
Temporal network metrics and their

application to real world networks

John Kit Tang

Robinson College

University of Cambridge

2011

This dissertation is submitted for

the degree of Doctor of Philosophy



Declaration

This dissertation is the result of my own work and includes nothing which is the

outcome of work done in collaboration except where specifically indicated in the

text.

This dissertation does not exceed the regulation length of 60 000 words, including

tables and footnotes.



Summary

The analysis of real social, biological and technological networks has attracted a

lot of attention as technological advances have given us a wealth of empirical data.

Classic studies looked at analysing static or aggregated networks, i.e., networks that

do not change over time or built as the results of aggregation of information over

a certain period of time. Given the soaring collections of measurements related

to very large, real network traces, researchers are quickly starting to realise that

connections are inherently varying over time and exhibit more dimensionality than

static analysis can capture. This motivates the work in this dissertation: new tools

for temporal complex network analysis are required when analysing real networks

that inherently change over time.

Firstly, we introduce the temporal graph model and formalise the notion of shortest

temporal paths, used extensively in graph theory, and show that as static graphs

ignore the time order of contacts, the available links are overestimated and the

true shortest paths are underestimated. In addition, contrary to intuition, we find

that slowly evolving graphs can be efficient for information dissemination due to

small-world behaviour in temporal graphs. Secondly, we then turn our attention to

the identification of important or central nodes in a network. Since two key mea-

sures for node centrality, namely closeness and betweenness, are based on shortest

paths in a static graph, we define temporal centrality based on temporal shortest

paths. We demonstrate that the ranking achieved by temporal centrality is supe-

rior to static analysis by demonstrating how temporal centrality can be exploited to

improve mobile malware containment. Thirdly, we study the predictability of cen-

trality ranking in temporal networks utilising correlogram plots between top-k node

rankings. We show that in real human contact networks, temporal centrality can

be predicted and demonstrate that these predictions are useful for mobile malware

containment, compared to static centrality prediction. Finally, we investigate the

concepts of temporally connected components and show that temporal analysis gives

us a precise understanding of the diffusion properties of real contact networks that

is missed by static analysis. The conclusions of this thesis are that the use of time

aware metrics for the analysis of real networks opens the doors to more precise and

effective exploitation of complex network science: while we have given a number of

application examples, the future directions of this research are still many.
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1
Introduction

Networks are all around us: from the cities and roads that we live in to the physi-

cal telecommunication cables that connect our computers forming the Internet, and

from the intricate layout of neurons and synapses that drive our brains to the re-

lationships between friends; the term “networks”, whether road, computer, online

social or otherwise, has now become common in our everyday vocabulary. Though

the term has been integrated into our culture, the analysis of such a topological ab-

straction is in itself still a growing science where everyday networks can be modelled

as a set of nodes (e.g., cities, computers, neurons or people) which are connected

by edges (e.g., roads, cables, synapses or relationships) and the analysis of the non-

trivial features of such networks has opened a branch of study known as complex

network analysis [AB02]. At its roots, complex network analysis is founded on graph

theory [BLM+06] and hence networks are commonly referred to as graphs.

Indeed the publication regarded as the beginnings of graph theory was that of Leon-

hard Euler’s study on the seven bridges of Königsberg, published in 1736, which

posed the question of whether a walk existed through the city of Königsbergs, which

1
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is divided into four landmasses by its river, that would cross its seven bridges once

and only once. By mapping the city into a topological graph representation with

landmasses as nodes and bridges as edges (depicted visually in Figure 1.1), Euler

was able to reason on this graph and prove that there was in fact no solution.

1 

3 
2 

4 

1 

3 

2 

4 

(a) Map (b) Topological

Figure 1.1: Example of topological mapping of the seven bridges of Königsbergs to

a graph. Königsbergs was split by its river into four land masses. The graph in

panel (b) is visually depicted as nodes (circles) and edges (lines connecting circles).

Clearly, even this first study was motivated by empirically observed data, albeit on

a small scale, but this is still relevant to the study of modern day networks; to fully

understand such systems we need to collect data on the actual networks themselves.

However, partly due to the lack of technology to collect large scale network data,

until the last decade it was believed that such networks possessed simple and trivial

structure and hence either small scale (i.e. < 100 node) networks were studied

which did not represent a representative sample of the network or random networks

were generated for such analysis [Bol01]. However, advancements in technology in

terms of measurement and computerisation of systems such as transport, power and

online social networks, has presented us with a wealth of empirically collected data

on real networks. Consequently, seminal works have uncovered non-random features

of these networks such as small world behaviour where long distance shortcuts can
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help reduce the average number of exchanges required to deliver a message even when

there exists locally dense clusters of nodes [WS98]; and possible explanations of how

such structure forms using preferential attachment in scale free networks. Indeed, it

is the availability of real, empirically observed datasets that have driven the research

over the last decade and motivates this thesis by extending empirical observations

to include time information of such complex networks. When attempting to apply

existing complex network analysis techniques to the growing number of empirically

collected network data with rich temporal information, my personal experiences

found that existing tools could not capture the full dynamism of networks data

which inherently changed over time.

Subsequently, the subject of this thesis is the development of temporal metrics

and their effectiveness in analysing information dissemination processes in real time-

varying networks compared to static analysis.

This statement is purposely general since we want to emphasise the validity of the

contributions of this thesis. Before we can proceed, firstly, the term “time-varying”

needs to be understood by exploring the types of time information available in real

networks (this shall be covered next, in Section 1.1). Secondly, “information dis-

semination” can refer to the textbook analysis of paths and shortest path lengths in

graph theory or to the more practical opportunistic message passing in technological

networks. This thesis presents metrics for such a spectrum of analysis. With this

in mind, we now explore the range of real networks, which exhibit such temporal

information, so that we can understand the fundamental types of time information

which motivate this thesis.

1.1 Real Networks Change Over Time

Many excellent surveys [BLM+06, AB02] and books [New10, EK10] exist on the

study of networks and cover the range of empirical networks that have been em-

ployed in past studies. Expanding on these discussions of real networks, we focus

on highlighting the temporal information available in these well-studied empirical

networks and also introduce a range of networks collected more recently, which in-

herently possess temporal information. This taxonomy is by no means exhaustive

but serves to demonstrate the types of inherent temporal information available in
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these datasets, the range of empirical data collection techniques and the applica-

bility of the techniques presented in this dissertation to a wide range of disciplines.

The available and collectable temporal network data is summarised in Table 1.1.

1.1.1 Social Networks

As human beings, we are not only fascinated in understanding how our own bodies

and minds work but also the collective behaviours of relationships and interactions

between people. This fascination has inspired sociologists and social psychologists

to conduct seminal studies to understand the extents of which individuals will con-

form to preconceived roles during a mock prison scenario [HBZ73]; to demonstrate

that people can be influenced to take orders from authority figures [Mil63]; how

people can conform to social influence from their peers [AG51]; and to understand

the actual number of contacts which separate any two individuals in real social

networks [Mil67].

In particular, the latter study incubated the idea that the network between acquain-

tances possessed properties which allowed a median of six exchanges between friends

and friends-of-friends to deliver a letter to a distant acquaintance and popularised

the term “six-degrees of separation”. Even though this study was performed in the

late sixties it has inspired more recent research into the inhomogeneous structure

of real social networks through the use of empirically observed social networks; we

shall discuss one such study further in Section 2.2 but for now we maintain our focus

on real networks which enabled these studies.

1.1.1.1 Social Relationship Networks

We start with some network datasets that will be recognised by many readers fa-

miliar in complex network and social network analysis. Many early studies have

employed social network data extracted from online websites, for example, the study

of small-world networks [WS98] utilised a network of film actors connected by film

appearances and which was generated from the Internet Movie Database website1

and the study of community structure [DA05, NG04] employed the network of re-

search publication co-authorship [New01b] which was constructed from a number of

1http://us.imdb.com

http://us.imdb.com
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databases including MEDLINE (a biomedical research database), the Los Alamos

physics e-print archive website. In addition to websites, national surveys have been

a useful source of social network data, for example, in studying the spreading of sex-

ually transmitted diseases upon a network of sexual encounters [GLMP08, LEA+01].

Temporal information: All these network datasets, whether actors, researchers

or sexual partners, all possess the same temporal information which, although was

not collected as part of the original dataset, is available from the original source.

More specifically, this temporal information is the timestamp of links, for example,

the date that a set of actors performed in the same movie, the date of publication

of co-authors and the time of a sexual encounter. These timestamps might seem

trivial at first, but the timestamp of these collaborations determines the order of

relationships between subsequent nodes over time. From a practical view, this is

important if we wish to trace the passage of a sexually transmitted disease through

the sexual contact network; including time order in the study of networks shall be

studied further in Section 3.4.2.

1.1.1.2 Online Social Networks

The popularity of websites that allow us to keep in touch with friends has exploded

over the last decade. The convenience of maintaining friendship networks online,

sending messages to friends, arranging events, uploading photos and sharing loca-

tions and thoughts has produced household brands such as Facebook2 and Twitter3.

Such are their popularity that they have shaped our common vernacular with words

being added to the Oxford English Dictionary such as social graph (“noun: a rep-

resentation of the interconnection of relationships in an online social network”),

retweet (“verb: (on the social networking service Twitter) repost or forward (a mes-

sage posted by another user)”), unfollow (“verb: stop tracking (a person, group,

or organisation) on a social networking site”), cyberbullying (“noun: the use of

electronic communication to bully a person, typically by sending messages of an

intimidating or threatening nature”); no doubt inspired by the usage of these on-

line social networks (OSN). Clearly, since these services are online the mass of data

needs to be stored and maintained by the service providers and this data becomes

2http://www.facebook.com
3http://www.twitter.com

http://www.facebook.com
http://www.twitter.com
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May Jun

Jul Aug

Figure 1.2: Macroscopic changes in each connected component of the Gowalla friend-

ship networks over four months. The number of nodes increases from 110k to 160k

during this time [SNM11].

a valuable asset for marketers and researchers alike. Typically, researchers are not

able to request a copy of the data from the service providers, but are allowed to indi-

rectly access publicly accessible data by writing a program to connect to the remote

website for academic purposes. This practise, also known as crawling, has enabled

a number of key studies to be published on the analysis of large OSN datasets:

• Facebook: being a very popular OSN there exists several different crawled

datasets [TMP11, BAAS09, fac]. However, the most comprehensive is that

of the University of Santa Barbara [WBS+09] which includes both the social

network and interactions between users. Firstly, an individual user profile

provides information on their friends and the profiles of these friends provide
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information on their friends. This means we can construct the social network of

people (nodes) and their relationships (edges). Secondly, interaction networks:

individuals can post messages on one anothers profile pages; this again creates

an interaction network (nodes represent people and a directed edge represents

a message being sent).

Temporal information: As users add new friends and delete ex-partners,

enemies etc. over time and, hence, we have information on the social network

topology as it changes over time. In the case of interactions, messages are time-

stamped and so information about interactions at different times is available.

• Twitter: Twitter is a service where users can share a short 140 character

message, known as “tweets”, with friends. Users subscribe to (or “follow”)

any other users profile to access their tweets but, unlike other OSN such as

Facebook, friendship do not need to be reciprocated. Recent datasets have

crawled the entire corpus of tweets over a one-month period [KLPM10] and a

subset of tweets that included tweet location information over a twelve-day pe-

riod [SMMC11]. The former dataset contained 41.7 million user profiles, 1.47

billion directed links and 106 millions tweets; whereas the latter dataset which

filtered out users with geographic information contained 400,000 user profiles,

183 million directed links and 334.5 million tweets. Both these datasets allow

use to construct two different graphs: a graph of followers and a graph of

tweets.

Temporal information: Firstly, both datasets contain timestamps of each

tweet and hence we can trace the dynamic spread of tweets and retweets as it

cascades through the user network. Secondly, since users can constantly follow

and unfollow users, the topology of followers changes over time.

• Location Based Social Networks: In addition to maintaining friendships

online, the latest feature is the ability for a user to update their current location

either manually or using GPS, built into many devices, which allows people

to know where their friends are currently located. Such services are known as

location based online social networks or LBN’s, for short. Several datasets

exist from several popular LBN services such as Foursquare4 [SMML10a],

4http://www.foursquare.com

http://www.foursquare.com
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Gowalla5 [SNM11] and Brightkite6 [SMML10a]. With this user location in-

formation, we can construct a graph of user co-locations i.e. users who report

that they are at the same location at the same time. Such graphs have been

used in link prediction problems [SNM11].

Temporal information: User checkins are timestamped and so we have

spatio-temporal information. This naturally means the topology of co-located

users changed over time. Again, users can maintain friendships online as can

be seen for Gowalla in Figure 1.2.

1.1.1.3 Human Contact Networks

7/56/55/5

30/429/428/4

THURSDAYWEDNESDAYTUESDAY

Figure 1.3: Daily contact graph of visitors at the Science Gallery, Dublin. Circum-

ference represents number of contacts at the time corresponding to 12-hour clock.

(Source: http://www.sociopatterns.org)

The study of close-range human contacts has received attention from epidemiologists

[ISB+11] who wish to study the spread of viruses and technologists who are interested

in opportunistic routing in pocket switched networks [HCY08] and mining the daily

routine of users [EPL09]. This has resulted in several experiments that aim to

record participants’ meetings with other people. In the Haggle study [HCY08],

participants were asked to carry a Bluetooth enabled devices on their person that

would scan and record other Bluetooth devices, which were in proximity (within

5http://www.gowalla.com
6http://www.brightkite.com

http://www.sociopatterns.org
http://www.gowalla.com
http://www.brightkite.com
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a 30 metre range). Different environment and number of participants were used,

ranging from an office with 12 users to a conference with 78 users, with the intention

of investigating decentralised routing of messages between mobile devices. In the

Reality Mining study [EPL09], 100 participants were given a Bluetooth enabled

smartphone to carry on campus over the course of 9 months with the goal of data

mining human social behaviour, such as predictability. Again, the devices would

record other Bluetooth devices that were in proximity to itself. In the EmotionSense

study [RMM+10], social psychologists and computer scientists asked 18 participants

to carry Bluetooth and other sensor enabled devices to record their interactions

with other people and their emotions, sensed through the device microphone. The

SocioPatterns project7 used RFID tags on necklaces to record face-to-face proximity

(1 to 1.5 metres) co-locations, to study the spread of airborne viruses.

All four studies allow us to infer when a pair or even a group of people are in

proximity (for either radio communication or to transmit a biological virus). From

this, a graph of people (nodes) and their contacts (edges) can be generated.

Temporal information: Since we have timestamps when a device comes into and

out of range of another device, we have information on the duration of a meeting;

conversely, there is information on the time between successive meetings between

the same pair of devices and potentially, periodic patterns between user co-locations.

The topology of the graph also changes over time as people move into and out of

the range of eachother (see Figure 1.3).

1.1.1.4 Human Influence Networks

Within social science research, it is not just the social graph that is of interest

but the semantic information regarding the participants and their relationships.

For example, in understanding how smoking habits are influenced by friendships,

Mercken et. al. [MSS+10] used anonymous questionnaires to ask 1326 adolescents at

11 Finnish high schools their best friends, the number of cigarettes smoked during a

week and alcohol consumption; the questionnaire was repeated 12, 24 and 30 months

after the initial questionnaire. From this data, a social network of best friends can

be generated along with semantic attributes of each person regarding their cigarette

and alcohol consumption.

7http://www.sociopatterns.org

http://www.sociopatterns.org
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Temporal information: since the questionnaire was repeated over 4 years, the

social network and attributes of each person changes year-by-year. This allowed the

study to examine the influence of friends and peers to smoking and drinking habits.

1.1.2 Biological Networks

1.1.2.1 Neural Networks

J. Phys. A: Math. Theor. 41 (2008) 224014 F De Vico Fallani et al

Figure 2. (a) Realistic head model for the representative subject. On the right hemisphere
of the scalp, the positions of the electrodes are depicted as white little spheres. On the left
hemisphere of the cortex, all the cortical regions of interest are displayed and opportunely labelled.
The trial-averaged waveforms for a particular subset of areas (7 L, MF L, SM L, CM L, 9 L)
are illustrated. (b) Functional networks of the subject in the Beta frequency band during three
representative instants (−1 s, onset, +1 s) of the task performance. Dark arrows represent the
functional links that persist in all the three instants, while the light arrows represent those flows
that changed direction in at least one instant.

the representative Beta frequency band. The overall presence of mutual links in the cortical
networks is always higher with respect to random (ρ > 0). However, a different behaviour can
be found between the preparation and the execution of the movement. In particular, during
the movement preparation the reciprocity of the cortical networks moves from a relative high
reciprocal state (ρ > 0.25) to a lower (ρ < 0.17) level as revealed by the negative slope of
ρ(t) for −1 < t < 0 s. Instead, during the movement execution the average trend of ρ(t) for
0 < t < 1 s constantly remains in the low reciprocal state reached in proximity of the onset
(0.15 < ρ < 0.2). In figure 3(b), the level of reciprocity of all the possible connections within
the cortical network is illustrated for the same band and during the entire period of interest.
The level of grey codes the number of subjects that actually hold a particular reciprocal link
identified by the values at the ordinates. In table 1, the correspondence between the y-values and
the bilateral link can be deduced by inspecting the values of the symmetric adjacency matrix.
The presence of continuous horizontal lines indicates a sort of ‘persistence’ of particular
reciprocal connections which can also remain active during the entire task performance, as for
the cingulate motor areas (CM L and CM R) with the ipsi-lateral supplementary motor areas
(SM L and SM R), respectively. In such a case, at least three subjects present these persistent

6

Figure 1.4: Mapping the human cortical network [FLA+08] (a) Electrode placement

on human scalp for neural network representation. Correlations between cortical

regions change over time. (b) Cortical correlations can be represented as a graph

during three time instants (-1 sec, onset, +1 second). (Reproduced with kind per-

mission of IOP publishing and F. De Vico Fallani.)

The brain can be represented as a network of neurons (nodes) and synapses (edges)

which propagate signals between neurons [AB09]8. It is generally accepted that the

size of an animals brain (number of neurons) determines the computational power

8In fact, recently it has been proposed that two additional networks can be derived from the

brain: astrocytes and microvascular [DW10]; we concentrate on the well studied neuronal network.
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or intelligence of an animal; as humans we have a much larger expected number of

neurons relative to our body size of any mammal, estimated to be around 86 billion

neuronal cells and 85 non-neuronal cells [ACG+09]. However, mapping the human

brain (both neurons and synapses) is currently an intractable task and at present the

only completely mapped neural network is of the nematode worm C. Elegans, with

only 282 neurons. Small world behaviour has been reported in the neural networks

of the C. Elegans neural network [WS98] and this combination of applying network

analysis to neural networks has opened new possibilities to analyse approximations

of the human neural network, whilst the technology to fully map the human brain

improves.

The main method of constructing a neural network is by monitoring the electri-

cal or magnetic activity of the brain using external sensors. For example, when

participants are asked to perform a simple physical task, their brain activity can

be monitored via electroencephalography (EEG) data [FLA+08] and magnetoen-

cephalographic data (MEG) [KHS+11]. Nodes represent different areas of the brain

and activity represents an edge between two nods.

Temporal information: the human brain is dynamic in two ways: firstly, even

when we remain still, the brains electrical activity is constantly changing as it con-

trols our stationary respiratory and cardiovascular functions; this results in an evolv-

ing topology of engaged synapses or correlation between cortical regions of interest

over time (see Figure 1.4). Secondly, it has been shown that the neural network can

rewire itself over time as the brain learns [DGB+04].

1.1.2.2 Ecological Networks

Ecologists have been using diagrammatic abstractions to visualise and classify the

evolution of animals into species, for example humans falling under the class of mam-

mals along with many other types of animals who share the same warm-blooded

ancestry. Such a structure is known as a tree since it branches at certain evolution-

ary junctions. More recently, networks have been employed to describe the complex

relationship between predator and prey, known as food webs. Such networks are col-

lected through painstaking observation on-location and networks represent different

species (nodes) and a directed predator-prey relationship (edge) [BU89].
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Temporal information: many of the studies are interested in the seasonal effects

on food webs and hence the network topology is observed at different time points.

For example, the Chesapeake Bay data [BU89] is collected over 4 years, once for

each season with a total of 16 observations.

1.1.3 Technological Networks

Since technological networks generally store data in digital form, this has facilitated

the availability of datasets generated from these sources.

1.1.3.1 World Wide Web

The World Wide Web (WWW) or “web” is made up of billions of webpages which

can hyperlink to (and be hyperlinked from) other webpages. This naturally produces

a network of webpages (nodes) and directed hyperlinks (edges) and has been used

in the study of scale-free networks [BA99]. Such data is regularly crawled by search

engines such as Google9, Yahoo!10 and Bing11 etc. by following and recording

hyperlinks from one webpage to another, so that search results are informed by the

popularity of certain webpages. In the same manner, such datasets are available for

collection by the researchers.

Temporal information: the WWW changes every day as webpages and hyperlinks

are both added and deleted, therefore, there is rich information on the changing

topology of the web.

1.1.3.2 Internet

The Internet is comprised of routers that carry the traffic from any computer or

device connected to the Internet. The Internet can be decomposed into connected

sub-networks that are under separate administrative authorities [FFF99] known as

domains or Autonomous System (AS). It is possible to study the Internet at two

9http://www.google.com
10http://www.yahoo.com
11http://www.bing.com

http://www.google.com
http://www.yahoo.com
http://www.bing.com
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(a) 1999 (100,000 nodes) (b) 2011 (270,000 nodes)

Figure 1.5: Topological Map of the Internet developed by Lumeta Corporation:

Lumeta continues a long-term research project, started at Bell Labs, to collect rout-

ing data on the Internet using their IPsonar technology. The project consists of

frequent path probes, one to each registered Internet entity. From this, trees are

built mapping the paths to most of the networks on the Internet. The specific end-

points or network services on those endpoints are not the goal of this map, but rather

the subject being mapped here is the topology of the “center” of the Internet. These

paths change over time as the routes are reconfigured and as the number of routers

across the Internet increase over time. (Reproduced with kind permission of Lumeta

Corporation: Patent(s) Pending & Copyright c©Lumeta Corporation 2000-2011. All

Rights Reserved.)

granularities: firstly, at the router level where nodes are routers and physical con-

nections between routers are edges; and secondly, at the domain level, where an

AS is a node and connections between ASes are edges. The domain level can be

broken down further into physical connections between AS and logical connections,

which are derived from business policies which dictate the flow of traffic between

neighbouring ASes.

The network topology themselves are collected by institutes such as the Advanced

Network Technology Center12 at University of Oregon, the National Laboratory

for Applied Networking Research (NLANR)13 and the Lumeta Internet Mapping

12http://www.routeviews.org
13http://www.psc.edu/networking/nlanr

http://www.routeviews.org
http://www.psc.edu/networking/nlanr
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Figure 1.6: Libya on the Internet: (a) map depicts the presence of Libya on the In-

ternet as seen on the 11th Aug, only 13 backbone routers can be seen from Lumeta’s

Somerset, NJ headquarters. (b) On 22 Aug 2011, after rebels were report to have

seized several major cities, 68 backbone routers can be seen. (Reproduced with kind

permission of Lumeta Corporation: Patent(s) Pending & Copyright c©Lumeta Cor-

poration 2000-2011. All Rights Reserved.)

Project 14, which have permission to access participating AS routers to monitor

connections and traffic. Several studies of the network constructed from the Internet

at these two levels have uncovered power-law structure in the degree distribution of

the network[FFF99] and how the evolution of the topology affects the density of the

network[LKF05].

Temporal information: The Internet is highly dynamic with the addition and re-

moval of new routers and Internet service providers (ISPs); snapshots of this chang-

ing topology can be captured (Figure 1.5). In addition, geo-political events might

dictate the access to some parts of the network such as seen in the recent government

restrictions in Egypt and Libya (Figure 1.6). As part of the data collected, there is

information available on the traffic demands between nodes which can be used to

construct a timestamped communication network and also a complex set of rules

between which dictate the routes and traffic between ISPs and routers.

14http://www.lumeta.com/Internet-map

http://www.lumeta.com/Internet-map
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1.1.3.3 WiFi hotspot

Wireless technology has given us the freedom to connect to the Internet and browse

the web away from the desk and fixed connections. WiFi hotspots are ubiquitous

in the home, at the office, on campus, airports and high streets. With the devices

regularly connecting to WiFi routers the logs of device access can be used to identify

device locations and infer device co-locations to generate a graph of devices (nodes)

and co-locations (edges). Numerous studies have collected data on different time

scales, spatial properties and environments including campus environment over 5

years across 450 WiFi access points[KHAY09]; office environment over a week across

151 access points[BC03]; and city environment over 3 years across numerous free

access points across Montréal[LGP07].

Temporal information: Timestamps are associated to a device connecting to (and

disconnecting from) an access point. This gives us connection duration, co-location

with other devices other time and possible periodic behaviour of connections (e.g.,

if a user connects at the same time and location every weekday in the office).

Figure 1.7: Daily map of email exchanges between corporate employees.

1.1.3.4 Digital Communication Networks

The Internet has given us the ability to communicate globally through email and

instant messenger. Generally, such messages are routed through a centralised server
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Figure 1.8: Beck’s topological London Underground Tube Map from 1933.

( c©Transport of London. Reproduced with kind permission of Transport of London.)

and access to this server provides us with data on interactions between users. From

this data, a network of users (nodes) and the messages sent (edges) can be con-

structed. Studies have included scale-free properties of 57,000 University email

users [EMB02], corporate emails between 151 colleagues during a 3 year period

before a corporate bankruptcy filing [SA05] (see Figure 1.7) and six-degrees of sep-

aration between users on a global scale instant messenger service with 30 billion

conversations between 240 million users [LH08].

Temporal information: Messages between users are timestamped and an instant

messenger session (i.e. the time two users are engaged in conversation) is engaged

over some duration.
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1.1.4 Urban Networks

Urban planners strive to improve the economic and social environment of commu-

nities and this encompasses a wide range of research that is suitable for the network

abstraction of node and edges. For analysis, the spatial networks abstraction is

employed which captures the topological or schematic (as opposed to exact geo-

graphical) connections between points of interest such cities, junctions or stations;

an iconic example is that of the Beck’s London Underground map (Figure 1.8).

(a) 11 AM (EST) (b) 5 PM (EST)

Figure 1.9: Airline route map over the United States during the morning and after-

noon. (Reproduced with kind permission of Aaron Koblin.)

The network of cities and the roads [SFF+10] give rise to traffic flow analysis [Lie03]

and quickest route algorithms for satellite navigation systems which can avoid traf-

fic [Gol99]; the layout of junctions and roads within cities dictates the accessibility

and popularity of certain areas [PLW+09]; the network of stations, lines and in-

terchanges of public transport systems; analogously, the network of airports and

routes in airline maps [BBPV04] (Figure 1.9); the network of power grids and power

lines [WS98]; and even the space and layout of office building can be analysed as

networks, where rooms are nodes and passages between rooms are edges, to un-

derstand efficient architectural layout [Hil96]. Such networks are inherent in our

everyday lives with city-level, national-level and public transport maps easily acces-

sible in online digital forms.

Temporal information: Firstly, traffic demands on roads, power lines and even

public transport is dictated by human periodic behaviour and hence, when repre-
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senting a network to measure traffic, the edge weights inherently change over time.

Secondly, the topology of such urban networks are likely to change over time as

new roads, cities, stations and lines are built. Finally, public transport is dictated

by timetables and serves as an example of the importance of time ordering when

travelling on a route that requires multiple changes.

Temporal Information

Dataset Nodes Description Available in dataset?

