
CHERI: A Hybrid Capability-System Architecture for
Scalable Software Compartmentalization

Robert N. M. Watson∗, Jonathan Woodruff∗, Peter G. Neumann†, Simon W. Moore∗, Jonathan Anderson‡,
David Chisnall∗, Nirav Dave†, Brooks Davis†, Khilan Gudka∗, Ben Laurie§, Steven J. Murdoch¶,

Robert Norton∗, Michael Roe∗, Stacey Son∗, Munraj Vadera∗
∗University of Cambridge, †SRI International, ‡Memorial University, §Google UK Ltd., ¶University College London

Abstract—CHERI extends a conventional RISC Instruction-
Set Architecture, compiler, and operating system to support
fine-grained, capability-based memory protection to mitigate
memory-related vulnerabilities in C-language TCBs. We describe
how CHERI capabilities can also underpin a hardware-software
object-capability model for application compartmentalization
that can mitigate broader classes of attack. Prototyped as an
extension to the open-source 64-bit BERI RISC FPGA soft-
core processor, FreeBSD operating system, and LLVM compiler,
we demonstrate multiple orders-of-magnitude improvement in
scalability, simplified programmability, and resulting tangible
security benefits as compared to compartmentalization based on
pure Memory-Management Unit (MMU) designs. We evaluate
incrementally deployable CHERI-based compartmentalization
using several real-world UNIX libraries and applications.

I. INTRODUCTION

Vulnerability mitigation is a key tenet of contemporary
computer-system design. Deployed systems commonly em-
ploy two approaches: exploit mitigation (which targets attack-
vector characteristics such as remote code injection [46]), and
software compartmentalization (which limits privileges and
further attack surfaces available to attackers [25], [41], [27],
[53]). Exploit mitigation relies on knowledge of specific attack
vectors and avoids application-level source-code modification;
for example, stack canaries transparently detect attempts to
overwrite return addresses. However, these techniques are
often probabilistic and subject to an arms race as attack and
defense co-evolve. In contrast, compartmentalization requires
structural changes to programs: applications are decomposed
into isolated components that are granted selected access to
system and application resources, limiting the rights leaked to
attackers. Unlike exploit mitigation, compartmentalization can
provide protection against yet unknown exploit techniques. The
two approaches are complementary and often used together
– e.g., OpenSSH [41] and Chromium [42] are frequently
compiled with both stack protection and sandboxing.

Unfortunately, these techniques must be retrofitted onto
consensus hardware and software models that deemphasize
security. This imposes detrimental performance, additional
complexity, and programmability problems as stronger protec-
tion is layered over weaker substrates. This tendency is clearest
at the lowest levels of the stack: widely used CPUs provide
little support for fine-grained memory protection, and exhibit
poor compartmentalization scalability. As a result, countless
research papers explore ways to reintroduce omitted protection
features through program transformation. There is little recent
work in the area of hardware-software approaches, despite
a pressing need for vulnerability mitigation in C-language
Trusted Computing Bases (TCBs) such as language runtimes
and web browsers, which are neither easily proven correct nor
easily replaced with type-safe alternatives.

In prior papers, we have described Capability Hardware
Enhanced RISC Instructions (CHERI), a set of incrementally
adoptable architectural extensions for scalable, in-address-
space memory protection that mitigates exploits via a hybrid
capability-system model [54], [57], [15]. CHERI supplements
the conventional Memory Management Unit (MMU) support-
ing virtual-memory-based processes with a capability copro-
cessor to implement fine-grained, compiler-directed memory
protection. In this paper, we describe how CHERI can also
act as the foundation for an object-capability model able
to support orders of magnitude greater compartmentalization
performance, and hence granularity, than current designs.

As with MMU-based systems, CHERI can enforce strong
isolation and controlled memory sharing, two prerequisites
for compartmentalization, albeit with markedly different scal-
ability and programming properties. We use capabilities to
build a hardware-software domain-transition mechanism and
programming model suitable for safe communication between
mutually distrusting software. We extend our CHERI ISA and
processor prototype with sealed capabilities and hardware-
accelerated object invocation, and extend the CHERI software
stack (LLVM compiler [30] and FreeBSD OS [33]) with a
domain-transition calling convention and a userspace object-
capability model. While our approach learns from prior capa-
bility systems, such as HYDRA [58] and the M-Machine [13],
our focus is on hybridization: how to incrementally deploy
CHERI within current C-language TCBs with source-code
and binary compatibility. We have targeted the most security-
critical TCBs (e.g., privileged software) and also the most vul-
nerable (e.g., compression libraries) while avoiding disruption
to the remainder of the software stack. In this paper, we:

• Describe a novel hardware-software capability-system
architecture supporting incrementally adoptable, fine-
grained compartmentalization for C-language TCBs.

• Explore the architecture’s practical implications through
a fully functional hardware-software prototype based on
a 64-bit FPGA soft-core RISC processor, compiler, OS,
and example applications. (To facilitate reproducibility,
we have open-sourced our hardware and software.)

• Demonstrate an effective and incrementally adoptable
hybrid MMU-capability model for compartmentalization,
clean composition with OS features such as virtual mem-
ory, C-language object capabilities, library compartmen-
talization, and an orders-of-magnitude performance gain.

• Evaluate the security, complexity, programmability, and
performance impacts of the approach, paying particular
attention to compatibility concerns that have not been the
subject of prior capability-system research.

Throughout, we consider tradeoffs in the hardware-
software design space, and their impact on software structure.

‘Hybrid’ code uses RISC pointers or source-code annotated CHERI capabilities
‘Legacy’ code compiled against a RISC ISA

Per-address-space memory-management and capability executive
‘Pure-capability’ code uses CHERI capabilities for all C pointers

FreeBSD kernel
+ CHERI support for userspace capabilities

Hybrid Netsurf links
against legacy and

pure-capability code

Hypervisor / Separation Kernel
+ CHERI support for guest capabilities

Capability-based
single-address-space
OS and applications

Address-space executive Address-space executive

Address-space executive

Legacy Fetch uses
pure-capability zlib
via an ABI wrapper

Address-space executive

Pure-capability
Fetch can still use

legacy code in
compartments

FreeBSD kernel

Hypervisor / Separation KernelM
M

U
-b

as
ed

 v
irt

ua
l a

dd
re

ss
 sp

ac
es

Fetch command-line
HTTP client

zlib

Netsurf
web browser

MMU-based OSes Hybrid capability/MMU OSes Pure capability OSes

libpng

Capability-based
unikernel OS +

applications

Address-space executive

CHERI CPUCHERI CPU CHERI CPU

libssl libssllibssl libssl

Regular linkage
Compartment boundary

zlibzlib libpnglibpng zlibzlib class1
libssl

class2

libssllibssl class1 class2

class3

ABI wrapper ABI wrapper
ABI wrapper

M
M

U
-based virtual address spaces

Fig. 1. While the CHERI ISA can support a spectrum of hardware-software architectures, from conventional MMU-based virtualization and OS process models
to single address-space capability systems, we focus on hybridization opportunities that allow elements of both approaches to be combined.

II. APPROACH

The CHERI hardware-software architecture enhances vul-
nerability mitigation through two capability-based techniques
aimed at user-level C-language TCBs:

• Memory capabilities, described in prior papers, are
implemented by the ISA [57] and compiler [15], provid-
ing an incrementally deployable replacement for pointers
within address spaces, mitigating memory-based exploits.

• Object capabilities, the focus of this paper, are im-
plemented by the operating system over the memory-
capability foundation, providing scalable, and likewise
incrementally adoptable, software compartmentalization.

Capability systems are hardware, software, or distributed
systems designed to implement the principle of least privi-
lege [17], [43]. Capabilities are unforgeable tokens of authority
granting rights to objects in the system; they can be selectively
delegated between constrained programs to enforce security
policies. While pure capability systems allow access to objects
only via capabilities, CHERI is a hybrid capability system
that relaxes this restriction, providing greater compatibility
with existing programs that rely on the assumption of ambient
authority: the ability to access arbitrary system objects [53].
CHERI also learns from object-capability systems (e.g., [40])
that blend object-oriented OS or programming-language facil-
ities with capabilities to protect application-defined objects.
Encapsulation and interposition then allow programmers to
express a range of security policies [58], [35].

Unlike many historic “pure” hardware capability sys-
tems [31], CHERI’s hybrid capability-system architecture re-
tains a conventional MMU. This allows a broad range of soft-
ware models to be implemented, as illustrated in Figure 1. This
includes virtual-memory-based OSes such as UNIX, single-
address-space capability systems, and most interestingly, hy-
bridized systems that combine elements of both approaches.
While CHERI-supported techniques would work equally well
within an OS kernel (e.g., to implement microkernels [2]), we
choose to focus on application compartmentalization due to
the large number of lines of code and the key role that user-
level TCBs play in attacker entry into systems. Prior work on
compartmentalization has assumed that software authors are
the well-meaning victims of poor C-language safety, leading
to endemic vulnerability in the presence of malicious data –
and, in effect, injection of arbitrary malicious code at runtime.

