
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Figure 3.3: Wearable platform components block diagram. Only the components actually
used for its development have been reported and not all available on the Metawear boards.

Figure 3.4: Electronics (left) enclosed in 3D printed box (3x4x1.5cm) and complete proto-
type attached to velcro wristband (right).

3.2.2 Wearable platform prototype

Our prototype is based on the Nordic nRF51822 BLE SoC that includes a 32bit ARM-M0
CPU and a 2.4GHz radio transceiver. We use a developer board from Mbienlab Inc. that
contains the main SoC along with the associated circuitry, a Freescale MMA8452Q 3-Axis
Accelerometer, an RGB LED, a push-button switch and a vibrator motor. Figure 3.3
shows a block diagram of our prototype. The entire prototype is powered by a 100mAh
3.7V lithium battery that can be recharged through a micro USB interface. We attach an
SD card to log the list of nearby BLE devices. Figure 3.4 shows the current prototype. We
designed a 3D printed box (3x4x1.5cm) to contain the device and we used velcro straps to
wear the device on the wrist as to emulate a commercial smartwatch.

We use the S110 SoftDevice BLE stack by Nordic [152] for the Broadcaster role and to run
the Observer role concurrently we use an open source library [189]. This library uses the
Concurrent Multi-protocol Timeslot API to give access to the radio resource concurrently
with the SoftDevice.
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Data collection

Each device collects several pieces of information about other nearby BLE devices and
about the participant wearing it. For each device in the vicinity, it logs the MAC address,
the Received Signal Strength (RSS) and the channel on which a packet from the other
device has been received (37, 38 or 39). The information is timestamped. The location
information is provided by additional BLE devices (static beacons from now on) deployed
in the building which are static and are associated with a certain area, usually a room
or a desk. These devices continuously transmit a unique identifier of the area they are
associated with, which is then used by the wearable devices to infer the current location.
The recent increase in availability of static beacons in cities and retail spaces makes them
perfect for localisation without the need to install additional infrastructure.

The embedded accelerometer is used to detect steps taken by the user. The 3-axis raw data
is processed on the device with a step detection algorithm [225] to detect whether the user
wearing it is stationary or walking. The SD card stores the number of steps taken from
the moment the user starts walking to the moment she stops as well as the timestamps of
beginning and end of walks.

3.2.3 BLE parameters

The parameters that characterise a BLE-based proximity sensing system are:

• Advertising Time: the time to send an advertisement on three channels.

• Advertising Interval : the time between each advertisement.

• Scan Interval : the time between scans.

• Scan Window : the duration of each scan.

• Transmission Power : the transmit power for each advertisement.

Advertising Time, Advertising Interval, Scan Interval and Scan Window a↵ect how quickly
a specific device can detect other devices in the vicinity and is detected by them. Intuitively,
it is necessary to advertise more frequently than scanning in order to ensure that at least
one advertisement will be captured during a scan and the Scan Window should be long
enough to capture at least one advertisement on one channel. These parameters are inter-
dependent and dictate the actual packet reception rate achieved by a device. It is not
possible to achieve a higher rate and thus higher temporal granularity by simply advertising
more frequently because it is also necessary to scan frequently and for longer periods. The
Transmission Power is the only parameter available to control the maximum distance at
which a contact can be detected: it allows changes in the range at which other devices can
still correctly receive a packet. We now systematically inspect each parameter individually.
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Figure 3.5: Average number of received packets changing the Advertising Interval and the
number of transmitting devices.

Advertising Time: Advertising Time is the time required to send an advertisement
packet on the three channels (Figure 3.1). It cannot be controlled directly as it depends
on the packet’s payload. To keep this time to minimum, it is necessary to advertise a
very limited amount of data. For example, our prototype platform achieves an Advertising
Time of around 3ms for all three channels with 14 bytes of payload that includes Bluetooth
flags1, Transmission Power and custom information for identification, diagnostics and time
keeping. However, Advertising Time does not have a significant impact on the packet
reception rate at the receiver side or energy consumption at the transmitter side.

Advertising Interval: this controls how frequently advertisements are transmitted and
thus it a↵ects how quickly a device can be detected by other nearby devices. Assuming
that an Observer device is scanning continuously, the time between the reception of two
advertisements should, on average, be equal to the Advertising Interval under ideal con-
ditions. However, packet loss due to collisions and environmental factors can a↵ect how
frequently advertisement packets are received. We, therefore, devised an experiment to
understand the e↵ect of Advertising Interval and the number of transmitting devices on
the number of received packets. We configured one device to scan continuously and every
5 minutes we added 5 devices transmitting with a fixed interval, up to a total of 35 devices.
The experiment was repeated for 7 di↵erent intervals.

Figure 3.5 shows that the number of transmitting devices a↵ects the number of received
packets, especially at high rates (advertising interval of 20ms and 50ms). At these rates, ev-
ery time another set of devices was added, the average number of received packets dropped
resulting in around 10 packets per second when 35 devices were transmitting at the same
time. On the other hand, at lower rates (10Hz and less) the number of received pack-

1https://www.bluetooth.org/en-us/specification/assigned-numbers/generic-access-profile
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Figure 3.6: Average number of received packets changing the Advertising Interval, the
Scan Interval and the Scan Window. (a) Adv. Interval 200ms. (b) Adv. Interval 150ms.
(c) Adv. Interval 100ms.

ets remains constant even when the number of devices increases. We, therefore, chose
100ms as the lower bound advertising interval. This experiment shows that small adver-
tising intervals do not necessarily lead to high reception rates (considering that the scan
rate and window are constant) especially with high density of devices. Moreover, it can
be detrimental for the battery lifetime as packets lost due to collisions represent wasted
energy.

Scan Interval and Window: in the previous paragraph, the Observer was scanning
continuously, but as we will show in Section 3.2.4, continuous scanning has a significant
impact on battery life. Therefore it is necessary to duty cycle the scan operation using
the Scan Interval and Window parameters. To study the e↵ect of these parameters on
the receive rate we ran several experiments where one device transmits at one of the
Advertising Intervals tested in the previous paragraph and a second device performs scans
with a particular Scan Interval and Window. For each Advertising Interval, we used the
values in these sets, {100ms, 200ms, 250ms and 500ms}, {6ms, 10ms, 15ms, and 20ms},
respectively for Scan Interval and Scan Window, combining them in each possible way.

Figure 3.6 shows the results of these experiments. It demonstrates: (1) the interplay
between Broadcaster and Observer parameters, and (2) how Scan Interval and Window
can be combined to obtain specific receive rates. These results show that it is not possible to
consider the Broadcaster and Observer roles in isolation when designing a proximity-based
system. For example, an average receive rate of 1 packet per second can be achieved with
four di↵erent combinations of the three parameters (red circles in Figure 3.6). We will show
how this can be used to optimise the power consumption of the system in Section 3.2.4. Due
to space constraints we do not report results for the other Advertising Intervals analysed
in Figure 3.5, however, they follow the same trend.

Transmission Power: BLE transceivers usually o↵er the functionality to control the
transmission power. This makes it possible to adjust the range and thus the spatial gran-
ularity of the system. In order to study the e↵ect of transmission power on the communi-
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Figure 3.7: Received Signal Strength (a) and receive rate (b) at di↵erent distances and with
di↵erent TX Power Levels. The power level values tested are some of the ones available
on the Nordic nRF51822 chip and they do not correspond to the actual power emitted by
the antenna.

cation range, we performed an experiment where two users wear our prototype devices on
their wrists. We then varied the distance between them from 0.5 up to 3 meters. The two
devices were configured to receive an average of 1.5 packets per second in close proximity
with a transmit power of -4dBm. Figure 3.7 shows the average RSSI and the average
number of received packets per second for this experiment. It shows that the maximum
transmission range of a typical transceiver is of the order of a few meters. This makes
them ideal for proximity sensing.

The graphs show how reducing the transmission power a↵ects the BLE communication
range: the signal strength and the number of received packets decrease with distance
and with reduced power. These are expected results and similar to the ones observed
in other studies regarding Bluetooth Classic [129] and BLE [64]. Even if the RSSI and
packets per seconds trends are expected to be similar to the ones presented here, in other
environments di↵erent absolute values could be observed because other factors could a↵ect
the radio communication range, such as the device’s antenna and its orientation. Therefore
the system designer should test the target platform for the actual achievable range before
deploying it.

3.2.4 Parameters’ impact on power consumption

We have seen that a specific receive rate can be achieved with di↵erent combinations of
the parameters. Thus, it is important to consider the e↵ect of each parameter on power
consumption to select the combination that provides the desired receive rate and the least
power consumption.

Advertising Time: We discussed how the advertising time depends on the size of the
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Table 3.1: Impact of payload size on power consumption.

Payload
Size (bytes)

Average
Power (mW)

4 1.41
14 1.48
31 1.59
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Figure 3.8: Average power consumption in isolation by Broadcaster and Observer roles for
di↵erent combinations of Advertising and Scan Interval (x-axis) and Scan Window (last
three colours).

transmitted packet. We, therefore, measured the power consumption of our prototype us-
ing the Monsoon Power Monitor2 as it transmits advertising packets of di↵erent sizes. We
tested packets with 3, 14 and 31 bytes (the maximum payload allowed in BLE advertise-
ments). The device was configured in Broadcaster mode only with an Advertising Interval
of 100ms and a transmit power of -8dBm. Table 3.1 shows the results for this experiment.
The power consumption of the device increases slightly to 1.59mW from 1.41mW as the
packet payload varies from 3 bytes to 31 bytes. This di↵erence could reduce the battery
life by more than 25 hours on a 100mAh battery.

Advertising Interval, Scan Interval and Window: These parameters provide greater
control on the temporal granularity of a proximity system. However, the Scan Interval
and Window are the parameters that a↵ect the power consumption the most. To study
the impact on power consumption we configured our device in Broadcaster only mode first
and then in Observer only mode, with di↵erent combinations of the three parameters and
we measured the average power.

Figure 3.8 shows the results of these experiments. Even at the same rates, Observer role
has a greater impact on power consumption as compared to Broadcaster role. Therefore,

2http://www.msoon.com/LabEquipment/PowerMonitor
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to achieve a certain desired receive rate, it is better to scan with a low frequency and for
short periods and transmit more frequently in order to have a lower impact on the power
consumption. Advertising with an high frequency has significantly less impact on the power
consumption than scanning with high rates and duty cycles. However, as explained in the
previous section, high transmission rates can lead to collisions if the density of devices
is high: this must be kept in consideration when designing a proximity-based system for
crowded environments.

Transmission Power: To study how this parameter a↵ects the power consumption, six
di↵erent power levels (from -20dBm to 4dBm with steps of 4dBm), which can be selected
in software on the Nordic nRF51822 chip were tested. We configured our prototype in
Broadcaster only mode with an Advertising Interval of 100ms and packet’s payload of
14 bytes. The average power di↵erence between the highest (4dBm) and the lowest (-
20dBm) power level is around 0.37mW. This variation translates to an estimated di↵erence
in battery life of 58 hours for a 100mAh battery. This shows that even the selected
transmit power could a↵ect the battery life of the system but, this being the only parameter
available to control the transmission range, it might not be possible to optimise it for power
consumption.

All these measurements will be used later in the chapter to estimate the battery lifetime
of the device when both the Broadcaster and Observer role are enabled at the same time.

3.3 Proximity sensing on commercial devices

After the study of BLE parameters using our prototype, we now analyse to what extent the
same parameters can be exploited on commercial wearables. These devices are equipped
with a BLE chip used for communication with the user’s phone and being always co-located
with (worn by) the user they o↵er a great advantage for proximity sensing. The platforms
we used for our analysis are Android Wear 5.0 [75] and Tizen Wearable 2.3.1 [199]. While
it was already possible to implement the Observer role, the Broadcaster role has been
enabled in recent releases (e.g., September 2015 for Tizen).

The actual devices we used for our experiments are a Samsung Gear S2 [184] for Tizen
and a Samsung Gear Live [183] for Android Wear. We developed an application for each
device that allows us to change the parameters and start/stop the advertising and scan
operations. Both devices are able to transmit and scan in the background and when they
are connected to a phone, so they can still receive notifications from the paired phone as
during normal operation. In all the following experiments, both watches are connected
to an Android phone. Similarly to what we did with our custom device in Section 3.2.3
we now systematically inspect the parameters individually to understand capabilities and
limitations of BLE on commercial devices.

Advertising Time: The only way to control this parameter is to vary the number of bytes
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included in the advertising packets. Both operating systems expose APIs to configure the
content of the BLE packet (i.e. device name, service and manufacturer data, etc.). The
only di↵erence is that Tizen o↵ers the possibility to set the appearance of the device and
solicitation UUIDs while Android Wear does not. With these APIs it is possible to reduce
the Advertising Time, consequently reducing the power consumption.

Advertising Interval: This parameter can be adjusted on both platforms in similar
ways. Three values are allowed: (1) Low Latency, (2) Balanced and (3) Low Power (called
Low Energy in Tizen). However, the resulting behaviour is di↵erent for the two operating
systems. In Tizen the three values correspond to an Advertising Interval respectively of
150ms, 500ms and 1s. By contrast, the Android Wear watch, regardless of the value set,
starts advertising with a 30ms interval for about 150/180 seconds and then switches to
an interval of 1280ms. This shows that for the Android Wear platform the Advertising
Interval in practice cannot be controlled and the only usable value is 1280ms.

Scan Interval and Window: For what concerns the Observer role, the Tizen OS does
not allow to set any parameter, it only allows the developer to start and stop the scan
operation. Android Wear, on the other hand, does not permit the configuration of the
Scan Interval and Window individually, but it allows to choose among three global values
for the scan operation: (1) Low Latency, (2) Balanced and (3) Low Power. To test the
actual achievable receive rate with these three values, we configured one of our custom
devices in Broadcaster only mode with an Advertising Interval of 100ms and we let the
Android Wear watch scan. If the scan is configured in Low Latency mode the watch scans
continuously, achieving in this case an average receive rate of around 9Hz. In Balanced
mode, instead, the average receive rate is halved (around 4Hz) and in Low Power is one-
tenth (around 1Hz).

Figure 3.9 shows the packets received over a 2 minute scan with each setting. Looking at
the grey lines overlaid on the graph, which represent the instants when a packet has been
received, it is possible to observe the duty cycle applied on the scan operation. While in
Low Latency the packets are uniformly distributed across the scan period, in Balanced and
Low Power modes the watch performs a scan around 12 times in a minute. Therefore we
assume the Scan Interval is roughly 5 seconds. Moreover, in Balanced mode the duration
of the scans (Scan Window) is larger than in Low Power mode. Looking closely at the
received data we notice that the Scan Window is around 2s in Balanced mode and 500ms
in Low Power mode.

As mentioned earlier, in Tizen it is not possible to select any setting for the scan operation.
Performing the same experiment with the Android Watch (with a device transmitting at
10Hz), we discovered that for the Tizen watch the average receive rate is around 1Hz and
the Scan Interval and Window are equal to the ones adopted by Android Wear in Low
Power mode (scan for 500ms every 5 seconds).

Transmission Power: Tizen does not provide any API to control the transmit power.
Therefore it is not possible to control the transmission range. The transmit power level
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(a) Low Latency Scan.
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(b) Balanced Scan.
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(c) Low Power Scan.

Figure 3.9: Packets received by an Android Wear watch with the three possible scan
settings. The transmitting device was configured with an Advertising Interval of 100ms.
Each gray line overlaid on the graph represent the instants when a packet has been received
by the watch.

Table 3.2: Summary of control possibilities on Android Wear and Tizen. The asterisk
character (‘*’) indicates that the APIs o↵er the possibility to set di↵erent values but they
have no e↵ect on the watch we tested.

Parameter
Gear Live

(Android Wear)
Gear S2
(Tizen)

Advertising Time Yes Yes
Advertising Interval No* Yes

Scan Interval and Window Yes No
Transmission Power No* No

included in the advertisement packets is 12dBm and the average RSS at 1 meter is around
-78dBm.

By contrast, Android Wear o↵ers an API that permits choosing between four di↵erent
values: High, Medium, Low and Ultra Low. However, regardless of the value set, the watch
we tested uses the same power level and includes the value -21dBm in the advertisement
packets. This is also confirmed by the fact that even by setting a di↵erent value, there
is no substantial di↵erence in the RSS we measured at 1 meter and its average is always
around -66dBm.
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Table 3.3: Impact of payload size on the power consumption of the Gear Live and Gear
S2.

Payload Size
(bytes)

Average Power
Android Wear (mW)

Average Power
Tizen (mW)

6 10.58 7.79
14 10.84 8.21
31 10.92 9.65

3.3.1 Power consumption

In this section we analyse the impact of the di↵erent adjustable parameters on the watches’
power consumption. All the measurements have been taken with the watch connected to
an Android phone and with the screen o↵.

Android Wear

The Gear Live has a 3.7V, 300mAh battery and the power consumption when idle with
the screen o↵ is 10.29 mW. The only parameters that can be controlled are the Advertising
Time and the combination of Scan Interval and Window.

As expected, the Advertising Time has a limited impact on power consumption. For
example, the power di↵erence when transmitting 6 or 31 bytes is around 0.19mW which
gives a di↵erence in lifetime of only 1.6 hours for a 300mAh battery. These measurements
have been performed after the initial period (150/180 seconds) in which the watch transmits
at a high rate, because that period does not represent the normal transmission rate (see
Section 3.3 for more details). Table 3.3 reports the power measurements data in comparison
with the Gear S2 described in the next section.

Regarding the Scan Interval and Window, we tested the three possible global values, Low
Latency, Balanced and Low Power. We observe a more substantial e↵ect on power con-
sumption. Table 3.4 shows that when the Low Latency mode is selected, which corresponds
to the watch scanning continuously, the power consumption is very high and in this case
the expected battery life would be only around 5 hours. This would make it impossible
to deploy a proximity-based application in a workplace environment because it could not
cover the standard 8 hours of work. Similarly, the Balanced mode would result in an ex-
pected battery lifetime of slightly more than 8 hours. The only mode that would enable
this kind of deployment is the Low Power. In this mode, the watch has an estimated bat-
tery life of more than 13 hours but during a typical working day the proximity detection
system would remain active for 8 hours only. This means that in the remaining part of the
day the power consumption will be lower because the watch would not scan and advertise
periodically. This should guarantee enough energy for normal usage.
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Table 3.4: Power consumption of Scan and Advertising modes for the two smartwatches.
The packet used for the Tizen experiments is 14 bytes long.

Mode
Average Power

Android Wear (mW)
Average Power
Tizen (mW)

Scan Low Latency 227.25 -
Scan Balanced 124.32 -
Scan Low Power 82.18 -

Advertising Low Latency - 8.21
Advertising Balanced - 6.61
Advertising Low Power - 6.19

Tizen Wearable

The Samsung Gear S2 (3.8V, 250mAh battery) allows the developer to control Advertising
Time and Interval but not the scan parameters and the Transmit Power. This watch
consumes 5.81mW when idle and with the screen turned o↵.

The first measurements we analyse are in relation to the Advertising Time. Even if the
Tizen APIs o↵er a function to specify that the transmit power level should not be included
in the advertisement packets, this API is not working and the power level is always included.
Therefore the smallest packet that we were able to test is 6 bytes long (Bluetooth flags
and power level). Table 3.3 reports the details of the power measurements while the watch
advertises in Low Latency mode (every 150ms). In this case we observe a greater impact
on power consumption. Indeed we estimate that when advertising 31 bytes the battery
would last 23 hours less compared to transmitting just 6 bytes.

As opposed to Android Wear, Tizen OS permits the developer to select one of three di↵erent
Advertising Intervals. In this case, as it is possible to see in Table 3.4, the average power
consumed, even at a relatively high transmission rate (i.e. Low Latency), is limited and it
is considerably lower than during the scan operation, which for this watch is 55.56mW.

To summarize, we have observed that both systems do not give complete freedom on the
setting of the parameters, rather they allow the developer to choose between predefined
values. Android Wear o↵ers APIs to control all the BLE parameters but only two of them
work on the watch we tested (Advertising Time and Scan related parameters). On the
other hand, Tizen o↵ers APIs only to modify Advertising Time and Advertising Interval.
Table 3.2 summarises the parameters that can be controlled on the two platforms. We
have also found the Tizen Wearable watch we examined to be more energy e�cient than
the Android Wear device. The Tizen watch in fact consumes less energy when idle and
when transmitting or scanning for beacons.
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Figure 3.10: Floor plans of the first floor (left) and lower ground floor (right) of the o�ce
space studied in this work. The yellow circles represent the location of the static BLE
beacons. The coloured shadows represent the category of the locations.

3.4 Workplace deployment

We now evaluate the overall performance for proximity sensing with a deployment in a
workplace environment. We begin by explaining our experimental method and the study
environment. We then describe how we extracted the proximity information and the loca-
tion traces from the raw data. Finally, we present the results for our experimental platform
and for the two analysed smartwatches.

3.4.1 Experimental method and testbed

A proximity sensing system is characterised by many parameters that a↵ect performance.
As shown in the previous sections, these parameters are often inter-dependent. Therefore,
to evaluate di↵erent parameter combinations in a real environment multiple deployments
would be necessary.

Our approach instead was to deploy our prototype, which o↵ers greater flexibility, and
then test di↵erent combinations of the parameters by post-processing the collected data.
In particular, we are interested in knowing how a proximity detection system would work
on wearable o↵-the-shelf devices.

Our testbed consists of an architecture company (Spacelab Ltd.) which employs more
than 35 people. The company occupies a building which consists of two floors with a
staircase opening in the middle (Figure 3.10). The two large open spaces host di↵erent
workstations where several employees share the same large table. There are meeting rooms
on both floors, while the kitchen and break out area are on the lower ground floor. The
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Figure 3.11: Cumulative Distribution Function of the contact durations recorded by the
observer who collected the ground truth during the study.

company has a very dynamic and flexible working style. Employees do not have assigned
desks, the work tasks are fluid and people have considerable interaction. Before beginning
with the deployment our work has been approved by the University of Cambridge ethics
committee3. All the participants consented to take part in the study after being informed
of the purposes of the study. All collected data are anonymous and make no reference to
the individual participants.

3.4.2 Participants

We recruited 25 participants (15 females) aged 21-44 (µ = 31) for a period of four weeks
between September and October 2015. The company is structured into five teams: Ar-
chitecture (4 participants), Interior Design (10 participants), Workplace Consultancy (6
participants), Project Management (1 participant) and Administration (4 participants).

The vertical structure comprises 7 levels, from the top level (1), to the bottom (7). At the
top of the hierarchy is one of the two Partners who works mainly with the Architecture
team. The second highest level are Directors and the Project Manager (4 participants).
The third and fourth levels consist respectively of Associates (2 participants) and Senior
architects, designers and analysts (7 participants). At the fifth and sixth levels there are
architects, designers and analysts (4 participants) and Assistants (3 participants). The
Administration team was counted as a seventh level for consistency, although it would be
fair to consider it as external to the hierarchical levels.

3.4.3 Ground truth

In order to collect ground truth data, one researcher performed observations for three days
during the study. During each observation, the researcher followed a person and annotated

3Our agreement with Spacelab does not include the publication of the collected dataset.
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Figure 3.12: Visual representation of the processing applied to the data received from
the static beacons to compute the user’s approximate location. The raw data from the
static beacons (left) is first segmented into 1-minute windows. Within each window, all
the received packets are grouped by beacon ID and for each ID the median RSSI value is
computed. At this point the ID with the highest RSSI is chosen as the current location of
the user for each window. The colours represent the aggregation windows used to segment
the data.

all the social interactions the person had. Since we are interested in detecting fine grained
proximity between people, the researcher recorded only those interactions that happened
in close proximity, i.e. up to a distance of 3 meters between people. For each interaction
event the researcher recorded the start time, the end time, the location inside the o�ce and
the unique ID of the people involved. In total we observed 18 di↵erent participants who
have been chosen in order to represent the teams in the company. This resulted in 19 hours
of observations during which we captured 401 interactions. On average an interaction is 1
minute and 13 seconds long and 70% of the interactions are shorter than 1 minute while
only 5% are longer than 5 minutes. The largest interaction captured involved a group of 5
people. The distribution of the contact durations is reported in Figure 3.11.

3.4.4 Static beacons and location traces

As shown in Figure 3.10 seventeen BLE static beacons were deployed in the building with
the purpose of giving coarse grained (at the desk level) location information about the
participants. One beacon was placed on each desk or, if the desk was too big, two beacons
were used. The beacons were configured with a beacon rate of 5Hz with a range of about
4 meters. We highlight that the static beacons have been used in this work for evaluation
purposes, however our wearable prototype could be used for proximity detection even when
those beacons were not available (e.g. outdoor).
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Figure 3.13: Visual representation of the correction applied to the approximate location
computed from the static beacons. After we compute the initial approximate location we
align the sequence of locations with the walking activity of the user (represented by 1 if the
user is walking or 0 otherwise). Changes in locations that correspond to walking events are
preserved while variations in location without walking activity are discarded. For example,
the picture shows that there is an apparent movement from location 2 to 3 and then 1,
however since the user was not walking at that time the change is discarded and the last
valid location (2 in this case) is used instead. The other location changes (marked in green)
are preserved because the user was walking at the same time.