Actor co-stars [WS98] 225226 time of movie no (available from source)

Co-authorship [New01b] 70975 time of publication no (available from source)

Sexual Partners [LEA+01] 2810 time of contact no (available from source)

*Facebook, friendship [WBS+09] 6m addition & deletion of friends no (available from source)

*Facebook, interactions [WBS+09] 6m time of interaction yes

Twitter, complete [KLPM10] 41.7m time of tweet yes

Twitter, geo [SMML10a] 409093 time of tweet yes

Foursquare [SMML10a] 58424 time of checkin yes

Gowalla [SNM11] 159391 time of checkin yes

Brightkite [SMML10a] 54190 time of checkin yes

*INFOCOM’06 [SGC+09] 78 time of contact start & end yes

*Reality Mining [EPL09] 100 time of contact start & end yes

*EmotionSense [RMM+10] 18 time of contact start & end yes

SocioPatterns [ISB+11] 140000 time of contact start & end yes

Adolescent Smokers [MSS+10] 1326 4 snapshots yes

C. Elegans [WS98] 282 topological changes over time no (hard to collect)

*Brain Network, EEG [FLA+08] 16 brain activity over time yes

Chesapeak Bay [BU89] 33 4 year seasonal changes yes

WWW [BA99] 153127 topological changes over time no (available from source)

Internet [FFF99] 3888 Traffic, topological changes no (available from source)

Dartmouth WiFi [KHAY09] 5338 time of connection yes

*Kiel University Email [EMB02] 56969 time of emails yes

*Enron Email [SA05] 151 time of emails yes

MSN Instant Messenger [LH08] 180m time of messages yes

Power Grid [WS98] 4941 Traffic demands on lines no (available from source)

Airline Routes [BBPV04] 3880 Route timetable no (available from source)

Table 1.1: Summary of empirical datasets with temporal information. * indicate

datasets used in this dissertation.

1.1.5 Summary and Discussion

1.1.5.1 Classifying Temporal Information

We have covered a range of empirical datasets used in the literature, some of which

have been used for static complex network analysis but where the temporal informa-

tion is accessible from the original source (e.g., timestamps in the actor, co-author
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datasets), others where the temporal information is inherent but would be non-

trivial to collect (e.g. mapping the neural network of the C. Elegans over time), and

some of which were collected with timestamps present. We have summarised the

datasets with these distinctions in Table 1.1.

Through these example datasets, we can isolate four distinct sources of time infor-

mation, which will inform our temporal graph model in Chapter 3, namely:

1. Timestamps can be associated to both nodes (new users or users leaving an

OSN) and edges (a friendship being added or removed, a message being sent,

a meeting between two people etc.).

2. Duration is implicit in these timestamps are some form of duration, for ex-

ample the length of time a friendship lasts, the time it takes for a message to

be sent and delivered, how long two people meet.

3. Frequency can be analysed once we have a list of timestamps for an edge

or node; this can uncover patterns in edge or node occurrences. Furthermore,

periodicity is present in certain datasets such as transport traffic (e.g., during

the morning and evening, before and after work) and human contact networks

(e.g., daily meetings with colleagues or family members).

4. Time-order was highlighted in several datasets where, for example, the timetable

in public transport systems and a message or virus passing through a network.

As we shall demonstrate in Chapter 3, this is an important piece of informa-

tion which is missed in static graph analysis. More generally time-order can

be described as time dependency between events, for example, changing the

order of timestamped events would have an effect on metrics defined upon it.

On top of this, we can also categorise two types of dynamic graph behaviour. Firstly,

topological changes over time occur with fluctuations of the edges between nodes

as meetings between people begin and end or traffic moves along to congest and free

up roads. Secondly, process driven changes are driven by some form exchange of

information i.e. a message or a virus.
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1.1.5.2 Static versus Temporal Analysis

We should stress that the aim of this dissertation is not to reject the use of static

network analysis, but merely offer an alternative view whereby the incorporation

of temporal information can potentially lead to more accurate analysis of networks

where temporal information is inherent. Static graph analysis simplifies the analy-

sis of real network by ignoring time information but is still useful for many types

of analysis where, for example, time information is not required or only a single

snapshot is required for analysis. In other cases, temporal analysis does not make

sense since the changes would be minute, for example, the topology of the power grid

does not change very frequently. However, the analysis of the traffic demands on the

cables carrying power would fluctuate frequently and in this case could potentially

benefit from temporal analysis.

1.1.5.3 Evolving versus Temporal Networks

We should also distinguish between the concepts of the well studied evolving net-

work and the proposed temporal network analysis. Evolving networks are generative

models such as preferential attachment [BA99], which describes the accumulation

of nodes and edges over time. The preferential attachment model was devised to

understand how scale-free (where the degree distribution can be described by a

power-law function) network topologies are formed over time as new nodes join a

network. Simply, the recipe captures a snowball effect, where new nodes have a

higher probability to form a link to popular nodes. This is used to explain the

scale-free structure of the WWW as new webpages are added they hyperlink to ex-

isting well-known webpages; new researchers are more likely to co-author a paper

with well-known, respected peers etc. Such evolving networks lends well to static

analysis since the most current cumulative topology is of interest and has given rise

to insightful results such as shrinking diameters (maximal shortest path length) and

densification over time as nodes and edges are added to the graph [LKF05].

This is different from our proposed temporal model of fluctuations in edges and

nodes.
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1.1.5.4 Parallels with opportunistic networking

This dissertation straddles applied network science, particularly within computer

science, with complex network analysis. In particular, it is pertinent to note that

within computer science, opportunistic networking and delay tolerant networking

(DTN) has studied message dissemination between mobile devices via intermediate

hops; such studies inherently take into account time. For this reason, is important

to note that this thesis is distinct from opportunistic networking and DTN research

in that, the aim is to formalise metrics that measure the message dissemination

properties of the whole network (similar to the characteristic path length from a

global perspective, and characteristic clustering coefficient from a local perspective).

By taking this higher level view of the complete network, we aim to firstly, uncover

universal rules which can describe all types of time-varying complex networks (in

addition to ad hoc mobile networks) and secondly, describe the relationship between

message dissemination metrics and structural properties of time-varying networks.

1.2 Contributions

The major contributions of this thesis are twofold: firstly, the definition of temporal

metrics and secondly, the demonstration of the utility of temporal analysis on real

networks. These contributions are summarised as follows:

• Firstly, we define the notions of temporal shortest paths and temporal

shortest path lengths which are fundamental to the study of information

dissemination in real networks. These are defined upon a temporal graph

model which extends the traditional static network (or graph) representation

to take into account time information; Intuitively, this model is a series of

snapshots of the network topology as it changes over time. We also define

metrics to measure the temporal local efficiency to capture information

dissemination between neighbouring nodes and temporal correlation coef-

ficient to characterise the evolution speed of a temporal graph. Utilising these

metrics to study real network datasets, we find that, firstly, since static aggre-

gated graphs ignore time order of links, this overestimate the available links to

facilitate a shortest path and therefore, underestimates the true shortest path
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length between nodes; and secondly, contrary to intuition, slowly evolving

graphs can still be configured for efficient information dissemination between

nodes, exhibiting small-world behaviour in time-varying networks (Chapter 3).

• Secondly, we redefine well established metrics from social network analysis

pertaining to the identification of important nodes in a network for quick

information dissemination and mediation, namely temporal closeness and

temporal betweenness centrality. We apply these temporal centrality met-

rics to a corporate email dataset during the year previous to a bankruptcy

filing and find that temporal centrality identifies more intuitively important

people in the corporation compared to those identified by static analysis. We

also exploit temporal centrality in short range mobile malware containment

and devise two schemes based on patching key mediating nodes (using tem-

poral betweenness) and opportunistically spreading the patch from key nodes

(using temporal closeness). We find that the former scheme is not efficient to

due many alternative temporal paths which a mobile worm can utilise, how-

ever, the latter scheme can spread quicker than the mobile worm (Chapter

4).

• Thirdly, we present a technique for finding temporal correlation in the rankings

of node centrality for top-k node centrality prediction. We find that there

is legacy correlation of top-k nodes, such that if a node is important now, then

it is likely to be important at the same time tomorrow. We find that a simple

ageing function can help predict future important nodes and we evaluate this

accuracy again on mobile malware containment (Chapter 5).

• Fourthly, we define temporally connected components in the study of

reachability of nodes in real networks. We show that the problem of finding

strongly connected components in a time-varying graph can be mapped into

the problem of discovering the maximal-cliques in an opportunely constructed

static graph, which we name the affine graph, and is therefore a NP-complete

problem. Despite this, we demonstrate that temporal component analysis can

better capture the connectedness of a time-varying network compared to static

analysis which overestimates the reachability between nodes (Chapter 6).
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1.3 Chapter Outline

The remainder of this dissertation is organised as follows. As we have seen, real

networks change over time and we argue that existing static network analysis cannot

fully capture the dynamic nature of these networks. In Chapter 2, we start with

defining measures used in static network analysis to gain insight into why this may

be the case and to aid in the derivation of temporal measures. In Chapter 3), we

present the temporal graph model and define temporal distance metrics. In Chapter

4, we define temporal centrality metrics and study a real corporate email dataset

and short range mobile malware containment. In Chapter 5, we study temporal

centrality prediction. In Chapter 6, we investigate temporal reachability in real

networks. Finally, in Chapter 7 insights and consequences, which can be drawn

from this dissertation, are presented and we discuss directions for future research.

1.4 List of Publications

During the course of my PhD, I have had the following five papers published

and currently have two papers under review. Chapter 3 is based on [TMML09,

TSMML10]. Chapter 4 is based on [TMMLN10, TMML11]. Chapter 5 is based

on [TKMM11]. Chapter 6 is based on [NTMRML11]. [TMML10] is an extended

version of [TMML09].
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[TMML09] John Tang, Mirco Musolesi, Cecilia Mascolo and Vito Latora. Tem-
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ACM SIGCOMM Workshop on Online Social Networks (WOSN ’09), pages

31–36, Aug 2009, Barcelona, Spain.

[TMML10] John Tang, Mirco Musolesi, Cecilia Mascolo and Vito Latora. Char-

acterising Temporal Distance and Reachability in Mobile and Online Social

Networks. In ACM SIGCOMM Computer Communication Review (CCR).

Vol. 40 (1), pages 118-124. Jan 2010. ACM Press.
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2
Static Complex Network Theory

Introduction

In the previous chapter, several examples of real networks were presented along with

their representation as a graph. More formally, we define a graph G as a 2-tuple

(V,E) where V is the set of nodes (or vertices) and E is the set of edges (or links)

connecting a pair of nodes. A graph can be directed or undirected– where an edge

between two nodes is either non-mutual or symmetric, respectively. A graph can

also be weighted or unweighted– where a weighted graph can have values assigned

to an edge, for example the current traffic on or time it takes to drive across a

road. Unless explicitly stated, this chapter shall define metrics upon an undirected,

unweighted graph. A graph can be represented as an N -by-N adjacency matrix A,

where N = |V |, and the value aij at row i and column j is non-zero if an edge exists

from node i to j. In the case of an unweighted graph aij = 1 if there is an edge, 0

otherwise; in the case of a weighted graph aij can be any real number.
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This chapter provides a background to the tools employed in the analysis of static

networks relevant to this thesis, with the aim to understand how temporal metrics

can refine the static definition.

Chapter Outline

Section 2.1 discusses simplifications of static graphs when constructed from real

network datasets with time information. In Section 2.2, key metrics pertinent to the

study of information dissemination in temporal networks are presented in the context

of small-world studies, identifying important nodes in networks and connectedness

of a graph. Conclusions are presented in Section 2.3.

2.1 Static Model

As discussed in the previous chapter, a graph can be used to model a wide range

of real work networks, where a node could be a person, city, neuron or webpage

etc. and an edge could represent a relationship, road, synapse or hyperlink etc.,

respectively. However, we highlight the fact that this is a simplification of the real

network characteristics since time information is ignored. More specifically, there

are two types of simplification that can be observed in existing literature:

• Firstly, many studies collect the current topology of the graph, for example

the graph of movie co-stars [WS98], the network of webpages [BA99] or the

network of power grids [WS98]. However, the network data collected was only

the current snapshot of the complete time-line of the network: actors star

in new movies over time and the graph of co-stars grows; new webpages hyper-

linked to existing pages and the WWW graph changes over time; friendships

are created and removed from OSNs and so the friendship graph is different

etc.

• Secondly, where temporal information is available, many studies explicitly ig-

nore time information and construct a static graph from the union of edges

across all temporal occurrences. For example, in the study of scale-free prop-

erties of email networks [EMB02] the authors explicitly state that “the nodes
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of the e-mail network correspond to e-mail addresses which are connected by a

link if an e-mail has been exchanged between them”, which means that if sev-

eral emails were sent between a pair of nodes, that edge is counted once (ignor-

ing the frequency). In the study of the worldwide airport network [BBPV04]

two nodes (airports) are linked by an edge if there is a direct flight at any time

over the course of a year; again, this takes the union of an edge across time.

In fact, both of these simplification can be regarded as a form of edge aggregation

and hence we refer to static graphs as static aggregated graphs in this dissertation.

Again, in its defence, static network analysis is very powerful in aiding the study of

real networks as demonstrated by seminal results produced over the last decade.

2.2 Static Analysis

2.2.1 Small-world metrics

The small-world phenomenon was first studied by Stanley Milgram [Mil67] in 1967

who performed an experiment asking 160 random selected participants in the US

town of Omaha, Nebraska, to deliver a package to a specified target, an acquaintance

of Milgram’s, who worked in Boston, Massachusetts. The information supplied to

participants were the targets name, occupation and address, however, participants

were prohibited from mailing the letter directly to the target, instead were requested

to send the package onto their own friends or acquaintances whom they felt could

get the letter “closer” to the target. These friends or acquaintances were then given

the same instructions and for each transition, a postcard was sent back to Milgram

with details of the receiving party. Through this experiment, Milgram showed that

the package could be delivered through a “chain” of acquaintances forming a path;

the average path length of the 44 completed chains1 was 6 which led to the phrase

“six degrees of separation”2. Milgram made two interesting observations [Mil67]:

firstly, these chains provide an upper bound to the shortest paths; and secondly,

the penultimate person in 48 percent of the chains were mediated by only 3 people,

1The other 126 chains terminated at acquaintances who failed to participate.
2This term was not used in Milgram’s paper but was later popularised by the play of the same

name [Gua90]
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which suggests that highly popular or “clustered” nodes are important for funnelling

message to a destination.

Watts & Strogatz [WS98] later formalised these observation through two metrics:

the characteristic path length and the clustering coefficient; we now present these

metrics followed by their findings on real world networks.

2.2.1.1 Paths and Shortest Path Length

Before we can define the characteristic path length, we first need to define the

concepts of paths and path lengths. A path Pij is defined as a list of nodes starting

from node i and finishing at j, where an edge exists between each intermediate pair

of nodes and the length of a path is measured by the number of intermediate hops

from source to destination. There may be many different paths of different lengths

from the which we refer to as the set Pij. Also, all paths are acyclic, in that there

are no cycles or repeated nodes in a path.

The shortest (or geodesic) path length, dij from i to j is defined as the minimum

path length over all paths Pij ∈ Pij. From this, the characteristic (or average) path

length, L is defined as:

L =
1

N(N − 1)

∑
i 6=j∈V

dij (2.1)

This captures the global characteristics of a graph since transitive paths can connect

every pair of nodes.

2.2.1.2 Clustering Coefficient

Clustering coefficient measures the number of nodes that are also neighbours with

one another. More formally, for a node i, its clustering coefficient Ci is calculated as

the fraction of links that exists between the neighbours of a node ki of node i, over

the total possible number of edges ki(ki − 1)/2. From this, the average clustering

coefficient of a graph, C, is defined as:

C =
1

N

∑
i∈V

Ci (2.2)
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This captures the local interactions between nodes since it only considers neighbours

or close relationships of each node.

2.2.1.3 Small-world behaviour

The intuition is that small-world networks exhibit strong clusters of nodes such as

groups of friends which are more likely to be linked from certain nodes to distant

clusters, providing a “shortcut”. It is the combination of these close-knit clusters

of nodes (which can interact locally) and these shortcut links (which aid in global

interactions) that help in reducing the number of transitive hops between any two

nodes in a large network.

To demonstrate this intuition, Watts & Strogatz calculated these two global and

local metrics by extrapolating between a totally ordered graph and a random graph

(see Figure 2.1(a)). In the ordered graph, nodes are arranged around a ring as a

regular lattice where each node is connected to K nearest neighbours; by definition

this gives a strong local cohesion as demonstrate by high values of C but poor distant

connections resulting in high values of the characteristic path length L (p = 0.0001

in Figure 2.1(b)). On the other side of the spectrum, to create a random graph from

the lattice, for every node take its links and with probability p rewire this edge with

a random node. If p is high then local connections to neighbours will be lost and only

links to distant nodes remain which gives low values of characteristic path length

L and low values of clustering C (p = 1 in Figure 2.1(b)). The key insight is that

when we interpolate between the regular lattice to the random graph by changing

the value of p (Figure 2.1(b)), we obtain a graph which can be both highly clustered

and exhibit a low characteristic path length; which has been become known as a

“small-world” graph.

Small-world behaviour was also found in empirically observed networks, where it is

measured relative to random graph with the same number of nodes N and average

node degree 〈k〉. For a network to exhibit small-world properties, it is expected

that L be similar to that of a random graph and exhibits much higher clustering

C compared to the same random graph. In the original Watts & Strogatz paper,

it is demonstrated that this property held in social (movie co-stars), neural (C.

Elegans) and power grid networks. Proceeding studies have shown that this seem-

ingly universal property exists in many other networks including email [EMB02],
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(a) (b)

Figure 2.1: (a) Watts & Strogatz network model: extrapolating from a pure lattice

to a random graph with probability p of rewiring an edge. (b) Log-normal plot of

the characteristic path length and clustering coefficient (y-axis) as the rewiring prob-

ability p is increased (x-axis). (Reprinted by permission from Macmillan Publishers

Ltd: Nature ([WS98]), copyright (1998).)

co-authorship [New01a] and airport [BBPV04]. In Chapter 3 we shall present a

temporal analogy to the small-world property when taking into account time infor-

mation.

2.2.2 Efficiency

The small-world measures, proposed by Watts & Strogatz, assumed that the graph

was unweighted and connected. The latter needs to be true since if two nodes, i, j

cannot communicate via any transitive hops, then di,j is infinite and cannot be used

as part of the average. We shall see later that dense and connected static graphs

may actually be very sparse and disconnected when broken down to their temporal

equivalent since not all contacts occur at the same time. This assumption is a

problem in static graphs where many real networks are disconnected. To overcome

this, Latora & Marchiori [LM01] described an Efficiency function which calculated

the inverse of the shortest path length d; disconnected node pairs naturally had

an efficiency of 1/∞ = 0, which can be used as part of a mean summation. More

formally, the average efficiency E of a graph G can be defined as the harmonic mean:
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E =
1

N(N − 1)

∑
i 6=j∈V

1

dij
(2.3)

and, similar to characteristic path length L which captures the global properties of

the network, is also referred to as global efficiency Eglob. In the same vain, to parallel

the local dynamics that C captures, a local efficiency Eloc metric is defined as:

Eloc =
1

N

∑
i∈V

E(Gi) (2.4)

where Gi is the neighbour subgraph of a node i. In a small-world network both the

global and local efficiency are much higher compared to a random graph.

2.2.3 Centrality

In complex network and social network analysis, centrality refers to the identifica-

tion of the most “important” nodes in a network. Clearly, node importance is an

ambiguous term and could be interpreted in many different ways depending on the

application. For example, one could interpret importance as being equal to pop-

ularity e.g. a person with the most friends; one might argue that a person who

can deliver a message quickly to the most people in a network is important; or per-

haps, one might give precedence to a person that bridges the most communication

channels and therefore is key to mediating between different parties.

In fact, all three interpretations have been well studied in social network analy-

sis are more commonly known, respectively, as degree, closeness and betweenness

centrality [WF94].

2.2.3.1 Degree Centrality

Indeed, one of the simplest measures in network analysis is node degree Ni, which

measures the number of neighbours of a node where Ni =
∑

j∈V aij. Since the degree

is defined for each node, it is straight forward to derive a measure of centrality

based on popularity. The degree centrality of a node i is defined as the number
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of neighbours Ni of i normalised by the maximum number of distinct connections,

more formally:

Cdeg
i =

Ni

N − 1
. (2.5)

2.2.3.2 Closeness Centrality

From a practical perspective, closeness centrality measures how quickly a node can

communicate with all other nodes in a network. This is calculated for a node i as

the average shortest path length, d, to all other nodes in the network. Formally,

this can be defined in terms of shortest path lengths:

Cclo
i =

1

N − 1

∑
j 6=i∈V

dij. (2.6)

or in terms of efficiency to handle disconnected nodes:

Ceff
i =

1

N − 1

∑
j 6=i∈V

1

dij
; (2.7)

2.2.3.3 Betweenness Centrality

Betweenness centrality measures the shortest paths that pass through a node and can

be thought of as the proportional flow of data through each node. The betweenness

of node i is calculated as the proportional number of shortest paths between all node

pairs in the network, that pass through i. More formally, this is defined as:

Cbet
i =

∑
j 6=i,k 6=i∈V

pjk(i)

pjk
(2.8)

where pj,k is the number of shortest paths starting from source node i and destination

node j, and pj,k(i) are those paths which pass through node i [WF94]. A key

point is that betweenness also takes into account alternative shortest paths which is

meaningful in measuring the robustness of a node to attack; if a node i is the only

bridging node on a path then its removal would be highly detrimental, whereas, if

there were another path that did not include i then its role would be less critical.
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2.2.4 Reachability

The reachability of nodes in a graph is important for many reason, for example,

one might be interested in finding out if a route exists via some telecommunication

channel to deliver an email; whether or not a journey using public transport exists

that can be taken from home to work; or if it is possible to drive to Fiji? We can

reason upon these questions by mapping them to a graph and calculating the paths

from source to destination. Intuitively, the answer to these simple questions depends

on the given input source and destination. If, say, we live in a major city, such as

London, and our friend whom we wish to deliver an email to also lives in London,

then it is highly likely that we are both connected by (and to) the Internet. If,

however, the friend lives in some remote mountain range in the Himalayas, such a

channel most probably does not exist; in other words, the destination is unreachable

and there is no path between these two nodes. Many land masses are well inter-

connected by roads, such mainland Europe, China, the United States and Australia

etc., however this does not mean they are connected to one another. Within graph

theory, the idea that there are independently connected networks is more formally

known as components. Defining the concepts of connected components depends on

whether we are reasoning on a directed or undirected graph, since directed graphs

reduce the number of channels available for any pair of nodes to be connected via;

for this reason we now define these concepts explicitly for directed and undirected

graphs.

2.2.4.1 Connected Components

In order to define graph components, we need to introduce the concept of connect-

edness, first for pairs of nodes, and then for the whole graph. We will consider the

case of undirected and directed static graphs separately. Two nodes i and j of an

undirected graph G are said to be connected if there exists a path between i and j.

G is said to be connected if all pairs of nodes in G are connected, otherwise it is said

unconnected or disconnected. A connected component of G associated to node i is

the maximal connected subgraph containing i, i.e., it is the subgraph of all nodes

connected to node i. If an undirected graph is not connected, it is always possible

to find a partition of the graph into a set of disjoint connected components, and it

is simple to prove that this partition is unique.



34 2.2. STATIC ANALYSIS

Defining connectedness for pairs of nodes in a directed graph is more complex than

in an undirected graph, because a directed path may exist through the network from

node i to node j, but this does not guarantee that a path from j to i also exists.

Consequently, two different definitions of connectedness between two nodes exists,

namely weak and strong connectedness [DMS01]. Two nodes i and j of a directed

graph G are said strongly connected if there exists a path from i to j and a path

from j to i. A directed graph G is said strongly connected if all pairs of nodes (i, j)

are strongly connected. A strongly connected component of G associated to node i is

the maximal strongly connected subgraph containing node i, i.e., it is the subgraph

which is induced by all nodes which are strongly connected to node i. A weakly

connected component of G is a component of its underlying undirected graph Gu,

which is obtained by removing all directions in the edges of G. Two nodes i and j of

G are weakly connected if they are connected in Gu, and a directed graph G is said

to be weakly connected if the underlying undirected graph Gu is connected. Hence,

the components of a directed graph can be of two different types, namely weakly

and strongly connected. It is useful to review also the definitions of components

associated to a node of a directed graph. We have four different definitions:

1. The out-component of node i, denoted as OUT(i), is the set of nodes j such

that there exists a directed path from i to j,∀j.

2. The in-component of a node i, denoted as IN(i), is the set of nodes j such that

there exists a directed path from j to i,∀j.

3. The weakly connected component of a node i, denoted as WCC(i), is the set

of nodes j such that there exists a path from i to j,∀j in the underlying

undirected graph Gu.

4. The strongly connected component of a node i, denoted as SCC(i), is the set of

nodes j such that there exists a directed path from i to j and also a directed

path from j to i, ∀j.

We have already used the last two concepts for the definitions of weakly and strongly

connected components of a directed graph given above. In fact, the property of

weakly and strongly connectedness between two nodes is reflexive, symmetric and

transitive, i.e., in mathematical terms, it is an equivalence relation. Therefore, it is



CHAPTER 2. STATIC COMPLEX NETWORK THEORY 35

possible to define weakly and strongly connected components of a graph by means

of the weakly and strongly connected components associated to the nodes of the

graph: a strongly (weakly) connected component of node is also a strongly (weakly)

connected component of the whole graph.

Conversely, the definitions of out-component and in-component of a node are not

based on equivalence relations. In fact, the symmetry property does not yield:

i ∈ OUT(j) does not imply j ∈ OUT(i). This means that out- and in-components

can be associated only to nodes, and cannot be directly extended to the entire graph.

In practice, we cannot partition a graph into a disjoint set of in- or out-components,

while it is possible to identify a partition of a static graph into a disjoint set of

weakly or strongly connected components. However, the in- and out-components of

the nodes of a graph can be used to define the strongly connected components of

the graph. From the above definitions, we observe that i ∈ OUT(j) if and only if

j ∈ IN(i). Furthermore, we notice that i and j are strongly connected if and only

if j ∈ OUT(i), and at the same time i ∈ OUT(j). Or equivalently, if and only if

j ∈ OUT(i) and j ∈ IN(i). Therefore the strongly connected component of node i

is the intersection of IN(i) and OUT(i).

Tendril

 

Tendril

   

Giant Weakly Connected component (GWCC)

WCC 2 WCC 3

WCC 4

WCC 5

Figure 2.2: A directed graph can be partitioned into a set of disjoint weakly con-

nected components (in yellow). Furthermore, each of these components has a rich

internal structure, as shown for the GWCC.

We are now ready to describe in detail the rich interplay between the various concepts

of connectedness in a directed static graph. In the most general case, as shown in
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Figure 2.2, a directed graph can be decomposed in a set of disjoint weakly connected

components. In a large graph, one component will be larger than all the others and

it will be called giant weakly connected component GWCC. If we treat each link

in the GWCC as bidirectional, then every node in the GWCC is reachable from

every other node in the GWCC. As shown in Figure 2.2, the GWCC contains the

giant strongly connected component GSCC, consisting of all sites reachable from each

other following directed links. All the sites reachable from the GSCC are referred

to as the giant OUT component, and the sites from which the GSCC is reachable

are referred to as the giant IN component. The GSCC is the intersection of the

giant IN- and OUT-components. All sites in the GWCC, but not in the IN- and

OUT-components, are referred to as “tendrils”.

2.3 Conclusions

We have presented a range of analysis related to information dissemination in net-

works from the textbook definition of shortest paths to the study of small world

phenomena. An important point which should be highlighted, is that the studies

presented here are all derived from this simple concept of shortest paths: small world

measures the relationship between shortest paths lengths and clustering; closeness

and betweenness are based on shortest paths; connected components are defined

in terms of shortest path lengths. Indeed this observation leads us into the next

chapter where we take the logical step of defining temporal shortest paths, which

form the foundation of subsequent temporal metrics.