Capsicum logical applicationConventional UNIX process

Kernel

main loop

vulnerable
compression

logic

Kernel

Process with
ambient authority

Capability-mode process

main loop

Selected rights delegated to
sandbox via capabilities

vulnerable
compression

logic

Fig. 2. Software compartmentalization decomposes applications into isolated
components, limiting rights leaked to successful attackers.

We accept this adversary model, but observe that modest
extensions to the CheriBSD class loader would also allow it
to tolerate a malicious software supply chain. We begin by
briefly introducing capability-based compartmentalization and
the CHERI ISA.

Capability-system concepts have proved useful in imple-
menting software compartmentalization (a.k.a. privilege sep-
aration), the mitigation of vulnerabilities by decomposing
applications into isolated components – each granted only
the rights it requires to operate [25], [41], [27]. Figure 2
illustrates how OS-based compartmentalization can mitigate
vulnerabilities: by executing gzip compression in a sandbox
delegated only capabilities for files being read from and written
to, a successful remote-code exploit for a zlib vulnerability
gains only limited rights to the system as a whole. Com-
partmentalization granularity describes the degree of program
decomposition. Fine-grained compartmentalization improves
mitigation by virtue of the principle of least privilege: attackers
must exploit more vulnerabilities to accomplish rights in the
target system.

Compartmentalization at the application layer requires a
combination of properties encompassing separation of func-
tionality between different applications and certain properties
within each application (such as modular abstraction with
encapsulation and information hiding, separation of privileges,
and least privilege), in addition to lower-layer hardware and
OS integrity properties that ensure noncompromise of the
applications. The overall goal of compartmentalization is to
effectively limit functionality and delimit attack surfaces avail-
able to attackers, even after seemingly successful exploits.
CHERI’s improvements to programmability and performance

facilitate not only easier deployment of compartmentalization,
but also greater practical granularity, improving resilience
against attackers.

Capability-based software compartmentalization is typi-
cally implemented via two substrates: OS-based systems such
as HYDRA [58], EROS [45], SeL4 [28], and Capsicum [53];
and language-based systems such as E [35], Joe-E [34],
and Caja [36]. In both, the underlying substrate provides
unforgeable capabilities (file descriptors, communication ports,
or language object references), and constraints to prevent
bypass of the capability mechanism (e.g., the virtual-memory
process model combined with Capsicum’s capability mode or
Joe-E’s statically checkable language subset). Finally, some
form of escalation mechanism is required – object-capability
invocation – to allow protected subsystems to interact while
holding distinct sets of rights (e.g., IPC or language-level
object encapsulation). CHERI learns from these approaches,
adopting ideas about hybridization and OS integration from
Capsicum, and ideas about the role of the execution substrate
and object orientation from language-based techniques.

The CHERI ISA follows the theme of hybridization to
enable incremental adoption by extending a conventional RISC
ISA with a capability model to support fine-grained memory
protection [54]. CHERI subscribes to the RISC philosophy:
instructions are primitives for the compiler rather than the pro-
grammer and microcode is eschewed in favor of OS exception
handlers. Described in detail in Section IV, CHERI adds capa-
bility registers with instructions for safe manipulation and use
as pointers. Capability integrity is protected even in memory
using tags. CHERI capability registers describe all regions of
the virtual address space accessible to the current thread in
much the same way that conventional general-purpose registers
contain a working set of pointers. Indeed, CHERI capabilities
are designed to represent C-language pointers [15], adopting
ideas from the fat-pointer literature to provide adequate expres-
siveness [23], [39], [18], [29]. With virtual memory delegated
as capabilities, each user process on a CHERI system can be
considered its own virtual capability machine.

In prior work, we have described how CHERI can support
strong but incrementally deployable memory protection with
the C programming language [57], [15]. This paper builds on
that approach by describing how CHERI memory protection
can also be used as the foundation for an object-capability
model for use in fine-grained software compartmentalization,
protecting application-layer constructs and able to express
mature policies concerning control and information flow. The
clean separation of policy and mechanism in object-capability
systems aligns elegantly with the RISC philosophy: with fine-
grained protection “fast paths” implemented in hardware, pol-
icy definition can be left to the OS, compiler, and application.
The resulting hardware-software security model can efficiently
implement diverse security policies including hierarchical
models (such as sandboxing) and non-hierarchical models
(such as communicating but mutually distrusting components).

Evaluating fresh hardware-software approaches is challeng-
ing due to the difficulty in establishing baselines and imple-
mentation cost for prototypes. To enable a natural baseline, the
CHERI processor prototype extends BERI, our FPGA imple-
mentation of the classic 64-bit MIPS ISA [20], which runs a
range of off-the-shelf, open-source software. We have extended
the LLVM compiler [30], FreeBSD OS [33], and several ap-

plications to support fine-grained compartmentalization. This
allows us to perform side-by-side comparisons, demonstrating
performance, security, complexity, and programmability im-
provements over conventional designs.

The CHERI approach is not without limitations. An ISA-
level approach that promotes finer-grained compartmental-
ization and greater intercommunication is dependent on the
hardware substrate to provide strong isolation; however, there
is a copious literature on processor side channels (e.g., via
shared caches [50]). Our approach also places further de-
pendence on C-language TCBs, including on the compiler
to implement protection choices that directly affect security.
Past vulnerabilities in language TCBs have been substantial
(e.g., vulnerabilities in Java Virtual Machines), and must be
considered for our model as well: errors in compilers, low-level
memory allocators, parsing of object files, garbage collectors,
and so on, are pertinent. We have attempted to mitigate these
concerns through formal modeling of the ISA and software
TCBs, and through minimizing the software footprint required
to implement isolation.

III. THE CHERI SYSTEM ARCHITECTURE

Our primary goal with CHERI is to extend MMU-based
designs with primitives suitable for architecturally clean, ex-
pressive, and scalable application compartmentalization for C-
language TCBs. Target applications include data-processing
libraries, system services, command-line tools, programming-
language runtimes, and complex TCB-like applications such
as web browsers. To be most effective, CHERI must provide:

Unified protection that is able to serve complex software
stacks such as web browsers that incorporate many libraries
and components. This enables clean and safe system compo-
sition, and facilitates reasoning about total-system security.

MMU-based designs have fixed numbers of rings and
support a multi-process compartmentalization model that has
proven programmer-unfriendly. CHERI supports efficient, syn-
chronous domain switching modeled on function invocation
rather than asynchronous inter-process message passing. This
enables the obvious compartmentalization strategy to “cut”
applications at function-call boundaries (e.g., library APIs).

C-compatible protection that offers a convenient mapping
from C-language constructs (e.g., pointers and structures) and
requires as few changes as possible to TCB source code.

MMU-based systems implement isolation through multi-
ple virtual address spaces, which complicates the program-
ming model and provides only page-granularity protection. C-
language constructs such as the stack and data structures are
rarely integer multiples of page size or page aligned, but are
frequently the linchpin for exploit techniques. CHERI provides
fine-grained (byte-granularity) memory protection suitable for
use by the compiler in securing these structures, and allows
compartmentalization within a single address space.

Scalable protection that supports large numbers of com-
partments with continuous interaction and data sharing.

As numbers of compartments and domain transitions grow,
MMU-based techniques scale poorly due to limited Translation
Lookaside Buffer (TLB) resources, TLB aliasing from sharing,
page granularity, and IPC overhead. CHERI deconflates virtu-
alization from protection, allowing protection granularity to

scale with reduced TLB impact. CHERI optimizes delegation
and memory sharing – especially important when targeting
latency-sensitive, high-volume intra-application interfaces.

The overall CHERI hardware-software architecture consists
of ISA extensions with their CPU implementation, compiler
and OS support for both fine-grained memory protection and
object capabilities, and applications that utilize memory pro-
tection and compartmentalization. Collectively, these changes
improve application resilience under a broad range of known
(and, thanks to compartmentalization, as-yet undiscovered)
vulnerabilities and associated exploit techniques.

A. Instruction-Set Architecture

We have added several features to the CHERI ISA to
support compartmentalization. Each capability now includes
a sealed bit that constrains manipulation of other fields, and a
24-bit object type that allows code and data capabilities to be
atomically linked. We have also introduced a 2-bit information
flow-control model to assist with temporal safety.

B. Operating-System Kernel

Many OS designs can be mapped onto CHERI’s hy-
brid MMU-capability model. At one extreme, an unmodified
FreeBSD/MIPS boots without enabling the capability copro-
cessor. At the other, a clean-slate single-address-space OS
might use capabilities for all protection and domain man-
agement. By hybridizing these approaches, an OS can utilize
the MMU for coarse-grained inter-process separation, and the
capability model for fine-grained, intra-process protection and
compartmentalization. Our FreeBSD hybridization extensions:

• Initialize the capability coprocessor on boot.
• Maintain tags in virtual-memory operation.
• Delegate suitable initial capabilities to user threads.
• Preserve capability registers when context switching.
• Handle new protection and security exceptions.
• Implement an object-capability model.
• Prevent improper flow of capabilities between processes.
• Offer system interfaces that accept capability arguments.
• Support debugging of capabilities/tagged memory.