To associate the current approximate location to the participants at each point in time,
the data received from the static beacons (containing their ID and the packets RSSI) was
grouped into non-overlapping windows of 1 minute. We then computed the median value
of the received signal strengths (RSS) from the di↵erent beacons. This process removes
high frequency variations in the data which might ruin the location inference. We chose
the location for each time period by selecting the beacon with the strongest median RSS,
which represents the closest one to the user. Figure 3.12 shows a visual representation of
this process. To improve the location estimation we used the accelerometer data. With a
step detection algorithm [225]4 we detected when the participants were walking and given
that a person changes location only when she walks, we could remove spurious changes in
location (which might be due to reflections in the radio signals) if the user was not walking
at that time. Figure 3.13 illustrates how this correction works with a visual example. Using
the location traces we inferred the desk each participant used each day by selecting the
one where the person spent most of the time.

The di↵erent locations were grouped in 6 semantic categories represented by the colours
in Figure 3.10:

4We empirically evaluated the accuracy of the step detection algorithm and we found it to be within
5-10 steps.
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Figure 3.14: Visual representation of how data from two devices is merged together and
then segmented into non-overlapping windows. RSSI-based features are then computed
over the windows (median, min and max). The colours represent the aggregation windows
used to segment the data.

Open space workstations: shared workstations that can accommodate several people
and represent the main areas of work in the company (colour grey).

Meeting rooms: four meeting rooms are present in the building, two on the first floor
and two in the lower ground floor (colour red) and all of them have a table in the middle.

Private workstations: small areas for individual work or maximum for two people (colour
green).

Breakout areas: a relatively large open kitchen is present in the lower ground floor and
a small table with magazines on the first floor (colour blue).

Circulation spaces: this is not an exact location because we did not deploy beacons in
the space around desks. However, this label is used to tag contacts between people that
are not close to the same static beacon. When this happens one of the participants is
co-located with one beacon and the other participant with a di↵erent nearby beacon, in
this case the contact between the two is tagged as happening in Circulation.

Outside o�ce: the absence of location information while the device was in use is inter-
preted as if the user was outside.

We will use this semantic organisation of the static beacons in Chapter 4 where we study
the social dynamics inside the company.

3.4.5 Wearable devices and proximity traces

Each participant was asked to wear, on the wrist and only when inside the o�ce, our
wearable prototype. We provided a charging station where all devices were recharged
during the night and where some spare devices were stored as replacement in case of
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failures. Every night an Android Phone collected all the data from the wearables and
uploaded it to our servers.

The devices were programmed with an Advertising Interval and Scan Interval of 100ms and
a Scan Window of 20ms. The transmit power was set at -8dBm. This configuration allowed
us to achieve an average receive rate of 2.15Hz and a range of around 4–5 meters and was
selected because it represented the best compromise between battery lifetime (around 20
hours to cover a working day) and granularity of the collected data. We specifically chose
a higher receive rate than the ones achievable by the watches because this would enable us
to post-process the data and match the smartwatches’ rates.

The raw data collected by the Bluetooth devices had to be processed in order to classify the
contact events as proximity or not. We adopted a supervised machine learning approach
where we trained a binary classifier with a set of examples labelled as “proximity” or
“non-proximity”. We were not interested in measuring the actual distance between the
participants but only if they were close to each other as during a conversation.

Using only the data collected during the three days of participant observations we built a
data set where the positive examples (“proximity” label) were labelled with the observed
communication events. We recall that the researcher was instructed to record only in-
teractions that involved close proximity between the participants, assuming that social
interaction events are examples of close proximity. Instead, the negative examples (“non-
proximity” label) have been labelled using the static beacons. From the logged data we
computed the beacon with the strongest signal strength (i.e. the closest one) at each point
in time and we co-located the participant with that beacon (as described in the previous
section). For each pair of participants it will happen that for some time periods they would
be co-located with the same beacon (e.g. when they were sitting at the same desk), and
for other periods they would be co-located with di↵erent beacons (e.g. when they were at
di↵erent locations in the building). We selected those periods where the two participants
were at di↵erent locations and we used them as “non-proximity” examples.

For each pair of individuals, A and B, we extracted from their devices the stream of raw
data relative to the other device. This consists of the received timestamped packets with
MAC address and RSSI value. In order words, from A’s device we extracted all packets
received from B’s device and vice versa. Given that the logging of packets is symmetrical
(each device transmits and receives packets) we merged the two streams into one in order
to have more data points between the two participants. This stream of data is then split
into non-overlapping windows of di↵erent sizes (from 1 to 60 seconds). For each window
we computed the following features: median RSSI, min RSSI and max RSSI. Figure 3.14
shows this approach visually. The main purpose of those features is to mitigate multipath
interference which produces high frequency variations in the RSSI measurements. Median
and max features have also been identified by Faragher et al. to provide the best multipath
mitigation e↵ect in the context of indoor localisation with BLE [64, 63]. Empirically we
determined that adding also the min RSSI feature improves the detection accuracy while
adding the number of received packets and the standard deviation of RSSI values produces
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worse results.

When two people were very far from each other (e.g. in di↵erent floors of the building) the
two devices would not receive any packet and this would result in missing values in the data
set. In our context, those missing values indicate that the two devices were not in proximity
and could be used by a machine learning algorithm to correctly classify them. For this
reason we replaced the missing values with the value -110 which represents a very low RSS
which is below the minimum detectable power by our device (-105dBm). At this stage of
the processing we knew the missing values are only due to the fact that the devices were
not in range because we had already filtered the devices for which data was not recorded
(e.g. malfunction or forgotten at home). Once we segmented the data streams for each
pair of participants in windows and computed the aforementioned features we aggregated
all windows (which represented examples for the supervised machine learning algorithm)
into a single data set. At this point we overlapped the participant observations and we
labelled each window with “proximity” or “non-proximity”.

3.4.6 Training and Evaluation

For the classification we adopted Decision Trees (C4.5) and we trained and evaluated them
with two strategies: 1) stratified 10-fold cross-validation and 2) splitting the dataset into
training and test set ensuring dyad independence between the two sets. In the second
strategy we reserved roughly 80% of the data for training and 20% for testing ensuring
that data from the same dyad would not be included in both sets. 10-fold cross validation
has been chosen because, despite it could produce over-optimistic models, it is a widely used
technique and provides an understanding of the base performance of the model, especially
when dealing with small datasets. The second strategy instead, where dyad independence
is maintained between train and test set, could provide a better understanding of the
generalisation power of the model.

In both cases the resulting dataset presented class imbalance because for each pair of people
we labelled the positive examples from the interaction events that have been observed,
which represented a limited period of the day, but we derived the negative examples from
the times when they were at di↵erent locations in the building and these could cover longer
periods of the same day. Thus we over-sampled the minority class generating synthetic
examples using the SMOTE technique [45] in order to balance the two classes. For the
second evaluation strategy (i.e., with dyad independence) the minority class has been
oversampled only in the training set.

We favoured the selection of the Decision Trees classifier because we considered the possi-
bility of implementing the proximity detection classifier on our wearable prototype (Sec-
tion 3.2.2) to enable online proximity detection. However, the limited amount of com-
putational power and memory available on the Cortex-M0 (i.e., 16MHz clock speed and
16KB of RAM) severely limits the choice of algorithms. Decision Trees are simple to im-
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plement, fast and e�cient at inference time [17, 6] making them a reasonable candidate
for applications on constrained devices. Also, the work from Liu et al. [129] which used
multiple, manually calibrated thresholds on RSSI values to estimate face-to-face proximity
motivated us further on the use of Decision Trees to automatically learn the thresholds
from data. Additionally, Decision Trees have been successfully used on a variety of human
behaviour classification tasks (e.g., activity recognition [21, 190], social relationship clas-
sification [142] and transportation mode detection [210]). More complex algorithms could
be selected if hardware with more capabilities is available.

The algorithms have been taken from Weka version 3.7.13 [131]. The list of parameters
used for the Decision Trees is reported in Appendix A. For the performance metrics,
we used the average F1-score [46] and the average area under the Receiver Operating
Characteristic (ROC) curve [83].

3.4.7 Results

Before analysing the classification results we will report the metadata about the study.
During the 4-week long study we lost 10.8% of the total amount of data that we were
expecting to collect due to failures. These failures were due to di↵erent causes: device
malfunctions, devices out of battery, devices forgotten at home or lost (two participants
reported that they lost their devices due to problems with the plastic box). Malfunctions
were identified by the fact that the data we were expecting to collect from the devices
(one file per day) was completely missing in some cases. In these situations the devices
had to be replaced (3 devices out of 25 have been replaced during the study). Devices
out of battery and forgotten at home actually fall in the same category which represent a
situation where the participants forgot to re-charge the device at the end of the working
day. By logging the battery voltage every 30 minutes, both during charging and battery-
powered operation, we could identify when a device was let deplete all its power and then
charged again after some time (usually the next working day). 30% of the data did not
contain any contacts because, although the devices worked properly, they were not in use
but they were charging at the charging station5. This could be due to the fact that the
working style is very dynamic and people are often outside to visit construction sites and
forget to wear the device.

We now present the classification results for the raw data collected with our prototype
and we show the results that would have been achieved by the two o↵-the-shelf wearable
platforms. We do this through down-sampling of the raw data to match the wearable
devices’ rates. We consider two down-sampling strategies: 1) where we uniformly remove
data points to match the data rates achievable by the commercial watches and 2) where
we emulate the watches’ scan behaviour by keeping only the first 500ms of data every 5
seconds and then applying uniform down-sample, if necessary, to ensure that the resulting

5This situation was also detected thanks to the battery voltage logging every 30 minutes.
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Table 3.5: Parameter configurations and expected battery life for the two considered wear-
able platforms and for our wearable prototype when the Broadcaster and Observer role are
enabled at the same time.

Configuration
Name

Advertising
Interval
(ms)

Scan
Interval
(ms)

Scan
Window
(ms)

Average
Receive Rate

(Hz)

Expected
Battery Life

(Hours)

Our Wearable Prototype 100 100 20 2.15 19.33
Android Wear
Low Power

1280 5000 500 0.08 13.74

Tizen
Low Latency

150 5000 500 0.62 14.95

Tizen
Balanced

500 5000 500 0.19 16.36

Tizen
Low Power

1000 5000 500 0.1 17.02

average receive rate matches the one of the di↵erent watches’ configurations.

In the following we present results achieved with 10-fold cross validation and dyad inde-
pendent training and testing when we over-sample the minority class in our dataset as
described in Section 3.4.6. For completeness, in Appendix B we provide also the results
when we train a model with 10-fold cross validation without any oversampling or with
down-sampling of the majority class.

Table 3.5 summarises the di↵erent configurations identified for the two platforms and the
configuration we used on our device. It also reports the expected battery life achievable
by each device when the Broadcaster and Observer role are enabled simultaneously. We
decided not to include the configurations Android Wear Low Latency and Android Wear
Balanced because, as observed in Section 3.3.1, they present an excessive power consump-
tion for our target environment.

Our Wearable Prototype

We begin by looking at the results achieved by our wearable prototype in Table 3.6 for
10-fold cross validation and Table 3.7 for dyad-independent training and test sets. Firstly,
we notice that, in both cases, when increasing the window size the F1 measure and the
area under the ROC increase. This is because the RSS data has high-frequency noise which
is increasingly attenuated by computing the features over a larger number of data points.
However, this impacts the granularity of the detected proximity events. For example,
when using a 10-second window it is impossible to say if the proximity event was 5 or
8 seconds long. From Table 3.6 we notice that already with a 10-second window our
prototype achieves an F1 score of 0.97 with very little (or no) improvement for larger
windows Instead the model evaluated on the dyad-independent test set (Table 3.7) shows
lower F1 and ROC scores especially for larger windows. This is explained by the fact that
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Table 3.6: Average F1 Measure and average area under ROC curve (AUC) for di↵erent
windows when the raw data is down-sampled uniformly (without emulation of commercial
device behaviour) applying 10-fold cross validation on the entire dataset. The configuration
names refer to Table 3.5. The data from our wearable prototype has not been post-
processed.

Window
Size (s)

Our Wearable
Prototype

Tizen Low
Latency

Tizen
Balanced

Tizen
Low Power

Android Wear
Low Power

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

1 0.79 0.85 0.67 0.71 0.54 0.60 0.46 0.55 0.44 0.54
5 0.94 0.97 0.90 0.94 0.81 0.85 0.72 0.77 0.70 0.73
10 0.97 0.98 0.96 0.98 0.91 0.95 0.84 0.90 0.81 0.86
20 0.97 0.98 0.98 0.98 0.97 0.98 0.95 0.97 0.93 0.96
30 0.97 0.98 0.98 0.98 0.97 0.98 0.97 0.98 0.97 0.98
40 0.97 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.97 0.98
50 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
60 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98

Table 3.7: Average F1 Measure and average area under ROC curve (AUC) for di↵erent
windows evaluated on the dyad-independent test set. The raw data is down-sampled
uniformly (without emulation of commercial device behaviour). The configuration names
refer to Table 3.5. The data from our wearable prototype has not been post-processed.

Window
Size (s)

Our Wearable
Prototype

Tizen Low
Latency

Tizen
Balanced

Tizen
Low Power

Android Wear
Low Power

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

1 0.79 0.68 0.79 0.63 0.78 0.56 0.76 0.54 0.76 0.52
5 0.85 0.84 0.85 0.77 0.83 0.74 0.82 0.68 0.82 0.66
10 0.86 0.87 0.85 0.81 0.86 0.81 0.84 0.75 0.84 0.75
20 0.87 0.85 0.88 0.84 0.86 0.84 0.87 0.83 0.85 0.81
30 0.86 0.88 0.86 0.87 0.88 0.85 0.86 0.85 0.86 0.82
40 0.86 0.85 0.86 0.83 0.88 0.86 0.86 0.81 0.88 0.87
50 0.90 0.91 0.88 0.87 0.88 0.91 0.84 0.84 0.84 0.87
60 0.92 0.91 0.90 0.91 0.85 0.78 0.86 0.87 0.86 0.87

this model is evaluated on data not seen at train time and therefore it is more di�cult to
correctly classify. While in the 10-fold cross validation scheme data from the same dyad
might be present in both training and test set when the folds are created. Considering only
results from our wearable prototype, which include all data collected from the deployment,
we notice that the performance di↵erence between the model evaluated with 10-fold cross
validation and the one with the dyad independent test set is fairly limited and it ranges
between 0.06 and 0.11 for the F1 score and between 0.07 and 0.17 for the ROC AUC
(comparing Table 3.6 and 3.7).

To confirm that our devices can capture social dynamics accurately, we compared the
devices’ data with other datasets collected with a similar radio technology (i.e., RFID).
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Figure 3.15: Probability Distribution Function of contact durations from our study and
from two other studies that employed RFID tags: a conference (HT09) [92] and a workplace
(InVS) [71]. Our data has been aggregated with a 20-second window given that the same
resolution is used in the other two datasets.

We used open datasets available online from previous works and we plot (Figure 3.15) the
Probability Distribution Function of contact durations for two datasets (HT09 and InVS)
in relation to our dataset (Our Data). The two datasets have been collected with the
Sociopatterns tags [44] and they are discussed by Isella et al. (HT09, conference) [92] and
by Génois et al. (InVS, workspace) [71]. The technology used in these tags (i.e., RFID) is
comparable to the BLE we used in our platform: this makes the comparison with our data
relevant. As it is possible to see from Figure 3.15, the data collected during our study has
a very similar contact duration distribution to the data collected in other settings. While
this confirms the goodness of our data, we highlight that our work on agile workplace
presented in Chapter 4 o↵ers a variety of novel and additional findings around how groups
use the space over time and how the groups continue to interact despite hotdesking. This
goes beyond the aggregate contact duration distribution shown in Figure 3.15.

Commercial Devices

To asses the proximity detection capability of the commercial devices we considered, we
post-processed the data collected with our wearable prototype by removing data points
uniformly to match the watches’ data rates. Tables 3.6 and 3.7 report their classification
results. Firstly, we notice that similarly to what we observed with our custom device,
when increasing the window size the metric scores increase due to the attenuation of high-
frequency noise in the RSS values. However, given that the commercial devices have a
lower average receive rate compared to our prototype (Table 3.5), they require a longer
window to reach the highest F1 and ROC scores. For example, for the configuration
Tizen Low Latency, characterised by an average receive rate of 0.62Hz, the best scores
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Figure 3.16: Performance metrics comparison for di↵erent window sizes when the raw data
is down-sampled uniformly (without emulation of commercial device behaviour) applying
10-fold cross validation on the entire dataset (data from Table 3.6). The data from our
wearable prototype has not been post-processed.

are first achieved with a 20-second window while for the configuration Android Wear Low
Power (0.08Hz average receive rate) a 50-second window is required. This is because
even if Android Wear o↵ers the same Tizen’s duty cycle for the scan operation, its large
Advertising Interval does not allow us to obtain a receive rate that is high enough. This
results in the need to use larger window sizes to improve the accuracy. Figure 3.16 shows
how the performance metrics increase when larger windows are used.

Now we consider a di↵erent way to post-process the data which is more similar to how
the watches perform the scan operation. Watches in fact scan every 5 seconds and just
for 500ms, therefore in this case we emulate this behaviour by keeping the first 500ms
of data every 5 seconds and then making sure that the average receive rate matches the
one achievable with each configuration applying uniform down-sampling if necessary. In
this case we could not consider the configuration Tizen Low Latency. When choosing the
deployment parameters for our device we had to find the best compromise between device
lifetime and data collection rate in order to ensure a realistic scenario were people would
wear the device for at least 8 hours a day. This resulted in a rate (2.15Hz) that prevented
us from post-processing the data to match the Tizen Low Latency configuration. Tizen
version 2.3.1, which was the first version to support BLE advertisements, was released after
our deployment, therefore we could not account for its receive and transmit rates when
configuring our device for the deployment.

From Table 3.8, which reports the results for the 10-fold cross validation evaluation, we
notice that as the window size increases the metric scores increase and approximates the
one of our custom device. This is because with larger windows the fact that the watch scans
with a low duty cycle is mitigated. Indeed, with a larger window, data from subsequent



58 3.4. WORKPLACE DEPLOYMENT

Table 3.8: Average F1 Measure and average area under ROC curve (AUC) for di↵erent
windows when the raw data is post-processed to emulate the watches’ scan behaviour (scan
for 500ms every 5 seconds) applying 10-fold cross validation on the entire dataset. The
configuration names refer to Table 3.5. The data from our wearable prototype has not
been post-processed.

Window
Size (s)

Our Wearable
Prototype

Tizen
Balanced

Tizen
Low Power

Android Wear
Low Power

F1 AUC F1 AUC F1 AUC F1 AUC

1 0.79 0.85 0.43 0.57 0.41 0.53 0.41 0.53
5 0.94 0.97 0.70 0.83 0.65 0.68 0.65 0.68
10 0.97 0.98 0.82 0.93 0.76 0.81 0.77 0.81
20 0.97 0.98 0.94 0.97 0.89 0.94 0.89 0.94
30 0.97 0.99 0.97 0.98 0.96 0.97 0.96 0.98
40 0.97 0.99 0.97 0.98 0.97 0.98 0.97 0.98
50 0.98 0.99 0.97 0.99 0.97 0.98 0.97 0.98
60 0.98 0.99 0.97 0.99 0.97 0.99 0.98 0.99

Table 3.9: Average F1 Measure and average area under ROC curve (AUC) for di↵erent
windows evaluated on the dyad-independent test set. The raw data is post-processed to
emulate the watches’ scan behaviour (scan for 500ms every 5 seconds). The configuration
names refer to Table 3.5. The data from our wearable prototype has not been post-
processed.

Window
Size (s)

Our Wearable
Prototype

Tizen
Balanced

Tizen
Low Power

Android Wear
Low Power

F1 AUC F1 AUC F1 AUC F1 AUC

1 0.79 0.68 0.76 0.52 0.76 0.52 0.75 0.51
5 0.85 0.84 0.82 0.65 0.82 0.63 0.81 0.62
10 0.86 0.87 0.83 0.76 0.82 0.70 0.83 0.68
20 0.87 0.85 0.83 0.82 0.85 0.78 0.84 0.80
30 0.86 0.88 0.86 0.85 0.85 0.82 0.85 0.80
40 0.86 0.85 0.87 0.85 0.86 0.84 0.85 0.84
50 0.90 0.91 0.85 0.86 0.83 0.84 0.85 0.83
60 0.92 0.91 0.85 0.86 0.86 0.87 0.88 0.88

scans is considered in the same window and this increases the accuracy at the expense of
granularity. Instead, with shorter windows the accuracy declines drastically because there
might be more windows with no data at all (between two consecutive scans for example)
which might be misclassified.

When we compare results obtained with dyad-independent training and test sets for both
uniform down-sampling (Table 3.7) and with the emulation of watches’ scan behaviour
(Table 3.9), we again observe an overall decrease in performance, with limited di↵erence
in metric scores, as noticed for our wearable prototype in the previous section.
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3.5 Discussion

The study has confirmed that BLE is an appropriate technology for the automatic detection
of individuals’ proximity in the workplace. Our device is able to reach a considerable F1
score (0.97) with a relatively small time window of 10 seconds when evaluated with 10-
fold cross validation and 0.86 when evaluated on dyad-independent data with the same
aggregation window. The lower performance of the model evaluated on dyad-independent
data is expected because in this case the model is tested on data not seen at train time and
therefore it is more di�cult to classify. This model potentially generalises better to unseen
data compared to the model trained with 10-fold cross validation where dyad-independence
between train and test set is not guaranteed. However, this might not necessarily make the
model robust to new environments given that systems which rely on radio signals typically
need to be re-trained when the surrounding environment changes significantly [64, 62]. This
is because radio signals are heavily a↵ected by the environment conditions. For example,
signals in one context (e.g., large open space) might have very di↵erent characteristics
compared to another setting (e.g., narrow space with cement or metal walls).

While technologies like the Sociometric badges [47] or Opo [87], provide more directional
information about face-to-face contacts compared to pure RF systems, they might be more
sensitive to false negatives in cases where people are side-by-side or in large groups with
more distance between the participants. Accurate social interaction monitoring is still a
hard problem especially because there are di↵erent aspects that can be captured (e.g.,
proximity, distance, angle of contact, communication and content).

In the following sections we discuss the implications of our work for manufacturers of
commercial wearables and Operating System designers, we discuss the challenges we faced
during our deployment and we report the feedback we received from our participants re-
garding the device we deployed and the way the study was conducted.

3.5.1 Implications for commercial device manufacturers

Our work explores how current commercial wrist-worn devices would perform in such de-
ployments. We highlight that the concurrent use of Broadcaster and Observer roles on
these devices does not a↵ect their usability, except for an increased battery consumption.
Even when advertising and scanning periodically both watches allow the same functional-
ities they are meant for: receiving notifications from the phone, use vocal commands, etc..
Advertising and scanning are operations rarely used on a watch: the first one is used when
it needs to be connected to a phone while the second one when the user wants to connect
an accessory to the watch (e.g. headphones). In normal operation the watch is connected
to the phone and does not perform any of the two. This is probably one of the reasons
why the OSs give only limited options to control advertising and scan. In general, the
OS vendors tend to be conservative in terms of energy consumption in order to provide a
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satisfiable experience to the end-users. For this reason they limit the configurable options
to the ones that least impact the battery consumption. This is the case for Tizen OS which
permits the developer to set di↵erent Advertising Intervals but o↵ers no options for the
scan operation. Android Wear instead allows us to scan quite aggressively in Low Latency
and Balanced modes. However, we showed in Section 3.3.1 that these settings result in
excessive power consumption which would make an o�ce deployment infeasible.

The Samsung Gear S2 could well support proximity-based applications because it allows
proximity detection with an F1 score of around 0.90 with a 5-second window, when the
data is down-sampled uniformly (Table 3.6). By contrast, Android Wear would require an
increased transmit rate or a bigger scan window. In fact, the 1280ms Advertising Interval
is too large to achieve a useful receive rate. Our results show that with an Advertising
Interval of around 100/200ms an Android Wear watch would also be able to capture short-
lived proximity events as Tizen does. However, the Android Wear watch we tested su↵ers
from high power consumption which should also be addressed in order to make longitudinal
studies with this platform feasible.