3
Temporal Graphs and Distance Metrics

Introduction

In this chapter, we tie together key observations that were concluded from the pre-

vious two chapters. Firstly, in Section 1.1 we categorised four important pieces

of temporal information that should be captured in a temporal graph model and

metrics, namely timestamps, time-order, frequency and duration. Secondly, as we

have seen in Section 2.1, real networks exhibit temporal information but many stud-

ies have simplified the analysis of these networks by ignoring temporal information

through the aggregation of edges over time. Thirdly, through our discussion of exist-

ing static network analysis (Section 2.3), we have seen that important graph metrics

are founded on the simple concept of shortest paths.

Chapter Outline

In Section 3.1 we present a model that captures these temporal properties of real

networks, which we refer to as temporal graphs ; such temporal graphs can be thought

37
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of as a series of snapshots of the network topology over time. This discretisation

fits with many of the empirical datasets discussed in Section 1.1, such as annual

friendship questionnaires, monthly snapshots of an OSN, constant scanning rate

of Bluetooth sighting, however this does not preclude modelling continuous time,

which can be approximated by decreasing the window size to an appropriately fine

granularity. This also raises the question of selecting an appropriate window size for

a given dataset; although a given dataset may have been collected at coarse time

interval, other datasets will contain timestamps on a finer time scale; we cover this

in Section 3.4.2.5. Another noteworthy point is that there are several equivalent

temporal graph representations that could be used, for example time-stamped edges

[KKK02] and multi-slice graphs [MRM+10]; though these are equivalent, in our

studies we find that the temporal graph model is the most intuitive and better suited

for visually comprehending topological changes; this shall be considered further in

Section 3.3.3.1. In Section 3.2, we define fundamental concepts of temporal paths

and temporal shortest path lengths which will form the foundation for measures

based on the concept of shortest paths in later chapters.

Following these definition we provide two studies using empirical networks using this

model and metrics. In Section 3.4.2 we compute these temporal distance metrics

in the analysis of shortest paths in online social networks compared to the static

counterpart. In Section 3.4.3 we investigate the relationship between communication

efficiency versus the evolution speed of a time-varying network. Finally, we draw

conclusion in Section 3.5.

3.1 Temporal Graphs

Consider the sequence of interaction in Table 3.1; these interactions could represent

meetings between friends, activity between two cortical regions of the brain, or traffic

flow in a computer network. From this we can construct the example temporal graph

(Figure 3.1(a)) and corresponding static aggregated graph (Figure 3.1(b)), where

interactions between a pair of nodes defines an edge or, equivalently, generated from

the union of all edges in the temporal graph.

To give an intuition as to the benefits of using a temporal graph over the static

counterpart, consider the path from node A to node F ; using the static graph there
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N1,N2 Timestamp Duration

A,B 1 2

C,E 2 1

E,F 2 1

B,D 3 1

C,D 3 1

Table 3.1: Example interaction sequence between 6 nodes. The first column defines

a pair of nodes interacting, the second column defines the time of their interaction

and the third column defines the duration of the interaction.

A

C

E F 

B

D

A

C

E F 

B

D

A

C

E F 

B

D

t1 t2 t3 
time 

(a) Temporal Graph

A

C

E F 

B

D

(b) Static Graph

Figure 3.1: Example directed Temporal Graph with three time windows and six

nodes, generated from interactions in Table 3.1

seems to be a path from A to F via (A,B,D,C,E,F), however, when we take into

account the time information in the temporal graph, there is in fact no path that

satisfies his route. This is due to the time-order ; the interaction between the sub-

path (B,D,C) and (C,E,F) occur in the wrong time order to facilitate the path. We

shall quantify this using empirical traces later in Section 3.4.2, but first let us first

formally define these concepts of temporal graphs and temporal path metrics.

Definition 1 (Temporal Graph) Given a real-world network interaction dataset

starting at tmin and ending at tmax, the (undirected) temporal graph Gw(tmin, tmax)

is defined as an ordered sequence of undirected graphs (G0, G2, . . . , Gτ−1) where:

• Gt = (Vt, Et) is a 2-tuple consisting of a set of nodes Vt and edges Et in the

window t;
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• there exists a link between node i and node j in Et if there is some link in the

real network between i and j during the time interval [(tmin + (w× t)), (tmin +

(w × (t+ 1)))];

• τ − 1 = ((tmax − tmin)/w) = |Gw(tmin, tmax)| is the number of graphs in the

sequence;

• w is the duration of each time window expressed in some time units (e.g.,seconds

or hours); and

• |E| =
∑τ−1

t=0 |Et| as the total number of edges across all windows in the temporal

graph.

This definition can be trivially extended to the case of a directed temporal graph by

means of a sequence of directed graphs, where there exists a link from i to j in Et if

there is a contact from i to j during the time interval [(tmin + (w× t)), (tmin + (w×
(t+ 1)))].

3.1.1 Simplifying Assumption

Firstly, we shall only consider unweighted graphs since the datasets employed in this

thesis contain only binary contact information and although weighted graphs can

capture some sense of duration along a path in a static graph, the dependencies (i.e.

time order) in fluctuations of links (either binary of continuous) is still not captured

in static weighted graphs. However, weighted temporal graphs would be a good

candidate for future work. Secondly, we shall concentrate on systems where the

number of nodes remains constant (i.e., there are no birth or deaths of nodes) but

where there is fluctuation of the edges between nodes (which represent some contact,

message being sent, traffic etc.). This is reasonable since the networks discussed in

Chapter 1 all exhibit a stable value of N over a short time-scale; however, this

assumption does not prevent the analysis of networks where the number of nodes

grows. For example, we can model the temporal graph with the maximum number

of expected nodes N across all time windows or the temporal metrics described in the

next section could be normalised by the number of nodes in each time windows. The

effects of a non-constant N on temporal metrics is not explored in this thesis. For
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simplicity we shall refer to the set of nodes in a temporal graph as V = Vt,∀t ∈ [0, τ)

and N = |V |.

3.2 Temporal Metrics

We now turn our attention to the definition of metrics to measure temporal distance,

clustering and evolution speed.

3.2.1 Temporal paths and shortest path length

As we have highlighted in the previous chapter (Section 2.3), fundamental to the

study of information dissemination in networks is the concepts of paths and path

lengths. We have also seen that shortest paths have been applied to many different

applications for example measuring the indirect number of links between friends-of-

friends [Mil67]; finding the fastest route to send an electronic message through the

Internet; or planning the quickest route to drive to work. However, shortest path

length on static graphs returns the number of hops from a source node to destination

node; this does not retain temporal information and hence cannot capture the true

duration or speed of dissemination. Instead, we now formalise a metric fundamental

to this thesis that we call the shortest temporal path length which gives an indication

of the speed of message delivery from a source to destination. Before we can formalise

this metric we first define the concepts of temporal paths. Following this, we then

run through an example calculation of the temporal shortest path length and then

define the algorithm that is used to compute the temporal shortest path length and

temporal shortest paths.

Definition 2 (Temporal Path) A temporal path, phij = (nW0
0 , . . . , n

Wη
η ), starting

at node i = n0 and finishing at node j = nη can be defined over Gw(tmin, tmax) as

a sequence of η hops via a distinct node nWa
a at time window Wa, where node na is

passed a message if and only if there is an edge between na−1 and na at time window

Wa−1 ≤ Wa; and 0 ≤ Wa < τ .

To allow generality in the temporal graph model and distance metrics we also in-

troduce the horizon parameter h, which is the maximum number of hops through
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which a message is replicated within the same window. For example, returning to

Figure 3.1(a), calculating the temporal shortest path from node A to C with horizon

h = 2 there is a temporal sub-path (A,B) at window 1 and (B,D,C) at window 3.

If the horizon h = 1, then this temporal shortest path does not exist since in window

3, only one hop is allowed and only node D can be reached. The horizon parameter

can be interpreted as the speed that a message travels through the network (or the

speed of transfer over a link) and is directly related to the window w size used to

model the network. Throughout this thesis we assume that the typical time for a

message to pass from a node to one of its neighbours is of the same order as the typ-

ical time at which the graph changes (i.e. h=1). The relationship between these

two parameters shall be investigated in Section 3.4.2.5 and 3.4.3.4. For clarity,

subsequent definitions will implicitly include the horizon parameter h.

We call Qij the set of all temporal paths between nodes i and j. If a temporal path

from i to j does not exist, i.e., Qij = ∅, we say that (i, j) is a temporally disconnected

node pair, and we set the distance lij =∞.

Using the function D(pij) = (w ×Wη) which returns the delivery time (at window

Wη) for the given path relative to tmin, the shortest temporal path length is defined

as:

dij = min(D(pij)),∀pij ∈ Qij. (3.1)

Since the shortest temporal path may not be unique, we define the set Sij of all

shortest temporal paths from node i to j as:

Sij = {pij ∈ Qij : (D(pij) = dij)}. (3.2)

We can also define temporal shortest path length in terms of efficiency [LM01]; the

temporal efficiency Eij between nodes i and j as:

Eij =
1

dij + 1
(3.3)

3.2.2 Example calculation of dij

To give an intuition as to how the temporal shortest path length, dij, is calculated,

we first give an example calculation between nodes in the network in the temporal
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graph from Figure 3.1(a). In the next section we describe the algorithm for both dij

and Sij.

We assume global knowledge of the temporal graph and two global lists, D and R,

indexed by node identifier are maintained. D keeps track of the number of temporal

hops to reach a node and R keeps track of nodes that are reached. We initialise the

value of every nodes of D to 1 and R to False. Starting with the first time window,

we check that the source node i has been sighted. If so, we perform a depth first

search (DFS) to see if any unreached nodes have a path to a node that was reached

in a previous window. The maximum depth of DFS is dictated by the horizon h and

if there is more than one path, we choose the shortest. If a node j is reachable then

we set R[j] = True otherwise we increment the distance D[j]. If the source node i

is not reachable then we increment all D[j] since we cannot establish a transitively

connected path from the source. We then repeat this for the next window.

Time Window 1: Starting with the first window we focus on the reachability from

a source node A. Figure 3.2 shows the snapshot of the graph topology at t = 1 and

the upper table shows the state of lists R and D after the initialisation phase. We

first check if we can see the source node A. Since node A appears in this first window,

R[A] is set to True. We then iterate through every other node in the window to

check for reachability. Since there is a path between A and B and also since A was

reached already we update R[B] to True. However for node C, there are no edges

to any other nodes so we increment the distance D[C]. The same applies to nodes

D, E and F and the lower table shows the state of D and R after processing the

first window.

A B

F

DC

E

A B C D E F

D 1 1 1 1 1 1

R F F F F F F

Initialization

A B C D E F

D 1 1 2 2 2 2

R T T F F F F

Variables

Figure 3.2: Distance and Reachability of Window 1.
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Time Window 2: The second window is shown in Figure 3.3. We iterate through

all unreached nodes C, D, E and F and perform DFS to see if they can be reached

via already reached nodes i.e. A or B. As we can see, there are edges amongst the

unreached nodes, however, none are with A or B so again the distance D for nodes

C, D, E and F are incremented. The state of D and R are shown in Figure 3.3

after processing the second window.

A B

F

DC

E

A B C D E F

D 1 1 2 2 2 2

R T T F F F F

Variables

Figure 3.3: Distance and Reachability of Window 2.

Time Window 3: In the third and final window starting from node C, we check

if there is a path to a previously reached node. In this case performing DFS gives

us two nodes we can reach D and B in the current window, but only node B has

been reached in a previous window. We only care that there is a valid path not the

number of hops within the current window, so we set R[C] = True. Since the value

of D[C] is 3 and R[C] is True, we now know that a message from node A can reach

node C in 3 time windows. Therefore the temporal distance dAC = 3. For node

D there is a path to node C and node B, but since only node B was reached in a

previous window we use this path and set R[D] to True. For nodes E and F , a

message from node A has still not arrived and so the final state shown in Figure 3.4

reflects this. For all values of R that are False we can treat the distance D as ∞.

A B

F

DC

E

A B C D E F

D 1 1 3 3 4 4

R T T T T F F

Final

Figure 3.4: Distance and Reachability of Window 3.

Result: Table 3.2 shows the temporal path length calculated for every node pair,

where the diagonal describes when a node was first seen by another node. As we
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mentioned earlier paths in static undirected graphs are assumed symmetric, for

example in Figure 3.1(b) there is a path between nodes A to C and vice versa.

However, in Table 3.2 this is not the case due to the ordering of the edges and this

can be verified visually in Figure 3.1(a).

A B C D E F

A 1 1 3 3 ∞ ∞

B 1 1 3 3 ∞ ∞

C ∞ 3 2 3 2 2

D ∞ 3 3 3 ∞ ∞

E ∞ 3 2 3 2 2

F ∞ 3 2 3 2 2

Table 3.2: Temporal path length for all nodes.

3.2.3 Algorithm & Complexity

We now describe the algorithms used in computing the temporal shortest path

length, dij, and temporal shortest paths, Sij. As illustrated in the previous exam-

ple for the temporal shortest path length, dij, we essentially compute the reachable

nodes within each time window using a standard static shortest path length al-

gorithm with maximum depth h before moving on to the next window. For this

reason, we first list standard algorithms for calculating static shortest path lengths

and paths on a static model will be listed based on breadth first search (BFS) to

control the search depth, followed by algorithms to calculate dij and Sij on the

temporal model are listed.

The listings are in terms of single-source to all destination nodes, since there is

negligible additional complexity between single destination and multiple destinations

from a single source node. This is due to the nature of BFS that has to maintain all

reached nodes. In addition, for brevity we shall concentrate on undirected graphs.

3.2.3.1 Shortest Path Length on Static Models

On a static graph model, to calculate the shortest path lengths from a source node

i and all destination nodes j ∈ V , we can use a modified breadth first search (BFS)
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[Sed88]. Since a breadth first search visits the nearest neighbours first and then for

each of these neighbours visits their direct neighbours, we are in effect incrementing

the search perimeter (or number of hops). It is straightforward then, to see that

once we have reached the destination node then the shortest path from i has been

found since we could not have reached it in a smaller perimeter. More formally, the

pseudo code for BFSStaticShortestPathLengths() is presented in Algorithm 1.

Algorithm 1: BFSStaticShortestPathLengths()

Input: Graph G, Source node i, Maximum Depth m

Output: List of shortest path lengths to all other nodes n in V

1 begin

2 Initialise list of node distances, d(n)←∞,∀n ∈ V ;

3 Initialise empty queue Q ;

4 Add source node i to Q ;

5 d(i)← 0 ;

6 while Q is not empty do

7 k ← Head(Q) ;

8 Remove k from Q ;

9 if d(k) = m then

10 break ; /* Maximum depth reached */

11 Find all neighbour nodes Fk where d(n) > d(k),∀n ∈ Fk ;

12 Add all neighbour nodes n ∈ Fk to the end of Q iff n is not already in Q ;

13 Set all neighbour nodes n ∈ Fk distance to d(n)← d(k) + 1 ;

14 return d;

The runtime complexity is O(|V | + |E|) in the worst case since all nodes could

potentially be added to the queue (Line 12) and potentially all edges could also be

traversed (Line 11).

3.2.3.2 Shortest Paths on Static Models

Calculating shortest paths is more complicated and requires the maintenance of

predecessor nodes which track neighbouring nodes that were used to reach a node

n. The full set of shortest paths from the source to destination can be recon-

structed using this data structure. It is important to note that many textbook
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definitions [Sed88, CLRS01] of the Dijkstra or Floyd-Warshall algorithm for find-

ing shortest paths, maintain only a single predecessor for each node and hence

only a single shortest path can be reconstructed; we are interested in all short-

est paths which is important, for example, in the calculation of betweenness cen-

trality which relies on this knowledge. However, this comes with a caveat of in-

creased time complexity in path reconstruction. More formally, the pseudo code for

BFSStaticShortestPaths() is presented in Algorithm 2; this is similar to the calcu-

lation of path lengths but with the addition of Lines 3 and 15 to maintain the set of

predecessors of a node. To reconstruct the full path we can use ReconstructPaths()

(Algorithm 4).

Algorithm 2: BFSStaticShortestPaths()
Input: Graph G, Source node i, Maximum Depth m

Output: Predecessors of nodes on shortest path to source

1 begin

2 Initialise list of node distances, d(n)←∞, ∀n ∈ V ;

3 Initialise empty list of sets Pred(i)← ∅, ∀n ∈ V ;

4 Initialise empty queue Q ;

5 Add source node i to Q ;

6 d(i)← 0 ;

7 while Q is not empty do

8 k ← Head(Q) ;

9 Remove k from Q ;

10 if d(k) = m then

//Maximum depth reached

11 break ;

12 Find all neighbour nodes Fk where d(n) > d(k),∀n ∈ Fk ;

13 Add all neighbour nodes n ∈ Fk to the end of Q iff n is not already in Q ;

14 Set all neighbour nodes n ∈ Fk distance to d(n)← d(k) + 1 ;

15 Update predecessor of neighbours Pred(n)← Pred(n) ∪ {k}, ∀n ∈ Fk ;

16 return Pred;

The complexity of calculating shortest paths is the same as calculating shortest path

lengths, O(|V | + |E|), since the maintenance of predecessors can be performed in

linear time.
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Algorithm 3: ReconstructPaths()
Input: Source i, List of sets of predecessors Pred

Output: List of paths to given all destination nodes

1 begin

2 AllPaths = ∅ ;

3 foreach Destination node n ∈ V do

4 AllPaths(n)←ReconstructPathSingleDest(i, n, Pred, ∅) ;

5 return AllPaths ;

Algorithm 4: ReconstructPathSingleDest()

Input: Source i, Destination j, List of sets of predecessors Pred, Optional path

(where default= ∅)
Output: List of paths to given destination node

1 begin

2 path= ConcatenateLists([j], path) ;

//Terminating conditions

3 if i = j then

4 return [path] ;

5 if Pred(j) = ∅ then
6 return ∅ ;

7 paths = ∅ ; //Collect up different paths

8 foreach node in Pred(j) do

9 if node not in path then

10 newpaths = RecontructPaths(i,node,Pred,path)

//Each pred might have multiple pred

11 foreach newpath in newpaths do

12 paths← paths ∪ newpath ; //Seperate each path

13 return Paths ;
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The predecessor data structure can be thought of as a directed, acyclic graph. Enu-

merating all possible paths on this structure takes exponential time O(2N). To

convince ourselves of this, consider the simple case: a graph with N nodes, where

node i is connected with every node k > i; enumerating all paths from node 1 to N,

there are exactly 2N−2 paths.

3.2.3.3 Shortest Temporal Path Length

To compute dhij(tmin, tmax) our algorithm uses the modified breadth first search

(BFSStaticShortestPathLengths() in Algorithm 2), giving us the temporal dis-

tance from a source node i to all other nodes. The idea is that starting from node

i and the first window, we find all reachable nodes with path lengths not exceeding

the horizon variable h. We then mark all reached nodes with their temporal dis-

tance set to the current window. If the destination node has not been reached, then

we repeat the same procedure in the next window but for all nodes reached in the

previous window as the source node. We list the pseudo code (Algorithm 5) to find

distances from a single source node to all destination nodes.

For all nodes j where R[j] = False then the temporal distance dhij =∞, otherwise

if R[j] = True then dhij = D[j]. To find all the temporal distance for all node pairs,

we repeat for all source nodes. The runtime complexity is O(τ.(N + |E|)) in the

worst case when there is at least one destination node unreachable and we need to

check all windows τ .

3.2.3.4 Shortest Temporal Path

The algorithm to find the single source shortest temporal paths extends the algo-

rithm to find shortest temporal path lengths, by maintaining a list of predecessor

for each node, records the neighbour(s) that a node was reached from. A reached

node k can only have multiple predecessors if each of the predecessors reached j

in the same window i.e. the first window that j was reached. Again, by keeping

track of pointers to predecessors we are effectively maintaining a tree structure and

to recall paths, we traverse the predecessor pointers from any reached node back to

the source node i.



50 3.2. TEMPORAL METRICS

Algorithm 5: TemporalShortestPathLength()

Input: TemporalGraph G, Source node i, Horizon h

Output: Shortest temporal path length to all other nodes n in G
1 begin

2 Reset all node distances D(n)←∞, ∀n ∈ V ;

3 Reset all node reachability R(n)← False,∀n ∈ V ;

4 Set source node as reached, R(i)← True ;

5 Set current window index w ← 0 ;

6 foreach window G ∈ G do

7 foreach node n that was reached in a previous window (n ∈ V,

where R(n) = True and D(n) < w) do

//Find previously unreachable nodes

//which can now be reached

8 K ← BFSStaticShortestPathLengths(G,n,h) ;

9 foreach k ∈ K do

10 if previously unreached node, R(k) = False then

11 Set R(k)← True ;

12 Set D(k)← w ;

13 w ← w + 1 ;

14 return D;

We should also note that since we are interested in the window that a node is

reached, the multitude of temporal paths may have different hop lengths; for this

reason the predecessor data structure needs to also maintain the sub-path within

the current window with a maximum hop count equal to the horizon. A hop also

needs to be recorded as a 2-tuple (node,window). More formally, the pseudo code

for TemporalShortestPaths() is presented in Algorithm 6.

The full set of temporal paths can be reconstructed using a slightly modified version

of ReconstructPaths() (Algorithm 4) used for static shortest paths. Since the

predecessor data structure maintains a 2-tuple (node,window), instead of a single

node for each hop of the path, each hop is now a 2-tuple (node,window). We can

simply modify ReconstructPaths() so that access to each element of Pred(n) for

a node n returns pred from the 2-tuple (pred,window).
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Algorithm 6: TemporalShortestPaths()

Input: TemporalGraph G, Source node i, Horizon h

Output: Predecessors of nodes on shortest temporal path to source

1 begin

2 Reset all node distances D(n)←∞,∀n ∈ V ;

3 Reset all node reachability R(n)← False,∀n ∈ V ;

4 Reset all node predecessors P (n)← ∅,∀n ∈ V ;

5 Set source node as reached, R(i)← True ;

6 Set current window index w ← 0 ;

7 foreach window G ∈ G do

8 foreach node n that was reached in a previous window (n ∈ R,

where R(n) = True and D(n) < w) do

//Find previously unreachable nodes

//which can now be reached

9 K ← BFSStaticShortestPathLengths(G,n,h) ;

10 foreach k ∈ K do

11 if previously unreached node (R(k) = False) then

12 Set R(k)← True ;

13 Set D(k)← w ;

14 Add predecessor P (r)← P (r) ∪ {(k,w)} ;

15 w ← w + 1 ;

16 return Pred ;

The time complexity of constructing predecessors is the same as temporal path

lengths (O((τ.(N + |E|)), however, the reconstruction of temporal paths is domi-

nant since we effectively have τN nodes as input to ReconstructPaths() and hence

the complexity is O(2τN). In practise, we have not found that the computation time

to be prohibitively slow, especially since temporal paths between each pair of nodes

can be computed in parallel. Future work could investigate more efficient imple-

mentations when applied to specific applications, for example calculating between-

ness centrality requires the count of all shortest paths from a source to destination

node (rather than enumerating all paths), which can be performed in polynomial

time [Bra01].
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3.2.4 Temporal distance is a quasi-metric

We should note that temporal distance is not a metric, in a strict mathematical

sense, since it does not satisfy the symmetry condition unless the temporal graph

is a temporally strongly connected component (this shall be discussed in more detail

in Chapter 6); this is due to the temporal direction of a path. When the sym-

metry condition is broken, such metrics are more accurately referred to as quasi-

metrics [Ste95]. This also applies to paths in directed static graphs since paths

between pairs of nodes are not guaranteed to be symmetric. Further, for static undi-

rected graphs distance is only embedded in metric space if the graph is connected,

however, in the research literature, the terminology of metrics is still commonly

applied to paths and distance on graphs, regardless. To avoid confusion we shall

also refer to temporal distance as a metric throughout this dissertation.

3.2.5 Characteristic Temporal Path Length

From these temporal distance measures, we can define the characteristic or average

temporal path length L, similar to that defined by Watts & Strogatz [WS98]:

L =
1

N(N − 1)

∑
ij

dij (3.4)

We assume that information expires after a certain time period so that if two nodes

i and j are temporally disconnected then we shall set dij = wτ i.e., the maximum

time for delivery in the temporal graph.

Alternatively, in order to avoid the potential divergence , we can define the temporal

global efficiency of G as [LM01]:

E =
1

N(N − 1)

∑
ij

1

dij
(3.5)

Low values of L (high values of E) indicate that the nodes of the graphs can com-

municate efficiently.
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3.2.6 Local Temporal Efficiency

Local temporal metrics capture the dynamics of each node and its neighbours across

the whole time space. The generalisation of the local efficiency Eloc for temporal

graphs we propose is as follows.

We first define Ni(tmin, tmax) as the set of all first-hop neighbours seen by node i at

least once in the time interval [tmin, tmax]. We indicate as ki(tmin, tmax) the number

of nodes in the set Ni(tmin, tmax). We then consider the sequence of subgraphs

G
Ni(tmin,tmax)
t , t = tmin, tmin+w, . . . , tmax where each GNi(tmin,tmax) is the neighbour

subgraph of node i, considering only the nodes in Ni(tmin, tmax) and retaining the

edges from Gtmin .

We can define the local efficiency of node i in the time window [tmin, tmax] as:

Eloci(tmin, tmax) = ET{GNi(tmin,tmax)
t t ∈ [tmin, tmax]} (3.6)

that is the efficiency of the time varying graph of the first neighbours of i in the time

window [tmin, tmax], i.e. the shortest-path for time-varying graphs are computed for

G
Ni(tmin,tmax)
t , t ∈ [tmin, tmax]. Note that by definition, for Eloc the horizon is always

1 since we are only considering the direct neighbours of node i.

3.2.7 Temporal Correlation Coefficient

In a temporal graph G, what matters is not only the probability distribution P (G)

over the graphs in G, but also how the graphs are ordered in time. By counting the

number of times a given graph G appears in the time sequence, we can construct

P (G). To fully describe time-varying graphs we also need to know how graphs

are correlated in time. For instance we need to know the conditional probabilities

P (Gt|Gt−1) of observing graphGt after graphGt−1 (more in general, the probabilities

P (Gt|G1, G2, . . . , Gt−1) of observing graph Gt after the sequence G1, G2, . . . , Gt−1).

In most cases, the contacts between the same node pair in time-varying systems

tend to be clustered in time, i.e. they show persistence over time [Hol05]. For in-

stance, people tend to engage in relations for continuous intervals of time. Hence, a

given link has a higher probability to appear in graph Gt if it was already present in

graph Gt−1. To quantify this effect, Clauset & Eagle defined a measure to compare
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two given graphs which are adjacent in time which they named the adjacency cor-

relation [CE07]; by averaging over all possible adjacent time windows in G we can

define the average topological overlap of the neighbour set of a node between two

successive graphs in the sequence C:

C =

∑
iCi
N

Ci =
1

T − 1

T−1∑
t=1

∑
j aij(t)aij(t+ 1)√

[
∑

j aij(t)][
∑

j aij(t+ 1)]
(3.7)

We name this metric the temporal-correlation coefficient of G. The value of C is in

the range [0,1]. In particular, if all graphs in the sequence are equal, we have C = 1.

3.3 Literature Review

3.3.1 Introduction

Several surveys have recently appeared in computer science circles on time-varying

graphs [HS11, CFQS10, Wu10]; we extend our review to include the multitude of

other disciplines which have also considered time information in networks. Indeed,

within different research circles, temporal graphs may also be known as longitudinal

(social sciences), time-varying (physics) or dynamic (computer science) graphs (or

networks).

3.3.2 Related Work

In 1958, Ford and Fulkerson [FF58] first considered maximal flows in a network

where edges are labelled with traversal time. Cooke et. al. [CH66] then provided

an optimal algorithm to solve the problem using a modified Bellman shortest path

algorithm. However, this representation is different from our model in that they still

fundamentally assume that edges are available across time but that their capacity

may be indirectly full based on the flow of traffic from competing paths, whereas

our model explicitly represents the fluctuations of edge availability based on some

external factor such as people moving away or failure of a node. It does, however,

introduce the notion of time into graph theory with congestion analysis indirectly
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cause time ordering. This analysis was then naturally later applied to transport

and logistical planning by Halpern [HP74, Hal77], however, was not analysed on

real networks. Lacking insight into real time-varying networks, assumptions on

complete connectivity in graphs were made, which do not stand in real networks.