C. Compiler

For CHERI memory protection, the compiler generates
code that captures object bounds, pointer-integrity properties,
and control flow. For CHERI compartmentalization, the com-
piler supports a new domain-crossing calling convention. In
normal operation, modulo compiler bugs, unused values in
registers do little harm; with domain crossing, leaked registers
not only leak data, but also capabilities. The new calling
convention ensures that unused argument and return-value
registers, known only to the compiler, are cleared.

D. Object-Capability Model

The heart of CHERI compartmentalization is the object-
capability model, supported by the ISA and compiler-directed
memory protection, and implemented by the kernel and
userspace runtime. As with prior object-capability systems,
object encapsulation is the model for isolation, and object in-
vocation provides controlled communication. Capability-based
memory protection implements encapsulation, with “sealed”

references allowing objects to be referred to and invoked with-
out granting access to private state, and the kernel implements
object invocation via hardware-accelerated domain transition.

The CHERI ISA encodes a specific memory-protection
model but can support a broad range of hardware-software
security models. This is important because a variety of object-
capability semantics have been proposed, and we would like
to be able to explore many of them on a single platform. For
example, prior work has seen disagreement on synchronicity
for object-capability invocation: asynchronous primitives al-
low callers to avoid placing trust in callee termination, but
current software designs incorporate strong assumptions of
synchronicity [45]. Software could implement either model
on CHERI; however, we choose to provide a simple, syn-
chronous mechanism modeled on function calls to ease insert-
ing protection-domain boundaries into existing call graphs:

• Object-capability invocation pushes execution state from
the caller object onto a trusted stack, unseals the argument
object, and performs a secure domain transition to it.

• Object-capability return pops the caller from the trusted
stack and performs a secure domain transition back to it.

Safe transition between security domains is the joint re-
sponsibility of several “parties”: the ISA provides underlying
memory protection that ensures isolation, both between com-
partments and from the TCB; the kernel’s handlers implement
domain transition that supports both asymmetric and mutual
distrust; the compiler and application ensure that protected
state is maintained, and that only intended data and capabilities
are passed via arguments or return values.

Within each process, a userspace address-space executive,
with code spanning libc and libcheri, is responsible for
security-critical TCB functions such as memory management
and class loading. The executive configures memory protection
to implement isolation, safely allocates (and reallocates; e.g.,
via garbage collection) memory and objects, loads class code,
and passes initial capabilities for both memory and commu-
nications into new objects. Useful comparison can be made
between the address-space executive and both microkernels
and language security-model runtimes (e.g., Java). Unlike a
microkernel, the executive resides within a UNIX process;
like Java support for native code, the executive is responsible
for coordinating communication between compartments and
general OS services. Unlike the Java security model, code
injection attacks are part of the threat model, and containment
is maintained even if unexpected instructions enter execution.

IV. IMPLEMENTATION

To explore and evaluate the CHERI approach, we have
implemented a complete hardware-software prototype based
on off-the-shelf, open-source designs:

• The CHERI ISA and CHERI processor prototype
provide hardware-accelerated capability primitives able to
support efficient software compartmentalization.

• The CheriBSD kernel implements capability-based intra-
process memory protection and domain transition.

• The CHERI Clang/LLVM compiler supports a new
capability ABI and object-capability calling convention.

• CheriBSD’s userspace includes a compartmentalization
library, and classes that provide services to compartments.

063

otype (24 bits) permissions (31 bits) s

offset (64 bits)

base (64 bits)

length (64 bits)


256 bits

Fig. 3. ISA-level representation of a 256-bit CHERI capability

TABLE I. CAPABILITY INSTRUCTIONS

Instruction Description Priv. Soft.

CGetBase Get capability base
CGetOffset Get capability offset
CGetLen Get capability length
CGetTag Get capability tag
CGetPerm Get capability permissions
CToPtr Convert capability to pointer
CPtrCmp Compare two capabilities

CIncBase Increment capability base
CSetLen Set capability length
CClearTag Clear capability tag
CSetOffset Set capability offset
CFromPtr Convert pointer to capability

CSC Store capability via capability
CLC Load capability via capability
CL[BHWD][U] Load data via capability
CS[BHWD] Store data via capability
CLL[WD] Load linked data via capability
CSC[WD] Store conditional data via capability

CGetPCC Get program-counter capability
CBTU Branch if capability tag unset
CBTS Branch if capability tag set
CJR Capability jump
CJALR Capability jump and link

CGetCause Get capability cause register P
CSetCause Set capability cause register P

CGetSealed Get capability sealed bit
CGetType Get capability type
CSeal Seal capability
CUnseal Unseal capability
CCheckPerm Check capability permissions
CCheckType Check capability type
CCall Invoke object capability S
CReturn Return from object capability S

P: Privileged instruction available only to the supervisor.
S: Implemented in part or fully via an exception to the supervisor.

• Several UNIX libraries and applications utilize fine-
grained, object-capability-based compartmentalization.

A. Instruction-Set Architecture (ISA)

CHERI enhances the 64-bit MIPS ISA with compiler-
managed, capability-based, intra-address-space memory pro-
tection1. With only modest extensions, it can also support an
efficient, software-defined object-capability model. We briefly
review the CHERI ISA before describing these extensions.

CHERI defines a set of capability registers similar in
structure to fat pointers (see Figure 3). The capability register
file is accessed using capability instructions (see Table I),
which allow capabilities to be loaded and stored from memory,
to be inspected and manipulated (e.g., to get or set the length),
to be dereferenced via load and store instructions, and to be the

1 CHERI is prototyped as an extension to the 64-bit MIPS ISA, but its
concepts should apply, with localization, to any RISC ISA (e.g., ARMv8 or
RISC-V). Many surface design choices mirror MIPS (e.g., 32 registers and a
software-only stack), and would likely be made differently for other ISAs.

TABLE II. CAPABILITY PERMISSIONS

Permission Description

Permit Execute Fetch instructions
Permit Load Load data
Permit Store Store data
Permit Load Capability Load capability
Permit Store Capability Store capability
Permit Exception Access to exception registers

Global Capability has global scope
Permit Store Local Can store non-global capabilities
Permit Seal Can be used to seal objects

TABLE III. CAPABILITY REGISTERS

Register Description Priv. ISA ABI

$pcc Program-counter capability I
$ddc MIPS default data capability I
$stc Stack capability A
$c3–$c10 Argument, return capabilities A
$c11–$c16 Caller-save registers A
$c17–$c24 Callee-save registers A

$kr1c Exception-handling capability P I
$kr2c Exception-handling capability P I
$kcc Kernel code capability P I
$kdc Kernel data capability P I
$epcc Exception program-counter capability P I

$scc Sealed code capability A
$sdc Sealed data capability A
$idc Invoked data capability A

P: Privileged register available only to the supervisor. I: Defined by the Instruction-Set
Architecture (ISA). A: Defined by the Application Binary Interface (ABI).

target of jump and branch instructions. Access via a capability
is subject to a validity check on its tag, relocation relative
to its base and offset, bounds checking relative to its base
and length, and permission checking. Capability permissions
control what operations can be performed via a capability
(see Table II). Most registers are available to compiler and
OS-defined Application Binary Interfaces (ABIs), but certain
registers are reserved in the ISA (see Table III). The program-
counter capability ($pcc) extends the MIPS program counter
($pc) to constrain code execution. The default data capability
($ddc) interposes on conventional MIPS loads and stores; a
suitable $ddc can entirely disallow MIPS-ISA memory access.

CHERI capabilities are unforgeable by virtue of guarded
manipulation and tagged memory. Guarded manipulation en-
sures that instructions permit only monotonic non-increase in
rights – i.e., with respect to the memory region described,
permissions granted, and so on. Tagged memory associates a
1-bit tag with each physical memory location that can hold a
capability, indicating the presence of a valid capability. Stores
to, and loads from, capabilities in memory are atomic with
their tags, allowing safe concurrent access from multiple cores.
The set of memory locations accessible to executing code is
the transitive closure of capabilities in its capability register
file, and any further capabilities reachable through those capa-
bilities. Any capabilities held during userspace execution are
descended from those granted to the supervisor at boot, and
later from the supervisor to userspace.

Compiler-directed, fine-grained, capability-oriented mem-
ory protection within a virtual address space can serve as a
natural isolation mechanism within user processes, and hence
a foundation for compartmentalization. An object-capability
model could also be constructed using CHERI’s hybrid fea-
tures without any ISA extension: user threads with access to

(perhaps overlapping) subsets of the user address space could
invoke the software supervisor, which holds a superset of their
rights, via system calls to implement asymmetric or mutual
distrust. We choose to extend the ISA for several reasons:

• To treat object capabilities as first-class citizens in C as
we do memory capabilities – for example, by permitting
object-capability references to replace function pointers.