By comparing Tables 3.6 and 3.8 one notes that by having more uniform data it slightly
improves the granularity and accuracy, even when using the relatively low receive rates
achievable by the watches. In fact, when the raw data has been post-processed with uni-
form down-sampling (Table 3.6), the accuracy is higher even for smaller windows compared
to when the data is post-processed to emulate the current operation of the watches (Ta-
ble 3.8). This suggests that OS vendors could improve the proximity detection on wearables
(although only to a limted extent) by allowing their devices to scan on a more regular basis.
At the moment in fact, the few seconds of gap with no data, due to the scan being per-
formed every 5 seconds, is detrimental to detection accuracy. The OS should allow more
frequent scanning but for shorter time in order to obtain more uniform data while keeping
the current rate and similar power consumption. We also note that giving more control to
the developer on the Advertising Interval setting would not be counter-productive in terms
of end-user experience: this parameter is the one that least a↵ects the power consumption
of the wearable device. Another factor to consider is the context where this technology
has to be deployed. The o�ce we used for our evaluation represents a very dynamic en-
vironment where people have many short interactions throughout the day. This means
the system would require small processing windows and higher receive rates to capture all
the proximity events. On the other hand, in an environment with a slower pace, like for
example a research lab, the interaction events are likely to be longer and less frequent,
therefore a higher receive rate would not give significant returns.

The Transmission Power instead is a parameter that is non-adjustable on both tested
watches (at least Android Wear o↵ers the API so we can speculate that it may be enabled
in future releases). This could be a limiting factor for proximity-based applications. Too
high power would require filtering on the RSS values to remove data corresponding to
devices that are too far away or could create collision problems in crowded environments,
while too low power could result in missing contacts. Again, since this parameter does not
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a↵ect the battery life dramatically, allowing the developer to adjust it would not impact
the user experience excessively.

3.5.2 Deployment Challenges

In this section, we briefly discuss the three main challenges we tried to address while
designing the wearable device and we provide considerations about large deployments.
The challenges are related to the form factor of the device and the measures we took to
guarantee its correct operation.

Wearability and comfort

One of the main challenges faced by this kind of deployments is participation. After an
initial period of excitement, participants tend to stop wearing the device, especially if it is
obtrusive. To address this issue we tried to make our device as comfortable as possible. Our
objective was to keep it small and discreet in order to maximise participation. However,
this limited the size of the battery we could use and therefore the maximum achievable
battery life. We tuned the BLE parameters to obtain an expected battery life of around 20
hours. Although this decision required to recharge the device every day, it allowed us to
gather fine grained proximity and location data, which was useful to study the performance
of BLE for proximity detection and to analyse social dynamics in the o�ce (Chapter 4).
Additionally, to remind people to wear the device while in the o�ce we also sent emails
every two days to all participants.

Timekeeping

In order to timestamp all the data logged on the SD card, the device maintains an internal
clock. The devices were programmed to maintain the current real time with a resolution
of 250ms. The correct time was provided by two Android phones twice a day in order
to compensate for drifts in the devices’ internal clock. Additionally, every time a device
resets, it advertises that it does not have the correct time (see next section for more
details). On receiving these advertisements, the phones send a synchronization beacon to
allow the device to timestamp the data correctly. The two Android phones where plugged
into wall outlets and therefore could operate continuously. When post-processing the data
after the deployment, the synchronization beacons received from the phones were used to
compensate for the inevitable drifts and re-align the timestamps to the correct real times.
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Device diagnostic

To make sure all the devices worked properly, we implemented two simple diagnostic fea-
tures in our devices. In the BLE advertisement packets transmitted by the wearable
devices, we included one bit to signal problems with the time keeping and one bit for
problems regarding the SD card. These bits were checked by two Android phones (the
same ones responsible to send time synchronization beacons) that scanned continuously to
detect these anomalies.

The first bit is set to 1 when the device does not have the correct real time. This happens
every time a device resets, in case for example of an internal error or when the battery is
completely drained and then re-charged. In this case, the Android phones re-transmit a
time synchronization beacon.

The second bit is used to inform that the device is not able to write data to the SD card.
This can happen due to errors in the code or because the SD card is faulty or it has been
pulled out of its socket. We discovered that for simple errors a reset of the device would
solve the problem. Therefore, we implemented a way to remotely reset each device. The
Android phone that detects the problem connects to the wearable device and resets it by
writing a value into a Bluetooth GATT characteristic. If the same device reports a problem
with the SD card more than 10 times, it is an indication of a major problem with the SD
card or with the wearable device itself. When this happens, the Android phone reports it
to the researchers by sending an e-mail in order for them to replace the device.

This diagnostic mechanism has been proven useful during the deployment where 3 devices
have been reported to have major problems and have been replaced with minimal loss of
data.

Large deployments considerations

We have shown how sensing could be used to gather spatio-temporal information in the
workplace. This information can easily create the foundation for ubiquitous applications.
However, the applications of this technology are definitely not limited only to workplaces,
other settings, such as large events, could also benefit from it.

Large deployments pose other challenges and issues. First of all, to cover a large o�ce
space, possibly split over multiple buildings, more localisation static beacons have to be
deployed and maintained. One possibility in this situation would be to use the existing
WiFi and BLE infrastructure to locate participants and deploy dedicated beacons only
in specific areas where more resolution is necessary or where WiFi/BLE coverage is not
optimal. In terms of mobile devices, one potential issue regards the possibility of radio
signals collisions that might prevent correct detection when many devices are in range.
However, this is likely to be a real problem only during large events where many employees
would attend and can be avoided by correctly tuning the transmission frequency to reduce
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Figure 3.17: Agreement with the statements “The device was comfortable to wear all day”
(a) and “The device was easy to use (recharge, put it on, ...)” (b).

collision probability. More realistic is the challenge of adoption. In fact, the burden
of carrying an additional device might be too big for employees and this could result in
limited adoption inside the company. In case a dedicated device has to be used, conceivably
because special sensors have to be employed, it is important to pay particular attention
to its comfort and ease of use, especially if the study is planned to run for a long period.
In particular, the battery life is one of the most important aspects. The device should
be built and tuned to allow the data collection at a reasonable rate without disturbing
the user with the need for frequent charges. In alternative, it would be possible to use
devices that people already carry with them (e.g. smartphones and smartwatches) even if
this might result in limited data resolution and accuracy. Additionally, if smartphones are
used another aspect to consider is the fact that people do not always carry their phone
when indoor, therefore alternative strategies have to be devised (e.g. use the smartwatch
when the phone is not with the person). Moreover, if long deployments are planned it
is crucial to engage the participants with the study and data collection by, for example,
providing statistics about the study or make the devices useful beyond data collection (e.g.
the device could double as access card). This should motivate people to use the device
resulting in higher quality data.

3.5.3 Participant feedback

To examine how our devices were perceived by the participants and how their suggestions
might be used to improve the current version we asked our participants to complete an
online survey (available in Appendix C) with closed and open-ended questions. We received
16 responses. We also interviewed seven participants who were asked to comment freely on
their experience with the device and the deployment. In total we received feedback from
20 di↵erent participants.

Duration of the Deployment. The majority of the responses (68.8%) indicated that the
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Figure 3.18: Agreement with the statement “I am concerned that the device can threaten
my privacy” (a) and responses to the question “Which aspect of the device makes you
more concerned?” (b).

device was in use for half of the intended period (four weeks) or more. However, in 62.5%
of the responses and during most of the interviews it was declared that the deployment
duration was too long. Most of the participants felt that a period of one or two weeks
would be more suitable and some of them asked for some sort of incentive to remember to
wear the device (e.g. gamification).

Wearable Device Comfort. The wearable device was not perceived as completely comfort-
able. In fact, when we asked the participants to rate their agreement with the statement
“The device was comfortable to wear all day” from 1 (Strongly Disagree) to 5 (Strongly
Agree) the average of reported responses was 3.13 (� = 0.96). Figure 3.17(a) reports de-
tailed data for each level. In terms of ease of use the participants showed a little higher
scores (µ = 3.25 and � = 0.77) when asked to rate their agreement with the statement
“The device was easy to use (recharge, put it on, ...)” (Figure 3.17(b)). The most com-
mon complaint regarded the plastic box that contained the electronic components. In
fact, it was detaching from the velcro band quite often and this caused discomfort for the
participants. Two devices were lost due to this issue. Additionally the devices were not
equipped with a status LED so the participants were not sure if the device was working
or charging correctly. Some of the participants (n = 6) reported that the velcro band was
not comfortable and thought it should be softer (e.g. rubber band).

In general, the participants were not bothered by the fact that the device needed to be
recharged every day but some of them (n = 3) asked for the possibility of using the device
without the need to re-charge it for one or two weeks.

Privacy Concerns. From a privacy point of view, our participants did not appear to be
concerned with the data collected by our device. We asked them to rate their level of
agreement with the statement “I am concerned that the device can threaten my privacy’ ’
in a scale from 1 (Strongly Disagree) to 5 (Strongly Agree) and the average of the reported
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responses was 2.06 (� = 1). Detailed data is reported in Figure 3.18(a). When we asked
which one of the three kinds of data collected makes them more concerned (i.e. proximity,
location or activity), only two responses reported concern, one with the activity detection
and the other one with the location detection. The other responses reported no concern
(Figure 3.18(b)).

Although this study did not raise any particular concern in the participants, it is known
from past research that privacy concerns in the workplace are also related to the work-
ing environment [18]. This suggests the integration in our device of privacy protection
techniques, such as the possibility for the participants to stop the data collection at any
time.

3.5.4 Limitations

Limited Sample of Commercial Devices. In our study of BLE capabilities on commercial
devices we examined only two operating systems and two particular devices. However,
we do not expect substantial di↵erences across devices when the same operating system
is used because it is likely that the operating system would uniform hardware variations
and expose the same functionalities to the developer. Smartphones instead might allow
for higher rates of the transmission and scan of BLE packets given their larger energy
budget due to bigger batteries. The two operating systems we evaluated, Android Wear
and Tizen Wearable, represent the two largest systems, by market share, after watchOS
from Apple [14]. The evaluation of Apple hardware and software would complement our
analysis. However we are aware of severe limitations in the handling of beacon transmission
and scan while the application is in background which would likely make this kind of study
impossible. Other versions of the operating systems we examined might o↵er di↵erent
functionalities in the future following advancements in hardware and software.

Technological Accuracy. We acknowledge that the particular technology we used for this
work (BLE wearable devices) is not capable of providing an exact detection of social con-
tacts. Our devices include a larger range of contacts, compared for example to participant
observations, because they record every time people are in close physical proximity even if
they are not engaged in a conversation. Our findings (including the ones in the next chap-
ter) suggest that although it does not capture the exact type of interaction (i.e., it is not
possible to know if two people were actually talking or not), it provides usable information
to aid the study of behavioural patterns and dynamics in the workplace.

3.6 Conclusion

This chapter highlighted the feasibility of workplace interaction studies using commercial
BLE wrist-worn devices. It o↵ered a detailed analysis of BLE parameters that play a
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central role in proximity detection through a prototype platform on which BLE could be
used without constraints. This allowed us to conduct the first analysis of BLE capabilities
and limitations on commercial wearable devices (Android Wear and Tizen). We showed
how the parameters are interdependent, how their combination could be used to collect
data at the desired rate and their corresponding power utilisation.

We conducted an extensive experimental validation with lab experiments and a longitudinal
user study with 25 participants in an o�ce environment. We confirmed the BLE suitability
for accurate proximity monitoring with 0.97 F1 score and 0.98 ROC AUC at 10 seconds
granularity. Ground truth observation for around 19 hours was performed to support our
evaluation. We hope this study can o↵er guidance to developers and hardware producers
regarding their APIs and specifications.

While here we focused on data gathering options and their issues, we have yet to analyse
what useful knowledge could be extracted from the data and how this could support modern
companies. This is the topic of the next chapter.



Chapter 4

Detecting emerging Activity-Based
Working traits through wearable
technology

4.1 Introduction

In the previous chapter we have analysed the potential of commercial wearables to collect
data about social dynamics in an o�ce environment. We focused on the data gathering
without considering which insights could be generated from its analysis. In this chapter
we explore how we can relate social contact with the design of o�ce spaces through the
data analysis of our deployment. The common facet of studies looking at how space
layout a↵ects human interaction in the workplace is that they considered traditional o�ces
where employees have assigned desks and static routines. However, recently, several design
principles have been emerging with the objective of realizing dynamic and agile working
environments that can better support knowledge workers.

The Activity-Based Working (ABW) concept is one of these principles. It aims at designing
the o�ce architecture based on the activities the employees have to perform daily [13]. At
the foundation of ABW there is the freedom for employees to chose where and when they
work. This translates into absence of allocated desks with the assumption that employees
will move within the o�ce by choosing the best functional work setting for the tasks to
complete and that best matches their preferences, thus improving productivity. As a side
e↵ect, ABW generally reduces costs due to a lower requirement on total floor space [53].
It is also likely to increase communication between groups and foster knowledge sharing
and collaboration given the mobility that derives from having unallocated desks. Even
if ABW is not a new concept, its adoption has recently been increasing. However its
benefits are not yet well understood [13, 213]. Some works have analysed ABW o�ces
using traditional ethnographic methods of participant observations and surveys to study

67
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productivity, health and satisfaction [140, 13, 121] or have provided a theoretical model of
the benefits and risks of ABW [213]. We provide an overview of Activity-Based working
in Section 2.3.1.

Observing agile working through traditional methods (such as surveys, or participant ob-
servations) requires considerable e↵ort, given the high mobility and dynamics of the setting.
This is evidenced by the limited number of existing research studies on ABW o�ces. A
typical approach is, for instance, to investigate patterns of occupancy and space usage [179],
which are then averaged across teams. With individuals enjoying free choice of where to
work for any given point in time, occupancy patterns of teams would be almost impossible
to track. Another relevant research insight - the distance dependency of frequent interac-
tion [12, 175, 176] would be impossible to repeat in an ABW environment with traditional
research methods, since fixed desk locations in traditional o�ces are typically used to cal-
culate distances between co-workers. In contrast, non-assigned desks lead to constantly
changing patterns of proximity and co-presence, since members of sta↵ sit next to di↵erent
people all the time.

In this chapter we focus on and analyse two core aspects of ABW, flexible use of o�ce space
and collaboration opportunities, relying on data automatically collected through wearable
devices as described in Chapter 3. The work, which exploits the advantages of technology in
automating the collection of fine grained temporal data of a number of individuals, shows
how our methodology is able to detect behavioural traits and relate them to ABW core
principles. We exploited the solution based on Bluetooth Low Energy (BLE) and 3-axis
accelerometer described in Chapter 3, which was deployed in a company o�ce. We captured
a data set of close proximity contacts, location traces and physical activity of 25 employees
for a period of 4 weeks. The o�ce had been intentionally designed with ABW principles in
mind and o↵ers the employees several opportunities for adopting flexible working practices.
This study allowed us to investigate social ties in relationship to the hierarchy and roles
of employees and their use of o�ce space in a specific kind of work environment that has
not been thoroughly studied before.

The specific contributions that this chapter o↵ers are as follows:

• We show how, in this company, interactions easily cross team boundaries, in line
with ABW principles. We also find that a good amount of these inter-team contacts
happen in the kitchen and in circulation areas suggesting a more serendipitous nature
than the ones happening at the workstations. However, the mix among di↵erent lay-
ers of the organizational hierarchy is not as strong, with more contacts among people
in the lower levels. It could be hypothesised that ABW concepts might facilitate
lateral communication (compared with reports on non ABW studies).

• We show how the absence of assigned desks, at the core of ABW and flexible o�ce
spaces, relates to a good usage of di↵erent spaces in the building. This however
emerges when we consider a larger temporal scale of an average working week while
it is less prevalent within a day.
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• We further find relevant spatial and locational e↵ects in the data. Spatial preferences
arise from strong contact ties: pairs of individuals connected with a strong tie (defined
as a higher than average number of contacts taking place in locations away from
desks) are more likely to choose to sit at the same workbench. This points towards a
possible mismatch between ABW principles and the actual use of space where people
seem to choose working spaces based on the presence of other colleagues at the same
location rather than exclusively based on the task they have to complete. However,
this might also be related to the nature of work done as team a�liation played a
strong role in this.

• We discover di↵erences in the temporal contact patterns between the company we
studied and other more traditional o�ces by comparing our data set with two other
ones. We discover how our participants have on average shorter contacts and how
the network has the potential to better enable quicker communication of information
(both in times and hops) compared with traditional o�ces. A potential e↵ect of the
ABW principles adopted.

In more general terms, we show that our methodology allows to study the e↵ects of ABW
principles applied in o�ces. This work goes one step further than previous works on
ABW [91] by analysing not only occupancy data but also contacts between participants
and by showing the potential of technology in gathering contact data in a challenging envi-
ronment where a traditional observation modality would struggle. The comparative anal-
ysis with more traditional o�ces also contributes to the understanding of the behavioural
characteristics emerging from the application of ABW principles.

Chapter Outline. Section 4.2 describes the dataset used in our analysis and participants’
self assessment of their mobility inside the o�ce. In Section 4.3 we detail our analysis of
the ABW principles and Section 4.4 discusses our findings and their implications and
Section 4.5 concludes the chapter.

4.2 Dataset description

The dataset we analyse in this chapter is the same one described in Chapter 3, Section 3.4.
However, for this analysis we decided to aggregate the data with a relatively long time
window (1 minute) with the aim of focusing on potentially more meaningful contacts with-
out losing the quick dynamics that might characterise the company. We applied the same
techniques described in Section 3.4.4 and 3.4.5 to extract location traces and proximity
contacts with a 1-minute aggregation window. For the following analysis we used the model
evaluated with 10-fold cross validation which achieved an F1 score of 0.98 as reported in
Chapter 3, Table 3.6.

In line with what was reported by the participants, who felt the study was too long (Sec-
tion 3.5), we noticed that the devices have been mostly used during the first two weeks of
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Table 4.1: Mobility profiles we asked our participants to identify with. Source: Leesman’s
study 2016 [121].

Profile
Name

Mobility Profile

Profile 1
I perform most/all of my activities at a single work setting
and rarely use other locations within the o�ce.

Profile 2
I perform the majority of my activities at a single work setting
but also use other locations within the o�ce.

Profile 3
I perform some of my activities at a single work setting
but often use other locations within the o�ce.

Profile 4
I use multiple work settings
and rarely base myself at a single location within the o�ce.
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Figure 4.1: Percentage of participants identified with each mobility profile (left) and agree-
ment with the statement “I believe I move more at Spacelab than in other companies I
worked” (right).

the study. Therefore we decided to consider only those two weeks for our analysis. From
the collected raw data for the first two weeks we extracted 2190 proximity contacts with a
temporal resolution of one minute.

As mentioned earlier, the company adopts ABW principles and has a very dynamic and
flexible working style. To understand how the participants perceived the mobility level of
the workplace we administered a survey to the company employees where we asked them
to identify their mobility profile with one of the four used by the Leesman’s study [121]
of workplaces that adopt Activity-Based Working (reported in Table 4.1). We received
21 responses and we found that 38% of the participants identify themselves with the two
profiles that describe more mobility (Profiles 3 and 4) and only 10% identified with Profile
1. Instead, in Leesman’s study only 27% of the employees identified themselves with Profile
3 and 4 and 32% in Profile 1. This indicates that the working style in the company might be
more dynamic compared to other more traditional o�ces. We also asked our participants
to rate their agreement with the statement “I believe I move more at Spacelab than in
other companies I’ve worked at” on a likert scale from 1 to 5, and more than 60% of
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the participants responded with “Agree” or “Strongly Agree”, showing that this company
might present di↵erent dynamics than other o�ces. Figure 4.1 reports the data collected
in both parts of the survey.

4.3 Analysis of ABW principles impact

4.3.1 Organizational structure and interactions

In this section we study how the organizational structure of the company relates to the
contact patterns of the employees to identify the ABW impact. In particular, we examine
two aspects of the organization: the horizontal structure where people are arranged into
teams and the hierarchical vertical structure of who reports to whom. Previous work has
highlighted the importance of interactions between members of di↵erent teams as a source
of new ideas and a way to increase productivity [11, 110, 36, 161] and ABW principles are
certainly based around these aims.

Beginning with the analysis of the horizontal structure, Figure 4.2(a) shows a netgraph
reporting the normalized number of contacts for each pair of participants aggregated over
the entire duration of the study. Contacts have been normalized by the number of days
both participants were in the o�ce at the same time (overlaid circles) in order to account
for the fact that some people were in the o�ce more than others. The ordering of the
participants on the axis is such that adjacent participants belong to the same team. With
this ordering, the contacts along the diagonal from bottom-left to top-right represent intra-
team interactions. From Figure 4.2(a) we observe that di↵erent teams have a good amount
of contacts with one another even if some of the strongest contacts are between members
of the same team.

Netgraphs are a visualisation technique introduced by Varghese and Allen to represent
communication networks [72]. They are similar to adjacency matrices and are typically
used as an analysis tool in organisational and architectural studies [175, 178, 12]. Brown et
al. also used them to analyse proximity contact patterns measured with wearable tags [33].
The power and versatility of netgraphs consists in rearranging the individuals along the
two axis based on interesting variables (e.g., role in the organization, project a�liation or
demographic information). This helps in identifying structures and patterns in the contact
network through an easily interpretable visualisation1.

To better quantify the relation between inter and intra-team contacts we computed the
number of these contacts for each team normalizing the results by the sizes of the groups
involved to account for the number of possible pairs. Figure 4.3 shows the results. The
intra-team contacts are obviously higher, as expected when people work together, but we

1Thanks to their versatility we use again netgaphs in Section 4.3.3 to study how contact patters relates
to the work location chosen by the participants and their team a�liation.
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(a) Participants sorted by the team they belong to. (b) Participants sorted by their level in the organi-
zational structure.

Figure 4.2: Normalized number of contacts for each pair of participants for the entire study.
Each cell represents the average number of contacts per day. The horizontal and vertical lines
separate the participants in the di↵erent groups. The size of the circles overlaid represents the
number of days that both participants in each pair were in the o�ce at the same time.

observe that the number of inter-team contacts is similar for all groups. We verified the
similarity between the inter-team contacts for the four groups with the TOST Equivalence
procedure using the Wilcoxon Rank-Sum Test [188, 212]. We found that the similarity
is significant (p-value < 0.05) within [-18, 18] equivalence bounds for all pairs of groups
except for Architecture and Workplace which is significant within [-25, 25] and Architecture
and Admin within [-22, 22] equivalence bounds. This workplace shows a large number of
opportunities for interaction across teams (proximity contacts) which could be a result of
the implementation of ABW principles. Figure 4.2(a) appears almost randomly distributed,
if compared to examples of traditional open-plan workspaces [175], where team clustering
is much more prevalent.

To gain an insight about the nature of the inter-team contacts we looked at the total number
of contacts happening at each location. We discovered that while most of the inter-team
contacts happen at Workstation #1 (38% of the contacts), the second and fourth locations
for number of inter-team contacts are Circulation and Kitchen, respectively, with 28% and
8% of the contacts. The open space workstations are the main locations where work is
done in the company hence it is expected to see a high number of inter-team contacts.
However, the contacts in Circulation and Kitchen might represent more spontaneous ones.
Both are in fact highly integrated into the spatial system of the o�ce and research shows
that integrated spaces attract more activities [159]. The kitchen also acts as an attractor
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Figure 4.3: Normalized number of inter and intra-team contacts for each of the larger
teams.

in line with previous findings, highlighting the role of social spaces in fostering inter-team
contacts [33].

The second aspect of the organizational structure that we analysed is the vertical division
into hierarchical levels. Figure 4.2(b) shows the aggregated number of normalized contacts
with the participants ordered by their level in the hierarchy. The main pattern that emerges
is that there are fewer contacts among the upper levels (i.e. 1, 2 and 3) than among the
lower levels. In fact, the plot shows darker and denser regions from level 4 to 7 going
towards the upper right corner. We also noticed that there are several pairs formed by a
person from an high rank role (levels 1, 2 or 3) and a person from a low rank role where,
despite both being in the o�ce for several days, the average number of contacts is low. In
contrast, there are pairs with both people from low rank roles that were together in the
o�ce for few days but had more contacts, on average. This shows that even when high
rank people are in the o�ce, they have less contacts with others and this might be related
to the kind of work they have to do. To test the significance of the patterns we observed,
we first looked at the pairwise intra-level contacts within low (4, 5, 6 and 7) and high levels
(1, 2 and 3) and found a significant di↵erence in the two distributions (Kruskal-Wallis rank
sum test, p-value < 0.05). We also found a significant di↵erence (p-value < 0.01) in the
distributions of the pairwise inter-level contacts within low (4, 5, 6 and 7) and high levels
(1, 2 and 3). This supports the conclusion that participants in the lower levels have more
contacts than the ones in the upper levels.