More recently, Kempe & Kleinberg [KKK02] introduced such analysis to the field

of computer science. The Kempe temporal network model labels edges with a time

order as opposed to a duration of traversal and hence can be more accurately named

as time-stamped graphs. This can also be interpreted as the state of the network at a

certain time. The goal was to prove that the maximum flow, minimum cut theorem

would still holds in time respecting paths and they showed the cases when Menger’s

theorem would hold when considering such time order. The focus of this study was

not on empirical network datasets, but rather from a graph theoretic perspective.

Moody [Moo02] again employs a time-stamped graph to investigate the difference

in reachability compared to static aggregated graphs. To compare the differences,

the author proposes a reachability graph where a static graph A is generated from

the time-stamped graph B and there is an edge between a pair of nodes in A if

there is a time-respecting path in time-stamped graph B. Using a single empirical

dataset of sexual activity at a high school, the main result was that a static graph

overestimate reachability which mirrors our findings in this thesis. However, Moody

uses a measure of available paths as opposed to shortest paths, which is the main

focus of this thesis. We also extend this observation by measuring the actual duration

to deliver messages, not just connectedness of time-respecting graphs. The author

also alludes to possible future work on temporal extensions to centrality but does

not formalise this concept in his study; in the next chapter, we shall provide the

definition and analysis of such techniques. In addition, there are a couple of problems

with the definition of the reachability graph. Firstly, for a real process, where there

may be transitive, multi-hop messages, the reachability graph does not capture the

time order of transitive hops. Secondly, there is no notion of reciprocation between

pairs of nodes and hence does not capture the true reachability of nodes in a network.

In Chapter 6 we address these issues by introducing the concept of an affine graph.

Within computer science, time information is inherently part of analysing the delay

and data delivery in delay tolerant networks (DTN) [JFP04]. The field also proposed

routing algorithm for delay tolerant networks such as Epidemic routing [VB00] which
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uses an opportunistic approach to pass messages on via every possible contact at a

future time, however, the goal of data dissemination is different from the structural

analysis using complex network techniques that we propose in this thesis.

Hui et. al [HCY08] propose a message delivery scheme in pocket switched networks

called Bubble which uses the most important nodes both globally and within com-

munities to decide on the next hop. They propose an algorithm to identify the most

central nodes (RANK ) using the number of shortest delay paths that pass through

a node, however this does not take into account the fraction of alternative paths

and also they present a strong correlation between such central nodes with degree

and so favour this since it i suited for a decentralised algorithm. We are interested

in extending the analytical evaluation of different types of centrality, namely be-

tweenness taking into account alternative paths and closeness to find nodes that

can propagate messages quickest, as these are suited for different processes. This is

studied in the next chapter.

An analysis of different interpretations of temporal shortest paths was performed

by Ferreira et. al. [XFJ03, Fer04, FGM07]. Using the same temporal graph model

that we utilise in this dissertation, they introduce three variations of the shortest

path: The shortest path has the minimum number of time ordered hops or transitive

exchanges between two nodes. The fastest path has a subset of the set of shortest

paths that also arrives at the destination the earliest. The foremost path is the

latest or most up to date path to reach a destination node. The goal of this research

group is on the communication between satellites that exhibit known periodic orbits,

though earlier work concentrated on random waypoint models. Fundamentally, the

focus of their study differs from this thesis in that we are interested in more general

properties of a range of real life complex network which exhibit time information.

Their work culminated in a routing protocol, which took into account availability

of future links [FGM07], however there is a big assumption that every node knows

the future state of the network. In Chapter 5 we present techniques to predict

future important nodes in mobile phone networks based on regularity of human

interactions.

Following from this, the first real attempt at handling temporally disconnected node

pairs and analysing real time-ordered networks was by Holme [Hol05]. Holme uses

the same time-stamped graph model of Kempe & Kleinberg and analyses the equiv-
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alent variations of shortest path as introduced by Ferreira et. al. They were also

the first attempt to analyse real networks traces however due to the available com-

putational hardware only random samples from the traces were used. Also although

the authors recognise that disconnected node pairs are important they represent the

average reachability time using two separate metrics: one for the average time over

connected node pairs and a second ratio of disconnected node pairs. Alongside each

network analysed they also present other metrics such as number of nodes, average

degree and time span of network. The metrics defined in this thesis extends this by

incorporating disconnected node pairs and normalising by time span and number

of nodes to produce a single, succinct value for a given network. Also, the focus of

this study was the reachability of real time ordered networks, but was not compared

with static network representations; in this thesis we seek to quantify the difference

between temporal and static analysis.

Kossinets et. al. [KKW08], analyse information dissemination processes focussing

on identifying the diffusion of the most recent piece of information about a certain

topic in a social network. We instead are interested in measuring the smallest delay

path of generic information spreading processes starting from the beginning of a

process.

Similarly, Kostakos [Kos09] presented the concept of temporal graphs and an equiv-

alent measure of delivery time between nodes of a temporal graph. However again

this provides a skewed indication of the global delay of the information diffusion

process since it does not take into account pairs of nodes for which a transitive path

does not exist. Also the lack of normalisation over nodes or time do not lend for easy

comparison between networks. Again, the author analyses two networks: one email

and one Bluetooth. However, the Bluetooth trace is based on a limited number of

access point scanning for passing devices as opposed to actual proximity contacts

between devices. Based on the proposed application of message delivery, it is hard

to make any clear claims on how efficient social networks are for message delivery.

This is coupled again with the problem of multiple metrics to represent message

delivery of a network.

More recently, there has been some work on incorporating time into social network

analysis. The first piece of work that attempted to analyse social networks with

temporal information was by Clauset & Eagle [CE07] where the authors used a



58 3.3. LITERATURE REVIEW

temporal model to calculate the average degree and clustering coefficient. However,

the metrics are still static in the sense that they calculate the metric on each window

independently. Our work creates temporal metrics for temporal models that capture

the dynamics and dependencies across all windows.

Mathematicians have employed the temporal graph model represented as a series of

adjacency matrices in the study of random graph models so that spectral analysis can

be utilised [GH09, GH11]. Grindrod & Higham propose a random temporal graph

models based on a markovian edge process which captures features of empirically

observed networks. For example they propose a range dependent probability of edge

birth and death between successive windows of temporal graph and, using spectral

analysis techniques, find that a short-range dependence is present in neurological

networks, between spatially nearby areas of the brain. We take a similar approach in

Section 3.4.3 to capture the relationship between evolution speed and dissemination

through a combination of a random temporal graph model and empirical data.

Social scientists have looked in the dynamics of friendship networks and their influ-

ence on smoking behaviour in 1326 adolescents at 11 Finnish high schools [MSS+10].

Unique to this discipline is the emphasis on semantic information on the participants

in addition to the network topology information, gathered by means of question-

naires at several time intervals. However, due to the manual collection techniques

only 4 annual topological snapshots are available. This study differs in that we con-

centrate on automated collection of finer grained temporal interactions but trade

off the semantic information. One such dataset, which we use in this thesis, is

that of the Enron email that contains both fine grained timestamps and semantic

information on the role of each user.

Recent studies have applied dynamic networks to community detection. Mucha et.

al. [MRM+10] proposed a multislice network, where the extra dimension can be

temporal. The idea is to link the same node between time slices and hence can

be collapsed into a single static representation. From this, the authors generalise

the formalisation of the well studied modularity [NG04] utilised in static network

analysis. Williams et. al. [WWA11] demonstrate that a snapshot representation

of the network topology over time can be exploited in periodic community detec-

tion. Although community detection is an important tool in network analysis and

for understanding communication between nodes, this thesis shall focus on metrics
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for measuring information dissemination, identifying key nodes and reachability in

temporal graphs.

3.3.3 Discussion

Although there has been analysis on time respecting paths and parallel works in com-

munity detection, there has been little work on extending such concepts to other

fundamental complex and social network metrics such as clustering coefficient, cen-

trality or connected components etc. which also make fundamental assumption on

constant time nor is there any thorough analysis on real social networks. There has

been little understanding on any real differences between static and temporal anal-

ysis on real networks due to the problems associated with temporally disconnected

graphs therefore normalisation between traces.

Past work on time-respecting paths has not investigated different starting time

points in a time-varying network (for example, temporal distance measurements

taken at daily start points) instead only taking a single measurement from the start

of the network dataset. This misses important aspect of time information, namely

the time dependencies and any periodic behaviour that is apparent in human be-

haviour [SMML10b, WWA11]. This is also informative in the derivation of centrality

prediction techniques in Chapter 5.

Another point we highlight is that past work on discrete models for time-varying

networks ignores the issue of window sizes, partly due to the reliance of artificial

models that are generated through discrete time steps [FGM07] and partly due to the

complexity of handling an additional parameter. In this thesis we have generalised

the temporal graph model to take as parameters the window size w and horizon

h. We highlight the importance of considering these parameters in Section 3.4.2.5,

however, since this is a model intended for application by a wide range of researchers

and applications, we can only offer guidelines to the selection of these parameters

based on the relevance to the datasets utilised in this thesis, as discussed in Section

3.4.2.

Regarding the metrics themselves, this thesis extends past work by first expanding

the set of temporal metrics to include temporal centrality and temporally connected

components. We also enhance the standard shortest path length metrics to han-
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dle disconnected temporal graphs using a characteristic temporal path length and

a temporal efficiency metric that naturally captures paths of infinite length. We

then are able to use these single succinct values (a single value to characterise a

whole temporal network) metrics to be normalised so we can accurately analyse real

social and technological network traces and find that static metrics overestimate the

number of available contacts and so underestimates the true shortest path length.

The novel contribution of this thesis is to advance this corpus of research by firstly,

extending several well known complex network and social network metrics with tem-

poral information, namely characteristic path length, local efficiency, centrality and

connected components, and analysing real network using these new tools; secondly,

fully exploring empirical time-varying networks by taking measurements at differ-

ent start times; and thirdly, applying these temporal metrics to study universal

properties of these real networks.

3.3.3.1 Alternative Representations

As we have seen, the consideration of time in all these studies have been motivated

by real life network problems (though not all have used empirical datasets for eval-

uation) and since there is a range of different applications and requirements, several

alternative temporal models are defined in addition to the temporal graph model

employed in this dissertation. These can be categorised as:

• static analysis on temporal graph model providing a simple approxi-

mation where static metrics are independently calculated on each temporal

snapshot of the network, however, this assumes independence between time

whereas we are interested in analysis which takes account of temporal depen-

dencies across time, for example temporal ordering. In other words, we are

interested in temporal analysis on a temporal graph model as opposed to static

analysis on either a static or temporal graph model1;

• time-stamped edges, where edges in a static graph are labelled with the

time of occurrence [KKK02]; and

1The fourth combination of temporal analysis on a static graph model is not well defined.
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• multi-slice networks which refers to a recent approach to modelling time

in networks was proposed by Mucha et. al. [MRM+10] for identifying com-

munities on a multislice network, where the extra dimension can be temporal,

multi-scale or multiplex. The idea is to link the same node between time slices

and hence can be collapsed into a single static representation.

Static analysis on a temporal graph does not satisfy time-order since there is a

lack of time dependency between windows. However, the latter two representation

are equivalent to the temporal graph model we employ in this thesis, since they

all capture the four temporal properties identified in Section 1.1 of timestamps,

duration, frequency and time order of edge interactions and hence the same logic

can be followed to derive all our metrics presented in this thesis.

We choose our temporal graph representation for the simple reasons that it is in-

tuitive and more natural for visually analysing the structure of the graph changing

over time, just like an animation of the graph topology changing over time. As we

have seen, there have been independent studies, performed in parallel which use a

corresponding representation [Kos09, WWA11].

This list is by no means exhaustive as it is possible to define other representations

suitable for different applications. For example, an alternative approach is to start

from the other end of the spectrum and instill temporal information into static

graphs with weighted static graphs where weights are link frequencies or duration. In

this thesis we focus on static, unweighted graphs, though comparisons with weighted

static graphs would be an interesting topic for future studies; we note, however,

since any analysis on static graphs will inevitably miss time-order, temporal analysis

would still be more appropriate in the analysis of real networks.

3.4 Application to Real Networks

3.4.1 Introduction

We now apply these definitions of temporal graphs and temporal distance metrics

to real, empirically observed networks that exhibit time information. These case

studies aim to, firstly, demonstrate the applicability of these metrics to a range of
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INFOCOM REALITY EMAIL

Start 2005-03-13 2004-07-26 2001-07-29

Duration 4 days 280 days 112 Days

Times day1:6pm-12am 12am-12am 12am-12am

day2:12am-12am

day3:12am-12am

day4:12am-5pm

No. of nodes 41 100 59812

Contacts avg. 4817 avg. 231 avg. 4000

Granularity 120 secs. 300 secs. 1 sec.

Table 3.3: Experimental Datasets.

real networks and, secondly, to demonstrate that temporal metrics can improve our

understanding of dynamic processes on time-varying complex networks.

This section is split into two parts: in Section 3.4.2 we first study the differences be-

tween static and temporal shortest paths; in Section 3.4.3 we study the relationship

between temporal shortest paths and the evolution speed of a time-varying network

and uncover more general properties of time-varying graphs.

3.4.2 Importance of Time in Real Networks

Shortest paths in graphs are a fundamental concept in graph theory and, depending

on the interpretation or application, measures the quickest, shortest or fastest path

from a source to destination; this is directly related to the study of information

dissemination in networks. Naturally these verbs all relate to some concept of time

and brings us to the question that we wish to address in this section: does time

really matter and, if so, can we quantify this difference?

In the introduction to this chapter we already gave a simple example of how time-

order plays a part in accurately measuring shortest paths, we now quantify this

difference in three real networks datasets, namely Bluetooth traces of people at the

2005 INFOCOM conference [HCS+05], campus Bluetooth traces of students and

staff at MIT [EP06], email traces from Kiel University [EMB02] and interactions

between a large group of members of a large online social network, namely Facebook



CHAPTER 3. TEMPORAL GRAPHS AND DISTANCE METRICS 63

users affiliated with the London network [WBS+09]. We shall refer to these as

INFOCOM, REALITY, EMAIL and FACEBOOK, respectively. Table 3.3 describes

the characteristics of each set of traces.

The INFOCOM traces were collected in a conference environment using Bluetooth

colocation scanning every 2 minutes. With 41 nodes it is quite a small trace but

temporally dense in that there are a high number of contacts per day. The REALITY

traces were collected at the MIT campus between Bluetooth phones sightings of

students, research staff and professors, with Bluetooth scanning every 5 minutes.

The EMAIL traces contain email server logs for 56,969 students at Kiel university.

Due to the size, we only analyse 7 days of the trace during the Fall semester.

Also, as we identified in the survey of related work (Section 3.3.3), past work only

takes measurements at a single time point; in this study to measure different start

times of these three networks we take measurements at daily intervals.

3.4.2.1 Parameter Selection

An important choice is that of the window size w. As discussed in relation to

related work (Section 3.3.3), we can only provide guidelines to the selection of this

parameter. Past work has made simplifying assumptions about the window size

through arbitrary selection [GH09, LB07] or ignored this parameter completely due

to the use of artificial simulation that also relied on known time steps [FGM07].

Also, recall that the computational complexity of the calculation of temporal path

length is O(τ.(|V |+ |E|)), where τ is the window count; this means that although we

could use a very fine window size, say for example seconds or milliseconds, for large

networks which also extend a long observation time unnecessarily small window sizes

should be avoided.

Based on these observations and experience of handling several empirical datasets,

we provide the following three guidelines. Firstly, the dataset collection timescale

might provide a clear granularity to use, for example, the Bluetooth scanning rate

in the REALITY dataset is five minutes and hence this provides a natural window

size; the Gowalla friendship networks seen in Figure 1.2 was collected in monthly

intervals and again no finer granularity is available; the same applies to the annual

friendship questionnaire employed by Mercken et. al. [MSS+10]. Secondly, the ap-

plication timescale might motivate an appropriate window size, for example daily
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interactions between people in an office or the seasonal effects of predator-prey rela-

tionships in food webs [JOBL08]. Thirdly, as the complexity of computing temporal

shortest paths and path lengths is defined in terms of the number of windows W ,

computational power might limit the tractable window size. This is a limitation

of the temporal graph model but we shall see that any additional time information

provides a better approximation to the real answer compared to a static graph (since

increasing the window size eventually reduces down to a single window which is the

definition of a static graph).

In the case studies presented in this section, the aim is to make the experimental

results comparable and hence we fix the window size, w to 5 minutes which is equal

to the longer Bluetooth scanning rate of the REALITY trace. The results of varying

the window size will then be presented later in Section 3.4.2.5.

3.4.2.2 Importance of Time Order

Static Temporal

Day N 〈k〉 L Disc L∗ Disc

1 37 25.7 1.291 0 4.090 0.28

2 39 28.3 1.269 0 4.556 0.13

3 38 22.3 1.420 0 4.003 0.19

4 39 21.4 1.444 0 4.705 0.14

Table 3.4: INFOCOM: Static and Temporal Metrics (h=max=N-1, tmin=00:00,

tmax=23:59, w=5 min).

Firstly, as a comparison between the temporal and the static metrics, we show the

results calculated for the INFOCOM data set. As argued before, paths in static

graphs ignore duration of contacts, inter-contact time, recurrent contacts and time

ordering of contacts and so overestimate the number of connected node pairs and

underestimate the path lengths. Table 3.4 shows calculations for both static and

temporal path length, L. As a note, since our temporal L metric presented in

Equation 3.4 is in real time, it is hard to compare with static L. Instead, we

define separately the concept of a shortest temporal hop length which captures the

time-respecting paths which minimise the hop count from node i to j as d∗ij =
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min(|pij|),∀pij ∈ Qij where |pij| returns the number of hops in the temporal path

pij. To bridge the gap we can then calculate temporal L∗ = 1
N(N−1)

∑
ij d
∗
ij, which

is the average shortest node to node hop that obeys time ordering of edges.

As we can see in the static results for Day 1, path length is low. Now looking at the

temporal aspects, we have calculated the same metrics but obeying time ordering,

duration and recurrence of contacts. The third column, Disc shows the ratio of

disconnected node pairs. In the case of static graphs, there were no disconnected

node pairs. As we can see temporal L∗ � static L and there are also much more

disconnected node pairs due to the observed asymmetry and time ordering of paths.

In other words, temporal L give us a better understanding of the network with

respect to the temporal dimension since they can provide us an accurate measure of

the delay of the information diffusion process that is not possible with traditional

static metrics. In particular, since static shortest paths ignore time-order of contacts,

it over-estimate the availability of contacts and therefore under-estimates the true

shortest path.

3.4.2.3 Measuring Dissemination Efficiency

We now calculate temporal L from Equation 3.4 as a real time along with the

temporal efficiency E. Each data set is measured individually by day, processed by

window size w = 5 minutes. The left hand side of Table 3.5 (“Temporal Metrics”)

shows the temporal metrics calculated for all three datasets. The right hand side of

the table (“Reshuffled”) will be discussed in the next section.

INFOCOM: First looking at the INFOCOM dataset, recall in Table 3.4 that static

L and temporal L∗ only told us the average number of hops in a path but gave us no

indication of how much time each hop took. Our temporal metrics give us a value

that takes account of time and also captures disconnected nodes. From Table 3.5 we

can see L for Day 1: if two people started gossiping at the start of the day, it would

take 19 hours to spread the information to all participants. We also see that it is

quicker to spread information in the second, third and final day of the conference at

about 10 hours. From Table 3.3 this makes sense since on the first day participants

did not start until 6pm (i.e., there is an initial delay equal to 18 hours).

What we see from the low values of Eglob and Eloc are that contacts between all

participants and contacts between acquaintances did not allow a high capacity to
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Temporal Metrics Reshuffled
IN

F
O

C
O

M
Day Eloc L Eglob Eloc L Eglob

1 0.033 19h 39m 0.003 0.077 5h 29m 0.100

2 0.110 9h 6m 0.024 0.194 2h 45m 0.239

3 0.077 10h 32m 0.018 0.114 4h 6m 0.167

4 0.052 9h 55m 0.013 0.104 3h 3m 0.165

R
E

A
L

IT
Y

08 Sep 0.000 23h 15m 0.000 0.003 21h 58m 0.010

15 Sep 0.000 22h 47m 0.001 0.007 19h 55m 0.024

22 Sep 0.000 22h 53m 0.001 0.007 20h 42m 0.019

29 Sep 0.001 22h 20m 0.001 0.009 17h 44m 0.037

06 Oct 0.000 22h 14m 0.001 0.011 16h 23m 0.041

13 Oct 0.000 21h 37m 0.004 0.013 14h 57m 0.055

20 Oct 0.001 21h 45m 0.003 0.007 17h 4m 0.031

27 Oct 0.002 22h 1m 0.001 0.013 15h 19m 0.050

03 Nov 0.001 21h 6m 0.004 0.012 16h 17m 0.043

10 Nov 0.000 20h 5m 0.004 0.015 14h 25m 0.061

E
M

A
IL

27Oct 3.1E−8 86397.94s 9.3E−7 7.7E−8 86396.91s 1.6E−6

28 Oct 4.0E−8 86399.78s 1.4E−7 4.1E−8 86399.71s 1.5E−7

29 Oct 3.9E−8 86399.03s 3.9E−7 7.2E−8 86398.59s 7.3E−7

30 Oct 5.8E−8 86398.76s 5.5E−7 6.9E−8 86398.48s 7.5E−7

31 Oct 4.7E−8 86398.92s 4.9E−7 6.5E−8 86398.64s 6.9E−7

01 Nov 5.8E−8 86399.03s 4.9E−7 6.6E−8 86398.85s 6.0E−7

02 Nov 4.3E−8 86398.68s 5.4E−7 6.5E−8 86398.67s 6.8E−7

Table 3.5: Temporal Metrics (h=1, tmin=00:00, tmax=23:59, w=5 min) compared

with shuffled temporal graph (runs=50).

spread information. Since temporal local efficiency Eloc measures how people you

meet interact amongst themselves we can drill in and examine on a local view, if the

interaction between such acquaintances are any better at spreading information. In

this case Eloc for each day is similar but slightly lower to Eglob: this tells us that

acquaintances do not congregate together very often.

REALITY: This data set has many more days and can provide a better overview

of day-to-day trends. We show 10 consecutive Wednesdays starting from the first
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day of the Fall ’04 semester (8th Sep to 9th Dec 2004)2. For the first day we can

see that it is slow for information to spread since L = 23 hours. Since both local

and global efficiency are at zero, participants infrequently interacted with eachother.

This makes sense since relationships are unlikely to have formed and so there are

less contacts. During the subsequent Wednesdays the information spreading process

is quicker and there is also a steady decrease in the average temporal path length.

However still compared to the conference environment, on a campus it takes twice

as long for information to spread.

EMAIL: The final dataset is the poorest for data diffusion as seen by the zero

value clustering and extremely low efficiency and high temporal path length, shown

in Table 3.5. Since there are close to 57,000 nodes we have to consider this when

examining these numbers as it contributes to the small normalised values. Classic

metrics used on this dataset provide an overestimate of local efficiency since they

assume that all links exist uniformly across time, when in fact in reality, e-mail

exchanges take place at specific points in time. What differs from low values seen

in REALITY is that now on some days Eloc is non-zero, albeit extremely small.

This suggests that email users do not stay in groups or, in other words, do not use

email as quick exchanges of messages to each other which makes sense since there

are delays between replies.

3.4.2.4 Importance of Time Dependencies

We now turn our attention to a more general type of time-order, namely the time

dependencies between windows of a temporal graph. As a null model, we compare

the real data sets Gt with their randomised counterpart where we have randomly

reshuffled the time windows GT ∈ Gt, destroying these temporal dependencies and

any inherent window time order. The right hand half of Table 3.5 show the metrics

calculated on reshuffled temporal graphs for all three datasets. As we can see in

all three traces, the shuffled network gives a quicker data diffusion time and higher

efficiency. The reason for this is down to the cyclic behaviour of human contacts.

Humans as a collective congregate during the working hours and are more sociable

during mid week. This means that there is a denser number of contacts at certain

times which limits the opportunity for transitive meetings between friends to certain

2http://web.mit.edu/registrar/www/calendar0405.html
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Figure 3.5: INFOCOM: Changes to average shortest temporal path length L when

varying window size w and horizon h.

times of the day and decreases the speed of data diffusion. Reshuffling leads to the

introduction of heterogeneity of contacts throughout a time period and introduces

more opportunity for contacts throughout the day. This demonstrates that time

dependencies are important in measuring the information dissemination efficiency

of real time-varying networks; since static graphs aggregates all this time information

there is no way to recover these temporal dependencies.

3.4.2.5 Varying Window Size and Horizon Parameters

We now return to the subject of window size w (number of windows W ) and horizon

h parameters. Figure 3.5 plots the average temporal shortest path length L for
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Figure 3.6: INFOCOM: Changes to average shortest temporal hops L∗ when varying

window size w and horizon h.

INFOCOM as we vary w from 2 minutes (τ=720) to 24 hours (τ=1 is equivalent

to a static aggregated graph) and vary h from 1 to N-1. L is most affected by the

window size, which is due to the granularity that that the average temporal path

length is calculated at, for example, with window size of 12 hours then all messages

will be treated as being delivered during this 12 hour window, however, with a finer

window size of 2 minutes then shorter delivery times will be taken into account.

We also note that the horizon is also affected by the window size; at both ends of

the spectrum of w (τ=720 and 1) L is not sensitive to a varying horizon, however,

with a mid-range window size then there is a linear decrease in L as h increases.

This effect is intuitive since a smaller horizon limits the reachability of a node in

the current window, delaying instead the path until a potentially later window.
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Figure 3.6 plots the average time respecting hop count L∗ for INFOCOM, again as we

vary w from 2 minutes (τ=720) to 24 hours and vary h from 1 to N-1. Extrapolating

from a static aggregated graph (τ=1, w=86400 seconds), as the number of windows

increases, we see an increase in the average time respecting hop count L∗; this

demonstrates that adding any extra time information will start to reveal the true

shortest path length, which respects time order.

Turning our attention to the horizon, as h increases L∗ also increases. At first this

seems counter-intuitive as one might expect a similar relationship between these two

variables seen for L in Figure 3.5, however, this can be explained with a reminder

that the average time respecting hop count L∗ does not give an indication of the

duration of time to deliver messages. When h is high, long transitive paths to all

nodes can indeed be formed in earlier windows, however this also means that L∗

will be high; on the other end of the spectrum, when h=1 then this will delay

delivery times since we cannot reach the destination in an early window, but this

delay also means that a node is more likely to meet the destination node in the

future within 1 hop and hence give a smaller L∗. Since L∗ does not capture the time

duration (as L does), this explains the counter-intuitive relationship between h and

L∗. Taking another perspective, this means that the difference between the static

average shortest path and temporal L∗ gives a lower bound to temporal analysis,

and increasing the horizon only serves to enhance the difference between static and

temporal analysis.

We conclude that the selection of an appropriate window size w plays an important

part in the accurate analysis of temporal graphs and with an appropriately fine

window size then the horizon h parameter plays a small part in the calculation of

the average temporal shortest path length. However, we also note that any increase

the number of windows τ from single windows (equivalent to an aggregated static

graph) improves the accuracy of temporal analysis and hence selecting a window size

close to the collection interval gives a very good approximation to the true temporal

path length. With this in mind, we return to our assumptions that the typical time

for a message to pass from a node to one of its neighbours is of the same order as

the typical time at which the graph changes and the rest of this thesis shall select

values of w which reflect the collection interval and set h=1.
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3.4.2.6 Discussion

We now return to the original question posed, namely does time really matter and, if

so, can we quantify this difference? We have demonstrated that time does matter in

two ways, firstly, since static analysis ignores time order of links then there is an over

estimation of available links and hence an underestimation of the true static shortest

path length; and secondly, temporal path length gives us an indication of the actual

time elapsed as opposed to hops which can be misleading, as seen in our analysis

of varying horizon and window size parameters. Key to quantifying this difference

has been the definition of temporal shortest hop length L∗ which has shown that a

4x underestimate exists in the best case scenario when the horizon h=1; also, the

definition of temporal shortest path length L quantifies the global characteristics of

a temporal network for information dissemination which aids in comparing different

types of networks. In the following study we shall take this analysis one step further

and find relationships between L and the speed at which a real network changes

over time.