• To keep important programmer- and compiler-defined
paths in userspace – for example, avoiding system calls
for additional permission or type checks.

• To avoid the kernel needing to maintain parallel structures
(e.g., object registries) to implement encapsulation.

• To avoid the need to expose conventional kernel system
calls to userspace compartments; while sometimes useful,
this is antithetical to kernel attack-surface reduction.

• To allow limits on capability propagation to reduce the
cost of (and need for) garbage collection, and to avoid
temporal safety issues.

We therefore implement extensions to CHERI memory
protection: sealed capabilities with object types, instructions
for capability invocation, instructions for efficient permission
and type checking, and new permissions enforcing a simple
information flow-control policy to limit capability propagation.

1) Object Capabilities: Whereas CHERI memory capabil-
ities refer to bounded regions of memory within the virtual
address space, object capabilities refer to software-defined
objects whose invocation will trigger a protection-domain
switch. The object-capability mechanism provides encapsula-
tion, which restricts not just caller access to callee-private data,
but also callee access to caller-private data, providing a safe
foundation for mutual distrust. CHERI object capabilities are
invoked in pairs: a sealed code capability describes the code
to be executed when an object is invoked (i.e., the class), and
a sealed data capability describes its instance-specific data.

To prevent callers from manipulating the internal state of
object capabilities (which would violate encapsulation), an
object’s code and data capabilities are both sealed, indicated by
a new sealed bit in the capability. Sealed code and data capabil-
ities are differentiated by whether or not the Permit_Execute

permission is set. Sealed capabilities are entirely immutable:
any attempt to manipulate a field of a sealed capability will
throw an exception. The sealed bit also prohibits capability
dereference: sealed capabilities may not be used to load, store,
or execute instructions, providing encapsulation.

Sealed code and data capabilities are atomically linked by
a new 24-bit capability field, otype, which contains a software-
defined object type that must be identical for a pair of code
and data capabilities to be accepted for invocation. Capabilities
are sealed using the new CSeal instruction, which accepts
two capability-register arguments: the code or data memory
capability to be sealed, and a second capability with the
Permit_Seal permission set. The effective virtual address of a
capability with Permit_Seal set is treated as a type (provided
that it is smaller than 24-bits). Although this arrangement
conflates the type space and address space, we expect that
software implementations will divorce the capability type
space from the memory space through use of permissions.

2) Object-Capability Invocation: Object-capability invoca-
tion is implemented via two new instructions: CCall, which
invokes a sealed code/data-capability pair, and CReturn, which

returns to the invoking context. In order to support a wide va-
riety of software behaviors, the CHERI ISA relies on software
exception handlers to partially implement both instructions,
allowing the supervisor to implement both synchronous (“call-
return”) and asynchronous (“message passing”) semantics.

To exploit hardware parallelism, the CHERI ISA allows
certain checks (for sealing, suitable permissions, and matching
types) to be performed by CCall, with the exception vector and
exception code selected based on their results. CReturn simply
triggers a software exception handler without checks, and
may be eschewed entirely in asynchronous implementations
where CCall is effectively a message-send primitive. The
CCall and CReturn mechanisms described by the ISA are
not sufficient, in isolation, to implement secure protection-
domain transition: the software runtime (including the super-
visor, userspace runtime, and compiled code within objects)
must ensure that memory allocation and capability distribution
implement any required isolation, and that both the general-
purpose and capability register files have been flushed of
private data and rights prior to invocation or after return.

CUnseal, another new instruction, allows authorized soft-
ware to remove the sealed bit if it also holds a capability usable
to seal the type. This “escape valve” is used by the CCall ex-
ception handler to unseal the sealed code and data capabilities
passed by arguments. It can also be used by a userspace class
to unseal argument objects that are not automatically unsealed
by the invocation mechanism. The CHERI ISA itself will
never automatically unseal capabilities, avoiding potential risks
associated with unintended amplification (e.g., as could occur
in [58]). Two assertion instructions are introduced to allow
the userspace runtime to efficiently determine that argument
capabilities have desired permissions (CCheckPerm) or have
a suitable object type (CCheckType). These can be combined
with software-defined permission bits on capabilities to control
access to specific methods on the object, and to determine that
object capabilities passed as arguments have suitable types.

3) Global vs. Local Capabilities: CHERI spatial protection
does not natively prevent use-after-free or other temporal safety
violations; these are controlled by program, language, or run-
time mechanisms – e.g., software invariants or garbage collec-
tion. When executing within a single security domain, rapid
memory reuse does not constitute a vulnerability in the model.
However, when memory is passed between protection domains,
memory reuse could lead to significant temporal vulnerability.
This is particularly relevant to the C idiom of passing pointers
to on-stack data structures as function arguments.

To assist the software security model in addressing tem-
poral issues, we have extended the CHERI ISA with a 2-
bit information flow-control model that marks capabilities
as either global or local. Global capabilities, identified by
the new Global permission, may be stored via any writable
memory capability. Local capabilities, without Global set,
may be stored only via capabilities that themselves have
the new Permit Store Local permission set. The global/local
mechanism restricts only the flow of capabilities, not data.

This primitive limits the propagation of selected capa-
bilities (and their descendants via guarded manipulation) to
specified memory. In CheriBSD, stack capabilities (and hence
stack-derived capabilities) are local, heap capabilities permit
storing only global capabilities, and CCall blocks delegation

Instruction
Fetch

Register
Fetch Decode Execute Writeback

Capability Coprocessor

Instruction Cache MMU: TLB Data Cache

Memory

Memory
Access

L2 Cache

Tag Controller

Fig. 4. BERI pipeline with capability coprocessor

TABLE V. CHERIBSD KERNEL CODE CHANGES

Component Files Modified Lines Added Lines Removed

Headers 19 1424 11
CHERI initialization 2 49 4
Context management 2 392 10
Exception handling 3 574 90
Memory copying 2 122 0
Virtual memory 5 398 27
Object capabilities 2 883 0
System calls 2 76 0
Signal delivery 3 327 71
Process monitoring/debugging 3 298 0
Kernel debugger 2 264 0

of local capabilities. This in effect requires that memory
arguments to invocation (and return) be heap allocated, ex-
posing delegable memory to global non-reuse, revocation, and
garbage-collection policies – and preventing stack memory
from being passed by reference. The feature could also be
used to build more complex models, such as enforcing bounded
delegation of capabilities for the duration of an invocation.

B. CHERI Processor Prototype

The open-source BERI/CHERI FPGA soft-core proces-
sor [51] includes a capability coprocessor that implements
the CHERI ISA’s capability instructions and tagged physical
memory (see Figure 4). Only minor additions were required
to implement support for software-defined object capabilities:

• CCall and CReturn instructions trigger a new fast-path
exception vector, similar to the TLB-miss exception han-
dler, to enable an optimized protection-domain switch.

• Two capability fields: a 1-bit sealed field indicates that
a capability is sealed, and a 24-bit otype field holds a
software-managed object type.

• Hardware-defined permission bits support the local/global
information-flow policy and sealed objects.

• Instructions allow sealing, unsealing, permission check-
ing, and type checking.

With the existing capability coprocessor, the costs of these
additions were negligible in the hardware design in terms of
implementation resources in FPGA and the critical path, and
consumed only a small amount of opcode space in the ISA.

C. CheriBSD Kernel

We have extended CheriBSD, an adaptation of FreeBSD
that supports CHERI memory protection, to implement a
lightweight object-capability model for application compart-
mentalization. As our focus is on applications rather than mi-
crokernel decomposition, we minimized kernel modification,

$idc
$pcc

Trusted Stack

$idc

Object A Stack

CCall restore frame

Object B Stack

CCall restore frame

CCall

CCall

Object C Stack

(Kernel memory) (User memory)

$pcc

Fig. 5. The trusted stack records a secure return path across object invocation,
linking a set of disjoint stacks used in different protection domains.

/* ISA validation of CCall arguments. */
if ((!$scc.valid || !$sdc.valid) || !$scc.sealed ||

!$sdc.sealed) || ($scc.type != $sdc.type) ||
!($scc.perms & EXECUTE) || ($sdc.perms & EXECUTE) ||
($scc.offset >= $scc.length))

throw_exception();

/* Software exception handler. */
if (capregs.has_local_args())

throw_exception();
if (trusted_stack.full())

throw_exception();
trusted_stack.push($epcc);
trusted_stack.push($idc);
$epcc = cunseal($kcc, $scc);
$idc = cunseal($kdc, $sdc);
mipsregs.clear_nonargument();
capregs.clear_nonargument();

Fig. 6. Pseudocode for the CCall instruction and exception handler

even building the kernel with an out-of-the-box MIPS com-
piler, and relied on only a small number of lines of CHERI-
aware assembly. The CheriBSD kernel initializes the capability
coprocessor, sets up and maintains kernel and user capability
contexts, implements capability-aware virtual memory, and
now also implements object-capability invocation and return.
These changes are summarized in Table IV. Statistics on the
number of lines of code affected by these changes are sum-
marized in Table V: a negligible impact on the overall kernel
of roughly 12.6M lines. Similar changes would likely allow
FreeBSD to support other tagged-memory security models,
such as those in the CRASH-SAFE design [14].