These results point to a strongly networked type of organization, where the way work
gets done does not resemble the formal organizational hierarchy [109]. Instead, strong
lateral links emerge among the lower ranks of the hierarchy across reporting lines and team
a�liation. Burns and Stalker [35] have argued that this type of organization provides a
suitable structure in dynamic organizational environments. It could be hypothesized that
the ABW principles applied here do not hinder lateral communication and they might even
facilitate it instead (given comparisons with reports of communication in non ABW studies
[175]).
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4.3.2 Demise of allocated desks

One of the central principles in ABW is the absence of allocated workstations. The as-
sumption is that employees will change from one work location to another in order to best
match the needs of the current task and personal preferences. In this section we attempt
to understand to what extent this principle is implemented in the company we studied and
if our participants adapted to this working style.

Jayarajah et al. [97] used Cumulative Distribution Functions (CDFs) to compare be-
havioural traits of individuals vs. groups using location traces from phones. The authors
considered groups of di↵erent sizes (small between 2 and 3 members, medium between 3 and
7 and large more than 7) and analysed mobility patterns, responsiveness to calls/SMSs and
application usage looking at the CDFs distributions and using the Kolmogorov-Smirnov
test to determine the significance of di↵erences observed between individual and group
behaviour. Inspired by this work we decided to analyse the mobility patterns of our partic-
ipants using the same techniques. The analysis of CDFs represents a proper tool to study
di↵erent data and visually compare their distributions with one another and then verify
their di↵erence with a significance test.

Figure 4.4 shows the Empirical Cumulative Distribution Functions of the number of distinct
locations visited by each participant averaged per day, per week and the total for the entire
duration of the study. We selected three thresholds on the dwell times to understand if
there is a di↵erence in the number of locations visited based on time spent at each location.
This allowed us also to filter out very short dwell times that are due to people walking
inside the o�ce. Two-sided Kolmogorov-Smirnov tests (alpha = 0.05) performed on each
pair of distributions, for each aggregation period (day, week and study), show that the
di↵erences among the distributions are significant (test statistic D ranging from 0.4 to 1
and p-value ranging from 2.778e-11 to 0.03663)2.

Looking at the distributions for dwell times larger than or equal to ten minutes we see that
participants visit almost half of the monitored locations (13 locations excluding “Outside
o�ce”) during an average day and almost all locations if we consider the entire study,
suggesting a great level of mobility in the o�ce. However, when we consider longer dwell
times, participants explore significantly fewer locations. In particular, Figure 4.4(a) shows
that on an average day the employees visit slightly more than one location for one hour
or more, meaning that people rarely use more than one location per day for long tasks.
Looking closer at the data for dwell times equal to or longer than 1 hour, we observe
that the maximum number of work locations used in any day of the study is 2 and 52%
of the participants worked at least once in 2 di↵erent locations in any day of the study.
However, when we aggregate the data per week, these figures rise to a maximum of 4
distinct locations in any week of the study and 80% of the participants worked at least
once in 2 or more distinct locations in any week. We point out that only two employees,

2We performed the Kolmogorov-Smirnov test because it does not assume a specific underlying distri-
bution.
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Figure 4.4: Empirical Cumulative Distribution Functions of the number of locations visited by
each participant averaged per day, averaged per week and the total number for the entire study
for di↵erent dwell time thresholds. The “Outside o�ce” location is excluded because not every
employee is required to carry out work tasks outside.

belonging to the Administration team, have assigned desks.

To understand which are the locations used to carry out longer tasks we computed the
average dwell time per location (Figure 4.5(a)). We observed that the locations with the
longest average dwell times are also the biggest workstations on the two floors (workstations
1 and 13) and two of three non-private workstations that have computers for the employees.
We further observed that private workstations 6 and 16 also present long dwell times
probably for individual and focused work. By contrast, meeting room number 10 seem
less used than the others probably because it does not have a door to close the room and
therefore it would be di�cult to have a meeting in isolation from the rest of the o�ce. The
kitchen also seemed to be used primarily for short periods of time. Figure 4.5(b) shows the
distributions of certain locations that are representative of the room types we considered.
It is possible to observe that open space and private workstations have longer tails and
are used for longer periods while the kitchen and the meeting room #10 have di↵erent
distributions and host people for shorter periods of time.

These results suggest that the employees might not have completely adopted the ABW
principles. In fact, switching settings within a day for work related tasks (>=60 minutes)
is not very prevalent. Similar results have been reported by Appel-Meulenbroek et al.
where 68% of the employees surveyed never switched during an average day and only 14%
switched once [13]. However, if we consider a weekly time scale we can see that choosing
di↵erent settings is more likely. This behaviour is also highlighted by the employees’
mobility self-assessment (see Section 4.2) where they reported greater levels of mobility.
So, while at a very fine-grained temporal scale ABW traits are not observed, they are
indeed observed at a coarser temporal granularity, retaining the advantages related to
serendipitous encounters and potential idea exchanges which are usually associated with
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Figure 4.5: Analysing dwell times for di↵erent locations inside the o�ce. (a) shows the aver-
age dwell times for each location. The “Outside o�ce” location is excluded because not every
employee is required to carry out work tasks outside. (b) shows the Complementary Cumulative
Distribution Function (CCDF) of dwell times of certain locations representative of all the room
categories considered (log-log plot).

this [161, 36].

4.3.3 Social ties and agile working

Given the previous results where we showed that people tend to use on average one work
location for long tasks we try now to understand if this could be due to the fact that people
work in teams. Towards this objective we first looked at the contacts for each day of the
study. Figure 4.6 reports the netgraphs for two representative days as an example. The
patterns for the other days are highly correlated with the ones we show here. Each square
represents the number of contacts between a pair of people and a darker colour means more
contacts. On the left the participants on the two axes are sorted by the locations they
chose for the day while on the right by the team they belong to. Given that our devices
capture only proximity, it is obvious that working at the same location increases contact
intensity, therefore we intentionally removed all the contacts that happened at the main
desks (1, 4, 5 and 13) and considered only contacts detected somewhere else in the o�ce.

The plots show that there are more contacts among people sitting at the same workstation
rather than people in the same team. In fact, the diagonal (from bottom-left to top-right),
which represents pairs sitting at the same location or in the same team, has denser and
darker colours in the plots on the left. By contrast, the plots on the right show a sparser
and less defined pattern indicating that there are several contacts across di↵erent teams. A
Kruskal-Wallis rank sum test [112] of the number of intra-team contacts and intra-location
contacts (between people who chose the same desk for the day) for each day of the study
shows that the di↵erences among the distributions are significant (p-value < 2.2e-16)3. As

3We performed a Kruskal-Wallis test because the data is not normally distributed, therefore we had to
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(a) Locations day 1. (b) Locations day 2. (c) Teams day 1. (d) Teams day 2.

Figure 4.6: Number of contacts for each pair of participants for two days of the study. The
contacts that happened at the main workstations have been omitted. In (a) and (b) the par-
ticipants are sorted by the location they chose for the day while in (c) and (d) they are sorted
by the team they belong to. The darker the colour the more contacts between the people. The
solid horizontal and vertical lines separate the participants in the di↵erent groups. The location
“unknown” represents participants that were not in the o�ce that day or for whom we do not
have location information (device malfunction).

reported in Figure 4.6 the contacts detected at the main workstations (1, 4, 5 and 13) have
been removed.

To further study this di↵erence we divided all the possible pairs of participants in two
groups:

• Strong Ties: pairs that have a number of contacts greater than or equal to the
average of the contacts happened away from the main workstations (1, 4, 5 and 13);

• Weak Ties: pairs that have a number of contacts less than the average of the
contacts happened away from the main workstations (1, 4, 5 and 13).

For all pairs of participants we also determined the total number of days in which they
chose the same desk. We found that the pairs that have strong ties, on average, choose to
stay at the same desk more than the pairs that have weak ties. Strong ties, in fact, stay
on average 2.682 days (median = 2) at the same desk while the weak ties only 0.819 days
(median = 0). Figure 4.7 shows the Empirical Cumulative Distribution Function of the
number of days the two groups of pairs spent at the same desks. Clearly, the pairs in the
strong ties group prefer to stay at the same desk more than the people in the weak ties
group. A Kruskal-Wallis rank sum test [112] shows that we can reject the null hypothesis
that these two samples are drawn from populations with the same median values (p-value
< 2.2e-16)4. An analysis of the teams of the participants revealed that 33.77% of the pairs
in the strong ties group are made of people from the same team while for the weak ties
only 14.09% of pairs. This suggests that some of the strong ties might be due to the fact

adopt a non-parametric test.
4We performed a Kruskal-Wallis test because the data is not normally distributed, therefore we had to

adopt a non-parametric test.
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Figure 4.7: Empirical Cumulative Distribution Function of the number of days pairs of
participants choose to stay at the same desk for the Strong and Weak Ties groups.

Table 4.2: Characteristics of the data sets.

Dataset Participants Study Period Contacts

Spacelab 25 10 days 2190
Brown Old 39 10 days 683
Brown New 48 10 days 1065

that people work together in the same team and this might be one of the explanations why
they choose the same desk more often. However, we cannot speak of causality. This result
also highlights how intensely entangled spatial, behavioural and organizational phenomena
are.

In summary, our results here suggest a mismatch between ABW principles and the actual
use of space. In particular, the principle of allowing people free movement and choice
of work location has not come to full fruition in the context studied. Pairs with high
co-presence in locations away from desks (strong ties) also stick together at the same
workstations much more than pairs with weaker ties. Team a�liation played a strong
role in this. In short, people stick together with those they like or work with and choose
their location not simply based on their task or the appropriate spatial setting for the
day but with a social focus in mind. Relationships seemed to matter. Whether this
process worked based on attraction (seeking like-minded people for one’s close proximity)
or repulsion (avoiding those one does not like) would require further research. Either way,
social clusters were formed based on preferences and thus resisted the randomizing e↵ect
ABW wishes to have in an ideal world.

4.3.4 Comparison with traditional o�ces

In this section we aim to better understand the impact of ABW principles on social dy-
namics inside the company by comparing our data set with two other data sets collected
with the SocioPatterns badges [44] in two di↵erent o�ces [33]. SocioPatterns badges, like
our BLE devices, use radio beacons to detect close encounters.
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Figure 4.8: Complementary Cumulative Distribution Functions of contact durations and inter-
contact times.
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Figure 4.9: Total number of contacts aggregated in 60-minute windows by hour of the day.

The two data sets have been collected by Brown et al. in 2012 and 2013 in a research insti-
tution in UK that moved from one building to another during the study period (Table 4.2).
The new building was designed for that specific research institution with the main aims
of increasing the chances of serendipitous encounters among the employees and motivate
an increased use of shared spaces. This was achieved by placing a central cafeteria on
the ground floor and including larger lab spaces and more open areas. The old building
represents an example of a traditional o�ce with individual o�ces and few open or shared
areas. The new building instead more closely reflects the ABW principles where diverse
settings are o↵ered to people for di↵erent kind of activities. However, in both buildings
the employees had assigned desks and this might significantly impact the contact patterns
we observe compared to our deployment at Spacelab.

We first analyse the contact durations and inter-contact times distributions shown in Fig-
ure 4.8. We observe that for the two buildings studied by Brown et al. the distributions
have longer tails and longer contacts have been recorded compared to our deployment at
Spacelab. This might suggest a successful implementation of ABW principles at Spacelab
where employees tend to have more frequent but shorter interactions. However, this could
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Figure 4.10: Correlation between Pin-Pout and Gin-Gout for the three data sets. Each point
represents a participant and is coloured according to the vertex degree calculated on the
aggregated networks. The vertex degree has been normalised in the range [0, 1].

also be a reflection of the nature of work done in the di↵erent organizations. On the one
hand, Spacelab is a young company with a very dynamic and flexible working style while,
on the other hand, the research institution might have a more traditional working style.
For what concerns the inter-contact times instead we observe similar distributions for the
three data sets.

Taking advantage of the fact that the three data sets have temporal information, in Fig-
ure 4.9 we plotted the total number of contacts during di↵erent hours of the day for the
entire duration of the study. While in the two data sets collected by Brown et al. there is
a visible pattern where the number of contacts increases around midday, in the Spacelab
data set we see less regularity in the number of contacts over time and more interactive
afternoons than mornings. We also observed how there are, on average, more contacts at
Spacelab than in the other two o�ces. We hypothesize that the di↵erences we observe are
due to the application of ABW principles at Spacelab and this results in a more even dis-
tribution of contacts across the day, as opposed to a more structured pattern in the other
company where people primarily stay in their o�ce, having most of the contacts during
lunch time. However, there are many other factors that could contribute to this behaviour
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and therefore we cannot speak of causality. Nevertheless, it is interesting to note that the
o�ce change observed in Brown et al. resulted in an increased number of contacts but it
did not change the overall shape of the distribution of contacts during the day. We can
only speculate that the additional contacts are an e↵ect of the purposely built o�ce and
that a full adoption of ABW principles could possibly lead to a more substantial change
in the daily patterns.

To further study the temporal characteristics of the data sets we borrowed the metrics
Average temporal proximity (P (X, Y )) and Average geodesic proximity (G(X, Y )) from
Kostakos [106]. The metrics measure the average time needed to to go from vertex X to
vertex Y and the average number of hops between X and Y respectively. The temporal
proximity considers edge availability over time and takes into account possible wait times
at one vertex before moving to the next one. The geodesic proximity instead counts only
the number of hops from one vertex to another (without considering the time needed for the
hop) but it is still subject to the temporal restrictions in the network. Kostakos also defines
P in(X) and P out(X) as measures of “how quickly, on average, X is reached by the rest of
the network” and “how quickly, on average, X reaches the rest of the network”. Similarly,
Gin(X) and Gout(X) are defined as “the average number of hops needed to reach X from
the rest of the network” and “the average number of hops needed to reach the rest of the
network from X”. Kostakos compared two datasets (corporate email communication and
co-location in a public space) demonstrating that when temporal aspects are not considered
the network structures described in the datasets present significant similarities. Instead,
with the temporal metrics described above the author uncovered di↵erences in the datasets
which are peculiar of the two environments where the data has been recorded. This inspired
us to adopt the same metrics to verify if similar dynamics could be found in our data and
how they would compare across o�ces that have been designed following di↵erent design
principles.

In Figure 4.10 we plotted the correlation between the in and out components of temporal
proximity and geodesic proximity, colour coding each participant according to the number
of its connections in the aggregated network. Above all we observe that people at Spacelab
reach the rest of the network and are reached in less time compared to the other two
o�ces, both in terms of time and number of hops. This could be attributed to the absence
of assigned desks which brings employees into contact with a larger and more diverse set of
people. Similarly, the presence of a central cafeteria in the new building studied by Brown
et al. [33] might be responsible for the reduced time needed to reach the network and be
reached that we observe when comparing the old and new building.

It is also interesting that the relation between P in and P out is more structured for Spacelab
than for the other o�ces where there is more variability among the participants. The old
and new o�ce both present locally low-connected people that are quick at reaching the
network or being reached by the network (blue points towards the bottom left corner) while
for Spacelab the variation between people is much smaller.

These results give an indication, from a temporal perspective, of the possible e↵ects
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Activity-Based Working has in the workplace. Obviously, we cannot speak of causality
since there are several other factors that play an important role, such as: the type and
structure of the organization and the kind of work done, the culture inside the o�ce and
the personality of individuals.

4.4 Discussion

We have analysed the fundamental ABW principles that are common to implementations
of the concept (flexible use of o�ce space and collaboration opportunities). We have
shown how technology can be used to collect data about human behaviour in a dynamic
workplace and to allow reflection on how much ABW principles have been absorbed by
the o�ce settings. Gathering suitable data is usually very di�cult in environments where
behaviour tends to vary, change and evolve more than in traditional settings. This makes
our technology-based solution even more key to these sort of validation studies. In the
following we discuss our results with respect to implications for designers of ABW o�ce
spaces.

4.4.1 Theoretical and practical implications

From the collected data, we found that the di↵erent teams in the company present a con-
siderable level of inter-group contacts which might be indicative of high collaboration. A
di↵erent pattern instead can be observed for the vertical structure. In fact, higher levels
of co-presence are visible among people at the lower levels of the hierarchy. These results
show that ABW principles were realized to some degree: the aim of allowing interaction
and collaboration to spread across team boundaries seems well achieved. The high level
of inter-group contacts speaks of an equal, almost random spreading of contacts across
the organization as a whole. Together with an open plan layout that connects both floors
visually, the spatial layout in conjunction with agile working provides ample opportunities
for co-presence. This allows communication to flow vertically along teams and reporting
lines, and on the hierarchically lower levels (among people with more time available) pro-
vides social glue and creates a “networked” organization. Similar results have also been
observed in other ABW o�ces where employees reported greater satisfaction for informal
un-planned meetings, informal social interaction and collaboration on creative and focused
work [121].

For what concerns mobility inside the o�ce, we discovered that the ABW principle of
not having allocated desks might not be well received by the employees, at least when a
fine-grained temporal scale is considered. Our results show that desk selection seems to be
constrained by strong team-related social clusters. On an average day, in fact, employees
explore various locations for short periods but rarely change settings when longer dwell
times are considered. However, more mobility is observed when we consider an average
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week. Additionally, we discover that pairs of people with more contacts (strong ties)
tend to choose nearby desks more often than people with less contacts (weak ties). This
suggests that employees are driven by the presence of specific colleagues when choosing the
work setting. Similar results have already been observed in other ABW environments but
have never been related to proximity contacts as we do in this work. Leesman reported
that, even within ABW o�ces, large numbers of employees fail to adopt Activity-Based
behaviours and have rather limited mobility dynamics [121]. Also Appel-Meulenbroek et
al. uncovered misuses concerning o�ce areas, and found that most of the employees use
up to two di↵erent types of space and never switch during an average day [13]. This
represents a challenge for architects and o�ce managers that have to deal with what seems
like opposition to change by employees and habitually driven working styles. A possible
solution could lie in the involvement of users in the design process with the objective to
adapt ABW principles and implementations to users’s needs and preferences. Additionally,
training sessions might be useful to clarify the benefits of more mobile behaviours. This
also raises interesting questions for future research. E↵orts could be directed towards the
understanding whether this behaviour is driven by attraction (seeking like-minded people
for one’s close proximity) or by repulsion (avoiding those one does not like) and if the
choice of setting, and so who to sit next to, adds to satisfaction and increases happiness
at work or not.

Our work also has practical implications for the future design of activity-based workplaces.
The results presented here are indeed insightful, as they show the powerful e↵ect of al-
lowing employees completely free choice of where to sit. The company we studied had a
good level of inter-team contact and a significantly higher number of co-presence events
between participants in the lower ranks of the hierarchy. Previous research has shown that
temporary co-location can increase the possibility of collaboration between scientists [29].
This could be used as a guideline in evidence-based design to encourage organizations who
wish to become more collaborative and leverage knowledge-sharing across teams by intro-
ducing proximity to a wider range of people. Specifically, against the background that
often organizations moving towards Activity-Based Working do not allow completely free
choice of desks, but assign certain areas to certain teams, which could potentially limit the
benefits of widespread contact patterns. However, our results have also shown that switch-
ing between work locations and desk selection seem to be driven by team-related and social
preferences, so in e↵ect there might be less randomization of contact than first appears.
Clearly more research of di↵erent settings would be required to establish a clearer relation-
ship between the amount of choice in agile working and the degree of dynamic contact and
co-presence. Additionally, it would be interesting to explore the possibility of voluntarily
disrupting peoples’ habits (i.e., sitting always at the same location) to understand if it
would be beneficial and in which way.



84 4.4. DISCUSSION

4.4.2 Drawbacks of ABW concepts

We have seen that the participants did not completely adapt to the ABW principles,
especially when looking at the mobility and seating arrangement patterns. Our main
objective was to uncover emerging o�ce dynamics from a quantitative point of view, hence
the study of why participants preferred certain behaviours is beyond the scope of our study
and certainly relevant for future work. Here we discuss what other works have found in this
area and relate them back to our results. De Been et al. studied employees satisfaction in
20 ABW environments with questionnaires and group interviews [55]. The open layout of
the work environment has been acknowledged to stimulate more communication between
di↵erent departments and to increase knowledge sharing. This is what we found at Spacelab
where inter-group contacts seem to be quite substantial and where dynamics are di↵erent
than traditional o�ces. Nevertheless, De Been et al. reported that the o�ce layout also
had negative e↵ects, finding that people experienced lack of possibilities to concentrate,
lack of privacy and unavailability of desired work points (i.e. waste of time finding a desk,
attractive ones already occupied), with the latter also mentioned by Appel-Meulenbroek et
al. [13]. However, we can argue that the lack of places for concentration and privacy could
also apply to open plan o�ces with fixed seating allocation, so they do not necessarily
relate to ABW exclusively.

In another study, De Been et al. compared di↵erent o�ce types including flexible settings
(ABW) [54]. They concluded that ABW environments do not support productivity, privacy
or concentration as well as enclosed or open o�ces (with fixed desks). The authors provide
one possible explanation for the di↵erence between assigned and unassigned desks in terms
of psychological identity. In ABW o�ces people are not assigned to specific workstations
and they cannot personalise the spaces they use. This might result in people not feeling
attached to their workplace anymore and therefore having a lower satisfaction. The study
also mentions the di�culty of finding people as a potential drawback, which could explain
why ABW o�ces are rated lower with regards to satisfaction with communication. In the
company we studied, this is less of a problem since the o�ce is small enough. However,
usually, in larger settings ABW is often arranged with team zones and there is a dedicated
area to go to, if one is looking for somebody, meaning that people can be found, if needed.

4.4.3 Limitations

Generalisation. Di↵erent companies, with distinct organizational structures and cultures
might present contrasting interaction patterns which might lead to di↵erent conclusions to
the ones presented here. The company we considered is an architecture firm and working
style might be di↵erent in organizations operating in other sectors (e.g., commercial or
scientific) or on di↵erent continents and with di↵erent cultures. More studies are needed
to capture and understand dynamics that could be generalized more widely. The analysis
we performed however is applicable to other organizations, facilitating the validation of
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ABW principles despite the spatio-temporal challenges of the o�ce dynamics.

Scalability. Bigger companies with more employees might show di↵erent interaction pat-
terns: there might be inertia in interacting outside teams, unlike in our limited setting.
Moreover, dynamics of team formation when people join or leave should be studied at a
longer time scale. E↵ects of space and social ties on productivity also needs longitudinal
e↵orts.

Technological Accuracy. Our devices are able to record proximity contacts and not actual
communication. Therefore it is possible that our data overestimates the actual contacts
because our measurements represent potential communication opportunities rather than
real communication events. Similarly, for the location traces, some dwell times might be
underestimated as it is possible that, even if a person is always sitting at the same location,
the device could detect radio signals from other beacons and temporarily associate the
person to that beacon. Nevertheless, for social psychology theories, physical proximity
increases chances of interaction among people [74].

Comparison Validity. When comparing data collected in di↵erent buildings, organisation-
specific variables such as structure of the organisation, its culture and peoples’ personalities,
might a↵ect the validity of comparisons. However, by showing a comparative analysis with
traditional o�ces we are able to gain insights into how ABW principles might a↵ect social
dynamics even if additional research is needed to better generalise the results. Likewise,
the technology used to collect the data was slightly di↵erent; however this should not
compromise the results as we have compared the data from the two technologies and found
that they have overall similar properties [149].

4.5 Conclusion

We have shown how data from wearables can be used to o↵er insights about the adoption
of ABW principles in companies trying to adopt them. We showed how some of the
ABW principles, like the facilitation of inter-team contacts, seemed well received by the
company we studied, while we uncovered a possible mismatch between the principles and
actual use of space in other circumstances. Comparing our dataset with similar ones
from traditional o�ces we highlighted how ABW principles could potentially be applied to
enable quicker communication inside the o�ce. In conclusion, our work o↵ers a mechanism
for space designers to reflect on the application of ABW principles and study its impact
longitudinally.

In the two previous chapters we collected and analysed data on the occurrence of social
contacts and their location inside a building. While this proved to be useful for the analysis
of space utilisation, there is still a lot to learn from the analysis of the non-verbal channels
involved in social interactions. We begin this study in the following chapter where we
design and implement a novel wearable device capable of detecting non-verbal cues about
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body orientation and interpersonal distance without the need for expensive infrastructure
and calibration.



Chapter 5

Measuring interaction proxemics
with wearable light tags

5.1 Introduction

In the previous chapter we have seen how the analysis of social contact occurrences could
shed light on space usage and over a multitude of other processes such as team coordination
and productivity [98, 36, 109].