3.4.3 Small-world Behaviour in Temporal Graphs

3.4.3.1 Introduction

We now investigate the relationship between communication efficiency and the speed

of temporal graph change. Intuition would suggest that a real network that changes

slowly would also be slow for information dissemination (and vice versa), since paths

between distant nodes are formed at a slower rate. We investigate this hypothesis

by utilising the average temporal path length L and temporal correlation coefficient

C. Low values of L (high values of E) indicate that the nodes of the graphs can

communicate efficiently. In the following, we will show that temporal graphs from

models and real-world systems can be, at the same time, temporally clustered and

still have small temporal distances between their nodes. In analogy with the small-

world analysis in static graphs [WS98, LM01], we will compare the actual values

of temporal C, L and E of a given time-varying graph G, with the corresponding

values calculated by considering an ensemble {Grand} of randomised versions of G.

Each sequence Grand is obtained by randomly reshuffling the graphs in G, i.e., by

destroying the time order (and correlations) in the original sequence G1, G2, . . . , GT .
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More precisely, we will show that some temporal graphs can have a value of C much

larger than the correlation coefficient of the reshuffled sequence Crand, and, at the

same time a value of L as small as Lrand. We will refer to this behaviour as small-

world behaviour in time-varying systems.

3.4.3.2 Random-walkers network model

To illustrate how this behaviour can be obtained in a network, we develop a simple

network model of moving agents where the speed of evolution can be interpolated

from slowly to quickly changing. We consider a system of N random walkers that

move in a two-dimensional square of linear size D with a fixed velocity v, and

additionally perform long-distance jumps to randomly chosen position of the square

with a jump probability pj [BFFL08]. For each fixed value of pj ∈ [0, 1], the temporal

network G is constructed by linking, every second, all nodes having a distance in

space smaller than a given value rc. In Figure 3.7 we plot C and L as a function of

pj. The values reported are normalised to the maximum values of C and L obtained

for pj = 0, and respectively equal to C(0) = 0.91 and L(0) = 442.8.

0.0001 0.001 0.01 0.1 1
pj

0

0.5

1

L(pj)/L(0)

C(pj)/C(0)

Figure 3.7: Characteristic temporal path length and temporal-correlation coefficient

of temporal graphs produced by the model of moving agents, as a function of the

probability pj of long-distance jumps. In the simulations we have set N = 100,

D = 100m, v = 1 m/s, rc = 5m and produced sequences of length T = 500.
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Confirming our hypothesis, we observe that when pj=0.0001 the temporal correla-

tion coefficient C(pj)/C(0) is at its peak i.e. the temporal graph is slowly changing,

and the average temporal path length L(pj)/P (0) is also at its peak i.e. very slow

for information dissemination. On the other end of the spectrum, when the graph is

quickly evolving (pj=1.0 and C 0), the network allows quick information dissemina-

tion (L 0). However, when slowly interpolating between these extremes we observe

that a small percentage of jumps are sufficient to create links between nodes oth-

erwise at large temporal distances and to produce a large drop in temporal L; this

indicates that slowly evolving networks still allow for relatively quick information

dissemination. When pj = 0.01, L has reduced to one fourth of L(0), and when

pj = 0.1, L has about the same value as for the reshuffled sequence. The value of

Lrand obtained over Grand (1000 realisations) is reported as a dashed line.

The relationship between the characteristic temporal path length and temporal cor-

relation coefficient (Figure 3.7) draws parallels to the original relationship between

the static characteristic shortest path length and static clustering coefficient pre-

sented by Watts & Strogatz (see Figure 2.1(a)). While L(pj) is rapidly decreasing,

C(pj) is constant up to large values of pj ∼ 0.1, so that for intermediate values of

pj we have temporal graphs exhibiting small-world behaviour.

3.4.3.3 Empirical Networks

Brain cortical networks

We now explore real-world time-varying complex networks. We first consider time-

varying functional cortical networks extracted from a set of high-resolution EEG

recordings in a group of 5 normal subjects performing a task consisting in a foot

movement [FLA+08]. For each subject and for each of four frequency bands

(α, β, γ, θ), we considered a time period of 0.5 sec corresponding to the final phase

of execution of the foot movement. Each temporal graph has N = 16 nodes, rep-

resenting cortical regions of interest and consists in a time sequence of τ = 100

directed unweighted graphs, where the directed links represent causal influences be-

tween cortical regions (see the original study for details [FLA+08]). The original

dataset was collected with a 200hz sampling frequency and hence this provides an

appropriately fine granularity for the window size of w=5 milliseconds.
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C Crand L Lrand E Erand

α 0.44 0.18 (0.03) 3.9 (100%) 4.2 (98%) 0.50 0.48

β 0.40 0.17 (0.002) 6.0 (94%) 3.6 (92%) 0.41 0.45

γ 0.48 0.13 (0.003) 12.2 (86%) 8.7 (89%) 0.39 0.37

δ 0.44 0.17 (0.003) 2.2 (100%) 2.4 (92%) 0.57 0.56

d1 0.80 0.44 (0.01) 8.84 (61%) 6.00 (65%) 0.192 0.209

d2 0.78 0.35 (0.01) 5.04 (87%) 4.01 (88%) 0.293 0.298

d3 0.81 0.38 (0.01) 9.06 (57%) 6.76 (59%) 0.134 0.141

d4 0.83 0.39 (0.01) 21.42 (15%) 15.55(22%) 0.019 0.028

Mar 0.044 0.007 (0.0002) 456 451 0.000183 0.000210

Jun 0.046 0.006 (0.0002) 380 361 0.000047 0.000057

Sep 0.046 0.006 (0.0002) 414 415 0.000058 0.000074

Dec 0.049 0.006 (0.0002) 403 395 0.000047 0.000059

Table 3.6: Temporal-correlation, characteristic temporal path length and efficiency

for brain cortical networks (subject 1, and four band frequencies) [FLA+08], for

the social interaction networks of INFOCOM’06 (time periods between 1pm and

2:30pm, four different days), and for messages over Facebook online social network

(three different months of year 2007) [WBS+09]. Results are compared with those

obtained for 1000 randomised (shuffled) sequences of the same length. The values

in parenthesis next to Crand are the respective standard deviations. The values

in parenthesis next to L and Lrand are the percentage of pairs of nodes that are

temporally connected and not considered in the averages.

We have computed the values of temporal C, L and E for each real sequence and

for the reshuffled temporal network. In Table 3.6 we report the results for one

of the subjects. For all the considered bands, the real sequence exhibits small-

world properties, having a large value of C (significantly larger than Crand) and,

at the same time, a small characteristic temporal path length (a high efficiency),

comparable to that observed in the shuffled sequence. Similar results (not reported)

were obtained for the other four subjects.

Social interaction networks

The second real case study of our analysis is a time-varying social network based on

a dataset of contacts among participants of INFOCOM’06, a major data communi-

cation conference which took place in a hotel. The contacts were collected by means

of Bluetooth-enabled devices able to record interactions among people that are in

proximity [SGC+09]. The Bluetooth scanning rate was set to 2 minutes and this
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is use as an appropriately fine window size w in the temporal graph. In Table 3.6

we report the data for the interactions during lunchtime between 1pm and 2:30pm.

This is the interval with the larger number of contacts during a day. Each sequence

is made of T = 45 undirected unweighted graphs with N = 78 nodes each. The av-

erage path length and the efficiency are similar for the original and reshuffled traces

(the number in parenthesis close to L and Lrand are the percentage of pair of nodes

being temporally connected and hence considered in the computation of the average

path length), whereas C is more than double that of Crand. This can be considered

as an indication of small-world behaviour in these traces according to our definition

(Section 3.4.3.1).

Online social networks

The third system we study is based on interactions over an online social network.

The original dataset contains the messages sent among 6 millions users in the Lon-

don network of Facebook over one year (March 2007 to February 2008) [WBS+09].

We have divided the contacts according to the months of the year and, for each

month, we have filtered out all contacts between pairs of nodes which exchange less

than 10 messages per month. This allows us to consider only the subset of most

active users, obtaining networks with about N = 100, 000 users per month. For this

dataset, there is no clear granularity for the window size w, however, as we are inter-

ested in the relative difference between the temporal graph to its randomly shuffled

counterpart we select a window size w =1 hour which appropriately captures the

time scale of social interactions between friends. For each month, the time varying

graph is composed by τ = 720 (for 30 days) or τ = 744 (for 31 days) directed graphs,

one for each hour of the month. As shown in Table 3.6 for four different months

of the dataset, the average temporal path length of the temporal graph is close to

the value obtained for the reshuffled sequences. However, the network under study

is disconnected in several different components, and only an extremely small per-

centage (about 10−6) of the node couples are temporally connected. Consequently,

the characteristic temporal path length was evaluated as an average over a small

number of node couples. A better characterisation of the system can be obtained by

means of the temporal efficiency. The values of E and Erand measured for Facebook

are in general smaller than those observed in the other two networks, this being
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due to the high disconnectedness of Facebook. Nevertheless, as for the case of the

cortical networks and of INFOCOM’06, the real Facebook is almost as efficient as

its reshuffled version. Finally, also for Facebook we observe a temporal small-world

behaviour: while the length of the temporal paths of the temporal graph are not

affected by the reshuffling procedure, the temporal correlation coefficient C is about

one order of magnitude larger than in the reshuffled version Crand.

3.4.3.4 Varying the Horizon Parameter

We have selected window size values w in line with the finest granularity available

from the data source in the cortical and INFOCOM’06 networks; and selected a

window size of an hour for our study of the FACEBOOK interactions. We now

investigate the effect of varying the horizon parameter on these results.

We produce a temporal graph from real data by considering a system at its maximum

resolution sampling time. This fixes the typical time τg at which the graphs in the

sequence are changing. In our study, we have implicitly assumed that the typical

time, τm, for information exchange from a node to one of its first neighbours, is

of the same order as τg (this means setting the horizon h=1). However, the case

τm < τg can be simulated by increasing the horizon parameter, h (in order to have

message propagation we have to assume that the time-varying graph changes slower

than a message can propagate from a node to its neighbours, hence we discard the

case τm > τg). Clearly as we increase the horizon, the temporal path length, L, will

drop (or the Efficiency will increase) since a message can reach more nodes earlier.

Note that firstly, this drop (increase) is proportional in both the original sequence

and shuffled cases and that temporal correlation coefficient is not affected by h.

Starting with the random walker model, in Figure 3.8 we plot the values of L(pj)/L(0)

for h = {1, 2, 3, 10, 25, 50,∞} where infinity is N-1. Since the h = 1 curve provides

the upper bound this confirms that using a horizon of one gives the worst case sce-

nario and increasing h makes the L curve in Fig 2. drop quicker, and increases the

difference between the L and C curves.

Concerning the real networks, we first report in Table 3.9 the values of L and Lrand

as we increase the horizon h for the Gamma EEG band of the cortical network. As

we can see, when h increases, both L and Lrand drop proportionally, levelling off

when h ≥ 4.
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Figure 3.8: Varying the horizon h parameter on random jumper model in Figure

3.7.

Horizon 1 2 3 4 5 10 15

L 12.188 11.372 11.024 10.976 10.976 10.976 10.976

Lrand 08.807 07.953 07.699 07.611 07.596 07.594 07.594

Figure 3.9: L and Lrand calculated with different horizon values on cortical networks

(gamma band).

To show the same effect for all cortical bands and the INFOCOM’06 networks,

Figure 3.10 plots the ratio L/Lrand as we increase the horizon. For both datasets as

we increase h, the ratio of L over Lrand always falls within the interval [1,2], which

indicates that that L and Lrand remain similar.

We can conclude that the small-world property of C � Crand and at the same

time a value of L ∼ Lrand still hold irrespective of the horizon parameter and that

using h = 1 again gives us an upper bound (worst case scenario) to the the average

temporal shortest path length L.

3.4.3.5 Discussion

In conclusion, our results suggest that time-varying networks, strongly clustered in

time and, at the same time, with short temporal paths between their nodes, might
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Figure 3.10: Varying the horizon h parameter on Cortical and INFOCOM’06 net-

works.

be widespread in biological, social and man-made systems, often with important

dynamical consequences.

Another interpretation of the jumpers introduced in the random model is analogous

to the concept of “shortcuts” introduced in the original Watts & Strogatz paper,

where random rewirings of the lattice model created such long distance shortcuts.

In the same way the jumpers in our temporal model capture the fact that people

in social networks might have temporal shortcuts; speeding up the rate of mixing

between and meeting of distant nodes.

3.5 Conclusions

In this chapter we have introduced the foundational temporal graph model and tem-

poral distance metrics and applied them to two case studies on several empirically

collected networks datasets. Firstly, we found real differences between static and

temporal analysis of shortest paths in that since static graphs ignore time order,

static shortest path lengths overestimates the available links and therefore underes-

timates the true shortest path length. Secondly, contrary to intuition, we found that

even slowly evolving networks can exhibit properties that allow for fast information

dissemination between nodes in temporal networks.
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In these two studies, we also examined the part that window size w and horizon h

parameters play in the analysis of temporal shortest path lengths L. We have found

that the window granularity has the most effect on L, however, with any additional

temporal information gives more accurate temporal analysis. We also found that

with a fine grained window size, then the horizon plays little part in effecting L;

this corroborates our initial assumptions that the typical time for a information

to pass from a node to one of its neighbours is of the same order as the typical

time at which the graph changes (i.e. h=1). In addition, when the window size

does effect the horizon, we find that setting h=1 gives us the worst-case scenario

when comparing to static graphs; this was observed in both studies over a synthetic

model and across several different real networks. Since the metrics derived in the

proceeding thesis are derived from temporal shortest paths we shall continue this

worst case analysis and assume that the typical time for a message to pass from

a node to one of its neighbours is of the same order as the typical time at which

the graph changes, by implicitly setting h=1. In the next chapter, we shall see

that these guidelines on window size and horizon are appropriate for the simulation

of message spreading through contact-by-contact replay in mobile phone proximity

networks (Section 4.2.2).

Following from these insights on the importance of time order in the calculation of

shortest paths, the next chapter explores measures of important nodes for informa-

tion dissemination, which are based on shortest temporal paths.



4
Temporal Centrality Measures

Introduction

Identifying important nodes in a network has become an essential part of analysing

and understanding networked systems with application to a wide range of fields in-

cluding finding the best person to target in a viral marketing campaign [KKT03,

WF94], locating key neurons in cortical networks [BS09], protecting important

species in ecological systems [JOBL08], finding bottlenecks in traffic networks [Hol03]

and even in the hunt for an Iraqi dictator [Wil10].

The position of a node with respect to other nodes can be classified and exploited:

one could argue that people with the most friends are popular and hence important;

a node with high geodesic locality to other nodes could spread information quickly

to high numbers of nodes; and a person who lies between the most paths of commu-

nication could act as a mediator among groups of people. These concepts are more

commonly known as degree, closeness and betweenness centrality [WF94, BLM+06].

80
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In particular, the calculation of closeness and betweenness centrality (defined in

Section 2.2.3) on static graphs are based on shortest paths, however, as we have

shown in the previous chapter, static shortest paths miss the vital time order of

links which result in the underestimation of the true shortest path. With this in

mind, the key contribution of this chapter is the introduction of temporal centrality

metrics for the identification of key nodes in temporal graphs based on temporal

shortest paths. Naturally, both these temporal extensions are associated to the

identification of central nodes in the network with application to dynamic processes

over a real network. In particular, temporal closeness quantifies how fast a user can

disseminate a piece of information. Therefore, applications of this metric include

viral marketing and the study of rumour spreading. On the other hand, temporal

betweenness distinguishes individuals who act as key mediators between the most

communication paths over time.

Chapter Outline

In the next section, we present the definitions of temporal closeness and betweenness

derived intuitively from their static counterparts.

Evaluating the correctness or accuracy of a given centrality ranking is non-trivial

since it is dependent on the intended application. However, through two case stud-

ies, we compare our temporal centrality formulations to their static counterparts

and demonstrate the effectiveness of these temporal centrality rankings under their

intended application.

Firstly, from a semantic perspective we discuss the node rankings given by temporal

centrality and static centrality within the context of the three years leading up to a

corporate bankruptcy, namely the Enron email dataset (Section 4.2.1). This dataset

possesses the known corporate roles of each user and hence provides us useful insight

into the actual roles that high centrality nodes played within the organisation during

this period.

Secondly, from a dynamic communication process perspective, we evaluate the speed

of information dissemination and mediation using high-ranking closeness and be-

tweenness nodes, respectively. Effective information dissemination is measured by

the time taken to deliver information to all other nodes starting from high ranked
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temporal closeness nodes. Effective mediation is measured in a converse scenario

of immunising the network against the spread of some contagion, through removal

of high temporal betweenness nodes from the network and measuring the reduction

in information dissemination speed between remaining nodes. Continuing with the

Enron email dataset we demonstrate that the nodes selected by temporal central-

ity provides faster information dissemination and more effective protection against

attack, when compared to static centrality (Section 4.2.1.3). Taking this one step

further, we design two possible short-range mobile worm defence schemes and eval-

uate using proximity based mobile phone networks (Section 4.2.2).

4.1 Temporal Centrality

4.1.1 Temporal Betweenness Centrality

Betweenness is commonly used to discover nodes that are critical for mediating

information flow. Such nodes represent individuals who negotiate between the dif-

ferent groups of parties; people in organisations who fall into middle management

and balance reporting to senior management and also command a large workforce;

and routers in the Internet which facilitate information flow between ASes. If such

nodes provide an important mediatory role in a network then it stands that the

complement would also hold; how does the removal of such nodes disrupt the overall

efficiency for information dissemination across the network?

As described previously (Section 2.2.3.3), to identify these mediating nodes, the

static betweenness centrality of a node i is defined as the proportion of shortest

paths between all pairs of nodes that pass through i. This proportion is important

in that it gives a higher weight to nodes which facilitate paths where there are no

alternatives. To capture the notion of temporal betweenness it is important to take

into account not only the proportion of shortest paths which pass through a node,

but also the length of time for which a node along the shortest path retains a piece

of information before forwarding it to the next node. For example, consider the

2-hop shortest temporal path from node A to D, (A,B,D). In terms of time, this

path could be represented as (A,B,B,B,D) since a piece of information resides on

node B for 3 time windows, and so we want to assign a higher value as removing
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this node will have a greater impact in disrupting the network. From this, for a

given time window T we define the temporal betweenness centrality of node i as:

Bi(T ) =
1

(N − 1)(N − 2)

∑
j∈V
j 6=i

∑
k∈V
k 6=i
k 6=j

U(i, T, j, k)

|σj,k(i)|
, (4.1)

where the function U returns the number of shortest temporal paths pjk ∈ §jk from

j to k where there is an edge from a node n ∈ pjk to node i ∈ pjk at time window T

or the edge from node i to the next hop is at a future time window; and σj,k(i) ⊆ Sjk

is the set of shortest temporal paths from node j to k which pass through node i,

defined when σj,k(i) 6= ∅. In the case when σj,k(i) = ∅, i.e., node i is totally isolated,

we set its betweenness to zero. Finally, the average temporal betweenness value

across all time windows for each node i is:

Bi =
1

τ

τ−1∑
t=0

Bi(t), (4.2)

where τ is the number of time windows in the temporal graph.

4.1.2 Temporal Closeness Centrality

Two nodes of a static graph are said to be close to each other if their geodesic

distance is small. In a static graph, an estimation of the global closeness of a

node i is obtained as the average static shortest path length to all other nodes in

the graph [WF94]. Similarly, we can extend the definition of closeness to temporal

graphs using the temporal shortest path length between nodes, which is a measure of

how fast a source node can deliver a message to all the other nodes of the network.

Given the shortest temporal distance dij(tmin, tmax), temporal closeness centrality

can then be expressed as:

Ci(tmin, tmax) = 1−

(
1

τ(N − 1)

∑
j 6=i∈V

dij(tmin, tmax)

)
(4.3)

so that nodes having, on average, shorter temporal distances to the other nodes are

considered more central. Note that the subtraction from one is only required for a

descending ranking.
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4.1.3 Runtime Complexity

Calculating temporal closeness is equivalent to calculating the single source temporal

shortest path length from a node i to all other nodes in the networks O(τ.(|V |+|E|))
(Section 3.2.3.3), where τ is the number of time windows, and summing which

takes linear time |V | − 1, hence the asymptotic time complexity is O(τ.(|V |+ |E|)).
Temporal betweenness requires first to calculate temporal shortest paths for all pairs

of nodes i, j (N.O(2τ |V |, Section 3.2.3.3) before an individual node k’s betweenness

counter can be incremented based on the proportion of shortest temporal paths

between all pairs of nodes i, j which pass through k. Incrementing betweenness takes

O(N2) since we need to iterate over all pairs of node. Therefore, the asymptotic

complexity is dominated by the calculation of all pairs temporal shortest paths and

hence the complexity is O(2τ |V |). In practise, we find that the computational time is

much better than this upper bound suggests1, though future work could investigate

an optimised algorithm, for example, based on Brandes [Bra01] algorithm for static

betweenness centrality calculation where counting shortest paths is more efficient

(polynomial time complexity) than enumerating all shortest paths.

4.2 Application to Real Networks

4.2.1 Corporate Email Dataset

4.2.1.1 Introduction

The Enron Energy Corporation started as a traditional gas and electrical utility

supplier; however, in the late 1990s their main money making business came from

trading energy on the global stock markets [EM04]. In December 2001, the Enron

Energy Corporation filed for bankruptcy after it was uncovered that fraudulent ac-

counting tricks were used to hide billions of dollars in debt [Fed08]. This led to the

eventual conviction of several current and former Enron executives [Cal04, Joh04].

The investigation also brought to light the reliance of the company on traders to

1Especially as our implementation of the calculation of shortest temporal paths is parallelised

between all pairs of nodes.
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bring in profits using aggressive tactics culminating in intentional blackouts in Cal-

ifornia in Summer 2001. With both control over electricity plants and the ability to

sell electricity over the energy markets, Enron trader’s artificially raised the price

of electricity by shutting down power plants serving the State of California and

profiting by selling electricity back at a premium [Rob04].

During the investigation into the Enron accounting scandal, telephone calls, docu-

ments and emails were subpoenaed by the U.S. government and as such the email

records of 151 user mailboxes were part of the public record consisting of approx-

imately 250,000 emails sent and received during the period between May 1999 to

June 2002 (1137 days), leading up to the bankruptcy filing. None of the emails were

anonymised and so they provide unique semantic information of the owner of each

mailbox.

In this section, we take advantage of this semantic information in the analysis of

important nodes for information spreading and mediation in the context of this

company.

4.2.1.2 Temporal Graph Construction

There are a number of versions of the Enron email dataset in various formats23;

we use the dataset prepared by Shetty & Adibi [SA05] since it is in a convenient

SQL format and the authors have some partial information of the corporate roles of

each user. In addition, we manually find background information of unknown users

using professional OSN, such as LinkedIn4 along with results of search engines.

Since we do not have a complete picture of the interactions of users outside of the

subpoenaed mailboxes we concentrate on email exchanges between the core 151

users only. Taking this email dataset, we process the complete temporal graph over

a three-year period from 1999 to 2002. There is no clear window size but considering

the temporal time scale of the dataset and the context, we choose to investigate the

dataset on the granularity of a business day and hence w=24 hours. If an email

was exchanged between two individuals in a temporal window, an undirected link

2http://www.cs.cmu.edu/~enron
3http://http://enrondata.org/content/research
4http://www.linkedin.com

http://www.cs.cmu.edu/~enron
http://http://enrondata.org/content/research
http://www.linkedin.com
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Figure 4.1: Ranked distribution of top 50 centrality nodes. Rows: static (S) &

temporal (T) centrality. Columns: Closeness (C), Betweenness (B) & Degree (D).

Top 5 node ID’s listed under each plot. TC values: shown as windows (days).

between the two nodes representing those individuals will be added to the graph

representing the temporal snapshot for that business day.

4.2.1.3 Semantic Value of Temporal Centrality

Figure 4.1 plots the static and temporal centrality rankings of employees calculated

using closeness and betweenness. Examining the static centralities (left column)

we note that there is little difference between the top five employees using static

closeness or betweenness. Also plotting the static degree centrality of each node,

we notice similar rankings suggesting that static analysis favours employees who

interacted with the most number of other people. Temporal closeness and temporal

betweenness yield different rankings amongst the top five and the calculated Kendall-

tau correlation coefficient[Ken38] (Table 4.2) confirm that static-to-static metrics

are strongly correlated (' 0.7). Also, note that there is low correlation (< 0.4)

between temporal metrics and static degree demonstrating that temporal analysis

is not dependent on the number of people with which individuals interact.
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ID Name Role Notes

9 Stephanie Panus (Unknown)

13 Marie Heard Legal Senior Legal Specialist

17 Mike Grigsby Manager

48 Tana Jones Executive

53 John Lavorato Trader

54 Greg Whalley President Former Head of Trading

67 Sara Shackleton Vice President Enron Wholesale Services

73 Jeff Dasovich Trader

75 Gerald Nemec Director of Trading

107 Louise Kitchen Trader Head of Online Trading

122 Sally Beck Managing Director

127 Kenneth Lay Chairman & CEO

139 Mary Hain Director

147 Carol Clair Trader

150 Liz Taylor Secretary Assistant to Greg Whalley

Table 4.1: Roles of top centrality nodes.

Cross referencing the top two employee identifiers with their position within the

organisation (Table 4.1) we identify a secretary (150) and managing director (122)

as central nodes for both static closeness and betweenness; however, both temporal

closeness and betweenness consistently selected employees in trading roles (053, 075,

107, 147). A secretary and a managing director are certainly important for infor-

mation dissemination and central to many communication channels, as detected by

static measures. However, instead the top trading executives are exclusively favoured

by temporal analysis. Moreover, cross-referencing with media reports [CNN02], we

find a correlation between the top two bonuses received and the two employees iden-

tified by temporal betweenness. To show that temporal analysis does not simply

uncover nodes with the most interactions with other people, we also plot the tem-

poral degree (TD) calculated as the total number of emails sent and received by

each node i. Since there is a low correlation (< 0.4) with temporal closeness and

betweenness this shows that temporal analysis is not dependent on the number of

emails sent and received by each individual.
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SB SC SD TB TC TD

SB 1.00 0.57 0.69 0.41 0.24 0.43

SC - 1.00 0.70 0.36 0.22 0.31

SD - - 1.00 0.39 0.28 0.48

TB - - - 1.00 0.43 0.34

TC - - - - 1.00 0.40

TD - - - - - 1.00

Table 4.2: Kendall-tau correlation coefficients between centralities.
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Figure 4.2: Dissemination Process: Dissemination ratio starting from top 2 (left)

and top 10 (right) closeness source nodes. Area under curve reported in legend for

temporal (t) and static (s) centrality.

4.2.1.4 Effectiveness of Central Nodes on Dynamic Processes

Trace-driven Simulation Setup

To evaluate the role and the centrality of the employee’s identified by temporal and

static analysis, we consider two dynamic processes. First, we simulate a simple

information dissemination process over the temporal graph constructed from the

Enron traces. The process is simulated as follows. We select the top N nodes from

the ranking based on temporal closeness centrality. We place an identical message

m into their (infinite) buffers. We refer to any node that has received a copy of this

message as reached. We then replay the contact trace through time and as reached

nodes make contact with an unreached node u, the message is replicated into the
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Figure 4.3: Mediation Process: Dissemination ratio after removing top 2 (left) and

top 10 (right) betweenness nodes. Area under curve reported in legend for temporal

(t), static (s) and baseline (b) where no nodes are removed.

buffer of node u. We assume that messages are transferred instantaneously and only

the first neighbour in a time window can be reached. We then repeat this for static

closeness centrality and plot the dissemination ratio across time for both.