The CheriBSD object-capability model revolves around
the notion of a per-thread trusted stack that links a chain of
disjoint, per-compartment stacks used by each object executing
in the thread, illustrated in Figure 5. The trusted stack is
initially empty, with the first thread of the first process ex-
ecuting with ambient authority (global $pcc, $ddc, and $stc).
On each invocation, CCall will push a new entry onto the
trusted stack; on each return, CReturn will pop the last entry
off. Stack frames consist of two saved capability registers:
the caller’s program-counter capability, incremented by one
instruction to return after CCall; and the caller’s invoked data
capability, which allows callers to preserve state required to
restart execution from an otherwise cleared register file. Callers
will typically point $idc at a small data structure on the caller
stack, which will save $stc, $ddc, and so on.

Figure 6 illustrates pseudocode for CCall, which must
check that the called code and data capabilities are valid
and properly sealed, and have matching types and suitable
permissions. It also checks that argument capabilities either

TABLE IV. CHERIBSD KERNEL CHANGES TO SUPPORT USERSPACE CAPABILITIES

Subsystem Description

Thread contexts Capability register-file state is maintained for both user and kernel thread contexts. Following exec(), the $ddc, $pcc, and
$stc registers of the first thread of the process are initialized to grant full access to the user virtual-address space, and the right
to perform system calls. Thread creation inherits the capability-register state of the parent thread, as is the case for general-
purpose registers. Legacy binaries never manipulate this capability state, and hence execute without modification.

Context switching As with ordinary registers, capability registers are saved when a user thread enters the kernel, or a kernel context switch occurs.
Exception handling When an exception fires, the MIPS ISA preserves $pc in $epc, installing a vector address in its place. Assembly-language

handlers use two ABI-reserved registers, $k0 and $k1. The CHERI ISA similarly preserves $pcc in $epcc; CheriBSD’s
handlers save the preempted $ddc, and install $kdc so that otherwise unmodified MIPS handlers can be used. To avoid leaked
rights, CHERI’s $kr1c and $kr2c are protected by the ISA, not just the ABI.

CHERI exceptions Exceptions may be generated when dereferencing an invalid capability, or violating guarded-manipulation rules; these are mapped
to a new SIGPROT signal, and delivered via the normal UNIX signal mechanism.

Object capabilities CheriBSD implements an object-capability scheme supporting synchronous invocation via trusted stacks that tracks each user
thread’s invocations. Software portions of invocation and return are implemented via CCall and CReturn exception handlers.

System calls The kernel rejects system calls when the executing userspace code capability does not have the software-defined
PERM_SYSCALL permission. This allows the userspace runtime to limit direct system-call accesses from untrustworthy objects.

Signal delivery Signal handlers receive capability registers via an extended register frame. Handlers execute in an ambient context on a signal
stack rather than on a borrowed stack from untrustworthy objects. Language- or runtime-specific handlers might allow sandboxed
code to catch the exception, unwind the trusted stack, or terminate the object or process.

/* Software exception handler. */
if (capregs.has_local_retval())

throw_exception();
if (!trusted_stack.empty()) {

throw_exception();
$idc = trusted_stack.pop();
$epcc = trusted_stack.pop();
mipsregs.clear_nonreturnval();
capregs.clear_nonreturnval();

Fig. 7. Pseudocode for the CReturn exception handler

either untagged or have the Global permission. It pushes the
current $pcc and $idc onto the trusted stack, and installs
unsealed versions of the new code and data capabilities in $pcc

and $idc. CCall clears any non-argument general-purpose or
capability registers; this could be done by the caller and callee,
but clearing in the TCB allows both sides to rely on it always
happening, avoiding the need to clear registers in both to
prevent leakage or accidental use of leaked data or capabilities.
In the event of an error – e.g., a data-code type-check failure
or trusted-stack overflow – the handler delivers a UNIX signal.

Figure 7 illustrates pseudocode for CReturn, which has the
simpler tasks of validating that any returned capability is global
or NULL, clearing of non-return capabilities, and popping and
restoring $pcc and $idc. Likewise, any errors are handled by
a full context switch to the kernel and signal delivery.

One further consideration is the availability of system calls
to compartmentalized user code. Many models could be used,
including a capability-based system-call ABI in which the ker-
nel enforces userspace memory protection for a capability-safe
subset of system calls (e.g., querying the time of day). In the
interests of minimalism, CheriBSD offers only a conventional
MIPS n64 ABI system-call interface, and accepts system calls
only from classes that have the software-defined User_Syscall

permission. The userspace runtime can thus deny ambient
authority associated with the open-ended system-call interface;
compartmentalized code must instead request kernel services
via system objects that constrain access. This has the further
benefit of allowing the userspace runtime to eliminate the
system-call interface from the attack surface, if desirable.

D. CHERI Clang/LLVM

Changes to the Clang/LLVM compiler to support CHERI’s
memory-protection and compartmentalization features are
summarized in Table VI. Clang changes include adding
language-level support for capabilities and eliminating assump-
tions that pointers are interchangeable with integers. LLVM
changes are split into those specific to the MIPS back end,
supporting the CHERI ISA and ABIs, and those updating
assumptions that the target-agnostic code generator and mid-
level optimizers make about pointers. Due to changes in
effective pointer size and register-file use, compiling with
capability support necessarily changes the ABI including data-
structure layout and calling convention. We define two CHERI-
aware ABIs:

• The hybrid ABI has a goal of maximum compatibility
with the MIPS n64 ABI: only specially annotated pointers
are compiled as capabilities. Code compiled against this
model can be cleanly mixed with unmodified MIPS code,
except where capabilities are explicitly used.

• The capability ABI has a goal of maximum protection:
all pointers are compiled as capabilities unless explicitly
annotated. Interoperability with MIPS code requires ABI
wrappers, typically compiled using the hybrid ABI.

The latter ABI is used primarily within objects, whereas
CheriBSD code outside of the compartmentalized environment
is compiled to the MIPS n64 ABI or hybrid ABI to provide
compatibility with existing libraries and the kernel ABI.

By default, the CHERI LLVM compiler generates code
to provide precise memory protection: capabilities are used
wherever possible to limit accidental buffer overruns, protect
pointers (including those used in control flow) from corruption
in memory, and so on. However, the underlying assumption is
one of mutual trust: callees and callers make no attempt to limit
leakage of data or capabilities between them, as they are within
the same protection domain. When crossing protection-domain
boundaries, substantially more care is required. Leaking a
capability from a caller to a callee (or vice versa) could have
serious integrity, confidentiality, and availability implications.

TABLE VI. COMPILER CODE CHANGES, EXCLUDING TESTS

Component Files Lines

Modified Total Added Removed Total

Clang front end 65 1,343 1,779 99 839,356
LLVM MIPS back end 49 134 3,232 182 53,308
LLVM target-independent 69 2,643 2,428 132 1,244,021
Total 241 3,949 10,463 535 2,136,685

load +
store +
global

Capability Register File 1

Capability Register File 2$pcc

$pcc

Class code
segmentexecute

execute

$stc load + store Stack 1
$c17

load +
global

$c20
Stack 2

load +
store

$stc

Shared data

Virtual Address Space

Fig. 8. Capability register files describe the rights of a user thread, and can
be used to implement both isolation and controlled memory sharing.

The compiler implements a new calling convention,
CHERI_CCall, used for annotated functions that can be invoked
across domains. Only the compiler, with access to the function
type, is aware of which argument and return-value registers are
used. It is therefore responsible for generating code that clears
unused argument registers in the caller context, and unused
return registers in the callee context. CCall and CReturn are
responsible for clearing all other registers.

E. CheriBSD Userspace

We have extended the CheriBSD userspace in several ways:

• libcheri loads and run-time links classes, instantiates
objects, provides common caller stub code for object
invocation, and implements the system classes.

• The system classes provide object-capability wrappers for
runtime services (e.g., heap allocation and printf()), and
for delegated OS services such as file descriptors.

• A version of the C start-up code (CSU) provides a “land-
ing pad” for classes, which handles object constructors
and callee vtable interpretation during invocation.

• libc_cheri is linked into compartmentalized code, and
provides caller stubs for system-class methods.