Traditional sociology has placed high importance on observing the non-verbal aspects of
social interactions such as interaction proxemics (e.g., interaction distance and relative
body orientation). Non-verbal behaviour is the combination of speech-unrelated behaviour,
such as facial expressions, hand and arm gestures, postures and body movements, and
speech-related behaviour like speech rate, speaking time and tone of voice [104]. Non-
verbal cues on interaction proxemics reveal user attitudes and emotions [16, 174] and are
also crucial to understand epidemic infection rates [171, 214]. Observing these cues can
facilitate many important applications. We list four specific examples:

• team collaboration: interaction details such as body distance and relative angles are
important cues to study team collaboration (e.g., task timeline, individual roles) on
creative tasks and assess a team’s potential creativity [164];

• job interviews : non-verbal skills such as eye contact, energy level, and a↵ect (ex-
pressed via hand gestures and body movements) can be the subject of training to
improve the interview outcome [137, 50];

• doctor-patient interactions : patient satisfaction is a↵ected by the physician’s ex-
pressiveness that includes non-verbal behaviours like more forward leaning, nodding,
gestures and gazing [134, 202];

• marketing and sales : the customer’s engagement with the sales representative de-
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Figure 5.1: Example of using Protractor to track team interaction when conducting a
creative task (the Marshmallow challenge).

pends on his engagement abilities, which are therefore also important in sales train-
ing [125].

For all these examples, an accurate monitoring of body distance and relative orientation is
crucial. The interaction distance between people has been estimated to be in approximately
7-cm intervals with a temporal granularity of 7 seconds in social interactions [172]. Angles
of interactions are significant to study communicator’s attitude towards his interlocutor
and should be estimated to the nearest 10� based on prior study [139].

To monitor interaction proxemics continuously, conventional approaches in behavioural
sciences have relied on questionnaires, participant observations, or the use of non-human
objects (e.g., life-sized photographs, miniature dolls or silhouettes) [104, 193]. Based on
self-reporting, these approaches not only impose high burden on users and imply various
biases, but also fail to provide behavioural information during a contact. Technology
has progressed substantially in capturing fine-grained face-to-face interactions [48, 47, 87],
however existing work still falls short: some either infer only user proximity [48, 47] or
body distances [87, 223], or analyse speech-related non-verbal signals with no information
on interaction distance and relative orientation [154, 181, 20]. Others focus on very specific
contexts reproduced in the lab (e.g. job interviews, public speeches) and require cameras
that bring privacy concerns and entail heavy environmental instrumentation, limiting the
flexibility of the system [23, 22, 52].

The goal of this work, thereby, is to seek a more scalable and accurate approach to con-
tinuously measuring interaction proxemics as part of non-verbal behaviours during social
interactions. To eliminate the need for infrastructure support, we consider a lightweight
wearable tag resembling an access badge worn with a lanyard or clip (Figure 5.1). We lever-
age such tags to track both the actual interaction distance and relative body orientation of
users involved in a social interaction. Specifically, each tag emits wireless beacons encoded
with its tag ID and listens to beacons from other nearby tags. Based on the received bea-
cons, the tag then identifies other tags/users within its sensing range, and estimates the
relative angle and distance to each of these tags/users. These angle and distance numbers
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are used to identify participants and recorded as their interaction proxemics during an
interaction. At first sight, the problem appears to be a standard problem of relative device
positioning. However, the context of tracking interaction proxemics presents three new
challenges. We next review each challenge and our solution.

First, accurately identifying the participants in an interaction is challenging. Two users in
close distance may not be in an interaction, as they may stand with other people in between
them or are not facing each other (see examples in Figure 5.2). Thus, it is key to recognize
both the line-of-sight proximity and the user’s relative body orientation. To this end, as we
have discussed in previous chapters, methods relying on radio frequency (RF) signals (e.g.,
Bluetooth, Wi-Fi) [33, 119] or microphones [120, 196, 223] are all prone to false positives,
since RF signals and sound penetrate human bodies. Also, relative body orientation cannot
be simply obtained by compass sensors, which measure only the absolute orientation of
the user/tag itself, rather than how it relates to other tags, as shown in Section 5.3.1.

To reduce such false positives and enable accurate tracking without the need for expensive
and cumbersome infrastructure, we choose near-infrared (NIR) light as the wireless medium
for tags to transmit beacons. With wavelengths in nanometers, NIR light is imperceptible,
directional, and cannot penetrate opaque macroscopic objects (e.g., human body). Thus,
it is the ideal medium for measuring line-of-sight proximity in our context. Furthermore,
to infer relative angles and distances to other tags, we leverage two collocated infrared
photodiodes each pre-configured with a di↵erent orientation (Section 5.3.1). By analysing
the di↵erence of light intensity sensed by the photodiodes, we can compute the incident
angle and distance to each sensed tag.

The second challenge lies in enabling reliable tracking using infrared light beacons. Light
beacons can be accidentally blocked by user’s hands, clothes, another user passing by, or
other objects (e.g., book, paper) introduced during the interaction; the motion of user body
can cause tags suddenly moving beyond each other’s sensing range. In all these cases, the
tracking results using NIR light can either become unavailable or have low fidelity. To
deal with these artifacts and realize reliable tracking, we augment light-based tracking
with inertial sensors (i.e., accelerometer, gyroscope). Although inertial sensors measure
only the motion status (e.g., velocity, orientation) of the tag itself, we design a data fusion
algorithm (Section 5.3.5) that leverages inertial sensor data to extrapolate missing relative
angles and distances upon losses of light beacons.

The third challenge is to ensure that tags operate with low power to avoid frequent charging
and to ease tag distribution for various studies. Certain components (e.g., NIR LED)
consume relatively higher power than others, and directly detecting short (e.g., 1.8 µs)
NIR light pulses imposes an energy burden of high analog-to-digital (ADC) sampling (e.g.,
500 KHz). To improve system energy e�ciency, we design strategies (Section 5.3.6) for
a tag to adapt its operation mode to the current context (e.g., presence of nearby tags,
user’s motion status). It selectively switches o↵ more energy-demanding modules to save
energy without much sacrificing sensing temporal granularity. We also judiciously design
the NIR sensing circuit to eliminate the need of high ADC sampling (Section 5.4).
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We have implemented our designs and fabricated wearable tags, which we name Protractor,
using o↵-the-shelf, low-cost hardware. Each tag is measured 74⇥ 54⇥ 15 mm in size and 40
g in weight. We have evaluated the e�cacy of our tags in ranging and angle detection using
both controlled experiments and on-body experiments in real-life interaction scenarios. Our
main findings are as follows:

• Protractor achieves 2.2� mean angular error and 6� 95th percentile in estimating
interaction angles and 2.3-cm – 4.9-cm mean error in ranging;

• Protractor is robust in diverse settings (e.g., tag height o↵sets, indoor lighting vari-
ations, reflections from nearby objects) and e↵ectively mitigates occasional missing
or unreliable NIR tracking results with data fusion;

• Protractor is capable of running continuously for 5 days with a single charge by
switching into low power modes based on contextual information;

We see the potential of Protractor not only in the support of social research but also for
practical applications (e.g., providing real-time behavioural feedback during interactions,
novel human-computer interaction interfaces). In comparison to approaches using cameras,
Protractor serves as a more lightweight and scalable alternative. Its unobtrusive nature
and the wearable form factor could ease privacy concerns and potentially reduce biases for
accurate behavioural monitoring. To examine its practical implications, we have further
deployed our tags to track users’ interaction proxemics when collaborating on “The Marsh-
mallow Challenge” [216] as a creative task. We will examine the results of this deployment
in Chapter 6 while in this chapter we focus on the technical contributions.

Chapter Outline. In Section 5.2 we analyse di↵erent candidate mediums for the detec-
tion of distance and angle of interaction, discussing the strengths and weaknesses of each
one. In Section 5.3 we describe the design of our system to measure distance and relative
angle between interacting people. We detail how we extract these datapoints from a pair of
collocated photodiodes and how we make our system robust by using IMU sensors to inter-
polate missing data. Section 5.4 describes Protractor’s implementation while Section 5.5
evaluates its performances in detection accuracy, robustness, scalability and energy con-
sumption. Section 5.6 discusses the results we are able to achieve with Protractor and its
potential applications and in Section 5.7 we conclude the chapter.

5.2 A case for light-based tags

Our design of the wearable tag starts with seeking a suitable wireless medium to transmit
beacons, which are exploited to infer incident angles and distances to other tags/users in an
interaction. The ideal medium should best facilitate the measure of line-of-sight distance
and incidence angle, so that we can correctly identify participants in a contact. We now
discuss three candidates: RF signals (e.g., Wi-Fi, Bluetooth), ultrasound, and light.
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1 2 3 4 5 6

Figure 5.2: The first five are example scenarios with users in proximity but not in an interaction,
where two users are 1): in line with one’s back facing the other; 2) in opposite directions; 3) on
either side of a corner, without line of sight; 4) occupying opposite desks with a partition in the
middle; 5) on either side of a wall when working in neighboring o�ces. Scenario 6 is an actual
interaction with users facing each other at a distance of 1 m. We use the last scenario as a
reference for comparison.

5.2.1 Radio frequency

Prior studies have utilized RF signals on wearable devices or smartphones to monitor social
interactions [44, 4]. These systems examine the received signal strength (RSS) to infer if
users carrying or wearing these devices are engaged in an interaction. However, RF signals
are omni-directional, penetrate human bodies and objects, and are susceptible to multi-
path e↵ects. All these characteristics can make the identification of close encounters and
relative orientation di�cult and prone to false positives. We have discussed some of these
issues in previous chapters where we used Bluetooth Low Energy for sensing (Section 3.5
and Section 4.4).

To verify this problem, we take Bluetooth Low Energy (BLE) as an example, and devise
simple experiments that recreate realistic scenarios that involve two people in an indoor
environment (Figure 5.2). These scenarios represent di↵erent combinations of people and
objects between the transmitting devices. In each scenario, users wear a BLE device
(Nordic nrf51822 SoC) on the chest, transmitting advertisement beacons at 10 Hz rate
with �20 dBm TX power and scanning for beacons every 100 ms with each scan lasting
20 ms. We collect RSS traces from each BLE device for 60 seconds in each scenario. The
experiments are conducted outside o�ce hours to avoid the presence of moving people in
the vicinity. However, the environment presents various surfaces that could reflect radio
signals (e.g., walls, the floor, the ceiling) and there were also 5 Wi-Fi access points active
(2.4 GHz).

Figure 5.3(a) shows box plots of RSS values in dBm in all scenarios, where a higher value
indicates a higher received signal strength. Figure 5.3(b) shows the percentage of received
BLE beacons. We make two main observations. First, as expected, in all scenarios (1 – 5)
where users are not in a social contact, BLE packets can still be received even when two
devices are not in line of sight. The reception ratio of BLE packets is below 30% because
the device does not scan continuously but performs a 20ms scan every 100ms and thus
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Figure 5.3: (a): Received signal strength of BLE packets for the six scenarios described in Fig-
ure 5.2. (b): Percentage of received beacons by BLE and Infrared for the six scenarios described
in Figure 5.2.

misses advertisement beacons. Second, although users are stationary, RSS values vary
significantly in a single setting and across di↵erent settings. This is because BLE uses
three channels (separated by 2 MHz) to transmit advertisement beacons, resulting in fades
at di↵erent spatial positions for di↵erent channels, even when transmitter and receiver are
static [63]. Wi-Fi signals present similar characteristics. We conclude that while RF is
suitable for omni-directional proximity detection, it is not the proper choice for accurate
line of sight measurements.

5.2.2 Ultrasound

Next, we examine ultrasound for transmitting beacons. With wavelengths in millimeters,
ultrasound has been shown to have line of sight propagation and be unable to penetrate
objects. This has been exploited by earlier studies to sense interaction distances [87]
or to position devices [167, 168, 143]. In our experiment, we modified the HC-SR04 [1]
ultrasonic transducer (4.5-cm in diameter) with 40 kHz center frequency, commonly used
by prior studies [87, 167, 168, 143]. It sends carrier bursts for 8 cycles periodically (1
transmission every 2.5 seconds in our experiment). These bursts are treated as pure pulses
at the receiving end without any decoding, and we use an oscilloscope to inspect the signal
and its amplitude. We repeated the experiment in the same scenarios in Figure 5.2. Our
results confirmed that ultrasound cannot penetrate objects in scenarios 1, 4, or 5, whereas
in scenarios 2 and 3, we occasionally observe weak pulses, possibly due to reflection and
multi-path e↵ect. Such pulses can trigger incorrect detection of social contacts if the
appearances of pulses are used for ranging [87].
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5.2.3 Light

We now move on to examining light as the final candidate. Specifically we considered NIR
light rather than visible light1, because NIR is imperceptible to the human eye and keeps
the wearable tag sensing unobtrusive. We repeated the same scenarios in Figure 5.2, where
users wear an NIR transceiver on their chest transmitting one NIR beacon per second. For
each scenario we logged the received and decoded beacons for 60 seconds and computed the
percentage of received beacons (Figure 5.3(b)). We observed that the NIR transceiver does
not receive any beacons in scenarios (1 – 5) where the devices were not in line of sight.
The beacon losses in scenario 6 were due to errors during the decoding at the receiver
end, which prevented the identification of the correct beacon 2. NIR light propagates as a
directional beam in a cone shape, thus it serves as a good medium to detect and monitor
relative angle and distance of interacting people. Additionally, typical NIR emitters and
receivers have a very small form factor (e.g., 5⇥5⇥7-mm), which is desirable for building
a wearable device to be worn all day.

Based on all the above experiments, we decided to choose NIR light as the wireless medium
for sensing non-verbal cues in social contacts.

5.3 Protractor design

The core of Protractor is to measure relative angles and distances of interacting users in an
accurate and a reliable manner. Protractor achieves accuracy by exploiting the propagation
characteristics of NIR light for precise angle detection and ranging. It ensures tracking
reliability by fusing inertial sensors and NIR sensors to compensate for the occasional loss
(e.g., light being blocked) of light tracking results. Above all, as a wearable tag, Protractor
is designed to operate with low power. Next, we elaborate on each design component.

5.3.1 Angle detection and ranging

A face-to-face interaction can occur in various forms. Two important non-verbal interac-
tion cues are the distance between any two involved users and their relative body orien-
tation [80]. We define the latter as the interaction angle, which is the angle between the
body normal and the line connecting the two users (Figure 5.4(a)).

1A recent study [197] uses ultra-short visible light pulses to enable imperceptible communication. It
can also be a candidate.

2Note that as a simple proof of concept, this experiment is comparing di↵erent media, rather than
extensively analysing general success rates in decoding NIR beacons. Our tags achieve much higher
success rates in decoding by regulating beacon transmissions and adding random delays. We will discuss
our tag design in Section 5.4 and detailed experiments on its decoding robustness with multiple tags in
Section 5.5.3.
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Figure 5.4: (a): Interaction distance d, and relative body orientation, i.e., interaction angles
(✓A, ✓B), in a social contact. (b): The same absolute orientation of B can lead to di↵erent
orientation relative to A.

At first glance, interaction angles can seemingly be obtained using the magnetometer/-
compass sensor, which measures the user’s absolute orientation. Then by exchanging the
information with nearby users, one can estimate relative angles to others. However, know-
ing absolute orientation alone is inadequate to infer interaction angles. Figure 5.4(b) shows
a simple example, where even if both users A and B’s absolute orientations are known,
their interaction angle still cannot be determined. Because B can be at location B’ with
the same orientation, which yet results in a di↵erent interaction angle ✓B0 . Adding the
knowledge of A and B’s distance does not help either (B’ and B are at an equal distance
to A). Such angle ambiguity can be resolved with A and B’s absolute locations, obtained
by existing user-centric indoor localization methods [127, 115, 222]. But still, the user’s
2D location coordinates indicate little about the actual occurrence of face-to-face contacts.
As shown in earlier examples (Figure 5.2), nearby users can be separated by other indoor
objects (e.g., a wall, desk partition) and thus not in a social contact.

Protractor overcomes the above problem by directly measuring the line-of-sight channel
between two chest-worn Protractor tags using NIR light. Its key design elements are the
NIR light beacons emitted by each tag, the detection of incident angle, and the estimation
of line-of-sight distance.

5.3.2 NIR light beacons

A Protractor tag periodically emits NIR light beacons (1 beacon every 5 s in our imple-
mentation), each of which encodes the user ID. We choose the NIR wavelength of 940 –
950 nm for the beacon transmission. It is commonly used in consumer wireless infrared
communication such as TV remote control. To encode data, an NIR emitter (i.e., LED)
flashes at a carrier frequency (38 kHz) in bursts. Among various IR modulation/coding
schemes, Sony IR coding [206] was chosen for its popularity. As illustrated in Figure 5.5,
bit 1 is encoded as 1200 µs carrier frequency burst followed by an o↵ duration (600 µs),
while bit 0 is 600 µs carrier frequency burst followed by an o↵ duration (600 µs). To
reduce the power consumption, we decreased the LED’s duty cycle of the carrier to 7%.
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Figure 5.5: Time series of NIR light pulses of an example beacon.

To decode light beacons, we used an infrared receiver module [207], which outputs logic
LOW continuously for carrier frequency (mark) and logic HIGH for o↵ duration (space).

The micro-controller polls the receiver’s output every 50 µs to detect the duration of each
mark and decode bits.

In addition to conveying the user/tag ID, the received signal strength (RSS) of a light bea-
con is utilized later for deriving interaction angles and distances. Here a light beacon’s RSS
equals the peak amplitude of the light pulse minus the ambient light baseline (Figure 5.5).
Measuring the RSS is challenging on a low-power wearable device because the common IR
carrier frequency is 38 KHz, meaning that the light pulse can be as short as 1.8 µs (7%
duty cycle). Detecting such short light pulses requires a sampling rate higher than 500
KHz, imposing a high energy overhead to the tag. To address this problem, Protractor
leverages an envelope detector (Figure 5.5 and 5.10(b)) that holds the signal at its peak
until the end of a beacon. It allows the micro-controller to sample the peak amplitude with
much lower rates (1 kHz in our implementation).

5.3.3 Deriving interaction angle

Protractor reuses light beacons to derive the interaction angle from the user/tag that
each received beacon corresponds to. In the RF literature, estimating the signal’s angle
of arrival commonly relies on multiple antennas placed within known intervals to measure
phase o↵set [187, 218, 73, 107] or mechanically rotating antennas [114, 113]. These methods
are not applicable in our context, because of the tag’s small form factor. Also, since LED
is an incoherent light source, there is no phase information as in RF technologies.

Instead, Protractor leverages the fact that an NIR photodiode responds to incoming light
with di↵erent sensitivity depending on the light’s incidence angle, which is referred to as
the photodiode’s angular response. Thus, if two collocated NIR photodiodes face di↵erent
directions, incoming light from a given incident angle can result in di↵erent signal strength
perceived by each photodiode. If we can obtain the one-to-one mapping between the light
incident angle and the resulting signal strength pattern at photodiodes, we can then derive
the incoming light’s incident angle based on measured RSS values at photodiodes.

Before diving into the detail of the above method, we first describe the optical channel
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Figure 5.6: Estimating the interaction/incident angle ✓ using two collocated photodiodes (PD).
(a) shows the optical channel between an LED and a photodiode, with irradiance angle � at
the LED and incident angle ✓ at the photodiode. (b) shows two collocated photodiodes facing
di↵erent directions. Because of the photodiode’s angular response (c), two PDs perceive di↵erent
signal strength I1, I2. The incident angle ✓ and the angle metric in Eq. (5.2) have a piecewise
linear relationship, which can be used to estimate ✓ at runtime (d).

model characterizing the propagation of NIR light. For a LED and photodiode pair with
distance d, assume that the LED’s light ray with irradiance angle � hits the photodiode
with incident angle ✓ (Figure 5.6(a)), and I denotes the RSS at the photodiode. I can
then be calculated as [105, 127]:

I = A
F (�)G(✓)

d2
, (5.1)

where A is a constant determined by the transmit power and receiver’s gain, F (�) is the
LED’s irradiation pattern at irradiance angle �, and G(✓) is the photodiode’s angular
response at incident angle ✓.

Now consider two collocated photodiodes that are rotated clockwise and counter-clockwise
respectively, by a pre-defined angle ↵ with respect to the reference plane P (Figure 5.6(b)).
Suppose ✓ is the interaction angle, i.e., the angle between the incoming light and the normal
of P . Then for the first and second photodiodes, the light’s incident angle is ✓+↵, and ✓�↵
respectively, resulting in a di↵erent RSS at each photodiode. Using the optical channel
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model (Eq. (5.1)), we can compute the RSS at each photodiode as:

I1 = I0G(✓ + ↵), I2 = I0G(✓ � ↵)

where I0 = AF (�)/d2. We considered the same I0 for both photodiodes because � and d are
the same for both photodiodes, given that the distance from the LED to the photodiodes
(e.g., 30 cm to 2 m for normal social contacts) is much larger than the photodiode size
(5 mm in diameter). ↵ is a known parameter, so the question now is how to derive ✓ after
measuring I1 and I2. A straightforward method is to exhaustively measure the photodiode’s
angular response at di↵erent incident angles and to seek the best-fit G(·) function. Then
✓ can be computed by solving the equation I1/I2 = G(✓ + ↵)/G(✓ � ↵). This method,
however, is ine↵ective. Because G(·) can be complicated (e.g., cosm(✓)) or even without
analytical form, there is no closed-form solution. Numerical methods, such as Newton’s
method, are too computationally intensive.

To circumvent the need to solve the complicated equation, we sought a metric that was
computed based on I1, I2 and had a simple 1-1 mapping with ✓. To this end, we defined
an angle metric i as

i ⌘ I1 � I2
I1 + I2

=
G(✓ + ↵)�G(✓ � ↵)

G(✓ + ↵) +G(✓ � ↵)
. (5.2)

Since the angular response of NIR photodiodes are typically symmetric (i.e., G(·) is an
even function), the relationship between i and ✓ has the following properties: first, i is zero
when ✓ = 0, as G(↵) = G(�↵); second, the relationship between ✓ and i is approximately
linear, even when G(·) is non-linear, such as cosm(✓), based on our simulation, indicating
that we can always apply linear regression to seek the relationship between ✓ and i.

To verify the relationship between i and ✓, we conducted a benchmark experiment using
two NIR photodiodes (OSRAM SFH 205 F [157]) with the measured angular response in
Figure 5.6(c). We arranged the two photodiodes with ↵ = 22.5� (Figure 5.6(b)) on a table
and moved the IR transmitter to emulate di↵erent interaction angles (�90� to 90�) and
di↵erent distances (50 cm to 200 cm) (Figure 5.11(a)). At each location, the transmitter
sent beacons for 30 seconds. We measured I1 and I2 at two photodiodes and computed
the metric i (Eq. (5.2)). We then plotted all i values along with ✓ in Figure 5.6(d). We
observed that ✓ is piecewise linearly3 related to i. With the linear relationship obtained
o✏ine through sample measurements, we could derive ✓ on the fly after computing i based
on measured I1 and I2.

5.3.4 Estimating interaction distance

Protractor estimates the interaction distance by leveraging the optical channel model

3We ran a linear regression at di↵erent intervals ([�90�,�30�), [�30�, 30�], and (30�, 90�]) to obtain
the linear relationship. For photodiodes with single-slope linear angular response, the relation would also
be single-slope linear.
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(Eq. (5.1)) and derived interaction angles. Specifically, for a pair of tags m and n, each
tag first detects its interaction angle with the other tag, i.e., ✓m, ✓n. Since the interac-
tion/incident angle of a tag is also the irradiance angle of the other tag, we can compute

the distance dmn between m and n as dmn =
q

AF (✓n)G(✓m)

Im
, where Im is the RSS of light

beacons from tag n measured at tag m.

Directly computing the above formula requires knowing the value of A. Instead, we define
a distance metric l as l = F (✓n)G(✓m)/I and rewrite dmn as

ln(dmn) = a ln(l) + b . (5.3)

We computed the logarithm in the above equation because the exponent of the distance d
is not exactly 2, as shown in our measurements. We calibrated parameter a and b using
benchmark experiments, where we collected l values4 along with the ground-truth distance
dmn, and ground-truth interaction angles ✓m, ✓n. We then performed a linear regression
to determine a and b. Figure 5.7 shows our benchmark experiment results and the linear
model. With the trained linear model (Eq. (5.3)), we then computed interaction distances
based on the derived interaction angles.

5.3.5 Sensor data fusion

While providing precision, NIR light tracking alone is not reliable for a number of reasons:
light can be easily blocked by other objects (e.g., a waving hand, a book, a piece of paper)
introduced in an interaction; or the chest-worn tags can occasionally move beyond each
other’s sensing range, due to user’s body movement during a contact. To enhance the
tracking reliability, Protractor leverages inertial sensors (i.e., accelerometer, gyroscope) to
compensate for the low fidelity of light tracking results in those occasions. We chose inertial
sensors because they are small in size (2.5⇥3 mm) and consume low power (e.g., 2.8 mW).
They can be easily fit in the wearable tag and operate continuously in the background with
negligible energy overhead.

4We estimated F (·) and G(·) based on sampled measurements.
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The challenges of using inertial sensors lie in sensory measurement noise. Such noise is
particularly troublesome when measuring small displacement (e.g., centimeter-level dis-
tance change)5. In a social interaction, users tend to remain static at their 2D locations
while changing body orientation by a greater extent. Thus, we consider fusing only the
gyroscope data and the estimated interaction angles, while using accelerometer to sense
large location displacement for determining the start/end of a new sensor fusion process.