Second, to model the role of individuals as part of an information mediation process,

we borrow concepts from the more commonly known epidemic immunisation process

where the dissemination ratio of a contagion spreading throughout a static network

is measured before and after certain nodes are immunised against the contagion

[BBV08]. This is analogous to measuring the spread of information (the contagion)

before and after important individuals are removed from the network (such as going

on holiday or being discharged) since our conjecture is that removing mediators will

affect the network communication efficiency greatly.

In the trace-driven simulation, instead of a single message spreading within the or-

ganisation, we seed all employees with a different message that needs to be delivered

to all other employees. This models multiple channels of communication. In order

to derive a baseline performance, we start by calculating the dissemination ratio

when no nodes are removed. We then remove the top N individuals identified by

temporal betweenness and rerun the information spreading process. Nodes that are

removed cannot receive or pass on messages. We then repeat the same process for

comparison using static betweenness centrality for the ranking.
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Evaluating Information Dissemination & Mediation

We present plots using N = {2, 10} for information dissemination (Figure 4.2) and

information mediation (Figure 4.3). As we can see the different pairs of traders

identified by temporal analysis are better than the arbitrary nodes selected by static

analysis for both disseminating information through the organisation and acting as

mediators between communication channels. In the information dissemination case,

although the final dissemination is the same across the long period of time, the two

traders selected by temporal analysis disseminate information quicker. Only after

increasing to 10 nodes, the static analysis presents similar results. In the infor-

mation mediation case, the final dissemination ratios for both temporal and static

centrality nodes slightly decreases by removing the nodes but are comparable. How-

ever, removing the two traders gives an overall more prolonged drop in information

dissemination. In the case of the removal of 10 nodes, the individual’s identified by

means of the temporal metrics slow the dissemination process further compared to

static ones.

4.2.1.5 Insights into Temporal Dynamics

To gain some insight into the interactions of individuals over time selected by tem-

poral and static analysis, Figure 4.4 plots the number of emails sent and received

over time, again by the top [Kos09] two centrality nodes. Moreover, we recall,

from Section 4.2.1.4, that there is a strong correlation between static closeness and

betweenness with degree. Such strong correlation between static closeness and be-

tweenness with degree has been well documented in [New05, Bar04].

By comparing the contact distribution between static analysis (top row) and tem-

poral analysis (bottom row), we observe that the trader’s identified as important

individuals by temporal analysis have sent and received more emails earlier in time,

compared with the nodes identified by static analysis that interact with the highest

number of different people. This fits the intuition that earlier interactions are key

to faster dissemination and hence temporal metrics are more accurate at identifying

key individuals. This also confirms our arguments that static analysis ignores time

information such as duration, frequency, time ordering and, at the simplest level,

earlier interactions.
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Figure 4.4: Distribution of total emails sent & received over time by top 2 centrality

nodes. Bin size=50 days. From top-left: Static Closeness (SC), Temporal Closeness

(TC), Static Betweenness (SB), Temporal Betweenness (TB).

4.2.1.6 Discussion

We have applied temporal centrality to a real network with semantic information

of each users corporate role. From this, temporal centrality has identified nodes

which have more intuitive connection to the context of the corporate before their

bankruptcy filing. We also studied basic dynamic information spreading and me-

diation processes using these key nodes. Firstly, closeness centrality nodes should

spread information quickly and to the most number of nodes, however, we observed

that static closeness centrality is highly correlated with nodes with high degree and

identifies nodes form paths which occur at later in time; compared to temporal close-

ness centrality which selects nodes which are uncorrelated with degree and send and

receive more emails earlier in time. Secondly, temporal betweenness identifies nodes

which mediate the most information flows as demonstrated by their removal from

the network.

In the next section, we shall investigate how the features of temporal closeness and

betweenness can help in the application to short-range mobile malware containment.



92 4.2. APPLICATION TO REAL NETWORKS

4.2.2 Short Range Mobile Malware Containment

4.2.2.1 Introduction

Smartphones are not only ubiquitous, but also an essential part of life for many

people who carry such devices through their daily routine. It comes as no surprise

then, that recent studies have shown the mobility of such devices mimic that of

their owners’ schedule [EP06, WGHB09]. This fact constitutes an opportunity for

devising efficient protocols and applications, but it also represents an increasing

security risk: as with biological viruses that can spread from person to person,

mobile phone viruses can also leverage the same social contact patterns to propagate

via short-range wireless radio such as Bluetooth and WiFi. For example, when

security researchers downloaded Cabir [cab04] – a proof-of-concept mobile worm –

for analysis, they discovered the full risk as it broke loose, replicating from the test

device to external mobile phones [Hyp06]. This prompted the need for specially

radio shielded rooms to securely test such malicious code [Hyp05].

Until recently though, mobile malware has been developed only for proof-of-concept

experiments with very limited and non-malicious effects on users [Str08, Sch09].

However, the immense popularity and improvements in smartphone technology have

attracted the attention of a growing number of attackers. In particular, increasing

economic incentives have been the motivation of more recent exploits, for exam-

ple stealing private data such as phone contacts [Liu06]; transferring call credit

to other accounts [Lab09]; and traditional exploits such as premium rate number

dialling [ter10].

Unlike desktop computers, mobile malware can spread through both short-range

radio (i.e., Bluetooth and WiFi) and long-range communication (i.e., SMS, MMS

and email) [Lea05]. Long-range malicious traffic can potentially be contained by

the network operator by scanning every message against a database of known mal-

ware [RCSS07], however, short-range propagation might fall under the radar of

centralised service providers: effective schemes to defend against short-range mobile

malware spreading are necessary.

There are several reasons why naively sending security patches directly to every

device is not efficient in cellular environments. Firstly, the cost in mobile data

service plans is not widely in favour of the end user, hence users may resist to
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update patches via 2G/3G networks if they do not subscribe to unlimited wireless

data access plans; secondly, many mobile devices, such as tablets, do not have 2G/3G

radios and hence rely on Bluetooth or WiFi to receive data; finally, service coverage

is not guaranteed in certain areas (e.g., rural or underground metro systems). In

scenarios where we may not be able to solely rely on the mobile network operator

to deliver the patch to every device simultaneously, we study two alternative and

complementary methods for patch distribution based on both social and temporal

information, namely temporal centrality measures.

Being highly correlated with human contacts, understanding how such malware

propagates requires an accurate analysis of the underlying time-varying network of

contacts amongst individuals. State-of-the-art solutions on mobile malware con-

tainment have ignored two important temporal properties: firstly, the time order,

frequency and duration of contacts; and secondly, the time of day a malicious mes-

sage starts to spread and the delay of a patch [ZCZ+09, ZVL+09]. Instead, we argue

that the temporal dimension is of key importance in devising effective solutions to

this problem.

With this in mind, the focus of this study is to investigate the effectiveness of two

containment strategies based on targetting key nodes, taking into account these tem-

poral characteristics. We firstly investigate a traditional strategy, inspired by studies

on error and attack tolerance of networks [AJB00], exploiting a static and a time-

aware enhanced version of betweenness centrality which provide the best measure of

nodes that mediate or bridge the most communication flows (as defined in Section

4.1.1). According to this strategy, the nodes that act as mediators are patched to

block the path of a malicious message. However, due to temporal clustering and al-

ternative temporal paths such strategies merely slow the malware and does not stop

it; this was also observed in the previous study of mediators in the corporate email

dataset (Section 4.2.1.6). In other words, a scheme based solely on immunisation

of key nodes is not sufficient, instead quick spreading of the patch is necessary for

most networks. We propose a solution based on opportunistic spreading of patches

through Bluetooth, i.e., exploiting the same mechanism used by the malware itself.

The key issue in this approach is to select the right nodes as starting points of the

patching process. Temporal betweenness only provides a quantitative measure of

the number of communication paths over time that go through a certain node and it

proves to be sub-optimal metric for this. A metric capable of identifying nodes that
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Figure 4.5: (a) Example Temporal Graph. (b) Two temporal paths from node A to

node F . (c) Temporal minimum spanning tree with source node A showing shortest

temporal paths to all other nodes.

can reach a large quantity of other nodes quickly is temporal closeness centrality

(Section 4.1.2) which ranks nodes by the speed at which they can disseminate a

message to all other nodes in the network. We show that this strategy can reduce

the cellular network resource consumption and associated costs, achieving at the

same time a complete containment of the malware in a limited amount of time.

4.2.2.2 Exploiting Temporal Centrality for Malware Containment

Let us consider a simple scenario where a person receives a malicious message on their

device in the early hours of the morning and the malicious program replicates itself to

any devices it meets during the day, for example at work and while socialising in the

evening. A simple strategy consists of immunising only the nodes that mediate the

most communication flows. Betweenness centrality (Section 4.1.1) can potentially

help identify such nodes, however, we will show that this strategy is ineffective

either through using a static or temporal metrics to find these path mediators. The

intuition behind this is given through the example in Figure 4.5(a). Consider the
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shortest temporal paths from node A to node F , namely (A,C,E, F ) and a longer

(both in terms of hops and time of delivery) temporal path (A,B,D,E, F ), also

illustrated in Figure 4.5(b). If we consider the simple case of patching a single node

in an attempt to block the malware from spreading, the best choice would be node

C, as the one on most temporal paths, however notice that node B provides an

alternative path to F albeit a longer path.

Our second strategy relies on the ability to opportunistically spread a patch message

quickly throughout the network; we utilise closeness centrality (Section 4.1.2), which

is able to capture this property.

Exploiting Temporal Betweenness Centrality to Block the Paths of Mo-

bile Malware

By definition, temporal betweenness centrality finds nodes that mediate between

the most communication channels and, hence, their removal will have the greatest

impact on the network overall communication efficiency. It follows that the first

containment scheme can utilise this information to send a patch to these mediating

devices, blocking a malicious message from using paths, which pass through these

devices. As already mentioned, we will show in Section 4.2.2.5 that such a scheme

is not effective due to many alternative paths which exist in real human contact

traces. The presence of these alternative paths is due to social clusters during the

day that requires a high number of nodes to be patched in order to stop and contain

the malware.

Exploiting Temporal Closeness Centrality to Spread a Competitive Patch

An alternative scheme can be based on the selection of the best devices to start

opportunistically spreading a patch message; the intuition is that a patch message,

if started at the right device(s), can propagate faster than the malicious message.

Closeness centrality fits this specification since it ranks nodes by their ability to

spread a message quickly to the most nodes. Intuitively, this can be thought of as

a temporal minimum spanning tree (see Figure 4.5(c)). We will show in Section

4.2.2.6 that such a scheme is indeed effective.
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CAMBRIDGE INFOCOM MIT

Environment Office Conference Campus

N 18 78 100

Start Date 3 Feb ’10 23 Apr ’06 26 Jul ’04

Duration 10 Days 5 days 280 days

Avg. contacts per day 1927 25796 231

Scanning Rate 30 sec 2 min 5 min

Table 4.3: Experimental Datasets

4.2.2.3 Evaluation Setup

We evaluate the design space of a time-aware containment scheme through a trace-

driven simulation using as input the three datasets summarised in Table 4.3. We

will examine the effects of four key factors: the starting time of the malware spread-

ing process tm and of the corresponding patching time tp, the initial number of

the infected nodes Nm and the initial number of patched nodes Np. The top Np

devices are chosen according to the calculated temporal betweenness or temporal

closeness centrality ranking from the temporal graph Gw(tp, tmax), where w is set

to the finest window granularity, corresponding to the scanning rate of the devices

in each dataset (e.g., 30 second windows for CAMBRIDGE). The Nm nodes that

are initially infected with malicious messages are chosen uniformly randomly. The

results are obtained by averaging over 100 runs for each Np. The static centralities

from the static aggregated graph over the time interval [tp, tmax] are also calculated

for comparison.

Our evaluation is based on the following assumptions: firstly, when a node receives

a patch message, it is immunised for the rest of the simulation (i.e., we assume that

the malware does not mutate over time); secondly, there is always a successful file

transfer between devices (errors in transmission can be taken into consideration in

the assessment of the contention scheme without changing significantly the results of

our work, assuming random transmission failures); thirdly, an attacker chooses nodes

at random; and finally, we have no knowledge of which devices are compromised

(otherwise the best scheme is to patch those devices immediately).
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4.2.2.4 Effects of Time on Malware Spreading
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Figure 4.6: Temporal efficiency (y-axis) as a function of time (x-axis). Note the

logarithmic y-axis.

Firstly, we briefly analyse the effects of the time of day have on mobile malware

propagation. Let us consider Figure 4.6 where we measure the temporal efficiency

(Formula 3.5) as a function of time. This sliding temporal efficiency is calculated

for all three datasets. As we can see there are oscillations corresponding to the nat-

ural human periodic daily and weekly behaviour. For example, the CAMBRIDGE

dataset is spread over 10 days, and it is apparent from the traces that a (malicious)

message can spread more efficiently during the daytime, as opposed to evenings and

weekends.

4.2.2.5 Non-Effectiveness of Betweenness based Patching

Starting from the results of the analysis of the effects time of day has on message

spreading, we now evaluate the best case scenario for the containment scheme based

on patching nodes (without spreading the patch) and we show that this is highly

inefficient since it requires a very large number of nodes to be patched via the cellular

network to be effective.

Using Day 4 of the INFOCOM trace for this example, a piece of malware is started

at the beginning of the day (tm=12am) and the device(s) are patched at the same

time (tp=12am). This is the best case scenario for two reasons: first, the temporal
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Figure 4.7: INFOCOM day 4: Immunising 1 (top left) & 10 source nodes (top right).

Area under curves shown in the legend. Area (bottom left) and final % of infected

nodes (bottom right), as we increase the % of nodes immunised (x-axis).

graph in the morning is characterised by low temporal efficiency since there are very

few contacts, therefore, the malware spreads slowly (as we have seen in Figure 4.6);

secondly, devices that are immunised immediately have the best chance of blocking

malware spreading routes.

Figure 4.7 shows the ratio of compromised devices across time when the top 1 (top

left panel) and top 10 (top right panel) devices are patched after being selected

using betweenness and closeness. As we can see, temporal betweenness initially

performs better than static betweenness and both temporal and static closeness

(quantified by the difference in the area under each curve, shown in the legend).

However, by 7am we observe a steep rise in the number of compromised devices

and by the end of the day, all curves converge to the same point. We also note

that in both cases it is not possible to totally contain the malware, suggesting that

more devices need to be patched. Taking a broader view, Figure 4.7 shows the area

under the curve (bottom left) and final ratio of nodes infected (bottom right) as

we increase the number of patched devices. Clearly, even when the malware is

started at the slowest time of day for communication, we still need to patch 80%
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Figure 4.8: INFOCOM: Temporal clustering provide four types of alternative paths:

(A) inflowing paths to temporal cluster; (B) redundant nodes in cluster; (C) alter-

native flows around temporal cluster; (D) many outflows to next temporal cluster.

of the devices before we can completely stop the malware from spreading; this

can be considered an impractically high number of devices to patch. Similar high

percentages are also required in the MIT trace with a minimum of 45% patched

nodes. We can also conclude that in human contact networks, even with blocked

nodes, it is only a matter of time before a (malicious) message disseminates to

all nodes. To understand the reason for the effectiveness of (malicious) message

propagation, we take a visual analysis approach: Figure 4.8 shows the temporal

activity diagram5 for the INFOCOM experiment across all four days. This gives

a bird’s eye view of proximity between individuals as they move between groups

of colocated people across time, where the trajectory of the same node is given

by a straight line. The horizontal axis is time and the vertical groupings of nodes

represents people that are in the same static connected component such that there

5This plot was inspired by http://xkcd.com/657

http://xkcd.com/657
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is a path between every node in that cluster. The main feature to note is the

temporal cluster of remarkable size that appears from around 7am until 7pm every

day, coinciding with the main activities at the INFOCOM conference6. By means

of this infographic, what we see are periodic clusters of nodes during the daytime

and smaller disparate clusters during the evening. Figure 4.8 also zooms into Day

4, highlighting the four types of activity which give rise to temporal clustering and,

more importantly, to alternative paths providing link redundancy for a message

to pass through a network over time. Since this strategy cannot deal with these

alternative paths effectively, the propagation of a malicious message can merely be

slowed down. Hence, the rapid increase of infected nodes that can be observed in

Figure 4.7 around 7am can be attributed to the presence of this large temporal

cluster starting at 7am where many alternative paths are present and, therefore, the

spreading cannot be stopped just patching some of the nodes. We conclude that

this containment strategy is not efficient given the large number of patch messages

it requires.

4.2.2.6 Effectiveness of Closeness based Patching (Worst Case Scenario)

Since the blocking based containment scheme is not effective, we now evaluate the

closeness based spreading scheme with the aim of disseminating a patch message

throughout the network more quickly than a malicious message. We start our

analysis by examining a worst case scenario using the CAMBRIDGE dataset: a

researcher receives a malicious message on their device in the early hours of Friday

morning (tm=Fri 12am) and the malicious program replicates itself to any devices

it meets during the day. A patch message is started a day later to try patching

all the compromised devices (tp=Sat 12am). Again referring to Figure 4.6, this can

be considered as a worst case since the malware is started during a day with high

spreading efficiency and the patch is delayed until the weekend when the efficiency

is low.

Figure 4.9 shows the spreading rate for the malicious message versus the best (left)

and worst device (right) to start the patching message. These results were obtained

by running simulations considering every single device as a starting point of the

patching process, and then ranking them based on three performance metrics :

6http://www.ieee-infocom.org/2006/technical_program.htm

http://www.ieee-infocom.org/2006/technical_program.htm
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Figure 4.9: CAMBRIDGE [tm=Fri 12am, tp=Sat 12am] delivery rate (y-axis) start-

ing a mobile worm from single node. Best case (left) and worse case patching node

(right) shown. Area under curve presented in legend.
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Figure 4.10: Temporal (left) and static (right) closeness centrality ranking for Figure

4.9. Top two and bottom two device IDs shown on x-axis. Nodes ranked left to right.

• the area under the curve (AUC), which captures the behaviour of the infection

over time with respect to the number of infected devices7;

• the peak number of compromised devices (Imax);

• the time in days necessary to achieve total malware containment (τ).

Since the AUC captures both the Imax and τ , the best and worst initial devices

that were patched were selected using the AUC. Comparing all three measures,

the case related to the selection of the worst device (right panel) is characterised

by double AUC (2.62 vs. 1.07); a higher peak in compromised devices Imax (68%

7The AUC is commonly used in epidemiology and medical trials [EI01].
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Figure 4.11: Correlation between AUC with temporal (left) and static (right) close-

ness centrality.

vs. 60%) and by the fact that it is not possible to fully contain the malware in a

finite time τ (∞ vs. 3.3 days). Now comparing these observations with centrality, in

Figure 4.10 we observe that the node characterised by the highest temporal closeness

centrality (ID=17) is also the optimal one for spreading the patch and the node that

leads to the worst performance (ID=11) is ranked within the bottom two nodes.

This should be compared with static centrality, which ranks the best device to

start the patching process (ID=17) in second place and the worst device (ID=11)

seventh from the bottom (not shown). Also, the value of static centrality of each

node is more uniformly distributed; a fact that can be attributed to the dense

static graph previously observed in Figure 3.1(a). The stronger correlation between

temporal closeness centrality and an effective malware containment scheme can be

seen more clearly by plotting these rankings against the AUC in Figure 4.11. We

expect a strong negative correlation since centrality values are ranked in descending

order; by using temporal closeness centrality, we can identify the best node to start

disseminating a patch message to contain a piece of mobile malware which fits our

intuition that spreading a patch message quickly is the best containment strategy.

4.2.2.7 Effects of Temporal Variability

Thus far, we have only considered a single malware start time. We now take a

broader view and examine the effects of varying malware start time (tm) and patch

delay (tp). For each dataset the AUC, Imax and τ are exhaustively calculated for

different malware start times at hourly intervals and increasing patch delays starting
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from zero (i.e., patch messages start at the same time as malicious messages) to up

to 2 days. We compare node selection based on temporal and static closeness to

that of temporal and static betweenness. As a baseline, a naive method of randomly

selecting patching nodes is also calculated, averaged over 100 runs.
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Figure 4.12: Performance of temporal, static and naive node selection, across differ-

ent malware start times (x-axis), averaged over all patch delays.
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Sensitivity to Malware Start Time

To understand the effects of a malicious message starting at different times, Fig-

ure 4.12 shows, for each dataset, the performance metrics as a function of the

malware start time tm, averaged over all patch delays. Firstly, referring back to

the temporal efficiency from Figure 4.6, which exhibited daily peaks and troughs

during the weekend, the AUC and the maximum number of infected nodes Imax

tend to follow these same patterns (strictly related to human circadian rhythms);

however, the total time of containment (τ) remains stable across all start times.

These results demonstrate that this time-aware containment scheme is an effective

method of quickly containing malware, irrespective of when the malware started.

Now analysing the AUC and Imax, the temporal closeness centrality curve is consis-

tently lower than static closeness, betweenness (both temporal and static) and naive

methods. Further, betweenness (both static and temporal) generally take longer to

fully contain the malware (higher values of τ) and static closeness centrality performs

worse than the naive method at some points of time; more specifically:

• For the CAMBRIDGE dataset, during the weekend a static closeness method

has a higher peak number of compromised devices (Imax) than the naive

method, which shows that a static method is not effective at slowing down

the malware from spreading.

• For the INFOCOM dataset, again Imax is higher than the naive method, during

days 2 and 4. In addition, the AUC curve for a static method peaks with

temporal efficiency during days 2, 4 and 5: this means that the malware is

not contained effectively in these scenarios. Also, the total containment time

(τ) is greater than that of the naive method during days 3, 4 and 5. This

shows that temporal closeness centrality is more consistent at identifying the

best nodes to start the patching process, compared to both static and naive

methods.

• Finally, for the MIT dataset, the naive method performs extremely poorly

(with high values of AUC, Imax and τ across all malware start times), compared

to either a static or temporal methods. However, we also see that during the

first week of the Fall semester, temporal closeness centrality identifies nodes
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with lower AUC and τ , exhibiting over half a day quicker malware containment

compared to static closeness centrality.

Sensitivity to Patch Delay
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Figure 4.13: Performance of temporal, static and naive node selection methods, as

a function of patch delay (x-axis), averaged over all malware start times.

To understand the effects of delaying a patch message after a malware outbreak, Fig-

ure 4.13 plots the performance metrics for a representative sample of patch delays,

averaged over all malware start times. As the patch delay increases, all the per-

formance indicators also increase. However, we note that across all three datasets,

temporal closeness centrality (left most bar) exhibits the best results: smallest AUC,

fastest total containment time (τ) and smallest peak compromised devices (Imax).

We also observe that in the INFOCOM dataset, static closeness node selection gives
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higher values of Imax and τ up to a 12 hour delay, showing that static centrality

does not consistently capture the true speed at which a node can spread a message,

compared to temporal closeness centrality. In addition, these plots demonstrate

that betweenness (both static and temporal) are not suited to a spreading process

and hence perform worse than closeness based node selection. Again, from these

observations, we conclude that a containment scheme based on temporal closeness

centrality provides the best performance as the patch delay increases.
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Figure 4.14: INFOCOM: Effect of increasing number of initial devices with malware

(x-axis). From left to right, each column plots an increasing number of devices from

which a patch is started (tm=tp=Day 4 12am).

We now look at the effects of starting malware messages (Nm) and patch messages

(Np) from more than one device. This corresponds to the case, for example, when

a group of people download a malicious program at the same time, or an attacker

has programmed the replication to be time-triggered. Since we have observed that

betweenness based node selection is not suited to patch spreading scheme, we now

focus on closeness based node selection only. To make comparisons with the first

containment scheme (Section 4.2.2.5) we discuss result for the same malware start

and patch delay times. Similar trends were found for different start times and other

datasets. Figure 4.14 shows the effect of starting a patch from an increasing number
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of initial devices Np (increasing column left to right) as the number of initially

compromised devices Nm (reported on the x-axis) is increased for the INFOCOM

dataset.

First, in the case when a single initial patch message (Np=1) is used (left panel),

we observe that the AUC corresponding to the scheme based on temporal centrality

is lower than that corresponding to the cases of static and naive methods of node

selection even as Nm increases; the total containment time (τ) remains below half a

day up to Nm=75% of the total number of nodes (which we indicate with Ntot) and

the peak compromised devices (Imax) rises slowly as Nm increases. When increasing

to Np=10%Ntot, using temporal centrality the total containment time (Imax) drops

below 2.5 hours (about 0.1 of a day) up to Nm=75%Ntot. Only at Np=25%Ntot

both the naive and static methods start to match the performance of the temporal

method. These observations suggest that our time-aware containment scheme using

temporal centrality is more accurate at ranking important nodes and hence a viable

option for a network operator since less devices are required to receive a patching

message in order to achieve an effective containment strategy.

4.2.2.8 Discussion

This study has motivated and investigated the effectiveness of a time-aware mobile

malware containment scheme using temporal centrality to identify the best node

to start a competitive patch message. The evaluation on three real human contact

traces has shown that this time-aware scheme can more consistently identify the best

devices to start such a patch across different malware start times and patch delays,

compared to static and random node identification. As we discussed earlier, dynamic

processes are intrinsically linked to the underlying dynamic network topology. Since

we do not have the real information of a short range malware spreading, we have

simulated this on top of the known topological contact sequence of mobile devices.

For this to work we have modelled the malware spreading as shortest paths using

epidemic spreading; this is reasonable since we imagine that the goal of many types

of malicious worms is to spread quickly and to infect as many devices as possible.

We have also assumed that the malware spreading process is independent from the

contact process; for short range mobile malware, the user is unlikely to know if their

device is infected and hence their future contact behaviour is unlikely to be affected.
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An possible direction for future work is the study of how the underlying contact

process affects the spread of a virus, for example, in a real biological viruses, such

as influenza, the effects of people changing their daily meetings to avoid friends who

are infected may impact the spread of the virus. This has been recently studied

using a mean-field model in static networks [KL11, KL10]; an interesting extension

would be to time-varying networks, possibly starting with empirical data collection

of node perception and changes to regular contact processes.

4.3 Related work

In his work on temporal paths, Moody [Moo02] first mentioned the possibility of

temporal extensions to centrality measures as possible future work, though this was

never formalised. More recently in the study of ecological networks where coarse

grained seasonal snapshots of predator-prey networks have been available for some

time, Jordán et. al. [JOBL08] examined the relationship between static aggregated

graphs and temporal snapshots. In their study, degree, closeness and betweenness

centralities were calculated on the static aggregated graph and again independently

on each topological snapshot. They found large variations in centralities between

static and snapshot graph models and trends over time were missed by static anal-

ysis. This study is different from our techniques since centralities are calculated

separately on each time window, whereas our proposed technique captures the time

dependencies across time windows, however, their insights into the inaccuracy of

static analysis corroborates the results seen in this thesis.

Grindrod et. al. [GPHE11] formalise an eigenvector centrality, namely katz central-

ity, on temporal networks. Katz centrality is similar to closeness centrality in that it

measures the paths from a source node to other nodes in the network, however, katz

centrality captures paths of all lengths in addition to the shortest paths. In this the-

sis, the focus has been on the shortest path of dissemination, which is appropriate in

the application under study, for example in short-range mobile malware propagation

where the malware spreads via the shortest route; however, it would be interesting

in future work to apply and compare temporal katz centrality to temporal closeness

and temporal betweenness in a wider range of applications.

Within computer science research into DTN’s, there are two notable studies [DH09,
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HCY11] into exploiting social properties of human contact networks for message

delivery in “pocket switched networks” (PSN). The goal of these studies is the de-

livery of a message from a source to known destination node through decentralised

algorithms. Related to our thesis is the use of social network analysis for message

delivery in PSN’s, both techniques rely on some measure of node important (to

help bridge between separate clusters of nodes) and a measure of destination node

similarity (to guide the message to the right node). Daly et. al. [DH09] utilise ego-

centrality version of betweenness to find cluster bridges and a simple overlapping

neighbour measure (i.e. Jaccard index) of destination similarity, both in a decen-

tralised manner. Hui et. al [HCY11] proposed a similar solution but tackled the

problem from a different perspective using both community detection and centrality.