Code outside of the compartmentalized environment is
compiled either for the MIPS n64 ABI or the hybrid ABI.
Within the compartmentalized environment, the capability ABI
is used, compiling all pointers as capabilities. Figure 8 il-
lustrates a possible user address space set up by libcheri,
which has loaded a single class with two active objects, each
executing with its own stack, but accessing overlapping shared
data. Through appropriate delegation of capabilities initially
and at runtime, access to global state and communication
between objects is controlled by the memory protection model.

Object-capability invocation occurs via the cheri_invoke

function, which accepts two capability pointers representing
the sealed code and data capabilities, a method number, and
capability and data arguments. It bundles the current execution

state context for preservation into memory pointed to by $idc,
and then executes CCall, restoring state from $idc upon return.

libcheri prohibits use of system calls within compart-
mentalized code, requiring compartments to instead invoke
system classes. The cheri_fd system class allows file de-
scriptors to be delegated to compartments: when a method is
invoked on a cheri_fd, CCall reinstalls ambient authority for
its execution, allowing system calls such as read and write.
The file-descriptor number is embedded in the sealed data
capability of the file-descriptor object, preventing the caller
from tampering with the descriptor number.

V. APPLICATION CASE STUDIES

CHERI brings two substantial improvements to compart-
mentalization relative to process-based approaches: (1) pro-
grammability improvements stemming from a single address
space, tight C-language integration, and an object-capability
model; and (2) scalability improvements due to a hardware-
software approach that provides fast, low-latency communica-
tion, and reduced cache and TLB footprints due to reduced
dependence on virtual addressing. Both aspects support more
extensive deployment of compartmentalization, which will
contribute to more and better application decomposition, and
improve vulnerability mitigation through closer approximation
of the principle of least privilege. Our application case studies
employ (and naturally compose) a variety of compartmental-
ization design patterns:

Sandboxing employs compartments with very few dele-
gated rights, and is typically used when processing untrustwor-
thy data using less robust code (e.g., in rendering downloaded
images), or for isolating untrustworthy code (e.g., downloaded
code in a web browser) [25], [19], [35], [48], [42].

Assured pipelines employ a series of compartments linked
by communication channels to perform staged processing of
data while limiting the access of (and exposure of) compart-
ments in the chain [11]. This technique can be used to link
the interfaces of firewalls or guards via steps such as data
normalization, malware scanning, and so on.

Horizontal compartmentalization compartmentalizes mul-
tiple instances of the same processing performed on different
data instances. At its most granular, this could mean reserving
sandboxes for particular downloads or remote sites, but more
coarse-grained approaches might distribute different security
interests over a small number of sandboxes for reasons of cost
(e.g., as is done with tabs in the Chromium web browser [42]).

Vertical compartmentalization associates compartments
with particular stages in the processing of the same flow
of data, taking on a structure similar to an assured pipeline
but with fewer constraints. This might be appropriate in, for
example, compartmentalized web-page rendering: each iframe

might be encapsulated in a compartment, but with further
nested compartments being created to render nested iframes.

Temporal compartmentalization is concerned with the reuse
of objects across different consumers or instances of data. We
are concerned with both the potential impact of prior-task
residue on the integrity and availability of the current task,
and with the potential impact on confidentiality of current-
task residue available to future tasks. Limiting object reuse
mitigates both concerns, but imposes semantic cost due to loss
of state continuity, and overhead due to object re-instantiation.

Work-bounded compartmentalization limits an attacker’s
ability to prevent forward progress by exploiting control flow
bugs (e.g., by triggering an infinite loop). By limiting the
amount of work a compartment may perform per invocation,
denial-of-service attacks can be mitigated.

Library compartmentalization occurs when software li-
braries utilize compartmentalization internally, regardless of
the application model [53]. This approach can improve the
security of all applications linked against the library – e.g.,
sandboxing within zlib benefits any application that uses it.

Compartments have varying trust relationships. The sand-
boxing pattern is premised on asymmetric distrust: applications
do not trust sandboxed components, but sandboxed compo-
nents must trust the containing application. Mutual distrust is
more challenging: two components must interact to accomplish
some larger goal, while distrusting any input from the other.

MMU-based techniques implement strong isolation via
extensions to the process model (e.g., Capsicum’s capability
mode, or SELinux-restricted processes), as well as convenient
delegation of OS resources, such as files and sockets, to
compartments. However, they provide fewer tools when the
resources of interest are within the application itself – e.g., for
limiting in-application access to an in-memory database, or
in preventing an exploited HTTP vulnerability from leaking
TLS keying material for another connection. This is because
process-based techniques rely on Inter-Process Communica-
tion (IPC) for communication between compartments, forcing
use of message passing or page-granularity shared memory.
Processes and IPC also suffer poor scalability, limiting appli-
cations to extremely modest numbers of compartments (per-
haps dozens). CHERI complements process-based approaches
through stronger support for inter-domain communication.

A key design question is how the programmer will ex-
pose compartmentalization choices to the implementation. For
MMU-based designs, this is via system calls that request
multiple processes, and explicit IPC calls – often implementing
an object-capability model via message passing and shared
memory. CHERI memory protection benefits from tight lan-
guage integration: C types and memory allocation provide
fine-grained information required to set up CHERI capabilities
enforcing language-level goals. As C does not have a native
object model, we are unable to exploit this as a natural
source of object-capability information – in contrast to object-
capability work based on, for example, Java. However, we
observe that conflating protection domains and language-level
objects also has limitations: encapsulation for the purposes of
software engineering will rarely align with application security
goals, causing both to lose out. Instead, we require explicit
encapsulation of compartmentalized code in loadable classes,
with functions annotated for use as object methods. A small
amount of code must be written to provide interfaces between
the ambient environment and compartmentalized code. This
code must be carefully crafted to ensure overall security
properties are met. There is a significant literature on writing
safe object-capability software, with the thoughts of Miller [35]
and Mettler, et al., particularly relevant to CHERI [34].

Our case studies are selected explore the performance,
semantics, and relative merits of CHERI in comparison to
existing MMU-based techniques as represented by Capsicum.
They explore cases where existing compartmentalization has

limited scope because of its focus on OS-level primitives, such
as file descriptors – and where utilizing IPC-based communi-
cation would impose potentially prohibitive performance over-
heads. Concerns with compartmentalization-boundary place-
ment, ease of adaptation, and effective mitigation are common
across all applications we have compartmentalized, and lessons
from these case studies have broad applicability. Our key
questions are: Does CHERI accomplish its performance goals,
providing greater scalability? Does CHERI accomplish its
programmability goals, facilitating further compartmentaliza-
tion? Finally, are there opportunities to hybridize not just the
hardware protection models, but also OS-level and application-
level compartmentalization models, for greater overall benefit?
We believe the answer to all three of these questions to be yes.

A. zlib/gzip

The UNIX gzip compression tool, based on the zlib
library, provides a simple but powerful case study. gzip ac-
cepts a series of filename arguments, compressing the contents
of each file. As zlib has historically suffered serious secu-
rity vulnerabilities, sandboxing its compression code provides
benefit to any applications linked to it. Unfortunately, zlib’s
APIs prove unconducive: while Capsicum supports safe and
efficient delegation of OS resources, such as the file descriptors
of files being compressed by gzip, it cannot provide efficient
support for zlib’s memory-buffer APIs. While Capsicum can
support library compartmentalization, in this case – as in
many cases involving data-processing libraries, such as similar
video decompression libraries – API structure would impose
unacceptable overheads, linear on data size, due to passing byte
streams over IPC rather than simply passing pointer arguments.

CHERI, in contrast, is designed around memory delegation,
making it possible to compare application and library compart-
mentalization within a single framework. We have extended
each of zlib and gzip to utilize both Capsicum or CHERI
sandboxing to compare their compatibility and performance
properties. The modified zlib, although using capabilities
and compartmentalization internally, is ABI-compatible with
the original. zlib is typical of many compression and data-
processing libraries, including image and video CODECs: it
was written when performance was an overriding goal, but
malicious data was rare. Ideally, an affordable compartmental-
ization technology should scale to isolating the processing of
individual images, video frames, and audio samples.

B. tcpdump

tcpdump is a widely used packet analyzer that sniffs
network interfaces and parses packets to provide a human-
readable description. It is a classic example of a high-risk
network application: tcpdump requires OS privilege, and
performs C-language parsing of data received from potentially
malicious parties. It has experienced many past vulnerabilities
due to the large number of hand-crafted packet parsers.

To understand how compartmentalization affects tcpdump,
we analyzed 29 vulnerabilities from 1999 to 2015 described in
MITRE’s Common Vulnerabilities and Exposures (CVE) [47]
list. With one exception, all vulnerabilities were found in print-
ing functions. Table VII compares mitigation across sets of
vulnerabilities with common impacts for uncompartmentalized
tcpdump, tcpdump with Capsicum sandboxing as shipped in
FreeBSD, and our CHERI-compartmentalized version.