To fuse the NIR angle detection results and gyroscope readings, we adopted the Kalman
filter algorithm [99, 61, 77] for its simplicity and e�ciency. Specifically, we modelled the
interaction angle as a discrete-time hidden Markov model (HMM):

✓t = ✓t�1 +�✓t + wt, wt ⇠ N (0, �2

w,t)

e✓t = ✓t + vt, vt ⇠ N (0, �2

v,t)

where ✓t is the hidden state (i.e., the actual interaction angle) at time t, e✓t is the observation
(i.e., the estimated interaction angle using NIR measurements), �✓t is the orientation
change measured by the gyroscope sensor, vt denotes the Gaussian observation noise (i.e.,
the angle detection errors using NIR light), and wt is the Gaussian noise of gyroscope
readings. Given that it is a linear Gaussian Bayesian model, Kalman filters have been
proven to seek the optimal solution recursively [99].

Our data fusion based on the Kalman filter recursively conducts two steps: prediction and
updating. The prediction step produces the estimated mean and variance of the interaction
angle at t, before the arrival of new NIR measurements at t. It predicts the interaction
angle by:

✓̂t|t�1 = ✓̂t�1|t�1 +�✓t
�2

✓,t|t�1
= �2

✓,t�1|t�1
+ �2

w,t .

Upon the arrival of new NIR measurements and thus newly derived interaction angle e✓t, the
updating step then incorporates the new observation into the prior estimate and obtains
improved posteriori estimates. It updates estimates as follows:

✓̂t|t = ✓̂t|t�1 + kt(e✓t � ✓̂t|t�1)

�2

✓,t|t = �2

✓,t|t�1
� kt�

2

✓,t|t�1

where kt = �2

✓,t|t�1
/(�2

✓,t|t�1
+ �2

v,t).

The update step can mitigate large accidental errors in NIR measurements, such as in-
correct pulse amplitude detection due to ADC malfunction. The data fusion addresses
the problem of occasional losses of NIR measurements, as its prediction step produces an

5Our experiments with inertial measurement unit Bosh BMI160 show non-zero sensor readings (e.g.,
0.03 m/s2 at x-axis) in the stationary mode even after removing the constant o↵set. It translates into
1.5-m location drift after only 10 seconds.
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estimated interaction angle without new NIR measurements.

We start the fusion with an NIR measurement: ✓̂0|0 = e✓0, �2

✓,0|0 = �2

v,0. We modelled
the variance of noise vt and wt based on our experimental observations. Specifically, our
experiments show that NIR angle detection errors tend to have a small variance when
both photodiodes have large pulse amplitude readings. Thus, we modelled the variance
�2

v,t of the observation noise vt as �2

v,t / 1/(It,1 + It,2). We modelled the gyroscope noise
variance as �2

w,t / �t, because of the drifting problem of gyroscope sensor. The orientation
change is an integration of the gyroscope readings and thus its error accumulates over time.
We terminate the data fusion process when large location displacement is discovered from
accelerometer readings [116], e.g., users walk away from their previous locations.

5.3.6 Adaptive sampling

Given our goal of continuously tracking social contacts, Protractor’s battery life is a crit-
ical aspect of our design. To ensure e�cient use of available power while keeping the
tag operational, we applied context-aware duty cycling. Succinctly, when no interactions
are detected for a period or, when the tag is not being used, the more energy-demanding
modules are switched o↵ or reduced in their capability to save energy. The more energy-
demanding modules are the angle detection module (mainly the transimpedance amplifier,
Section 5.5.4) and the NIR LED, while the inertial measurement unit (IMU) and NIR
receiver consume low energy. We thus use the IMU and NIR receiver to infer the cur-
rent context (i.e., presence of other devices nearby and user’s motion status) and adapt
Protractor’s operation accordingly.

We define three states that a Protractor tag could be in at any given time: 1) High Power:
all modules are powered on, NIR beacons are transmitted every 5 s and the two photodiodes
in the angle detection module are sampled at 1 kHz; 2) Low Power: the angle detection
module is powered o↵ and NIR beacons are transmitted every 20 s; 3) System O↵: the
angle detection module and the NIR transceiver are powered o↵.

In High Power and Low Power states, the IMU and NIR receiver are powered on and
functional because they are used to trigger the state change. In System O↵ state only
the IMU is powered on. The NIR transmission rate (one beacon every 5 s) is selected to
reduce the probability of collisions in the presence of multiple tags. By contrast, we adopt
a transmission period of 20 s in the Low Power state to save energy but be reactive in
case of interaction and do not severely sacrifice the temporal granularity of collected data.
Additionally, even though NIR transmission has a relatively high power consumption, its
duration is short (i.e., few tens of milliseconds) and thus its impact on the overall energy
consumption is limited (see power profiles of individual components in Section 5.5.4).

We define two rules for the state transition. Rule 1 : no interaction has been detected in
the last 20 minutes; Rule 2 : no movement has been detected in the last 20 minutes. Rule
1 is to detect scenarios where people are not in interactions for long (e.g., when completing



CHAPTER 5. MEASURING INTERACTION PROXEMICS WITH WEARABLE
LIGHT TAGS 101

System 
Off

High 
Power

Low 
Power

No beacons in  
20 minutes (rule 1)

Beacon 
detected

No movement 
in 20 minutes 

(rule 2)

Movement 
detected

Figure 5.8: State machine diagram for the adaptive sampling technique implemented on
Protractor.

individual work). Thus there is no need to monitor angle/distance with high granularity
and the tag switches to the Low Power state. Rule 2 is to infer when the tag is not in use
and triggers the transition to System O↵ state. Once any above condition is not met, the
tag reverts to High Power state. The 20-min window from the last interaction is chosen
to avoid missing short contacts with short intervals. Similarly, the 20-min window for
body movements prevents the transition to System O↵ state when the user is stationary
for a while with the tag still in use. Figure 5.8 shows the state machine diagram with
the transitions between the states. In Section 5.5.4, we will examine the tag’s energy
consumption and the benefits of adaptive sampling.

5.4 Protractor prototype

We fabricated 6 Protractor tags using o↵-the-shelf hardware contained in a 3D-printed
case. The final assembled tag (Figure 5.9(a)) resembles an access badge that can be worn
using or a clip. It measures 74 ⇥ 54 ⇥ 15 mm in size and 40 g in weight (with a 560 mAh
battery). Figure 5.10(a) shows its main internal components, including the NIR sensing
module, the battery, the IMU, and the micro-controller. We will next describe three key
components (NIR sensing module, IMU, and micro-controller) in detail.

NIR sensing

The NIR sensing components are the NIR transceiver and angle detection module, which
are hosted by a customized printed circuit board (PCB) we design and fabricate (Fig-
ure 5.9(c) and 5.9(d)). For the NIR beacon transmitter, we choose the OSRAM SFH
4240 [156] as the NIR LED, because it provides ±60� 3dB beam angle that enables a wide
sensing range. Its wavelength peaks at 950 nm. We use an NPN transistor to driver the
LED. We choose the Vishay TSOP38238 as the NIR receiver, which includes both the
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(a) (b) (c) PCB Front (d) PCB Back

Figure 5.9: Protractor prototype. (a) and (b) show the assembled tag and its internal compo-
nents. (c) and (d) show the two sides of the PCB we designed and fabricated to host the NIR
transceiver and angle detection module.

6-axis 
IMU

SPI
Micro SD 

Card
SPI

Metawear
Micro USB 

Lithium 
Battery

nRF52832
SoC

ADC

Angle 
Detection 
Module

IR 
Transceiver

(a)

LTC
6264

-
+ LTC

6264

-
+

0.2V

3V

SFH 205 F

220k

2.2p

2.2k 56k

56k

3V

1M

22p

1M

Vout
1μ

100R

560k0.1μ

First stage 
amplifier

Second stage 
amplifier

Envelope 
detector

Long term 
average

(b)

Figure 5.10: Protractor design. (a) is the block diagram of the components. (b) is the circuit
design of the angle detection module, including a two-stage amplifier, a long-term average to
remove the influence of ambient light, and an envelope detector.

photodetector and pre-amplifier. The receiver outputs low when it senses the carrier fre-
quency 38 kHz. Its output signal is connected to the micro-controller for decoding. We
use the Sony Serial Infra-Red Control (SIRC) protocol (12-bit) to transmit the tag ID
every 5 seconds. We select 5 s as transmission period to balance power consumption and
resolution of the collected data. To prevent collisions in case two or more devices have
their transmissions synchronized, we perturb each transmission by adding a random delay
(4 – 1020 ms). A collision of multiple NIR beacons makes beacon decoding impossible. In
this case the beacon is discarded and it is not used to infer angle and distance, hence not
a↵ecting the inference accuracy.

The angle detection module has two NIR photodiodes (OSRAM SFH 205 F [157]) with
spectral range of sensitivity from 800 nm to 1100 nm. They are arranged on a 3D-printed
base and their orientations form a 45� angle.

Figure 5.10(b) shows this module’s circuit design including a two-stage amplifier and an
envelope detector. We adopted a two-stage amplifier in order to detect the light beacons
even in environments with high light levels. The first stage is a transimpedance amplifier
with a relatively low gain to avoid saturation in bright conditions. The second stage is
a di↵erential amplifier which measures the di↵erence between the average light level (RC
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network between the two stages) and the instant light level and amplifies the signal further
with a gain of 17.8. This configuration allows us to remove the ambient light level which
is added to beacon signal and might cause the amplifier to saturate, preventing a correct
measure of the amplitude of the signal.

Inertial measurement unit

We use the Bosh BMI160 6-axis IMU that embeds an accelerometer and gyroscope in
the same package. The IMU operates with low power (around 950µA with accelerometer
and gyroscope in full operation mode) and contains an on-board FIFO bu↵er where sensor
readings can be accumulated without CPU intervention. This allows the micro-controller to
sleep for longer periods, leading to a longer battery life. The accelerometer and gyroscope
are sampled at 25 Hz.

Micro-Controller

All components are controlled by a Nordic’s nRF52832 SoC that includes a 32-bit ARM-
M4F CPU and a 2.4 GHz radio transceiver. We use a nRF52832 developer board from
Mbienlab Inc. that contains the main SoC, the Bosh IMU and associated circuitry. We
attach a micro SD card socket to the SoC using the Serial Peripheral Interface (SPI). The
entire device is powered by a 560 mAh 3.7V lithium battery that can be recharged via a
micro-USB interface.

The micro-controller samples the output of the two photodiodes (after the amplifier and
envelope detection) every 1ms (1 kHz) using the on-board 14-bit ADC and logs the data
on the SD card. The sampling is stopped during the transmission of NIR beacons to avoid
the detection of false pulses from the same device. The entire schematic of Protractor’s
electronics is reported in Appendix D.

5.5 System evaluation

We evaluated the systems performance of Protractor prototypes, aiming to examine Pro-
tractor’s accuracy in determining interaction angle and distance, the impact of practical
factors (e.g., di↵erences in user body heights, reflections, ambient light), its scalability with
multiple tags, and its energy consumption. We will also examine the e�cacy of data fusion
in enhancing the tracking reliability.
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Figure 5.11: Protractor’s accuracy in estimating interaction angles.

5.5.1 Accuracy

Experimental setup

We conducted controlled experiments with two static tags to examine Protractor’s tracking
accuracy using only NIR light. In particular, we placed each tag on a di↵erent table and
supported each tag via a piece of foam to emulate the actual usage scenario where tags
face each other (Figure 5.11(a)). The two tags were at the same height and we varied
their distance and relative orientation. To obtain the ground truth on the distance d, we
connected the tags with a string and measured the string’s length. To obtain the ground
truth on interaction angles ✓, we placed a printed angle meter under each tag to measure
their relative orientation. To estimate angle e✓ and distance ed, we computed the angular
and distance error as (e✓ � ✓) and (ed � d), respectively. All experiments were indoor with
normal lighting (300–400 lux, fluorescent lights).

Angle

We started with examining Protractor’s accuracy in angle detection. We rotated the table
of a tag (tag 1) and kept the other table/tag (tag 2) fixed and facing tag 1. As a result,
the interaction angle of tag 1 varied while the interaction angle of tag 2 remained 0�. We
varied the interaction angle of tag 1 from �90� to 90� with 10� interval and the distance
from 75 cm to 2 m with a 25-cm step. For each distance/angle combination, we let the
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Figure 5.12: Accuracy of distance measurement.

tags transmit light beacons for one minute. We then computed the interaction angle of tag
1 using the method in Section 5.3.1.

We plotted the absolute angular errors (Figure 5.11(b)) and the error distribution un-
der di↵erent angle/distance combinations, where error bars show the standard deviation
(Figure 5.11(c)). Because we rotated each photodiode by 22.5�, one tag will not detect
the other’s light beacons once the interaction angle exceeded 67.5�. Therefore, the tag’s
angular sensing range spans approximately from �70� to 70�. We observed that within
the sensing range, the mean error is 2.2� and the 95th percentile is 5.2�, expected to be
su�cient for detecting interpersonal contacts. We observed that large errors occur at long
distances and large angles (e.g., 2 m and 60�) with weak signal strengths. Since the ADC’s
resolution is fixed, the ADC error ratio (error/pulse amplitude) is larger under weaker
signals, leading to less precise RSS and larger angular errors.

Distance

We next examined Protractor’s accuracy in ranging. Instead of exhaustively testing all
possible combinations of distance and relative angles (⇡1K test cases), we selected three
representative interaction scenarios with di↵erent configurations on the two tags’ interac-
tion angles: (1) face-to-face interaction (0� � 0�), (2) one person talking to many others
(30� � 0�), and (3) two users discussing in front of a white-board (45� � 45�). In each
scenario, we varied the tag distance from 75 cm to 2 m with 25-cm interval. We then mea-
sured the interaction angle at each tag and derived the interaction distance. We plotted the
CDF of absolute distance errors in Figure 5.12(a). We observed that the three scenarios
have similar mean errors (2.3 cm, 2.4 cm, and 4.9 cm respectively), while scenario (3) has
a longer tail, with 11.4 cm as the 90th percentile compared to 3.4 cm and 4.7 cm in the
other two scenarios. As we further examined the error distribution across distances for
each scenario (Figure 5.12(b)), we found that the longer tail in scenario (3) is due to the
error jump (10 cm) under 2-m distance. The error jumps in this case because the distance
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Figure 5.13: Influence of height o↵set.

(2 m) approached the sensing limit, and the interaction angle (45�) at each tag approached
the half (3dB) viewing angle (60�) of our photodiode or LED. It resulted in weak RSS,
increasing ADC error ratios and ranging errors.

5.5.2 Robustness

As a chest-worn tag, Protractor can be a↵ected by various practical factors, such as height
di↵erences among tags, reflection of NIR light caused by nearby objects (e.g., walls), and
ambient light. We now examine the impact of these factors on Protractor’s accuracy, using
controlled experiments with the same setup as Figure 5.11(a).

Height o↵set

We first examined Protractor’s robustness when tags were at di↵erent heights. Such height
o↵set can be caused by user’s body height di↵erence, or the way users are wearing tags or
interacting with each other (e.g., a sitting user talking to a standing user). For this purpose,
we tested three settings of tags’ interaction angles (0��0�, 30��0�, and 60��0�) and two
distances (75 cm and 125 cm). For each combination, we increased a tag’s height by raising
its supporter and varied the height o↵set from 0 cm to 50 cm, which is approximately
the height di↵erence between a sitting user and a standing one. Figure 5.13(a) shows
the angular errors in di↵erent combinations of interaction distance and angle. Our main
observation was that angular errors did not exceed 10� even under 50-cm height o↵set,
which demonstrates that Protractor’s angle detection is robust against tag height o↵set.
The reason is that without any pitch rotation of the body, the vertical incident angle is
the same for both photodiodes and thus has been cancelled out (similarly to the I0 term)
in our angular metric (Eq. (5.2)). The height o↵set, however, does a↵ect ranging. As
shown in Figure 5.13(b), Protractor increasingly overestimates the distance as the height
o↵set increases. This is because we currently detect only horizontal interaction angles.
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Figure 5.14: Influence of reflection.

Thus, height o↵set leads to a larger vertical angle and higher signal attenuation. Without
knowing vertical angles, our method attributes the increase in attenuation to a longer
distance. Overall, the maximum distance error caused by height o↵set is 20 cm. To
diminish this error, we could add a pair of photodiodes to detect vertical angles, with the
cost of a slightly bigger form factor and higher energy consumption. In this case, even if
ambient light (e.g., o�ce lighting) might a↵ect the upper and lower photodiodes unevenly,
it will not a↵ect the angle detection because we subtract the background ambient light
when extracting the beacon amplitude. We will leave this extension to future work.

Reflection

Next, we evaluated how Protractor’s performance was a↵ected by NIR light reflection from
nearby objects. In this experiment, we set two tags 1-m away. We then arranged another
object in parallel to the line connecting the two tags at a 50-cm perpendicular distance.
We tested two interaction angles (0� and 30�) for tag 16 while keeping tag 2’s interaction
angle at 0�. We tested three types of reflection objects: human bodies, screens, and walls.
We conducted the experiment in a large o�ce for the former two and in a corridor (1.8-m
width) for walls.

In Figure 5.14, we plotted angular and distance errors for tag 1 under di↵erent types of
reflection objects, where error bars show the standard deviation. As a reference, we also
included the result when no reflecting objects are nearby. We made three main obser-
vations. First, reflection consistently caused underestimates of tag 1’s interaction angles.
This is because reflection strengthens the RSS perceived by the photodiode closer to the
reflection object, which biases the incident light towards the reflection objects. Second,
among di↵erent reflection objects, walls better reflected NIR light and thus caused larger
angular/distance errors, while reflections by human bodies and screens caused absolute

6For the 30� angle, we rotated tag 1 towards the reflection object.
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errors of no more than 4� and 5 cm. Third, as for distance errors, wall reflection consis-
tently caused underestimates, because it strengthens RSS and triggers our method to infer
shorter distances. On the other hand, reflections by human bodies and screens were weaker
and did not necessarily strengthen RSS, leading to possible overestimates. In summary, we
observed that only strong reflections by nearby walls presented a challenge for Protractor,
while smaller objects such as human bodies and screens introduce marginal e↵ects.

Ambient light

We also examined the impact of ambient light on Protractor. From our experiments under
di↵erent levels of indoor lighting, we observed that changes in indoor lighting did not
a↵ect Protractor’s accuracy in angle detection and ranging. The reason is twofold. First,
indoor artificial lights (e.g., fluorescent lights) emit mainly visible light, whereas our NIR
sensor [157] is not sensitive to visible light (390 – 700 nm), as its spectral sensitivity range
is 800 – 1100 nm. Second, the measured RSS at each photodiode is the amplitude after
subtracting the sensed ambient light (Section 5.3.1). Thus ambient light changes did not
a↵ect estimated angles/distances, as long as the photodiodes are not saturated.

Table 5.1: Closest working distance in various ambient lighting.

Ambient light (lux) 250 550 1220
Closest working distance (cm) 10 13 20

However, the saturation problem can occur under high ambient NIR light (e.g., bright sun-
light through the window), which a↵ects the closest working distance of our tags. Table 5.1
lists the closest working distance under di↵erent ambient lighting. The result demonstrates
that our system works for common social interaction distance (longer than 20 cm) even
in bright indoor environment (higher than 1000 lux). We also observed that tags cannot
detect light beacons any more when its perceived illuminance exceeds 2500 lux. This level
is well above the typical indoor illuminance that ranges between 300 and 500 lux [2, 3]. For
comparison, in full daylight (not directed towards the sun) there is an illuminance between
10k and 25k lux [186]. We are able to achieve this robustness against variation in ambient
light levels thanks to our two-stage amplifier which removes most of the ambient light from
the beacon signal.

Occasional low fidelity in NIR tracking

We examined the e�cacy of data fusion (Section 5.3.5) in compensating for occasional low-
fidelity NIR tracking results. Using the setup in Figure 5.11(a), we set two tags 1.25-m
away facing each other with 0� relative angle. We emulated two cases: occasional blockage
of the light channel, and tags temporarily moving outside each other’s sensing range.
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Figure 5.15: Data fusion of NIR and inertial sensors.

We tested three blockage scenarios by considering whether any tag changes its orientation
during the blockage. Figure 5.15(a) shows three blockage periods: (1) 50”–90”: we placed
a piece of cardboard between tags and then removed it; (2) 130”–190”: we placed a piece
of cardboard, rotated a tag by 40�, and then removed the cardboard; (3) 270”–370”: we
placed a a piece of cardboard, rotated a tag by 40�, rotated it back, and then removed the
cardboard. The tag orientation remained the same in period (1), while it changed once
and twice in periods (2) and (3), respectively. We observed that although NIR angular
results were absent during the blockage periods, our data fusion could immediately and
accurately extrapolate missing angles using the prediction step7. Scenarios (2) and (3)
also demonstrated the necessity of data fusion, which is capable of tracking the orientation
change during the blockage. In comparison, methods such as using the most recent NIR
angular result would completely miss the orientation change, which could be important
non-verbal cues in a social contact.

We next tested the scenario when tags moved outside the sensing range. Our prior exper-
iment (Section 5.5.1) showed that the maximum half sensing angle is 70� for our current
prototype. Thus, we started with two tags directly facing each other, rotated a tag by 90�,
and later rotated it back. Figure 5.15(b) plots the estimated angle with and without data
fusion. We saw that estimated angles using NIR sensors alone were around 67�, translat-
ing into �23� error. With data fusion, the estimated angle was 85� with only a �5� error.
Overall, our results validate data fusion’s e�cacy in augmenting NIR tracking when NIR
tracking is not available or reliable.

5.5.3 Scalability

After extensive experiments with two static tags, we then analysed the scalability of our
design with more than two tags. The presence of more tags could increase the likelihood of

7We smoothed gyroscope data using a sliding window of length 25 samples (1 second).
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NIR beacon collisions, during which signals from multiple NIR beacons add up, potentially
causing errors in signal measurements and the decoding of NIR beacons. However, since
our system discards collided beacons, beacon collisions do not a↵ect the accuracy of ranging
and angle estimation (our prior accuracy results with two tags hold); rather, they a↵ect
only the temporal granularity of the data.

To examine the e�cacy of our system design – low transmission rate of beacons and random
transmission delay (Section 5.4) – in reducing beacon collisions, we performed a test with
six tags. We set up the tags on a table in two rows, where the front row is 80 cm away
from the second row. Tags sent and received beacons with the configured transmission
rate (0.2 Hz) for 21 hours. For each pair of devices (30 pairs in total), we computed the
percentage of received beacons that are successfully decoded. Overall, we observed that
the average success rate is 79.5% with 78.3% as the minimum and 80.8% as the maximum.
The average duration between received beacons was 6.3 seconds. We conducted similar
experiments with four tags and the average success rate in beacon decoding was 84.7%. In
both experiments the distance and angle measurement errors are within the limits reported
in Section 5.5.1. These results show that our system gracefully scales to larger number of
tags by recording su�cient number of beacons and thus providing satisfactory temporal
granularity. More sophisticated beacon designs (which we leave for future work) could be
adopted in situations with a denser deployment of tags to limit collisions even further.

5.5.4 Energy consumption

Finally, we will report on the energy consumption of our prototype. We first analysed the
power profile of each component using a Monsoon power monitor. Figure 5.16(a) shows the
power trace of NIR beacon transmissions. For each transmission we repeated the same code
4 times to increase the chances of a successful decoding and to have enough data to infer
distance and angle. A longer burst (i.e., > 4 beacons) would have provided more data for
the angle and distance estimation but also increased the power consumption substantially.

Figures 5.16(b) and 5.16(c) show the power profiles of the ADC and IMU data logged on the
micro SD card. The power consumed by the ADC during a conversion is low (⇡700µW).
The constant high power in Figure 5.16(b) is due to the transimpedance amplifier used
to amplify photodiode signals in the angle detection module. This is the most power-
demanding component in our prototype. To save energy, we bu↵er ADC and IMU readings
(512-byte and 1024-byte respectively) and then log on the SD card only when the bu↵ers
are full. The power consumed by the NIR receiver is negligible in comparison, as it only
entails the digital reading of a GPIO pin every 50µs.

We also measured the average power consumed in each of the three power states (§ 5.3.6)
and we obtain: 51.75 mW for High Power, 9.42 mW in Low Power and 7.96mW for System
O↵. The tag is powered by a 560 mAh (2.07 Wh) battery, however, the battery life of the
tag depends on its usage pattern. To estimate the battery life, we computed the average
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Figure 5.16: Power profiles of Protractor’s main operations and activities in the High Power
state.

energy consumed per hour as:

Phour =
Phighthigh + Plowtlow + Poff toff

24
, (5.4)

where thigh, tlow and toff are the number of hours spent respectively in High Power, Low
Power and System O↵ state while Phigh, Plow and Poff are the respective power levels in
each state. Assuming that on a normal working day a user spends 5 hrs interacting with
people8 (i.e., tag in High Power state), 4 hours on individual work (Low Power state), and
does not interact for the rest of the day (System O↵ state), we can compute the battery
life by dividing the battery capacity (560 mAh) by Phour

3.7V and obtain an estimated lifetime
of about 120 hrs (i.e., 5 days with a single charge). If the device was configured to stay
in High Power state (9 hrs per day), without adaptive sampling, the battery would last
85 hrs.