Their algorithm uses the most important nodes both globally and within commu-

nities to decide on the next hop. They propose an algorithm to identify the most

central nodes (RANK) using the number of shortest delay paths that pass through

a node, however this does not take into account the fraction of alternative paths

and also they present a strong correlation between such central nodes with degree.

In the end, their proposed algorithm favoured an ageing degree centrality since it is

suited for a decentralised algorithm.

In this chapter, we have evaluated two different types of centrality, namely be-

tweenness taking into account alternative paths and closeness to find nodes that can

propagate messages quickest in the context of containing mobile malware. The goal

of mobile malware containment or rumour spreading is different from opportunistic

forwarding, in that the latter is targets delivery of a message whilst minimising over-

heads (such as power and memory); in malware containment flooding to all nodes in

the fastest possible time is required. Future work could study the limits of resource

aware flooding for mobile malware patch dissemination.

4.4 Conclusions

In this chapter, we have introduced the notion temporal closeness and betweenness

centrality for the study of key information spreaders and mediators. We have shown

that firstly, from a contextual perspective, temporal centrality identifies nodes that

intuitively fit the context of the dataset; and secondly, from a dynamic process
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perspective, these highly ranked nodes can be exploited in containing short range

mobile malware. Clearly both patching schemes rely on centralised knowledge and

require “oracle” knowledge of future contacts between devices. In the next section,

we shall develop tools that eliminate this latter requirement by predicting nodes

that possess high temporal closeness now, based on past observations.



5
Predicting Information Spreaders in

Temporal Graphs

Introduction

In this chapter, we develop a technique to help analyse the predictability of tem-

poral centrality in dynamic human contact networks. Our previous evaluations of

temporal distance metrics were sampled across different points over the whole of

the network dataset 1 this has enabled us to uncover clear patterns in the efficiency

of information dissemination at different points of time (Figure 4.6). This in turn

has motivated this chapter, to understand whether we can take advantage of these

patterns in the predictability of temporal centrality rankings.

Forming the core of this technique is the ability to apply a well studied descriptive

analysis visualisation, namely correlograms [Cha03], to find patterns in centrality

1As discussed in Section 3.3.3, past work only took a single measurement from the beginning

of a network dataset.
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rankings over time. Given a time-series of values, a correlogram plots the self simi-

larity between two time-points as we vary the time difference, known as a lag ; this

allows us to uncover any patterns over time. The main contribution of this chapter

is to apply the same analysis, but on a time-series of rankings, namely temporal cen-

trality rankings calculated at each time window. The technique is general enough for

analysing many different types of time-varying networks, however, we continue our

study of short range mobile malware in human contact networks; this is founded

on the hypothesis that a central node yesterday is highly likely to be central to-

day. From a practical point of view, the ability to predict highly ranked temporal

centrality nodes is useful in real applications of information dissemination.

To allow us to plot a correlogram using a time-series of lists, we need to make an

assumptions: given a time-series with a ranking associated with each time-point,

we relax this ranking requirement within the top-k ranked elements. By relaxing

this condition, we can treat the top-k elements as a set and then the similarity

function between two given time-points is the number of intersecting nodes (e.g.,

the Jaccard index); from this, we can plot the correlogram without modification.

This simplification makes sense in the application to information dissemination:

once we have selected k nodes to start spreading a message then the ordering is

irrelevant.

Chapter Layout

To analyse the predictability of temporal centrality in dynamic networks we first

define the top-k prediction model which enables us to plot a correlogram between

time windows in a dynamic graph (Section (5.1). This allows us to analyse the

predictability of temporal centrality rankings and we see that there are simple age-

ing and periodic correlations (Section 5.2) which inform our prediction function

design (Section (5.2.3). We then evaluate the predicted nodes in short range mobile

malware containment with those found with full knowledge of future contacts and

random node selection in Section (5.3). Since we found that a containment scheme

based on opportunistically spreading a patch starting from highly ranked temporal

closeness nodes is effective, we focus our analysis on temporal closeness prediction

and this type of containment scheme.

We find that, firstly, the set of top-k temporal closeness centrality nodes are cor-
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related with past time windows (up to two days); and secondly, that simple and

efficient prediction functions can be designed to select the set of top-k nodes, opti-

mal for patch spreading. We compare the predicted devices with those found in the

previous chapter with full knowledge of future contacts.

5.1 Top-k Prediction Model

The top-k prediction model captures the problem of identifying the top-k nodes

to start spreading a patch, starting from the current instance of time. Intuitively,

using past observations, this prediction is based on the number of times a node i is

in the set of top-k central nodes in the previous intervals of time. This frequency

of observation can also be weighted by considering the time difference relative to

the current time (i.e., more recent observations could have higher weighting or vice

versa, etc.). More precisely, in Section 5.2.2 we will provide experimental evidence

that frequency can be used as an estimator for predicting the likelihood of having a

certain node as one of the top-k central nodes in the future.

5.1.1 Example

To illustrate this idea, Figure 5.1(a) depicts the problem of predicting the top k = 1

node at the current time tnow. For each time window (x-axis), we construct an

ordered list of node ids, for example, at time t0, nodes are ranked by a centrality

measure as (A,C,B,E, F,D). Since we may not have the most recent information of

contacts and node rankings, there is a lag time L between tnow and the last training

window at tnow−L.

Using this model, we define a suitable weighting function on the top-k set of nodes

in these past windows; this shall be discussed in further detail in Section 5.2.3,

however, for now, consider a simple uniform weighting function Wuniform, where all

training windows are treated equally. In this case since node A appears three times

across the training windows, it has the top weight and would be sent the patch.

Extending this to k = 3, again we iterate over all training windows, weighting the

top 3 nodes accordingly. Notice again that node A is predicted to be in the top 3

nodes, along with node C and B; a patch is sent to all three devices.
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(a) Example for k=1
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(b) Example for k=3

Figure 5.1: Example of the top-k set membership prediction problem, using uniform

weighted frequency selection.

Finally, patching additional nodes might provide a limited benefit in some cases.

For example, if there are two temporal connected components, the top-2 nodes may

belong to the same component. If the infection is started also from this additional

node, the benefit will be incremental, since both nodes are members of the same

connected component. However, this proposed scheme does allow for redundancy

that might be very useful given the inherent uncertainty of predictions. We shall see

in Section 5.3.5 that temporal centrality requires a smaller value of k for an effective

containment scheme.
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5.1.1.1 Definitions

More formally, given a top-k, lag time L and current time tnow, we first construct

the temporal graph G(t0, tnow − L) from the uploaded contact data. Next for every

graph Gt ∈ G at time t, we calculate the temporal centrality Ct using G(t, tnow−L).

From this we construct the list of window centrality rankings R(t0, tnow−L) for each

time window in the interval [t0, tnow−L]. Each window centrality ranking rt ∈ R at

time t is an ordered list of N node identifiers ranked by temporal centrality using

Ct. Next, we construct the list of top-k window centrality rankings Sk = (s0...sW−1),

where st corresponds to the ordered set of the top-k centrality nodes in the window

ranking rt.

From this, given the top-k sets Sk(t0, tnow−L), for each node i, its weighted frequency

value Fi is defined as:

Fi =
W−1∑
t=0

ztiw(d), zti =

{
1 if i ∈ st

0 otherwise
(5.1)

where zti is used to count the presence of node i in the top-k set sk, d = tnow − t is

the difference between the time to be predicted and the training window and w(d)

is an aging function used to assign different values to the presence of the node in

the set of the top-k nodes in a certain window.

Then the nodes are sorted in descending order by their value of Fi and the top-k

are selected for patching. In the previous example a uniform weighting w(d) = 1

was described. Note that although contact uploads could be staggered between

different devices, we consider a uniform lag time (for example, all nodes uploaded

at the same time yesterday). This is reasonable since any extra recent informa-

tion increases prediction accuracy. In Section 5.2.3 we shall describe more refined

prediction functions.

5.1.2 Parameters

There are two related parameters that are fundamental to the setup of the prediction

framework, firstly, the training interval size defines the interval [t0, tnow−L]; and,

secondly, the upload interval defines how frequently mobile devices upload contacts
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to the server. A larger upload interval will decrease the freshness of the contact

data and increase the lag time L. We envisage that devices can connect to WiFi

or desktop sync managers to reduce data costs of upload, however since a patch

needs to be distributed as early as possible, the cellular network is utilised instead

to target the top-k set of devices. In our simulations (Section 5.3) we investigate

hourly and daily uploads.

5.2 Predictability of Human Contact Traces

The derivation of our prediction functions is founded on the hypothesis that since

human mobility is highly regular [CE07], a central person today is highly likely to

be central at some point in the future. To test this, we utilise the same three mobile

phone contact traces evaluated in the previous study on mobile malware (Table

4.3), namely CAMBRIDGE, INFOCOM, MIT, which can be classified as office,

conference and campus environments, respectively. Again, for the CAMBRIDGE

dataset, all 10 days are used as part of the evaluation; for the INFOCOM dataset,

since devices were not handed out to participants until late afternoon during the

first day, only the last 4 days are used; and for the MIT dataset, we show results for

the first two weeks of the Fall semester2 representing a typical fortnight of activity.

The most important characteristic is the density, described by the average number of

contacts per day. Indeed, since the INFOCOM dataset is extracted from a confined

conference environment with scheduled talks, they are temporally denser compared

to the campus and office settings.

5.2.1 Top-k Correlation Function

To test our hypothesis, we first define a correlation function to measure the similarity

of top ranking nodes between different windows. Building on definitions in Section

5.1.1.1, given a sequence of top-k centrality window sets Sk(tmin, tmax), we simply use

the Jaccard index between any two given window sets sa, sb ∈ Sk, where k = |sa∪sb|:

Aka,b =
|sa ∩ sb|
|sa ∪ sb|

(5.2)

2http://web.mit.edu/registrar/www/calendar0405.html
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Figure 5.2: Plotting self-similarity between the rankings related to all windows a

with all windows b ≤ a, averaged by time difference d = a− b (x-axis). Static (left

column) and temporal (right) centralities plotted. Legacy correlation is observed

with both static and temporal centrality.

5.2.2 Testing for Top-k Correlations

We now measure the self-similarity between the rankings for different time windows,

by first calculating the complete sequence of window centrality rankings S(tmin, tmax)

for each dataset, and then plotting the correlation function Aa,b for every training

window sa ∈ S against a past window sb ∈ T where b ≤ a. We repeat this for

different values of k. Figure 5.2 plots the time difference d = a − b across the x-

axis against Aa,b on the y-axis, averaged by d. First, we notice that, as expected,

as we increase k the correlation function A also increases. However, we also notice
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Function w(d)

Uniform 1

W-log(d) log(d+ 2)−1

W-sqrt(d) (
√
d+ 1)−1

W-exp(d) (2d)−1

Table 5.1: Prediction functions with time difference, d.

across both static and temporal closeness centralities, there is a clear legacy effect in

that top-k nodes are stable for some consecutive time windows (around a day in all

traces). The peak at around 10 days in the CAMBRIDGE dataset can be attributed

to the devices being collected and physically colocated at the end of the experiment.

We also tested these correlations against a null model where we randomly shuffle the

windows and calculate the same correlation function A: we found < 2% correlation

for top-75% nodes uniformly across different time differences.

5.2.3 Prediction Function Design

Our aim is to predict the top-k ranked nodes from which to spread the patch by

taking advantage of the knowledge about the previous evolution over time of the

network. By making use of past observations, this prediction is based on the number

of times a node i is in the set of top-k nodes which can also be weighted by the time

difference relative to the current time. Since we have observed both a strong cor-

relation with recent past windows (in all centralities) we design empirical functions

that weight past windows by distance in time.

We now describe four possible prediction functions based on a weighted average

characterised by different complexity. These functions are summarised in Table 5.1.

From our observations of a strong correlation with recent time windows, we can

assign an age weighted function to a nodes membership in a previous time window

ti with time difference d = (tnow − ti): W-log(d), W-sqrt(d), W-(d), and W-

exp(d). In addition, we also compare to a simple option that weights all previous

set membership equally: Uniform. Note that these functions can be computed in
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O(M) for one prediction of w(d) where M is the number of training time windows

used.

Our approach has two key advantages: (1) it is simple to implement and deploy since

we only require the past centrality values of mobile services, rather than tracing the

whole past geometric positions of nodes; (2) it requires linear time to approximate

network centrality. Our strategies are thus useful for large-scale and online compu-

tation – training data can be frequently updated in real time.

5.3 Application to Real Networks

We return to short range mobile malware containment application and compare with

the results obtained with full knowledge of contacts and random node selection. As

such, the simulation setup is the same as described in Section 4.2.2.3.

5.3.1 Parameters and Evaluation Metrics

We employ the same three performance metrics, namely the area under the curve,

AUC; the total malware containment time, τ (days); and the peak number of com-

promised devices, Imax.

These three performance metrics are utilised to investigate several parameters:

• Malware Start: the time at which malware is deployed, starting every 3 hours

of each trace.

• Patch Delay: the delay before a patch is ready to be deployed from {1 hr, 3

hrs, 24 hrs, 48 hrs}.

• Upload Interval: the frequency of mobile device contact uploads {1 hr, 24 hrs}

• Initial number of compromised devices and number of devices we start a patch

from.
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Figure 5.3: MIT Traces: Comparison of Centrality type vs. Prediction Function, as

a function of Start Time (x-axis). Rand and Oracle node selection provide upper

and lower performance bounds.

5.3.2 Effect of Malware Start Time

Figures 5.3, 5.4 and 5.5 plots for MIT, INFOCOM and CAMBRIDGE datasets,

respectively, the effects of disseminating malware starting from a single device at

different times (x-axis) during the trace. We fix the upload interval to 1 day and

average across all delay times. For static and temporal closeness centrality mea-

sures, each plot shows how different prediction functions perform when selecting a

single nodes to start spreading the patch. We plot curves for naive random patch
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Figure 5.4: INFOCOM Traces: Comparison of Centrality type vs. Prediction Func-

tion, as a function of Start Time (x-axis).

device selection and an oracle device selection, corresponding to the case of temporal

closeness with knowledge of all future contacts which was previously shown to be

the most effective for opportunistic patch dissemination 4.2.2. Note that these two

curves provide an upper and lower bound to the performance we would expect from

an accurate prediction function for with static or temporal centrality. As such, to

compare between curves, we present the area under each curve in the legend.

First, notice that there is a significant improvement over a random node selection

and that the performance of devices selected approaches that of the oracle. Second,

notice that both static and temporal centrality are highly accurate across all predic-
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Figure 5.5: CAMBRIDGE Traces: Comparison of Centrality type vs. Prediction

Function, as a function of Start Time (x-axis).

tion types, however, static is only accurate when using W-exp. Third, comparing

the best prediction function between static and temporal centralities, temporal has a

lower AUC, translating to better patching performance across different start times.

Fourth, in the MIT and CAMBRIDGE datasets, all methods take around 150 hours

(6.25 days) to fully contain the malware and around 60 hours (2.5 days) for INFO-

COM. In addition, notice that for MIT, Imax < 10% when using W-log weighting for

static and temporal and Imax < 50% for CAMBRIDGE and INFOCOM: this fits our

aim of spreading the patch to as many nodes quickly and rely on the natural chain

of human contacts to eventually trickle the patch to remaining devices over time.
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CAMBRIDGE INFOCOM MIT

Model Static Temporal Static Temporal Static Temporal

Uniform 0.504 0.348 0.113 0.226 0.692 0.026

W-Exp 0.340 0.355 0.164 0.132 0.059 0.063

W-Log 0.504 0.337 0.113 0.227 0.575 0.026

W-Squ 0.507 0.337 0.121 0.227 0.22 0.026

Best W-Exp W-Log W-Log W-Exp W-Exp W-Log

Oracle 0.187 0.020 0.023

Overhead 1.817x 1.802x 5.812x 6.774x 2.563x 1.155x

Table 5.2: Comparing Centrality vs. Prediction function, measured by AUC of all

start times averaged over all lag times.

Finally, common across all centrality types, there are small peaks around noon for

τ and Imax and troughs during the evening, which demonstrates that a time-aware

approach is required since malware has more opportunity to spread during the day-

time; this is most apparent when observing random node selection.

We enumerate in Table 5.2 the AUC for all centrality prediction pairs for all datasets.

There is no single perfect choice prediction function that is best for all centralities;

however, the centrality prediction pairs that minimise the AUC can be used as a first

approximation (shown in bold). Note that there is more than one best prediction

function for temporal centrality in the MIT dataset; however, we use W-log since

it is the best performing overall for temporal centrality across all datasets. Now,

comparing the best performing centrality prediction combination between datasets,

we observe that the temporal approach performs best to minimise AUC in CAM-

BRIDGE and MIT datasets, however, static has more accurate prediction for INFO-

COM. This suggests that, in confined spaces, with denser contacts a static model

may be best suited; however, temporal can still be relied on across all scenarios

to contain malware in a finite time and in most cases perform better than static.

Quantifying the overhead of the best centrality prediction combination with the ora-

cle, using temporal centrality we can achieve up to 1.155x accuracy in the best case

and also on average across the three scenarios temporal centrality has the lowest

overheads.
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5.3.3 Increasing Patch Delay

Figure 5.6 plots the best centrality-prediction pairs, binned by increasing patch

delays (x-axis), for the CAMBRIDGE, INFOCOM and MIT datasets, respectively.

Increasing the patch delay is detrimental to malware containment, increasing the

AUC, time of total containment and peak infected devices. Across all datasets, this

is most prominent in the conference (INFOCOM) environment that again can be

attributed to the confined space that increases the malware spreading rate and again

suits a static model better than temporal centrality. However, for CAMBRIDGE

and MIT, temporal centrality outperforms static device selection.

5.3.4 Effects of Contact Upload Interval

Thus far, we have considered a daily upload interval; Figure 5.7 again plots an

increasing patch delay for the CAMBRIDGE dataset (compared with Figure 5.6(a))

but for an hourly upload interval. We note two things: firstly, there is very little

improvement from a daily upload, and secondly, static methods have improved more

than temporal. This suggests that these prediction functions are still able to perform

accurately even with missing data (increased lag time, L).

5.3.5 Varying initial compromised and patched devices

To understand the effects of increasing the number of initially infected devices In

and increasing top-k patched devices, we fix the malware start time to day 2 at

midday (the most damaging time of day for malware spreading), upload time to 1

hour and patch delay to 3 hours. Figure 5.8 plots the percentages of initially infected

devices (equal to 10% (left column), 25% (middle) and 50% (right)) with increasing

top-k patched devices (x-axis) using the MIT dataset.

Starting with a low In = 10%, containment is effective with an equally low value for

k = 5%. Increasing the number of devices to spread the patch past k = 10% does

not add performance gains. Notice that temporal centrality is able to contain the

malware within τ = 10 hours, compared with static centrality which take around 75

hours.
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Figure 5.6: Best centrality-prediction binned by patch delay (upload interval 24

hours).

With In = 25%, again temporal offers advantages using a low value of k. However,

as we increase the value of k to 10% then static and temporal are very similar; this

is more apparent when In = 50%. From this, we observe that temporal can more

effectively select a smaller set of devices compared to static methods. This is a

useful property, because one of the requirements is the minimisation of the number

of devices required to receive the initial patch.
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Figure 5.7: CAMBRIDGE: Best centrality-prediction binned by patch delay (upload

interval 1 hour).
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Figure 5.8: MIT: Effects of increasing number of patched devices against initial

infected devices. Midday infection, 3 hours patch delay.

5.4 Related work

Predicting the topology of a network in the future has fuelled many studies into

how complex network phenomena, such as small world or scale free topologies,

form. Indeed early models in generative graph models, such as preferential attach-

ment [BA99] attempt to capture the essence of how real networks are formed and

potentially predict their structure in the future.

More direct studies of predicting link formation was formalised by Liben-Nowell
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& Kleinberg [LK03], which required only topological information to predict future

links based on measures of proximity. In the empirical dataset of co-authorship, the

hypothesis evolved around the likelihood that your co-authors are highly likely to

meet and write a research paper together. Although, centrality could potentially

be estimated on top of predicted links, our study takes a more direct approach by

predicting highly ranked centrality nodes.

Similar to our framework are studies on opportunistic networking in mobile de-

vices such as BubbleRap [HCY11] and SimBet [DH09], as discussed in the previous

chapter (Section 4.3). Both studies calculate and maintain centrality (degree and

betweenness, respectively) to help decide the best next hop to pass a message nearer

to the destination. Similar to our observations of ageing rules in centrality correla-

tions, the effectiveness of an sliding window degree centrality were observed in the

BubbleRap study although no empirical reason was given to why this may; in our

study we have formalised this more directly through the ability to understand the

centrality correlations over time using a correlogram.

More related to dynamic graphs, another set of studies, which bears similarities to

our work, is that of frequent subgraph prediction in temporal networks [LB07]. This

work utilises online machine learning algorithms to find and predict subgraphs (or

links) based on subgraphs observed in the past. Our work also uses a notion of

temporal graphs however focuses on temporal centrality prediction using time-series

analysis which offers insights into how the predictive algorithm can be designed,

rather than a black box approach given by machine learning techniques.

5.5 Conclusions

In this chapter, we have introduced a technique for analysing the correlations of

centrality rankings which helps eliminate the requirement of knowledge of future

contacts. To achieve this, we have assumed that the order of the top-k is not

relevant; this is applicable to information spreading since starting information dis-

semination from all k nodes does not require any ordering. We have applied this

prediction scheme to a case study where centrally managed message dissemination

is required, namely short range mobile malware containment, which was introduced

in the previous chapter.
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There are many fruitful avenues for future investigation to understand the practi-

calities of such a scheme in other applications. Firstly, from the previous chapter on

short range mobile malware containment, we found that opportunistically spreading

a patch starting from highly ranked temporal closeness nodes was most effective, for

this reason we have concentrated on predicting temporal closeness; clearly differ-

ent centralities for other applications can be studied. Secondly, we have not set

out to address the optimal k, but we conjecture this would be application specific.

Thirdly, in addition to utilising correlograms, we could employ other time-series

analysis techniques such as calculating auto-correlation coefficients. Fourthly, we

wish to study a real deployment using a set of controlled devices examining, in

particular, the relationship between opportunistic message spreading in conjunction

with infrastructure based message delivery.Finally, the current study was limited to

human contact networks though the techniques presented could be applied to many

different types of empirical temporal networks.



6
Reachability in Temporal Graphs

Introduction

In the previous chapters, we have learnt about the importance of time order in infor-

mation dissemination and how this can be used to enhance measures of centrality.

We now turn our attention to the topic of reachability in graphs, which is fundamen-

tal to the study of real networks; the main issue is connectedness of the graph and

whether the topology of the graph allows a source node to form a path to another

node in the network.

Returning to the analogy described in Section 2.2.4.1, the United States, United

Kingdom and Australia all have their own well-connected road networks however

there is no method to drive from one country to another. Generalising this, many

studies on real networks have found islands of connectivity (highly intra-connected)

but which are separated from on another (not inter-connected). In particular, where

mobility of nodes is present, this inherently introduces time-varying connectedness

i.e. in satellite delay tolerant communications [BHT+03] and opportunistic commu-

129
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nications in mobile phone pocket switched networks [HCY11, DH09]. We previously

defined connectedness in static networks (Section 2.2.4), however, in this chapter

we shall investigate how time adds additional constraints on the reachability be-

tween nodes in a temporal network, in particular, time order naturally introduces

directionality and affects the connectedness of a real time-varying network.

Chapter Outline

We first define the notions of temporal connectedness and components in temporal

graphs (Section 6.1). Next, we introduce an abstract graph model which captures,

which we call the affine graph, the reciprocal reachability between nodes; this cap-

tures in a convenient static graph representation the connectedness of the real net-

work taking into account the time order (Section 6.2). We then apply this to a real

network where temporal contextual information (for example, exact dates with sig-

nificant events) exists, namely the Reality Mining human contact network between

mobile phones [EP06] (Section 6.3). Finally, we conclude in Section 6.5.

6.1 Temporally Connected Components

The problem of defining connectedness and components in temporal graphs looks

more similar to the case of directed static graphs than to the case of undirected

static graphs (Section 2.2.4.1). In fact, even if each graph Gm, m = 1, . . . ,M in the

sequence is undirected, the temporal ordering of the graphs naturally introduces a

directionality.

In order to define node connectedness for a temporal graph, we first need to introduce

a mathematical definition of reachability for an ordered couple of nodes i and j. We

say that i can reach j, if i can send a message to j directly or through a time-ordered

sequence of contacts.

In other words, we can use our definition of temporal paths (Definition 2, Section

3.2). A node i of a temporal graph G[t1,tM ] is temporally connected to a node j if there

exists in [t1, tM ] a temporal path going from i to j. This relation is not symmetric: if

node i is temporally connected to node j, in general node j can be either temporally

connected or disconnected to i. In the graph G[t1,t4] of Figure 6.1, node 5 is temporally
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Figure 6.1: Temporal graph G consisting of a sequence of M = 4 graphs with N = 5

nodes.

connected to 1 but node 1 is not connected to node 5. For this reason, we introduce

the definition of strong connectedness, which enforces symmetry:

Definition 3 (Strong connectedness) Two nodes i and j of a temporal graph

are strongly connected if i is temporally connected to j and also j is temporally

connected to i.

Strong connectedness is a reflexive and symmetric relation, so that if i is strongly

connected to j, then j is strongly connected to i. However this definition of strong

connectedness lacks transitivity, and therefore it is not an equivalence relation. In

fact, if i and j are strongly connected and j and l are strongly connected, nothing

can be said, in general, about the connectedness of i and l.

In the example shown in Figure 6.1, node 5 and 2 are strongly connected and also

2 and 1 are strongly connected, but nodes 5 and 1 are not strongly connected, since

there exists no temporal path which connects node 1 to node 5.

It is also possible to introduce the concept of weak connectedness for a pair of

nodes. Similarly to the case of static directed graphs, given a temporal graph G, we

construct the underlying undirected temporal graph Gu, which is obtained from G
by discarding the directionality of the links of all the graphs {Gm}, while retaining

their time ordering.

Definition 4 (Weak connectedness) Two nodes i and j of a temporal graph are

weakly connected if i is temporally connected to j and also j is temporally connected

to i in the underlying undirected temporal graph Gu.
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Also weak connectedness is a reflexive and symmetric relation, but it is not transitive.

This definition of weak connectedness is quite similar, but not identical, to that given

for directed static graphs. In fact, two nodes in G can be weakly connected even if

there is no temporal directed path which connects them, but the temporal ordering

of links breaks the transitivity so that if i and j are weakly connected and j and l

are weakly connected, then nothing can be said about the weak connectedness of i

and l. All these subtleties are due to the fact that temporal graphs have a much

richer structure compared to static graphs, so that the existence of a temporal path

between two nodes crucially depends on the time ordering of links, and does not

guarantee the existence of the backward path. Notice that the definitions of strong

and weak connectedness given above for temporal graph are consistent with those

given for static graphs, so that if two nodes are strongly (weakly) connected in a

temporal graph, then they are also strongly (weakly) connected in the corresponding

aggregate static graph. The vice-versa is trivially not true, so that two nodes which

are strongly connected in the aggregate graph can be temporally disconnected in

the temporal graph.

We are now ready to give the definitions of components associated to a node of a

temporal graph G:

1. The temporal out-component of node i, denoted as OUTT (i), is the set of nodes

which can be reached from i in the temporal graph G.

2. The temporal in-component of a node i, denoted as INT (i), is the set of nodes

from which i can be reached in the temporal graph G.

3. The temporal weakly connected component of a node i, denoted as WCCT (i),

is the set of nodes which i can reach, and from which i can be reached, in the

underlying undirected temporal graph Gu.

4. The temporal strongly connected component of a node i, denoted as SCCT (i),

is the set of nodes from which node i can be reached, and which can be reached

from i, in the temporal graph G.