TABLE VII. SUMMARY OF tcpdump CVE VULNERABILITIES AND THEIR MITIGATION VIA COMPARTMENTALIZATION

No. of CVEs Vulnerability Type Impact

No Sandboxing Capsicum CHERI

11† Input validation Privileged process DoS-loop Sandbox process DoS-loop Sandbox object restart

10†† Buffer overflow/underflow, Privileged process code injection Sandbox process code injection Sandbox object restart
Unsafe memory copy,
Unsafe snprintf

6‡ Buffer overflow/underflow Privileged process DoS-crash/info leak Sandbox process DoS-crash/info leak Sandbox object restart/info leak
1‡‡ Input validation Privileged process DoS-stack Sandbox process DoS-stack Sandbox object restart
1‡‡‡ NULL function pointer Privileged process DoS-crash Sandbox process DoS-crash Sandbox object restart

‡2014-876{9,8},2004-0{183,184,057,055} ‡‡2003-1029 ‡‡‡2015-2155 †2005-12{81,80,79,78,67},2003-0{989,145,108,093},2000-0333,1999-1024 ††Misc: 2015-215{4,3};
Buffer overflow/underflow: 2015-0261,2014-9140,2007-1218,2002-0380,2001-1279,2000-1026; Unsafe snprintf: 2007-3798; Unsafe memory copy: 2002-1350

Previous compartmentalization of tcpdump mitigates some
of these issues: Capsicum limits access to the input file/packet
stream and output file or standard output. This substantially
constrains the effects of a successful exploit, from full root
access to a small number of privileges. However, those priv-
ileges continue to offer significant power to the attacker. An
attacker can crash tcpdump (marked DoS-crash in the table),
render it inoperative by triggering an infinite loop (DoS-
loop and DoS-stack), cause it to lose packets by triggering
excessively expensive decoding operations, gain access to prior
data observed by the tcpdump session that may remain in
memory, or even take control of execution, causing further
packet data to be obscured or suppressed. Such blinding attacks
are commonly employed in capture-the-flag events to disrupt
traffic analysis prior to deploying more powerful exploits.

CHERI memory protection gives us automatic mitigation of
vulnerabilities resulting from buffer overflows and underflows:
most unsafe accesses turn into ISA-level length exceptions,
resulting in a signal being delivered to the process. Combined
with CHERI compartmentalization, a signal resulting from an
unsafe operation within a sandbox can be gracefully handled
by the caller of the sandbox, which can then terminate or reset
the sandbox and continue parsing packets.

We have compartmentalized tcpdump’s packet-dissection
code using horizontal, vertical, temporal, and work-bounded
compartmentalization patterns. We have implemented horizon-
tal compartmentalization by adding a mode with two trivial
packet selectors, one that separates packets with local and
remote source IP addresses, and another that hashes source
IP addresses and distributes packets between a configurable
number of sandboxes. In each case, a catch-all sandbox is
created for non-IP packets. This ensures that packets from
one flow group cannot effect the processing of other packets
without first escaping the sandbox.

To reduce the impact of an attacker gaining full control
of the sandbox, we also implemented limits on packet count,
and on the time between resets of group sandboxes (temporal
compartmentalization). These limits reduce the window during
which a successful attacker can manipulate the display of
packet or protocol data (or attempt to escape the sandbox),
and the amount of exposed past data. We also implemented
vertical compartmentalization in the form of per-protocol sand-
boxes, where each layer of protocol parsing is dispatched
to another sandbox object. In a malicious environment, this
allows tcpdump to do as much work as possible for the
operator without compromising overall integrity. For example,
exploits in a higher-level protocol (such as bad ASN.1 in an

SNMP packet) cannot obscure Ethernet, IP, or UDP headers.
Finally, we defend against denial-of-service attacks involving
infinite or long-running loops by implementing a simple work-
bounded compartmentalization in which processing a packet is
timed out by setting an alarm().

Horizontal compartmentalization enables treating different
packets with different trust properties, reducing the impact of
attacks from reliably identifiable sources (e.g., remote net-
works). Vertical compartmentalization allows reliable partial
processing of packets that trigger bugs up to the layer where
the bug occurs, allowing maximum information to be derived
from malicious packets. If an attacker takes control of a
compartment without detection, temporal sandboxing limits
the the effects to a set of packets or window of time. Work-
bounded compartmentalization limits an attacker’s ability to
halt packet processing through denial of service. In the current
prototype, horizontal and vertical compartmentalization are not
composable, but could be – with a simple extension.

These compartmentalizations are sufficient to mitigate
all but two of the analyzed vulnerabilities. CVE-2003-0194
provides a mechanism for privilege escalation, and CVE-
2014-8767 allows an attacker to make arbitrary calls to
gethostbyaddr(). However, since rights need to be delegated
in order for an attack to succeed, we consider this to be a
policy rather than mechanism issue.

These features required few changes to the tcpdump code
base, and the addition of just over 1% new code. Modest
source-code rearrangement was required to allow the dissection
code to be compiled as a self-contained unit. These changes
seem likely to be accepted upstream, as they are a uncon-
troversial relocation of a dozen or so functions to different
files. Horizontal and temporal compartmentalization required
fewer than 600 lines of new code, which support for creation
and invocation of compartments, with another 150 to set up
state compartments before invoking print routines. Vertical
compartmentalization required more extensive modifications,
with each packet-dissector function being wrapped to either
call the actual dissector or invoke a method in a another
compartment. This required wrapping 108 functions with a
simple function to call the target function in the next sandbox
(if available) or in the current sandbox. The infrastructure to
declare dissectors using the cheri_ccall calling convention
is showing in Figure 9 with the implementation of the wrap-
per function shown in Figure 10. Inside the compartment,
ip_print is declared cheri_ccallee allowing it to be called
directly with only callee side register clearing overheads.

extern struct cheri_object cheri_tcpdump;
extern struct cheri_object g_next_object;
#ifdef CHERI_TCPDUMP_INTERNAL
#define CHERI_TCPDUMP_CCALL \

__attribute__((cheri_ccallee)) \
__attribute__((cheri_method_suffix("_cap"))) \
__attribute__((cheri_method_class(cheri_tcpdump)))

#else
#define CHERI_TCPDUMP_CCALL \

__attribute__((cheri_ccall)) \
__attribute__((cheri_method_suffix("_cap"))) \
__attribute__((cheri_method_class(cheri_tcpdump)))

#endif

#define ND_DECLARE(name, ...) \
void name(netdissect_options *, __VA_ARGS__); \
CHERI_TCPDUMP_CCALL \
void _##name(netdissect_options *, __VA_ARGS__)

ND_DECLARE(ip_print, const u_char *, u_int);

Fig. 9. Annotated declaration of IP packet dissector

void
ip_print(netdissect_options *ndo, const u_char *bp,

u_int length)
{

if (!CHERI_OBJECT_ISNULL(g_next_object))
_ip_print_cap(g_next_object, ndo, bp, length);

else
_ip_print(ndo, bp, length);

}

Fig. 10. Wrapper for the IP packet dissector

To allow a comparison of only the compartmentalization
cost, we produced a version of tcpdump where we compiled
packet dissection code in pure-capability mode for memory
protection, but call the functions directly rather than imple-
menting a sandbox. We have retained Capsicum sandboxing
even in the presence of CHERI compartmentalization, as
the two techniques provide complementary benefits. Whereas
Capsicum limits access by the application to system resources,
providing protection to the OS, CHERI limits the scope of
attacker behavior within the application.

VI. PERFORMANCE

Compartmentalization scalability is a key goal of the
CHERI architecture – that is, clean scaling as the number of
both compartments and their interactions grow. Greater scal-
ability translates into the opportunity for improved resilience,
as increased compartmentalization granularity improves ap-
proximation of the principle of least privilege. To this end, we
explore CHERI scalability through a set of micro and macro
benchmarks to understand the performance characteristics of
our approach in comparison with pure MMU-based techniques.

All benchmarks were run under CheriBSD on the CHERI
processor prototype implemented on an Altera FPGA on the
Terasic DE4 board. CHERI was clocked at 100MHz, and
implemented as an in-order, single-issue, six-stage pipeline.
The processor was configured with 16KiB, direct-mapped
instruction and data caches, and a 64KiB, 4-way associative
L2 cache. It has a 144 entry TLB with 16 associative and 128
direct-mapped entries, each mapping two 4 KiB pages.

A. Micro: Capability Overheads

The CheriBSD kernel and userspace runtime both incur
new costs associated with implementing capability support

101 102 103 104 105 106 107
101

102

103

104

105

106

107

Payload size (bytes)

C
os

t
pe

r
ite

ra
tio

n
(c

yc
le

s) Pipe Pipe + SHM
CHERI Function Call

101 102 103 104 105 106 107

0

0.2

0.4

0.6

0.8

1

·105

Payload size (bytes)O
ve

rh
ea

d
vs

.f
un

ct
io

n
ca

ll
(1
0
5

cy
cl

es
)

Pipe
Pipe + SHM
CHERI

Fig. 11. Micro-benchmark for function call, CHERI CCall/CReturn, pipe
RPC, and pipe RPC with shared memory for payload. First graph: log-log
scale. Error bars show standard deviation. Second graph: overhead vs. function
call; log X axis and linear Y axis. Error bars show square root of sum of
standard deviations of method and baseline.