5.6 Discussion

Protractor represents a step forward in the data collection to support social interactions

8Previous work found that university students spend on average 4.5 hrs per day in face-to-face
conversation[120].
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studies from two point of views: accuracy and scalability. The notation system designed
by Hall to annotate proxemic behavior defines only 9 possible orientations and 8 distance
ranges because the notations had to be simple given that the annotations were done manu-
ally [80]. Protractor instead enables data collection at fine granularity and with high accu-
racy, as required in previous works [139, 172]. Additionally, during manual annotations the
observer needs to discriminate between the configurations available in the notation system
with the possibility of introducing biases which are instead reduced with technology. The
second strength of Protractor lies in the fact that it allows to automatically collect data
and enables larger studies in the wild. In fact, it is not practical for observing a large
number of people.

We see the potential of such a system not only to support organizational science research
but also for other practical applications. Protractor tags could be used during job inter-
views or sales training sessions to collect data that can be later analyzed by the trainee in
order to assess her behavior and to improve it over time. We also envision the possibility of
using this system to provide behavioural real-time feedback during social interactions, sim-
ilarly to what has been done in the past with cameras in controlled environments [52]. We
believe the unobtrusive wearable form factor could ease privacy concerns and potentially
reduce biases. The Protractor prototypes we built do not perform distance and angle
measurements in real-time, on-device, however the algorithms used to estimate distance
and orientation are su�ciently simple and lightweight to be easily implemented on the
micro-controller we selected without exceeding its processing capabilities. As described in
Section 7.2 we believe that the real-time availability of information regarding social con-
tacts and non-verbal behaviour is crucial to take full advantage of wearable systems. In
fact this would allow to deliver discreet feedback to the users when it is most required, for
example during public speaking or job interviews. Therefore further research is needed in
this direction.

Another area where Protractor could show its strengths is the design of novel human-
computer interfaces based on people orientation and movements, also called Proxemic
Interactions. In this field, expensive motion tracking systems (e.g., Vicon9) are used to
create prototypes, but obviously they are not deployable in real applications at scale [208,
19, 34]. Protractor instead represents a viable, less expensive option to gather continuous
user’s orientation and motion without relying on invasive cameras. Protractor devices can
be integrated into tangible objects and in the environment in order to gather accurate
information about peoples’ orientations in space and in relation to objects. The data
generated by Protractor could then be used to o↵er innovative interaction paradigms for
smart and connected objects. Our current prototype can also rely on the availability of
Bluetooth Low Energy which could be used to locate users in the environment.

In our evaluation we have shown the maximum accuracy that we were able to achieve
with our prototype. Given that di↵erent applications entail di↵erent requirements on
accuracy and power consumption, our approach can be adapted to various requirements.

9http://www.vicon.com/
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As an example, by tuning the beacon transmission frequency and ADC sampling rate it is
possible to trade temporal granularity and accuracy for battery life. This is beneficial for
applications that do not need continuous accurate angle and distance measurements but
would prefer a longer operation period with a single charge. In this situation the beacons
can be transmitted less frequently and the transimpedance amplifier can be switched o↵
for longer periods of time.

5.6.1 Limitations

Technological Accuracy. Protractor focuses on the accurate measure of distance and angle
of interaction, however it is not capable of detecting if people are actually interacting or
not. Even if it is reasonable to assume that short interpersonal distance and small relative
angles represent good proxies for social interactions, there are examples where this might
not be the case. For example, in a library when two readers use the same reading table
sitting one in front of each other or on a crowded bus. Additionally, Protractor does not
track users’ head movement, which can be useful information for understanding non-verbal
behaviours.

Scalability. We showed how, in the presence of beacon collisions, only the temporal gran-
ularity of our system is a↵ected but not its accuracy. The test was performed with 6
devices given the limited availability of Protractor prototypes. A larger number of devices
in range might result in more packet loss due to collisions, up to a point where potentially
no packets are received. Protractor should be evaluated in denser deployments to analyse
this e↵ect comprehensively.

Sensing Modalities. In the next chapter we will examine how interpersonal distance and
angle of interaction could be used to study small groups dynamics, however the monitoring
of other non-verbal cues could be useful for behavioural studies. For example, our device
is not capable of detecting speech related cues, hands and head movements or gaze. We
opted for a solution that would potentially result in fewer privacy concerns by the users
and a more comfortable device to wear.

5.7 Conclusion

We have introduced Protractor, a system to accurately detect non-verbal cues in human
interactions. The novelty of our approach lies in its ability to detect relative body ori-
entation and distance via smart use of near-infrared light and sensor fusion algorithm
exploiting inertial sensors. We showed how with a two stage amplifier we are able to dras-
tically reduce the influence of ambient light and increase the robustness of our device. Our
prototype experiments demonstrated Protractor’s e�cacy and its ability to reconstruct
real-life interaction scenarios.
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This technology significantly simplifies the study of non-verbal behaviours removing the
need for expensive and invasive infrastructure, opening up the possibility to observe be-
haviours in real and informal settings. We explore this possibility in the next chapter
where we deploy Protractor to study non-verbal cues of 64 participants while performing
a creative task.



Chapter 6

Studying proxemics behaviour in
small groups

6.1 Introduction

In the previous chapter we introduced a novel wearable device, called Protractor, to unob-
trusively measure interpersonal distance and angle of interaction by relying on near-infrared
beacons. In this chapter we explore the potential of Protractor in supporting studies in
the context of organizational and social science.

Although human networks and social structures have been featured prominently in the
fields of organizational behavior and human resources [136], recent research also highlights
the importance of analysing actions and tasks to understand people working within orga-
nizations [79, 163]. This research however has tended to focus on higher-level perspectives
such as organizational routines [66, 162], and not enough on leveraging the capacity of
sensor technologies to examine micro-space and proxemic behavior as a basis for studying
actions [80].

When studying social interactions, the context in which the contact is taking place af-
fects the way people interact. For example, consider the di↵erences between a corporate
team discussing a new product or an informal co↵ee break. However, all social interac-
tions seem to have one aspect in common, as described by Tischler:“people do not interact
with one another as anonymous beings. They come together in the context of specific envi-
ronments and with specific purposes. Their interactions involve behaviors associated with
defined statuses and particular roles. These statuses and roles help to pattern our social
interactions and provide predictability” [198]. This suggests that the roles people assumes
while interacting could be essential for the understanding of social interactions. For ex-
ample, in dysfunctional teams these roles are analysed by meeting facilitators who help
the group to stay focused and mediate the discussion by providing feedback on individual
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or group behaviour [165]. Other researchers have also found that changes in the distance
and body orientation between interacting people might indicate di↵erent phases of the
contact, for example beginnings, endings and changes in topic [60]. Previous works have
used microphones and cameras to detect people’s roles and meeting phases from non-verbal
behaviours (e.g., speech characteristics or body and head movements) with the objective
of realising a virtual facilitator that could provide feedback about the meeting automati-
cally [165, 221, 20, 58].

With this chapter we propose to employ the measure of interpersonal distance and angle
of interaction gathered by Protractor to recognise roles people take while working together
in small groups and the di↵erent phases of the meeting. We conducted experiments in
a controlled setting with 16 groups of 4 users each. We assigned participants a creative
problem-solving task widely used for assessing teams’ creative potential [217]. The inten-
tion was to simulate a team working together within an organizational environment (e.g.
in new product development). The goal of this deployment was to provide an initial explo-
ration of the possibilities o↵ered by Protractor in the understanding of complex, and often
abstract processes, comprising multiple, interrelated sets of human actions in an organi-
zational environment. In particular we explored the possibility of predicting, using only
proxemics information (i.e., angle and distance between pairs of participants), two aspects
of team dynamics: (1) task role: the verbal role assumed by each participant, and (2)
task timeline: the di↵erent phases of the creative task. We showed how Protractor is
capable of supporting organizational science studies by providing objective data that could
be used to predict the role a person assumes during a creative task as defined by her ver-
bal communication with 84% accuracy, and the procedural phases of the task with 93%
accuracy.

In this chapter we show how the spatial arrangements in small groups, similarly to other
non-verbal cues that have been analysed in the past, reflect the role and attitude of partici-
pants (as defined by their verbal communication) and the various sections that characterise
the encounter.

Chapter Outline. Section 6.2 describes the deployment setup reporting the collaboration
task we used for the study, the demographics of the participants and the data sources used
for the classification. The description of how we structure the dataset for the classification
tasks is in Section 6.3. In Section 6.4 we detail the approach we adopted for training and
evaluation of the classification methods we used and in Section 6.5 we present the results.
We then discuss the implications and limitations of our results and approach in Section 6.6
and conclude the chapter in Section 6.7.
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6.2 Study setup

In order to study team dynamics while collaborating toward a common goal, we employed
an existing creativity task, “The Marshmallow Challenge” [216], which was designed to help
teams experience fundamental collaboration dynamics in creative problem solving. The
challenge consists in building the tallest free-standing structure from 20 sticks of spaghetti,
one yard of tape, one yard of string, and one marshmallow which, most importantly, had
to be supported by the free-standing spaghetti construction. Each group of 4 participants
had 18 minutes to complete the structure. At the end of the allocated time the height of
the structure was measured.

6.2.1 Participants

We recruited participants from the Computer Laboratory at the University of Cambridge
(U.K.), and the Department of Computer Science at Dartmouth College (U.S.). We formed
16 teams of four participants (n = 64)1. 90% of the participants were aged 18 to 29 years
old and 79% of our participants were men. The participants were compensated by entering
a ra✏e for an Amazon voucher (6 vouchers available valued £50 or $50 each).

The teams were welcomed in the experiment room and then given the instructions and
rules for the building process. All participants wore the Protractor and were video recorded
throughout the entire building process.

6.2.2 Data sources

Three main sources of data were collected for this study: (1) angle and distance measure-
ments recorded by Protractor for every pair of participants at approximately five-second
resolution; (2) team members’ verbal interactions (i.e., their individual task role described
by their verbal exchange); (3) the timeline of the teams’ building process, which we coded
from the video recordings.

Task roles and task timeline were manually coded by one subject matter expert coder. The
decision to employ a single trusted subject matter expert was deemed appropriate and safe
given the novelty and preliminary nature of the study. Following, we describe the collected
data with more details.

Angle and Distance. We gathered the raw angle values as detected by Protractor
ranging from -90� to 90� for every A-B dyad approximately at five-second intervals (where
0� represents participants A and B facing each other, the negative interval indicates B to
the left of A, and the positive interval indicates B to the right of A). We rescaled the raw

1Ethical approvals have been obtained from both local institutions before the study.
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Figure 6.1: Illustration of angle and distance used in the classification.

data to the 0� to 180� interval to make the results more interpretable whilst preserving the
left-right dichotomy. Thus, in the rescaled dataset, 90� represents participants A and B
facing each other, 0� to 90� interval indicates B to the left of A, and 90� to 180� interval
indicates B to the right of A.

Distance is measured in centimetres and captures the distance between dyads of partici-
pants and, just as the angle data, the resolution is approximately at five-second recorded
for the duration of the experiment (Fig 6.1).

Task Roles. We coded the team members’ verbal behaviours during the building pro-
cess by using the Advanced Interaction Analysis (act4teams) video coding scheme from
Lehmann-Willenbrock et al. [122]. This coding scheme has been employed to label ver-
bal behaviours in video recordings of team interactions. The scheme covers four main
categories2 of statements, namely:

• Problem-focused (labelled ProblFcs): identifies communication directly related to the
topics of the meeting. Problem-focused communication includes discussions about
the problems, formulation of ideas and solutions and their analysis. This category
includes statements of the following kind: identifying a problem, connections with
problems, defining the objective, identifying a solution, describing a solution, prob-
lems with a solution, arguing for a solution, organizational knowledge, etc..

• Procedural: this kind of communication describes statements related to the structure
and organisation of the discussion. Positive and Negative statements exists. Positive
statements are the ones that are beneficial for the organisation of the discussion while
the Negatives have a negative influence and lead to a loss of structure and loss of
thought. In our dataset we labelled the two as ProcedPos and ProcedNeg respectively.

• Socio-emotional: captures the social relationships inside teams. Also in this case there
are Positive (labelled SocEmPos) and Negative behaviours (labelled SocEmNeg). The
Positive category includes statements used to show solidarity and support, release

2For a more detailed description of the four categories refer to the works from Lehmann-Willenbrock
et al. [122] and Kau↵eld et al. [101].
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tension, or show agreement. On the other hand, Negative behaviours comprise self-
promotion, criticizing, o↵ending or interrupting others and having side conversations
which demonstrate disengagement.

• Action-oriented: describes statements aimed at improving the team’s work by show-
ing willingness to take action. Positive statements (labelled ActOrtPos) show proac-
tive behaviour, willingness to take responsibility or planning of concrete actions. By
contrast, negative statements (labelled ActOrtNeg) manifest no interest in change,
complaining, lack of initiative, seeking someone to blame or denying responsibility.

These categories describe solution-oriented behavior [102] and have been shown to help
teams become aware of their dynamics in meetings and a↵ect team and organizational
success [10, 101, 123]. We used these labels (7 in total) to code our participants’ individual
verbal statements in the building process at five-second increments. We nominated starting
points for each verbal code and assigned these codes to all subsequent time increments; as
a new verbal behavior occurred, the new code replaced the previous code in subsequent
time increments and so on.

Task Timeline. In the original design of the challenge [216], the building phases described
were orient, plan, build, and ta-da or oh-no. Empirically, we adapted the phases to collect
a more fine-grained taxonomy of the teams’ building processes and we labelled our data
with:

1. Intro for the introduction time before the actual discussion;

2. Materials and logistics for the discussions about the tools at hand, planning the
building, and starting to put together pieces of structure or checking their strength
and stability;

3. Building levels one, two, three, and four for assembling the materials and stacking
them into the final structure;

4. Consolidating level one for reinforcing the base of the structure to ensure the structure
is freestanding;

5. Marshmallow on top for the attempts to place the marshmallow on top of the struc-
ture to test the strength of the construction or to finalize it;

6. Outro for the time they finished building to the end of the allocated eighteen minutes.

Once we identified the start and end points of each phase we annotated the angle and
distance data within a phase interval with the relative label.
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Figure 6.2: Features selection. (a): for predicting the role of each participant we are interested
in looking at the relative orientation and distance between that participant and all other partic-
ipants. (b): for the prediction of Task Timeline we wanted to capture the spatial arrangement
of all members of the group at once, thus we considered the angles and distances between each
possible pair.

6.3 Dataset structure and features

Our objective was to predict the task roles and task timeline labels, coded in the video,
using the dyadic angle and distance measurements as input. We treated the input data
as not formally sequence or temporally dependent, but rather by using all five second
increments across all groups as separate instances for classification. We did this to examine
the informational value of the angle and distance data collected by Protractor at the most
basic level.

From Protractor we extracted the pairwise distance and angle measures between each
pair of participants across all 16 groups in our study. The dynamics we aim to classify
automatically (i.e. task role and task timeline) have di↵erent characteristics which have to
be considered when selecting the features for their detection. In previous work on social
contact monitoring, non-verbal features have been classified in: (1) individual which are
derived only from the behaviour of each participant, without considering other people;
and (2) interpersonal which instead are computed from the behaviour of the participants
with respect to each other [180]. In this work we rely exclusively on interpersonal features
because Protractor provides only relative distance and orientation between pairs of tags
rather than absolute position and orientation in the environment. Protractor could be
used to extract individual features by deploying static anchors in the environment allowing
the detection of position and orientation of people with respect to fixed points rather than
relative to other participants. However, this would undermine the benefit of having a
wearable device which does not require any instrumentation of the environment. Data
generated from the inertial measurement unit (accelerometer and gyroscope) could be
adopted to derive individual features related to the participant movement. We leave the
exploration of this possibility for future work. In the following, we analyse the specific
characteristics of the two tasks we want to classify and describe how we chose the features
for each of them.
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Table 6.1: Class distribution of all (11454) instances for the classification of individual’s
instant task role.

Label Count

ProcedPos 5351
ProblFcs 3144
ActOrtPos 1591
SocEmPos 1138
SocEmNeg 110
ProcedNeg 75
ActOrtNeg 44

6.3.1 Task role

The Task Role classes represent the nature of the verbal communication that was taking
place among participants during the construction of the structure. Task roles are defined at
the individual level: each person assumes a role based on her verbal behaviour. With our
deployment we are interested in exploring the potential link between spatial arrangements
(i.e. variation in interpersonal distance and angle of interaction) and roles assumed by each
individual. The intuition is that changes in roles could be reflected in variations in relative
positions between people. For example, hostile or negative behaviours (like negative socio-
emotional) could bring people to prefer longer distances and avoid direct confrontation,
while collaborative actions (such as positive action-oriented) could pull people together.
Based on this intuition, in order to recognise a participant’s role using spatial arrangements
we needed to capture the participant’s position relative to all the others. To do that we use
as features her angle towards each other group member (3 features), the angle of each other
member toward her (3 features), and the distance between her and each other member (3
features). This gives a total of 9 features used to predict the instant role of a person.

In more detail, referring to Figure 6.2(a), for each participant A (with other participants
in the group being B, C and D) each instance in the dataset has the following fields:

angle.AB, angle.AC, angle.AD, angle.BA, angle.CA, angle.DA, distance.AB, distance.AC,
distance.AD, role

where, angle.XY identifies the angle between participant X and Y as captured by the
device worn by X, distance.XY is the symmetric distance between X and Y and role is
one of the Task Roles coded from the verbal behaviour as described in Section 6.2.2. We
aggregate all instances for all participants across all groups leading to a total of 11454
instances3. The class distribution of these instances are listed in Table 6.1.

3The total number of instances theoretically is # of people per group ⇥ # of groups ⇥ # of 5-second
intervals in 18 minutes = 4 ⇥ 16 ⇥ 216 = 13824. We obtain a lower number of instances because some
groups finished the challenges before the 18-minute mark and participants stopped working on the structure
and interacting.



122 6.3. DATASET STRUCTURE AND FEATURES

Table 6.2: Class distribution of all (3231) instances for the classification of task timeline
phases.

Label Count

Building level one 908
Consolidating level one 701
Materials and logistics 700
Building level two 539

Marshmallow on top 183
Building level three 106

Outro 53
Intro 28

Building level four 13

6.3.2 Task timeline

The Task Timeline classes represent stages in the building process followed by the par-
ticipants. Contrary to Task Roles, the building phases during the challenge (i.e. Task
Timeline) are not tied to each person individually, instead they are a characteristic of the
group as a whole.

To predict the stage in the building process, we examined the configurations (i.e., relative
orientations and distances) of all participants in the group, based on the rationale that
these configurations vary across di↵erent stages of the building process. As examples, in
the intro phase, participants might have longer distances from each other since they are
not yet actively working; in the materials and logistics phase, they might come closer to
one another and form sub-groups (pairs of people with short distance and angle close to
90�) while they get familiar with the materials or prototype a basic structure. To capture
these configurations we concatenate angles and distances between all possible pairs of
participants as the feature vector: this gives the current configuration of the entire group.
Based on this consideration, identifying the members of a group with A, B, C and D,
(Figure 6.2(b)) each instance in the dataset contains the fields:

angle.AB, angle.AC, angle.AD, angle.BA, angle.BC, angle.BD, angle.CA, angle.CB, an-
gle.CD, angle.DA, angle.DB, angle.DC, distance.AB, distance.AC, distance.AD, distance.BC,
distance.BD, distance.CD, task.timeline

where angle.XY and distance.XY are defined as in the previous section and task.timeline
is one of the building phases introduced in Section 6.2.2. The resulting dataset contains
3231 instances, given the five-second resolution of Protractor data4. Table 6.2 lists the
class distribution of these instances.

4The total number of instances theoretically is # of groups ⇥ # of 5-second intervals in 18 minutes
= 16 ⇥ 216 = 3456. We obtain a lower number of instances because some groups finished the challenges
before the 18-minute mark and participants stopped working on the structure and interacting.
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6.4 Classification of video coded labels

For the classification of Task Roles and Task Timelines we selected classifiers from the
WEKA machine learning library (version 3.7.13) [131] and applied them as multi-class
classifiers using a one-versus-all approach. Previous works in the area of automatic detec-
tion of non-verbal cues used several classifiers on features extracted mainly from audio and
video data (e.g., Conditional Random Fields [182], C4.5 Decision Trees [20], SVM [221]).
In this work instead we worked with a di↵erent kind of data therefore we opted for the
Random Forest classifier because it has been found to perform well on many di↵erent
datasets [67] and also for its simplicity and ability to minimize overfitting [31]. We run the
classifier with 50 and 100 trees, referred to as RF50 and RF100 respectively henceforth5.
For both classification tasks we followed these steps:

1. The input features were the angles of each dyad A-B (Angle AB and Angle BA) as
well as the distance between A and B as described in Section 6.3. The data were
then normalized to [0, 1] interval.

2. Next, we partitioned the data into 70/30 stratified splits for classifier training and
testing. The split has been performed in a dyad-independent way, ensuring that data
from the same dyad would not be included in the training and testing set. Model
performance was assessed with reference to (a) sound precision, recall and F-measure
scores across classification targets, (b) reasonable balance between these scores across
targets, and (c) good overall model accuracy.

(a) For the classification of Task Roles we applied the SMOTE oversampling pro-
cedure [45] to create synthetic examples for the minority classes (ActOrgNeg,
ProcedNeg and SocEmNeg) with the objective of balancing precision and recall
across classes.

3. We further assessed model performance using 10-fold cross-validation with stratified
sampling (without any oversampling).

To gain more insights into the role of the features, we also ran a simple forward feature
selection loop using the same multi-class Random Forest Classifier with 50 trees (RF50
henceforth). Table 6.3 lists the results. For the Task Role classes, “distance.AB” con-
tributes the most to the overall model accuracy (39.45%), followed by varied contributions
from the angle features (the highest being “angle.AD” with 10.62%, and “angle.AC” with
11.32%), before peaking at eight of nine features (79.46%).

For the Task Timeline classes, “angle.BD” contributes 28.04% to the overall accuracy of
the result, followed by gains of 15.88% (“angle.CD”), 16.60% (“angle.AD”), and 11.44%
(“distance.BC”). Thereafter, gains are comparatively modest, peaking at fifteen of eighteen
features (91.44%). The intention here is not to show a generalizable pattern of feature

5The classifier parameters used in this work are reported in Appendix E.
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Table 6.3: Forward features selection results run with multi-class Random Forest classifier
with 50 trees (RF50). The procedure involves adding features iteratively to the model with
the goal of maximizing overall accuracy. Overall accuracy at any given feature shows the
total model accuracy achieved up until that feature. Change shows the increase / decrease
in model accuracy from one feature to the next.

Target Order Feature Accuracy Change Target Order Feature Accuracy Change

Role

9 distance.a.d 79.40% -0.06%

Timeline

18 distance.a.c 88.97% -1.44%

8 distance.a.c 79.46% 1.80% 17 distance.c.d 90.41% -0.41%

7 angle.d.a 77.65% 2.71% 16 distance.b.d 90.82% -0.62%

6 angle.a.b 74.95% 3.72% 15 angle.d.a 91.44% 1.86%

5 angle.c.a 71.22% 5.62% 14 distance.a.d 89.59% 0.00%

4 angle.a.c 65.61% 11.32% 13 angle.d.c 89.59% -0.82%

3 angle.a.d 54.29% 10.62% 12 angle.b.c 90.41% 1.24%

2 angle.b.a 43.67% 4.22% 11 angle.a.c 89.18% 0.62%

1 distance.a.b 39.45% 39.45% 10 angle.c.a 88.56% 1.13%

9 angle.d.b 87.42% 2.89%

8 angle.b.a 84.54% 1.24%

7 distance.a.b 83.30% 2.27%

6 angle.c.b 81.03% 5.15%

5 angle.a.b 75.88% 3.92%

4 distance.b.c 71.96% 11.44%

3 angle.a.d 60.52% 16.60%

2 angle.c.d 43.92% 15.88%

1 angle.b.d 28.04% 28.04%

contributions, but rather to shed light on the role of the distance and angle features together
as markers of focal task related behaviours and interactions.

We now move to the analysis of the results of classifying the Task Roles and the Task
Timeline labels using data collected with Protractor.

6.5 Results

We summarize the overall model accuracy results for RF50 and RF100 in Table 6.4. Overall
accuracy results for cross-fold validation with RF100 are summarized in Table 6.5. Classes
are ordered by F-measure. Next, we discuss the results for each classification task.