Differently from the case of directed static graphs, it is not possible to define the

strongly (weakly) connected components of a temporal graph starting from the def-

inition of connectedness for pairs of nodes. As we explained above, this is because
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the relation of strongly (weakly) connectedness for couples of nodes is not an equiva-

lence relation. For this reason, we give the following definition of strongly connected

component of a temporal graph:

Definition 5 (Strongly connected component) A set of nodes of a temporal

graph G is a temporal strongly connected component of G if each node of the set is

strongly connected to all the other nodes in the set.

Similarly, a set of nodes is a weakly connected component, if each node in the set is

weakly connected to all the other nodes in the set. The definitions of strongly and

weakly connected components enforce transitivity, but the check of strong (weak)

connectedness has to be directly performed for every couple of nodes. Suppose for

instance that we want to verify if the five nodes in the graph G shown in Figure 6.1

form a strongly connected component. In the static aggregate graph this check has

O(K) computational complexity, where K is the total number of links in the graph.

In fact, we have only to check that 2, 3, 4 and 5 are connected to 1, which can be

done by a depth first visit of the graph started at node 1, since node connectedness

is an equivalence relation for static graphs and a component of a node is also a

component for the whole graph. On the contrary, for a temporal graph we should

check the connectedness of all the possible couples of nodes, so that a procedure to

verify that a set of N nodes form a strongly connected component has computational

complexity O(N2) instead of O(K), for every check. Moreover, while static directed

graphs admit only one partition into strongly connected components, for a temporal

graph there exists, in general, more than one possible partition, as we shall see in

the next section.

6.2 The affine graph of a temporal graph

We show in the following that the problem of finding the strongly connected com-

ponents of a temporal graph is equivalent to the well-known problem of finding the

maximal-cliques of an opportunely constructed static graph [Kar72]. We call such

static graph the affine graph corresponding to the temporal graph. It is defined as

follows:
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Figure 6.2: The affine graph GG associated to the temporal graph G reported in

Figure 6.1. The affine graph is static and undirected, and each of its maximal-cliques

correspond to a strongly connected component of the original temporal graph G

Definition 6 (Affine graph of G) Given a temporal graph

G ≡ G[t1,tM ], the associated affine graph GG is an undirected static graph with the

same nodes as G, and such that two nodes i and j are linked in GG if i and j are

strongly connected in G.

In practice, the affine graph of a temporal graph can be obtained by computing the

temporal shortest paths between any two pairs of nodes, and then adding a link

between two nodes i and j of the affine graph only if the temporal distance from

i to j and the temporal distance from j to i are both finite. Another method to

construct the affine graph makes use of the out-components of all the nodes. We

start by considering the out-component of the first node, let us say i = 1, and then

we check, one by one, if for each node j ∈ OUTT (i), j > i then also i ∈ OUTT (j).

If this is true, we put a link between i and j in the affine graph. We then repeat

this procedure for the second node, i = 2, for the third node, i = 3 and so on. We

obtain the affine graph by iterating over the out-components of all the nodes. In

Figure 6.2 we report the affine graph corresponding to the time varying graph shown

in Figure 6.1. In this graph, node 1 is directly connected to nodes {2, 3, 4}, since it

is temporally strongly connected to them in the temporal graph. Similarly, node 2

is connected to nodes {1, 3, 4, 5}, node 3 is connected to {1, 2}, node 4 is connected

to {1, 2, 5} and node 5 is connected to {2, 4}. Hence, the affine graph GG has only

7 of the 10 possible links, each link representing strong connectedness between two

nodes.

We briefly report here some definitions about graph cliques. Given an undirected

static graph, a clique is a complete subgraph, i.e. a subgraph in which all the

nodes are directly linked to each other. A maximal-clique is a clique that is not
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included in any larger clique, while a maximum-clique is a maximal-clique whose

size is equal or larger than those of all the other cliques [Wes01]. By construction, a

clique of the affine graph GG, contains nodes which are strongly connected to each

other, so that the maximal-cliques of the affine graph, i.e. all the cliques which

are not contained in any other clique, are temporal strongly connected components

(SCCT ) of G. Similarly, all the maximum-cliques of the affine graph GG, i.e. its

largest maximal-cliques, are the largest temporal strongly connected components

(LSCCT ) of G. Therefore, the affine graph can be used to study the connectedness

of a temporal graph, and the properties of the strongly connected components of

a temporal graphs can be obtained from known results about maximal-cliques on

static graphs. For instance, the problem of finding a partition of G that contains

the minimum number of disjoint strongly connected components is equivalent to

the well–known problem of finding a partition of the corresponding affine graph

GG in the smallest number of disjoint maximal-cliques [Kar72]. Unfortunately, this

problem is known to be NP–complete, and in practice can be exactly solved only

for small graphs. In the case of the affine graph in Figure6.2, it is possible to check

by hand that there are only three possible partitions of GG into maximal-cliques,

namely:

1. {1, 2, 3}
⋃
{4, 5}

2. {1, 2, 4}
⋃
{3}

⋃
{5}

3. {2, 4, 5}
⋃
{1, 3}

Notice that the second partition contains two isolated nodes, which are indeed de-

generated maximal-cliques. Therefore, the original temporal graph admits only two

different partitions into a minimal number of non-degenerated strongly connected

components, namely into two components containing at least two nodes each. One

possible partition of our network G[t1,t4] is made by the components {1, 2, 3} and

{4, 5}, while the other partition consists of {2, 4, 5} and {1, 3}. If we discard the

temporal ordering of links, we obtain different results. In fact, the aggregate static

graph shown in Figure 6.1, has only one connected component, which includes all

the five nodes.

Other interesting results stem from the mapping into affine graphs and from the

following well-known results for cliques in graphs.
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1. Checking if a graph contains a clique of a given size k has polynomial compu-

tational complexity, and precisely O(Nkk2) [Dow95].

2. The clique decision problem, i.e., the problem of testing whether a graph con-

tains a clique larger than a given size k, is NP–complete [Kar72]. Therefore,

any algorithm which verifies if a temporal graph has a strongly connected com-

ponent whose size is larger than a fixed value k, has exponential computational

complexity.

3. Listing all the maximal-cliques of a graph has exponential computational com-

plexity, namely O(3N/3) on a graph with N nodes [MM65, BK73]. Conse-

quently, finding all strongly connected components of a temporal graph with

N nodes, requires an amount of time which exponentially grows with N .

4. The problem of finding a maximum-clique for an undirected graph is known

to be hard–to–approximate [FGL+91, AS98, ALM+98], and an algorithm that

finds maximum-cliques requires exponential time. The best algorithm works

in O(∼ 1.2N) for a graph with N nodes [TT77, Rob86].

5. The problem of determining if a graph can be partitioned into K different

cliques is NP–complete, and consequently the problem of finding the minimum

number of cliques that cover a graph, known as the minimum clique cover, is

NP–complete [Kar72]. This means that there exists no efficient algorithm

to find a partition of a temporal graph made by a set of disjoint strongly

connected components. Moreover, there is in general more than one partition

of a graph into maximal-cliques, so that a temporal graph cannot be uniquely

partitioned into a set of disjoint strongly connected components.

The existence of a relation between the strongly connected components of a tempo-

ral graph and the maximal-cliques of its affine graph implies that it is practically

unfeasible to find all the strongly connected components of large temporal graphs.

The problem can be exactly solved only for relatively small networks, for which it

is computationally feasible to enumerate all the maximal-cliques of the correspond-

ing affine graphs. Even if, in many practical cases, it is possible to find only the

maximal-cliques up to a certain size k, we can still obtain some information about

the maximum value of k to be checked. First, in order to have a clique of size k the
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graph should have at least k nodes having at least k links. Moreover, each clique of

order k > 3 has exactly
(
k
3

)
sub–cliques of order 3, so that in order for a subgraph to

be a clique of order k, the graph should have at least
(
k
3

)
triangles. This means that

there is a relation between the number of triangles of the affine graph and the size

of its maximum-cliques. In particular, the number of existing triangles in the affine

graph fixes an upper bound for the size of the largest admissible maximal-cliques of

the graph.

6.3 Application to a Real Network

As a practical example, in this section we extract and analyse node and graph

components of real temporal social networks. We return to the Reality Mining

dataset as discussed in Sections 1.1.1.3 and 3.4.2. We report results of component

analysis performed on a) graphs corresponding to the first half and to the second

half of a week, b) graphs corresponding to different days of a week and c) graphs

corresponding to different weeks. In particular, we will focus our attention on the

Fall term (namely from start of September to mid of December), which corresponds

to weeks from 10 to 19 in the dataset. We chose this dataset for two very simple

reasons. First, due to the relatively small number of nodes, it is possible to extract all

the maximal-cliques of the corresponding affine graphs by using a limited amount of

computational resources. Secondly, this dataset represents a real human interaction

network and, as we shall see in the following, the approximation made representing

it as a static graph, i.e. considering all the links as concurrent in time, is a very

poor and unrealistic representation of the system.

In Figure 6.3 we consider week 11. For each node, we report the size of temporal

in-component (panel a) and temporal out-component (panel b) during the begin-

ning of the week (WB), namely from Monday 12:00am to Thursday 12:00pm (red

circles), and during the end of the week (WE), namely from Thursday 12:00pm

to Sunday 11:59pm (blue squares). During WB almost all nodes have temporal

in-components and out-components of similar sizes. In fact, the majority of nodes

have in-component of size 72 and out-component of size 74. Conversely, during WE,

we observe a wide distribution of the sizes of temporal in- and out-components. In

particular (panel a) we notice a group of nodes having an in-component of size
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Figure 6.3: Size of the temporal in-component (a) and out-component (b) for each of

the N = 100 individuals during week 11 of the Reality Mining dataset. Red circles

and blue squares correspond, respectively, to the beginning of the week (WB) and to

end of the week (WE). For comparison, the size of the largest connected component

of the corresponding aggregate static graph is reported as dashed red line (WB) and

solid blue line (WE), respectively.

53, another group whose in-component contains around 40 nodes, and other nodes

with in-component of size smaller than 30. Similarly (panel b), there is a group

of nodes whose out-component contains around 60 nodes, a second group of nodes

with out-component sizes between 40 and 50, and many other nodes having out-

component with less than 40 nodes. The observed small variability in the size of

node components during WB, is due to the fact that students and faculty mem-
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bers have more opportunities to meet and interact at lectures during WB. Even

if not all students attend the same classes, and not all professors teach to all the

students, there is a high probability that two individuals are connected by longer

temporal paths. Conversely, during WE, the students usually meet other students

in small groups, and they usually do not meet professors and lecturers, except for

the classes held on Thursday afternoon and on Friday. As a result, the size of the in-

and out-components during WE exhibits large differences from node to node. Such

fluctuations are lost in a static graph description, which aggregates all the links

independently of their time ordering. In fact, the two static aggregate graphs cor-

responding respectively to WB and WE, have only one giant connected component,

which contains the majority of the nodes, while the remaining nodes are isolated. As

comparison, the size of the giant component of the aggregate static graphs for WB

and WE are also reported in Figure 6.3, respectively as dashed red line and solid

blue line. Notice that the static aggregate graph corresponding to a co–location

temporal graph is intrinsically undirected. Therefore, the in- and out-components

of a node in this graph coincide and correspond to the component to which the

node belongs. Moreover, in a static aggregate graph all the links (and consequently

also all the paths) are always available, so that all the nodes in the same connected

component have the same component size. As a result, the variability in the node

connectedness of the temporal network, which is evident from the distribution of

circles and squares in Figure 6.3, is flattened down in the aggregate static graph.

In the latter case, all information about network connectedness is represented by a

single value, namely the size of the largest connected component, which indeed says

nothing about the mutual reachability of two generic nodes of such a component. In

particular, the size of the giant connected component of the static aggregate graph

is equal to 74 during WB and to 66 during WE, despite the fact that in the same

intervals the majority of nodes have much smaller temporal in- and out-components.

In Table 6.1 we report some relevant structural properties of the affine graphs.

We consider and compare the temporal graphs constructed in the first 24 hours

(Monday) of ten consecutive weeks (from week 10 to week 19). We observe large

fluctuations in the measured values. The number of links K ranges from 105 in week

12 to 1485 in week 15, while the number of triangles T is in the range [307, 22096],

with a mean value around 10000 and a standard deviation equal to 6932. This

variance is due to the fact that, even if the daily activity of each individual is, on
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Week # K T Ns 〈s〉 S NS NU NI C

10 646 4341 22 10.3 27 1 27 27 62

11 554 4414 15 9.1 29 1 29 29 54

12 105 307 11 4.1 13 1 13 13 22

13 772 8322 16 10.6 36 1 36 36 59

14 815 6481 20 12.7 27 1 27 27 62

15 1485 22096 23 23.7 44 1 44 44 67

16 1022 9033 22 16.5 29 1 29 29 70

17 1284 15572 19 22.3 38 1 38 38 67

18 1417 18430 16 20.7 44 1 44 44 67

19 1106 13531 13 20.9 38 2 42 34 60

Table 6.1: Structural properties of the affine graph corresponding to the temporal

graph of the first 24 hours of the week (Monday), for each week of the Fall term:

number of links (K), number of triangles (T ), number of maximal cliques (Ns),

average size of maximal cliques (〈s〉), size of the largest maximal clique (S), number

of largest maximal cliques (NS), number of nodes in the union (NU) and in the

intersection (NI) of all largest maximal cliques. The size of the giant component of

the corresponding static aggregate graph (C) is reported in the rightmost column.

average, almost periodic, in a particular day we can observe a peculiar temporal

pattern of connections, for instance because some students decide to skip a class

or because the lessons are suspended for public holidays. In particular, this is

exactly what happens on week 12. Monday of week 12 is September 11th 2004,

and corresponds to the Patriot Day, a national holiday introduced in the US in

October 2001, designated in memory of the 2977 killed in the September 11th, 2001

attacks. Therefore, we observe the minimum connectivity and the minimum number

of triangles on week 12, because all teaching activities were suspended, and students

did not participate to lessons as usual. In addition, the number Ns and the average

size 〈s〉 of maximal cliques of the affine graphs change from one week to another.

In particular, during weeks 10 to 14 we observe relative smaller values of Ns and

〈s〉 than in weeks 15 to 19, which is probably due to the relatively lower number

of links and triangles. Conversely, if we consider the size S of the largest strongly

connected component (i.e. the largest maximal-clique of the affine graph), we notice

that it is not strongly correlated with K and T . For instance, the size of the largest
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strongly connected component found at week 11 (S = 29) is equal to that observed

at week 16. However, at week 11 the affine graph has a much smaller number of

links and triangles than at week 16. Moreover, on Monday of week 14 we have a

maximal-clique of size 27, even if the number of links and triangles is higher than

on Monday of week 11. These results confirm that the size of the largest strongly

connected component of a temporal graph is mainly due to the actual configuration

of links and triangles of the corresponding affine graph, and not only to their relative

number. We notice also that every affine graph reported in Table 6.1 admits a single

LSCCT , except at week 19 where two LSCCT s of size S = 38 emerge. For this reason

we also looked at the number of nodes NU which participate to at least one LSCCT ,

and at the number NI of nodes which participate to all LSCCT s. These numbers

correspond, respectively, to the number of nodes found in the union and in the

intersection of all LSCCT s. An interesting result is that NI = 34 on week 19, so

that 34 nodes participate to both maximal 42-node cliques. These 34 nodes play

a very important role in the structure of the network. If we remove just one of

them, then the resulting affine graph does not have a clique of size 42 any more,

and consequently the size of the LSCCT of the remaining temporal graph is smaller

than 42. At the same time, removing all these NI nodes will cause a significant

reduction in the size of LSCCT s, in the number of triangles of the affine graph and,

consequently, in the number of SCCT s. The nodes that participate in at least one

LSCCT are important in the diffusion of information throughout temporal graphs.

In fact, it is sufficient to pass a message to one of the nodes in a LSCCT early in the

morning, to assure that at least NU nodes will receive the message before the end

of the day.

Finally, in the rightmost column of Table 6.1 we report the size C of the giant com-

ponent of the corresponding static aggregate graph. Notice that for any of the ten

weeks under consideration, the value of C is much larger than S, as a consequence

of the fact that the static representation of the temporal graph systematically over-

estimates node connectedness and paths availability. In panel (a) of Figure 6.4 we

plot the value of S and C for each Monday of the Fall term. We notice that both C

and S are able to capture the anomalous behaviour at Monday of week 12 (Patriot

Day). If we focus our attention on the period from week 13 to week 19, the size of

the giant connected component of the aggregate static graph is in the range [59, 70],

while the size of the LSCCT of the temporal graphs in the same interval exhibits
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Figure 6.4: Panel a): size of the LSCCT of the temporal graph on Monday (red

circles) and of the giant component of the corresponding static aggregate graph (blue

squares). Panel b): the same as panel a) but for the temporal graph corresponding

to the whole week.

wider fluctuations between S = 27 (week 14) and S = 44 (week 15 and week 18).

This variability is due to the intrinsic fluctuations observed in human contact net-

works. For instance, some of the students that attended a given class on Monday

of week 13, might have decided to remain at home on week 14, and this eventually

had an impact on the availability of links and paths, producing smaller strongly

connected components. This intrinsic variability is somehow flattened down if we

use the standard static component analysis and compute the largest connected com-

ponent of a static graph that aggregates all the links of one day. Furthermore, we

notice the lack of correlation between C and S. (the linear correlation coefficient
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Week # K T Ns 〈s〉 S NS NU NI C

10 2200 45428 10 44.0 61 1 61 61 69

11 2506 54500 12 46.8 64 1 64 64 75

12 2598 57913 12 43.5 66 1 66 66 77

13 2965 71561 9 62.5 69 1 69 69 79

14 2590 56826 15 39.3 64 1 64 64 79

15 3321 85348 9 54.7 74 1 74 74 85

16 2927 69452 9 53.2 70 1 70 70 80

17 2802 66247 10 57.9 69 1 69 69 77

18 2298 47429 12 40.0 61 2 62 60 73

19 2966 70963 13 53.8 69 3 72 68 81

Table 6.2: Structural properties of the affine graph corresponding to the temporal

graph of the whole week, for each week of the Fall term. Legend as in Table 6.1.

between C and S from week 13 to week 19 is equal to r = 0.12). For instance, at

Monday of week 16 we observe the maximum value of C, namely C = 70, while the

temporal graph has a largest strongly connected component of size S = 29, which

is relatively small compared to the other weeks. Conversely, at Monday of week 13

we observe a relatively small giant component, with C = 59 nodes, while the size of

the largest strongly connected component is S = 36.

In order to show the results of our analysis when applied at a larger temporal scale

(weeks instead of days), we have reported in Table 6.2 the structural properties of

the affine graphs constructed from the contacts observed during a whole week. As in

Table 6.1, we compare the 10 weeks in the Fall term. We observe a variance in the

number of links and triangles: K is in the range [2200, 3321] and T is in the range

[45428, 85348], and still there is no appreciable correlation between the average size

〈s〉 of SCCT s and K or T . If we look at panel (b) of Figure 6.4, where we report S

and C for the temporal graph corresponding to the whole week, we notice that the

size of the LSCCT at each week is still lower than the size of the giant component

of the corresponding aggregate graph. Differently from the case of single days, at a

scale of the entire week we observe a clear correlation between S and C. The linear

correlation coefficient between C and S, from week 10 to week 19, is now equal to

r = 0.89. These results confirm that the number and size of strongly connected

components in temporal graphs depend on the length of the period during which we



144 6.3. APPLICATION TO A REAL NETWORK

observe the system. In our system at the scale of a week, almost all the nodes are

in the largest strongly connected component because longer temporal paths appear,

so that the affine graphs at different weeks are more similar to each other and

the information extracted from a temporal analysis is similar to that obtained by

plotting static measures on aggregated graphs as function of time. On the contrary,

at the scale of a day, our system has affine graphs that are disconnected or similar

to trees, with very few triangles and relatively small cliques. In this case, as shown

in Figure 6.4, a temporal component analysis of temporal graphs reveals interesting

details about the dynamics of contacts, which cannot be detected by a static graph

analysis.
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Figure 6.5: Size of the largest strongly connected component of the temporal graph

(lines with filled symbols) and size of the giant component of the corresponding

static aggregate graph (lines with empty symbols). The black lines with squares

correspond to week 13, while red lines with circles correspond to week 16. Large

ticks on the x-axis indicate 12:00pm of each day.

Finally, in Figure 6.5 we show the temporal evolution of S and C during the week.

In particular, we compare week 13 and week 16. A point of the plot at time t is

obtained by considering the temporal graph constructed from the events occurred

in the interval [0, t], where t = 0 corresponds to Monday at 00:00. For each of these

temporal graphs we construct the corresponding affine graph to compute S(t), and

then we consider the static aggregate graph to obtain C(t). We observe that S(t)

is always smaller than C(t), ∀t. In particular, until Tuesday at midnight the size

of the largest strongly connected component in week 16 is around S = 30, which
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is less than 50% of the size reached on Sunday. Moreover, at Wednesday midnight

the maximal-clique contains S = 54 nodes, and the size continues to grow until the

end of the week. Conversely, the size of the giant component of the corresponding

aggregate graph on Tuesday at midnight is C = 73, which is more than twice larger

than the largest strongly connected component at the same time and corresponds

to 90% of the size of the giant component at the end of the week. On Friday at

midnight, the size of the giant component has already reached its maximal value,

and does not change any more until the end of Sunday. Notice that the temporal

evolution of the size of the giant component over the week looks similar in the two

cases, while we observe interesting differences in the temporal evolution of the size

of largest strongly connected component. In fact, the size of the LSCCT at the end

of Monday of week 13 is S = 36, while at the same time the size of LSCCT for week

16 is S = 29. This indicates that during Monday of week 13 there was a higher

number of contacts than during Monday of week 16. On the contrary, at the end of

Tuesday the size of LSCCT of week 13 is S = 48, which is smaller than the value

observed at the same time in week 16, i.e. S = 54. All these variations, which

are due to the temporal correlation and fluctuations in the individuals’ connection

patterns, disappear in an aggregate static representation.

6.4 Related Work

The notion of reachability in a graph taking into account time has been studied

in the past. Holme [Hol05] studied the reachability between pairs of nodes through

time-respecting paths in time-stamped email and a online dating message exchanges

and found that these graphs were highly disconnected; however, this study did not

focus on connected components and hence does not capture the reachability between

a set of nodes. Similar to our affine graph construction, Moody [Moo02] constructed

a static reachability graph from a time-stamped graph to study possible communi-

cation channels between nodes; however, this was only for one-way, unreciprocated

temporal paths. This loosely corresponding to our notion of a temporally weak

connected component; however, as we have discussed, due to temporal directional-

ity, a temporal path from A to B does not imply that a temporal path from B to

A is possible. Furthermore, by ignoring the temporal directionality of paths in a
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weakly connected component, the reachability between a pair of nodes is overesti-

mated. Instead, our study quantifies the “islands” of communications between a set

of nodes in reciprocated, two-way time-respecting paths and, consequently, uncov-

ers the computational complexities associated with calculating strongly connected

components in temporal graphs.

Within computer science, the notion of connectedness is inherent in opportunistic

and delay-tolerant networking, where connectivity between mobile devices is highly

intermittent [JFP04]. This makes communication between devices more challenging

since such time-varying connectivity requires more sophisticated message forwarding

protocols. Previously (Section 4.3), we have discussed two such protocols based on

social network analysis, namely BubbleRap and SimBet, however, such studies have

not quantified the connectedness of nodes in a time-varying network due to the

lack of a formal model for time-varying networks. Using temporal graphs, we have

formalised the reachability between nodes in a temporal graph in terms of the well

studied concept of connected components. Through this, future work could apply

this formalisation to understand the performance upper limits and quality-of-service

guarantees which can be made in such message delivery protocols taking into account

the connectedness of the network over time.

6.5 Conclusions

Conventional definitions of connectedness and components proposed so far have only

considered aggregated, static topologies, neglecting important temporal information

such as time order, duration and frequency of links. In this chapter, we have ex-

tended the concepts of connectedness to the case of temporal graph, and we have

introduced definitions of node and graph components which take into account times

of appearance and temporal correlations of links. The proposed temporal measures

are able to capture variations and fluctuations in the linking patterns, typical of

many real social and biological systems; this was not captured by static compo-

nent analysis. As a first application we have studied a dataset of human contacts,

showing that variations in the pattern of connections among nodes produce relevant

differences in the size and number of temporal strongly connected components. We

pointed out the important role played by nodes that belong to many strongly con-
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nected components at the same time, and we have analysed how temporal strongly

connected components evolve over time. We hope that our formalism could find

useful to study other empirically collected temporal networks and to better charac-

terise dynamical processes, which take place on these networks, such as diffusion of

information and spreading of diseases. In addition, the robustness of real networks

to attack could be better characterised through the study of temporally connected

components and would be an interesting direction for future work.



7
Summary and Outlook

Real networks inherently exhibit rich temporal information and only recently has

the technology to collect temporal data and computational power to process such

data been available to researchers.

Returning to our original thesis, we have demonstrated that this extra temporal in-

formation is important for the analysis of information dissemination in real networks.

We first identified four important pieces of time information, namely timestamps,

duration, frequency and time order of links, however we have found that the most

important detail is that of time order. Next, we studied the fundamental measure

of shortest paths in networks and found that, since static aggregated graphs ignore

time order, the available links are over estimated and the true shortest path length is

underestimated. This led us to find important consequences in the accurate identi-

fication of important nodes in a network, which play a role in information spreading

and information mediation. Also, since we have considered sliding time points in

these real networks we have noticed patterns in correlations over time which was

instrumental in conceiving a technique for predicting key information spreaders to

148
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eliminate the need for knowledge of future contacts. Finally, the study of time order

in real networks enlightened our study of temporal directionality in the study of

reachability and connectedness in real networks.

We also remarked on the generality of the techniques proposed in this dissertation.

Although we have been limited to the availability and suitability of empirical net-

works datasets to certain studies, the techniques studies in this thesis have been

purposefully selected for their applicability to a range of different disciplines and

networks; this is informed by their range of uses in current static network analysis.

However, due to the wealth of tools and techniques available to researchers who

wish to uncover important properties of real networks, we have focussed on metrics

related to information dissemination.

My experience during this thesis has successfully followed the following recipe, select

a static graph metric, redefine using temporal information and evaluate on a real

network. Indeed this recipe also informs the wide possibilities for future work.

Firstly, in this on going project, we wish to widen our study to other topics in

static network analysis, for example in examining whether power law degree distri-

butions still hold over time; if temporal motifs can aid in predicting future links;

and reformalising the notion of node similarity taking into account time.

Secondly, the study of complex interactions between nodes over time requires manual

analysis and this is aided by visualisations. We have introduced some novel visuali-

sations that help capture certain aspects of node contacts, for example, Figure 4.8

helped us understand the robustness of real temporal networks due to many alterna-

tive paths that a (malicious) message can propagate. We believe that a substantial

contribution can be made through the design of static (2- and 3- dimensional) and

interactive visualisation tools.

Thirdly, our applications have been limited to the currently available empirical net-

work datasets. With our understanding of the importance of time-order, this would

focus future efforts in collecting network data. This also leads us in to the range

of applications which could be studied using these techniques. For example, in the

study of DTN and opportunistic networks, we can formally measure the information

dissemination properties of a time varying mobility model or mobility trace; rather

than proposing new routing algorithms, perhaps there are more fundamental prop-

erties of the underlying link sequence and network topology which are important for
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information dissemination. For instance, our preliminary studies into the relation-

ship between random and periodic mobility suggest that mixing mobility models is

detrimental for information dissemination [TZLM10]. We also envisage applications

in targeted marketing in evolving online social networks, identifying suspicious ac-

tivity over time and the effects of a spreading process on the underlying network

topology.

All in all, this thesis has made a substantial step in addressing the natural initial

inquisition of any researchers into the advantages of extra temporal information in

the study of real networks and, in doing so, opened the door to a vast range of future

possibilities in the study of real time-varying networks.
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