6.5.1 Task role

As shown in Table 6.4, the overall accuracy of classifying Task Role was 79.3% (RF50) and
80.7% (RF100) respectively. Cross-fold validation with RF100 achieved an overall accuracy
of 84.9% (Table 6.5). Recall and precision are strong among all classes with ProcedPos
scoring the highest. SocEmNeg, ActOrtNeg, and ProcedNeg score lower because they
are minority classes with fewer instances, where SocEmNeg has 110 instances, ActOrtNeg
has 44, and ProcedNeg has 75 instances (Table 6.1). However, our use of SMOTE [45]
to oversample minority classes has helped to improve the recall of minority classes, in
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Table 6.4: Overall accuracy of predicting participants’ instant task role and groups’ task
timeline. We show precision, recall, and F-measure scores, as well as the overall accuracy
when using Random Forest with 50 trees (RF50) and 100 trees (RF100) respectively.

RF50 Multi-class Classifier RF100 Multi-class Classifier

Task Role Recall Precision F1 Accuracy Task Role Recall Precision F1 Accuracy

ProcedPos 0.84 0.84 0.84

79.3%

ProcedPos 0.85 0.84 0.85

80.7%

SocEmPos 0.72 0.87 0.79 SocEmPos 0.74 0.87 0.80

ProblFcs 0.81 0.72 0.76 ProblFcs 0.82 0.75 0.78

ActOrtPos 0.69 0.78 0.73 ActOrtPos 0.70 0.81 0.75

ProcedNeg 0.65 0.65 0.65 ActOrtNeg 0.64 0.75 0.69

SocEmNeg 0.61 0.67 0.64 ProcedNeg 0.61 0.67 0.64

ActOrtNeg 0.43 0.67 0.52 SocEmNeg 0.58 0.68 0.62

Task Timeline Recall Precision F1 Accuracy Task Timeline Recall Precision F1 Accuracy

Materialsandlogistics 0.96 0.94 0.95

91.1%

Buildinglevelfour 1.00 1.00 1.00

91.9%

Buildinglevelthree 0.91 1.00 0.95 Materialsandlogistics 0.96 0.94 0.95

Buildinglevelone 0.93 0.90 0.92 Buildinglevelthree 0.88 1.00 0.93

Buildingleveltwo 0.88 0.93 0.91 Buildinglevelone 0.94 0.91 0.92

Consolidatinglevelone 0.90 0.88 0.89 Consolidatinglevelone 0.93 0.90 0.92

Intro 0.78 1.00 0.88 Buildingleveltwo 0.88 0.93 0.91

Buildinglevelfour 0.75 1.00 0.86 Intro 0.78 1.00 0.88

Marshontop 0.84 0.87 0.85 Marshontop 0.84 0.89 0.86

Outro 0.75 0.86 0.80 Outro 0.63 0.83 0.71

Table 6.5: Model accuracy (recall, precision, and F-measure) of predicting participants’
instant task role and groups’ timeline using Random Forest with 100 trees (RF100) and
10-fold cross validation.

Task Role Recall Precision F1 Accuracy Task Timeline Recall Precision F1 Accuracy

ProcedPos 0.96 0.82 0.88

84.9%

Buildinglevelfour 0.92 1.00 0.96

93.2%

ProblFcs 0.80 0.87 0.83 Materialsandlogistics 0.96 0.94 0.95

SocEmPos 0.73 0.93 0.82 Buildinglevelone 0.96 0.93 0.95

ActOrtPos 0.72 0.89 0.79 Consolidatinglevelone 0.96 0.92 0.94

ProcedNeg 0.70 0.91 0.79 Buildingleveltwo 0.92 0.94 0.93

SocEmNeg 0.38 0.98 0.55 Buildinglevelthree 0.88 0.97 0.92

ActOrtNeg 0.27 0.92 0.42 Outro 0.87 0.96 0.91

Intro 0.75 0.91 0.82

Marshontop 0.72 0.89 0.80

comparison to the result without any class balancing. This follows our objective of reaching
a balance between the scores (precision, recall and F-measure) across classes.

As we further analyse the confusion matrix in Table 6.6 using RF100, we can see that
despite our oversampling of the minority classes, the classifier is still slightly biased towards
the majority classes (ProblFcs and the positive ones), resulting in more predictions of these
classes. However, we did not want to oversample the minority classes further, due to the
limited number of instances available. At this stage we considered satisfiable a precision
of around 70% (or more) for all classes with a loss in recall for the less frequent negative
classes (Table 6.4). Overall, our results show that task-role classes are quite distinguishable,
meaning that the angle and distance data parallel verbal behavior.
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Table 6.6: Confusion matrix of classifying the instant task role of each participant using
RF100 while training on 70% of the data (model results in Table 6.4). We concatenate
a participant’s instant angle and distance data to all other group members as the feature
vector and predict her instant role. The rows represent the ground truth labels while the
columns represent the labels predicted by the classifier. The matrix contains 3440 testing
instances (30% of the total data).

ProblFcs ProcedPos SocEmPos ActOrtPos ActOrtNeg SocEmNeg ProcedNeg

ProblFcs 776 123 8 31 1 2 3

ProcedPos 167 1371 23 36 1 7 1

SocEmPos 40 36 252 12 0 0 2

ActOrtPos 45 90 7 334 1 0 1

ActOrtNeg 1 3 0 1 9 0 0

SocEmNeg 2 11 0 1 0 19 0

ProcedNeg 7 2 0 0 0 0 14

Table 6.7: Confusion matrix of classifying timeline states, using RF100 while training on
70% of the data (model results in Table 6.4). We aggregate the dyadic angles and distances
of all members in a group as group-level features to predict the current stage of the building
process. The rows represent the ground truth labels while the columns represent the labels
predicted by the classifier. The matrix contains 973 testing instances (30% of the total
data).

Intro
Materials

and logistics

Building

level one

Building

level two

Marsh

on top

Consolidating

level one
Outro

Building

level three

Building

level four

Intro 7 2 0 0 0 0 0 0 0

Materials and logistics 0 203 6 2 0 0 0 0 0

Building level one 0 9 257 3 1 3 0 0 0

Building level two 0 0 7 143 0 12 0 0 0

Marsh on top 0 1 3 3 46 2 0 0 0

Consolidating level one 0 0 6 2 5 196 2 0 0

Outro 0 0 1 1 0 4 10 0 0

Building level three 0 0 4 0 0 0 0 28 0

Building level four 0 0 0 0 0 0 0 0 4

6.5.2 Task timeline

The overall accuracy of classifying Task Timeline is summarised in Table 6.4. We observed
that the majority of tasks in the timeline can be distinguished well, achieving 91.1% (RF50)
and 91.9% (RF100) overall (Table 6.4). Cross-fold validation with RF100 achieved 93.2%
accuracy (Table 6.5). Recall and precision were strong for most classes, with Intro and
Marshontop having a slightly lower recall (Table 6.5).

From the confusion matrix in Table 6.7, we observed that the classifier exhibit inter-
class misclassification mainly between building level one, building level two, materials and
logistics, marshmallow on top and consolidating level one (central section of the matrix).
One possible reason for this is that the labels we selected might be too fine-grained and
represent the same underlining action (e.g. working on the structure). A di↵erent coding
scheme might account for these similarities and aggregate some of the labels we employed
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for this work.

6.6 Discussion

6.6.1 Discussion of classification results

Overall, the results show that we can adequately distinguish between Task Roles and Task
Timeline phases. This has been achieved with just angular and distance data showing
promising preliminary results for Protractor.

Focusing on the results for Random Forest with 100 trees, which produced the best results
(Table 6.4), we conclude that the Task Role class labels (created by coding the participants’
utterances) are separable with an overall accuracy of 81%. This means that there is a
link between the angle and distance of the participants and their verbal behavior. The
classification of Task Timeline labels presents even higher overall accuracy (92%) with
clearly distinguishable labels. In this case the result is more intuitive given the natural
tendency of having di↵erent spatial arrangements given the current task (e.g., getting closer
to one another when working on the structure). We observed such behaviour also during
the coding of the video recordings of the challenges.

Delving deeper in the results, firstly, we observe that for the classification of Task Roles we
were able to improve the balancing between precision and recall across the target classes by
oversampling the minority classes ActOrgNeg, ProcedNeg, SocEmNeg, with SMOTE [45].
Without the additional synthetic samples, as shown in Table 6.5 for 10-fold cross validation,
the recall of the classes SocEmNeg and ActOrtNeg is very low, meaning that the classifier
is biased towards the classes with a larger number of samples. With the oversampling
we loose slightly in terms of overall accuracy (81% against 85% without oversampling)
but we obtain a less biased classifier. Clearly, the choice of optimising precision or recall
depends on the particular context considered for the deployment of the classifiers. This
consideration is beyond the scope of our work.

By contrast, for the classification of the Task Timeline phases we did not apply any over-
sampling technique and the classifier was still able to correctly distinguish the classes, even
the ones with a limited number of samples. However, we observe that most of the misclas-
sification is among classes that represent the same fundamental action, like for example
building level one, building level two or consolidating level one. This is an indication that,
despite the classes are well distinguishable, our coding scheme might be too granular and
specific.
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6.6.2 Implications for organizational science

The main methodological contribution of our study to the field of organizational science is
in the combination of objective sensor-data and subjective assessments. We thus address
recent calls for research in micro-meso level behavioural processes that have overwhelmingly
been researched using retrospective self-reports [108]; known for being bias-prone and inac-
curate, social scientists call for the supplementation of these tools with unobtrusive, data
dense, and continuous measurement systems. By employing Protractor we were able to
observe nuances in behavioural changes never captured before with a lightweight wearable
system which does not require any building instrumentation (e.g., motion capture systems).
We made and validated the conceptual link between fluid spatial arrangements (described
by the variation in angle and distance between team members) and the communication’s
content.

Finally, Protractor would allow us to study the impact of culture on proxemics behaviours.
Hofstede et al. have show that cultural backgrounds can impact the way people think,
feel, and act while working with others [70]. Cultural di↵erences and personal preferences
could alter the way people approach others in terms of interpersonal distance and relative
orientation. Some cultures for example tend to have closer distances when interacting with
strangers than other cultures [81, 194]. These di↵erences could have a significant e↵ect in
today’s highly international workplaces and would need to be factored in when studying
non-verbal cues. We leave these aspects for future work.

6.6.3 Limitations

Generalisation. This study considered a relatively small number of participants (n = 64)
resulting in a limited dataset. Additionally, our participants have similar backgrounds and
occupations (e.g., students, PostDoc and researchers). A larger number of participants
with more variability in their demographic could help refine and generalise our results
more widely and create a more extensive dataset.

Experimental Setting. The analysis of human behaviours in controlled settings, although
commonly adopted in previous work, might lead to di↵erent conclusions compared to con-
sidering real contexts, such as actual corporate meetings. Even if we considered a more
natural setting compared to previous work where the roles were pre-assigned (e.g., radio
talk shows), our study could benefit from the inclusion of data recorded in real-world
scenarios. Additionally, our study required the participants to stand and move around a
table, possibly making the individual non-verbal behaviours more visible. A di↵erent set-
ting where people can not move so freely (e.g. sitting at a desk) might make the prediction
of roles and meeting states more di�cult.

Comparison Validity. The validity of comparisons with previous work might be a↵ected
by factors including the demographics and background of participants and the kind of
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task they had to the perform. Similarly, we adopted a coding scheme which was slightly
di↵erent than previous work, choosing more granular labels to better capture di↵erent
dynamics within the teams. This is another factor which might limit the validity of the
comparison between our results and the ones reported by other researchers.

Video Coding Approach. Non-verbal behaviours are subtle, di�cult to interpret and depend
on many factors. This makes the coding of recorded videos a delicate and di�cult task.
We acknowledge the limitation of having a single coder to label the videos of the tasks.
However, given the novelty and preliminary nature of the study we deemed it appropriate
and safe to employ only one expert coder.

6.7 Conclusion

We have demonstrated how data about relative orientation and interpersonal distance
could be employed for the analysis of behaviours within small teams and how non-verbal
cues relate to the meeting’s verbal content. The data was used to automatically predict
the roles a person assumes during a collaborative task and the various phases of the task
with 84% accuracy in the first case and 93% accuracy in the second one.

This contributes to the body of research that explores the automatic recognition of roles
and meeting states by analysing, for the first time, people’s spatial arrangements with
objective and accurate measurements. The availability of rich information about meeting
dynamics could facilitate practitioners, such as trainers or team facilitators to better un-
derstand teams’ dynamics and intervene to support dysfunctional teams. Additionally, our
device could be employed as a building block of a larger automatic system to provide such
feedback.
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Chapter 7

Conclusion and future work

At the beginning of this dissertation we highlighted the importance of studying social inter-
actions and how the availability of accurate data about their dynamics could potentially
a↵ect many contexts. We discussed the limitations of traditional methods and current
technology and we directed the focus of our work towards the use of wearable systems
as platforms to ensure accuracy and ease of deployment. Consequently, we pursued the
following thesis: to support diverse applications relying on social interaction detection we
need to consider and devise wearable technologies capable of accurately monitor di↵erent
dimensions of social contacts and evaluate their benefits for the understanding of human
behaviour.

The previous chapters described and discussed the results of the research conducted to sub-
stantiate this thesis. In this chapter we will summarise the contributions of this dissertation
and consider future directions.

7.1 Summary of contributions

In this section we will reflect on the research questions introduced in Chapter 1 and sum-
marise the major contributions that support the thesis of this dissertation.

[Research Question 1] How can we take advantage of radio communication interfaces
embedded in many commercial wearable devices (i.e., Blutooth Low Energy) for the e�-
cient detection of social contacts in very dynamic environments?

[Contribution 1] In Chapter 3 we analysed the potential of Bluetooth Low Energy (BLE)
for proximity detection. We provided a comprehensive analysis of all the protocol param-
eters, considering their impact on detection accuracy and power consumption. We focused
on two common wearable platforms (Android Wear and Tizen Wearable) showing their
strengths and limitations. We presented a prototype platform which helped us in experi-
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menting more freely with the BLE protocol. Additionally, using the platform we validated
the use of BLE to sense people’s proximity in a working environment, by deploying it
to 25 employees of a very dynamic company. We found that despite the limitations of
commercial devices they can be used to detect proximity with high accuracy. As a result
of our analysis and deployment we provided guidance for manufacturers and applications
developers on the flexibility and limitations of commercial platforms.

[Research Question 2] How can we leverage data gathered automatically with wearable
devices to analyse team dynamics and the strength of employees’ interpersonal ties in
relation to space usage and organisational hierarchy?

[Contribution 2] In Chapter 4 we explored how Activity-Based Working principles a↵ect
o�ce usage and people dynamics using the data collected during the deployment of the
BLE platform. We studied how the two core ABW principles (absence of allocated desks
and availability of diverse spaces) might be responsible for promoting interactions across
teams and among lower levels of the organisational hierarchy. However, we also found
that in terms of mobility inside the o�ce, the ABW principles might not have come to
full fruition. It seems that employees explore various locations for short periods but use
only few settings for work-related tasks. Additionally, we discovered that social- and team-
related clusters might play a significant role in desk selection. Through the comparison
with other data collected in o�ces that do not apply ABW principles, we observed how
the design of the o�ce in accordance with those principles might be responsible for more
rapid dynamics inside the o�ce.

[Research Question 3] How can we devise a wearable sensing technology suitable for the
fine granularity detection and analysis of non-verbal cues during social interactions?

[Contribution 3] In Chapter 5 we introduced a novel wearable device, Protractor, capable
of accurately detecting angle and distance of interaction. We showed how we employed
near-infrared light to infer relative interaction angle with 2.2� mean error and 2.3cm – 4.9cm
mean error for the distance measurement. We reported how we coped with temporary
blockage of the light channel and ensured a robust operation of the device in various
conditions by exploiting inertial sensors with the use of sensor fusion techniques. We
validated the device with extensive real-world experiments and in Chapter 6 we provided
insights on how it could be used to study complex processes in an organisational setting.
We explored the possibility of using angle and distance data between individuals engaged
in a creative task to predict the role they assume towards others and the instant task phase
they are currently in.

In summary, this dissertation provides evidence that wearable technologies represent an
e�cient and convenient platform to collect data and study social interactions. We have
demonstrated how o↵-the-shelf wearables could be adopted to accurately study behaviour
in very dynamic environments and generate insights on how space design and working
styles, for example, could a↵ect social dynamics. Moreover, we showed how technologies
not typically designed for sensing purposes (e.g. infrared light transceivers) could be e�-



CHAPTER 7. CONCLUSION AND FUTURE WORK 133

ciently employed in small, wearable devices to detect behavioural cues which have so far
been studied only with invasive and costly methods. We expect the contributions of this
dissertation to not be limited only to the results we presented. We believe, in fact, that
our data collection platforms could be used in di↵erent contexts, possibly to study other
phenomena, opening the door to new research on human behaviour sensing and analysis.

7.2 Future directions

The research presented in this dissertation could be expanded in several ways. In this
section we overview some possible future directions.

System enhancements and optimisations. One important interaction modality which
has not been considered in this dissertation is speech. While the two platforms we devel-
oped are able to accurately detect and monitor fine grained proximity contacts and their
non-verbal cues, they are not capable of detecting if there was a meaningful exchange be-
tween the participants. Di↵erent sensing technologies could be researched to unobtrusively
monitor conversations and understand what kind of novel insights and findings could be
generated by the availability of this new source of data.

Several performance enhancements could be developed for Protractor, introduced in Chap-
ter 5. These include lower-range solutions to improve accuracy in very bright settings and
to better handle reflections, alternative NIR beacon designs to allow beacon decoding upon
collisions, and adaptive duty cycling based on sliding-window average. It could also be in-
teresting to explore the feasibility of generalizing our approach to other wireless media
such as ultrasound.

Real-time feedback for social intervention. One aspect which was not the focus
of this dissertation and which has not been investigated extensively in literature is the
possibility of providing prompt feedback to the user while a social interaction is taking
place. The o✏ine analysis of large amounts of data is used to inform people about their
habits, allowing them to change behaviour accordingly. This has been a common practice
in social science where the results of a study eventually change people’s behaviour a long
time after the study. With technology, however, the intervention could be shifted to a
previous moment, when the user needs it the most, during the data collection phase. In
particular, for social interactions the need to change the behaviour quickly is important
because, as highlighted in Chapters 5 and 6, our non-verbal behaviour could impact the
outcome of the interaction. Therefore, the possibility to be discreetly advised in order to
assume the ideal behaviour has the potential to improve social interactions. For this reason
methods to provide real-time feedback to the user about her non-verbal communication
behaviours should be developed. Important aspects such as the best form of feedback and
the best moment in time to deliver it are crucial in this area.

Generalisation of findings. In Chapter 4 we have successfully used data automatically
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collected to study social dynamics in an o�ce. However, the actual reasons behind the
patterns we observed remain unclear. Further investigation and additional deployments
would be required to closely analyse the relationship between social contact and working
styles, considering also diverse organisational structures with the objective of generalising
the findings more widely. Similarly, it would be interesting to study how dynamics like team
formation and productivity evolve over time with longitudinal deployments. Likewise, the
results presented in Chapter 6 would benefit from longer-term user studies in real contexts
rather than in controlled settings. In this context of social behaviour sensing and analysis
an aspect that should not be overlooked is the privacy concerns of individuals. More
research is needed in order to understand what could be the privacy concerns raised by the
monitoring technology and develop ways to mitigate them.
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Appendix A

Decision Trees parameters

Table A.1 reports the parameters of the Decision Tree (C4.5) models used in Chapter 3,
Section 3.4.7. The implementation of the algorithm has been taken from Weka version
3.7.13 [131]1.

Table A.1: Decision Trees (C4.5) parameters used for the proximity detection models.

Parameter Value

Batch Size 100
Binary Splits False
Collapse Tree True

Confidence Factor 0.25
Debug False

Do not check capabilities False
Do not make split point

actual value
False

Min num obj 2
Num decimal places 2

Num folds 3
Reduced error pruning False
Save instance data False

Seed 1
Subtree raising True

Unpruned False
Use Laplace False

Use MDL correction True

1The documentation regarding this classifier can be found at this link:
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/J48.html
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Appendix B

Proximity detection results with
original dataset and with
under-sampling of majority class

In this appendix we present the proximity detection results we obtain with the dataset
collected during the deployment of our wearable prototype platform (Chapter 3) when we
do not use SMOTE to over-sample the minority class. For these analysis we show only
results achieved with the data collected with our wearable prototype, without emulating
data collected by commercial devices, for ease of exposition. The original data collected
by our devices is the best data we have from the deployment and emulating commercial
devices would only show lower performance in general but the same trends.

We first trained our Decision Tree classifier using the dataset without any over-sampling or
down-sampling using a 10-fold cross validation scheme. In this case we observe (Table B.1)
that the classifier learns to predict only the majority class (Non-proximity label) therefore
scoring a nearly perfect precision and recall for that class but a zero precision and recall
for the minority class (Proximity label). The dataset in fact contains much more examples
of the Non-proximity class and therefore it learns to always predict that class.

As second experiment we down-sampled the majority class randomly until the number of
instances for the two classes was balanced. Table B.2 shows the results. We notice that in
this case the performance of the model is much better, with an overall good precision and
recall for both classes. However, this model did not reach the same level of performance
of the one where we over-sampled the minority class presented in Section 3.4.7. For con-
venience, in Table B.3 we compare the F1 Measure of the two classes for these two models
(with down-sample of the majority class and with over-sample of the minority class) where
the di↵erence is clearly visible.
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Table B.1: Results obtained when no over-sampling of the minority class has been applied
to the data collected with our wearable platform for di↵erent aggregation windows. Preci-
sion, Recall and F1 measure are reported for the two classes Non-proximity and Proximity.

Precision Recall F1 Measure
Window
Size (s)

Non
Proximity

Proximity
Non

Proximity
Proximity

Non
Proximity

Proximity

1 0.99 0 1 0 0.99 0
5 0.98 0 1 0 0.99 0
10 0.98 0 1 0 0.99 0
20 0.98 0 1 0 0.99 0
30 0.98 0 1 0 0.99 0
40 0.99 0.3 1 0.062 0.99 0.103
50 0.98 0.2 1 0.007 0.99 0.014
60 0.98 0.3 1 0.008 0.99 0.016

Table B.2: Results obtained when the majority class has been down-sampled to balance the
dataset for di↵erent aggregation windows. Precision, Recall and F1 measure are reported
for the two classes Non-proximity and Proximity.

Precision Recall F1 Measure
Window
Size (s)

Non
Proximity

Proximity
Non

Proximity
Proximity

Non
Proximity

Proximity

1 0.69 0.75 0.78 0.66 0.73 0.70
5 0.83 0.83 0.83 0.83 0.83 0.83
10 0.84 0.86 0.86 0.84 0.85 0.85
20 0.85 0.85 0.85 0.85 0.85 0.85
30 0.90 0.88 0.87 0.90 0.88 0.88
40 0.87 0.85 0.85 0.88 0.86 0.87
50 0.90 0.85 0.84 0.91 0.87 0.88
60 0.86 0.85 0.85 0.86 0.87 0.86

Table B.3: Comparison of F1 scores for the dataset when the majority class has been
down-sampled and when the minority class has been over-sampled using SMOTE. Scores
for both classes are presented.

Down-sample
majority class

Over-sample
minority class

Window
Size (s)

Non
Proximity

Proximity
Non

Proximity
Proximity

1 0.73 0.70 0.82 0.77
5 0.83 0.83 0.94 0.94
10 0.85 0.85 0.97 0.97
20 0.85 0.85 0.97 0.97
30 0.88 0.88 0.97 0.97
40 0.86 0.87 0.97 0.97
50 0.87 0.88 0.98 0.98
60 0.87 0.86 0.98 0.98



Appendix C

Wearable device user experience
online survey

In this appendix we provide the questions (Table C.1) we asked anonymously to the par-
ticipants of the deployment described in Section 3.4. The analysis of the survey responses
is provided in Section 3.5.3.
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Appendix D

Protractor schematic

Figure D.1 shows the entire schematic of Protractor’s design with connections between
the Metamotion platform and the angle detection module, the IR LED used to transmit
beacons, the beacon receiver and the micro-SD card slot.
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Appendix E

Random Forest parameters

Table E.1 reports the parameters of the Random Forest models used in Chapter 6, Sec-
tion 6.5 for the classification of Task Role and Task Timeline. The implementation of the
algorithm has been taken from Weka version 3.7.13 [131]1.

Table E.1: Random Forest parameters used for the classification of Task Role and Task
Timeline.

Parameter Value

Batch size 100
Break ties randomly False

Debug False
Do not check capabilities False

Do not calculate out of bag error False
Max depth 0

Num decimal places 2
Num execution slots 1

Num features 0
Num trees {50, 100}
Print trees False

Seed 1

1The documentation regarding this classifier can be found at this link:
http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/RandomForest.html
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