(e.g., saving and restoring larger register files); they also intro-
duce new low-level primitives (e.g., object-capability invoca-
tion) intended to provide more scalable alternatives to existing
process-based primitives. In prior work, we have explored the
baseline costs of CHERI memory protection [57]. This showed
an overall overhead of around 5-20% in the common case,
with overhead of 50-70% when memory-bandwidth limited
with pointers as an overwhelming majority of the data. In the
capability ABI, we represent all pointers with the capability
mechanism and so would expect to see this overhead added to
the cost of domain crossing.

B. Micro: Domain-Crossing Overhead

We created a C program that performs a simulated work-
load inside a sandbox using four different invocation mech-
anisms. The workload is a simple memcpy, allowing us to
measure both the cost of domain transition and the cost of
transferring data into and out of the sandbox. The memcpy call
ensures that the input buffer is read and the output buffer
is written to, simulating cache and TLB behaviors of real
workloads. The sandboxing mechanisms were as follows:

Function A normal call to a function that performs the
memcpy and returns. This provides no isolation, but gives
a baseline against which to compare other mechanisms.

CHERI We invoke a method on a libcheri object that
copies data between two buffers passed via capabilities.
libcheri uses CCall to transition between protection

domains; the compiler also generates code to clear unused
argument and return-value registers.

Pipe We fork a sandboxed process and send data to it via a
UNIX pipe. The sandbox then echos the data back again
via the pipe. This IPC model is used in most privilege-
separated applications, such as sshd.

Pipe + Shared Memory We fork a sandboxed process and
communicate with it via a pipe and shared memory. The
pipe synchronizes by sending a length argument, while
memcpy copies data via shared memory. This IPC model is
used in larger-scale compartmentalized applications (such
as between Chromium’s browser process and renderer
sandboxes) where bulk data is shared by compartments.

We also implemented the pipe and pipe + SHM cases using
a UNIX socket instead of a pipe, but found that pipes perform
better under FreeBSD due to VM optimizations to avoid data
copying; for clarity we do not include the socket cases in
our results. Figure 11 shows the cycle cost of a complete
transition into and out of the sandbox for memory copies up to
8MiB (with the arithmetic mean of 50 iterations after excluding
outliers caused by timer interrupts and start-up costs).

These results show that CHERI greatly outperforms the
other mechanisms, especially for small payload sizes. A func-
tion call with zero payload took on average 12 cycles, whereas
the equivalent libcheri invoke took 632 – an overhead of 620
cycles. Process-based sandboxing was orders of magnitude
slower at around 41,000 cycles for the pipe-only case, and
33,000 for pipe + shared memory. At larger sizes, fixed costs
are dominated by data-copying costs, and the performance
of CHERI, shared memory, and function calls approach each
other in the limit, while the pipe case remains five times slower
due to extra copies that scale with payload size.

The second graph shows how the absolute overhead scales
with data size, after subtracting the function-call baseline. For
CHERI this remains roughly constant, while pipe overhead is
proportional to the amount of data transferred: it quickly leaves
the top of the log-linear graph. Shared-memory IPC initially
incurs a high fixed overhead due to synchronization using the
pipe, then sees a further increase as the data set begins to span
multiple pages: shared memory requires twice the number of
TLB entries to map the data in both the parent and the sandbox,
causing more TLB misses.

For all but huge data sets, IPC cost dominates when using
process isolation. In CHERI, the reverse is true; the time spent
executing the memcpy dominates for sizes over about 4KiB. For
workloads with modest computation inside the sandbox, we
would expect CHERI to have acceptable overhead for even
smaller data sizes. For process-based compartmentalization,
the cost of computation inside the sandbox would have to be
significantly greater for the same amortization.

C. Micro: Object Invocation Costs

To better understand the costs of a method invocation
with libcheri, we ran the benchmark with instruction-level
tracing on our CHERI prototype, and analyzed the traces with
respect to a variety of metrics including cycle and instruction
counts. We took multiple samples, discarding runs in which
timer interrupts fired, giving us values for best case domain
transition. Table VIII shows the instruction count and average
cycle costs for different phases of CCall and CReturn.

TABLE VIII. CHERI OBJECT-CAPABILITY INVOCATION COSTS

Invocation Phase Software HW support

Inst. Cyc. Inst. Cyc.

caller: Setup call, clear unused argument regs. 22 42 22c 42c

libcheri: Save callee-save regs, push call frame 30 34 30 34

kernel: Receive trap 13 28a 13 28a

kernel: Validate CCall args. 94 94 79d 79d

kernel: Push trusted stack, unseal CCall args. 31 47 31 41
kernel: Clear non-argument registers 38 59 4b 4b

kernel: Exit kernel 7 9 7 12

sandbox: Set up sandbox 33 59a 33 59a

sandbox: memcpy (payload) 4 17 4 17
sandbox: Exit sandbox 12 16 12 16

kernel: Receive trap 13 29a 13 31a

kernel: Validate return capability 7 7 7 7
kernel: Pop trusted stack 26 41 26 41
kernel: Clear non-return registers 54 84 4b 4b

kernel: Exit kernel 7 7 7 7

libcheri: Pop call frame, restore regs. 28 58a 28 52a

caller: Back in caller 1 1 1 1

Total 420 632 321 475
a Includes overhead of hardware exception (10-15 cycles)
b Savings due to hardware clear regs instruction
c Compiler does not yet support clear regs instruction so further savings possible
d Savings due to hardware CCall validation

We observed a large cost in clearing registers (including
capabilities) that are not arguments or return values. This is
necessary to prevent leaked data or capabilities that might
allow attacks across the interface. We hypothesize that further
hardware support for clearing registers would reduce this cost.
We emulated this by replacing register clearing with no-op
instructions – four hypothetical instructions would be required
to clear both register files. We found that this directly saved
135 cycles, with further savings of 5-10 cycles likely due to
reduced instruction-cache usage.

Another large cost is validating that capability arguments
and return values conform with the CCall semantics and
information-flow policy. We prototyped hardware support for
validating the CCall arguments and obtained a modest saving
of about 15 cycles. Further optimization opportunities exist, but
this validation is specific to CheriBSD’s compartment memory
model, creating a tradeoff between generality and performance.

Other significant costs include saving and restoring callee-
save registers (12 general purpose, 11 capability), manipulat-
ing the trusted stack, trap overhead (four times for the call
and return sequence), and cache and TLB usage. We are
investigating ways to further reduce these costs by tuning
aspects of our implementation and model (e.g. the number
and size of capability registers), but for now err on the side of
generality. Nevertheless, we believe that even our unoptimized
costs represent acceptable overhead for real applications, as
shown in the following sections through macro benchmarks.

D. Macro: zlib / gzip

Conventional MMU-based compartmentalization tech-
niques (such as Capsicum) rely on the UNIX process model
to create isolated compartments, and on UNIX IPC to bridge
those compartments for the purposes of protection-domain
crossing and data sharing. These techniques introduce three
substantial costs: (1) the instantaneous overheads of process

1 2 3 4 5 6 7 8
0

10

20

30

40

File size (MB)

To
ta

l
tim

e
(s

ec
on

ds
)

Capsicum (lib)
Capsicum (app)
CHERI (lib)
CHERI (app)
Baseline

Fig. 12. Compression time for gzip with various sandboxing mechanisms

creation and destruction to instantiate and destroy compart-
ments; (2) the amortized and indirect costs of additional
virtual address spaces, such as TLB contention and kernel-
data-structure footprint on the cache; and (3) the cost of
protection-domain switching and implied copying (or MMU
operations) to pass data between compartments using IPC.

In some cases, these overheads are negligible or amortized.
For example, Capsicum allows processes to acquire access to
capabilities while operating with ambient authority, and then to
enter capability mode without creating an additional process.
For simple program structures, such as in tcpdump, Capsicum
sandboxing adds only a few extra system calls to limit future
file-I/O operations and give up ambient authority. However,
for other program structures, the cost can be substantial: e.g.,
if resources cannot be naturally delegated, such as the output
of byte streams that have been decompressed within the ap-
plication, and thus require processing in another compartment.
This leads to IPC costs linear on decompressed data size.

Using zlib and gzip as case studies, we compare two
compartmentalization strategies and two compartmentalization
technologies to understand when each is most appropriate.
The first strategy splits the application, delegating access to
I/O file descriptors into the sandbox. The second strategy
splits the library, creating a sandbox that implements all
library API calls. We implemented both using CHERI in-
process compartmentalization, and Capsicum process-based
compartmentalization, an approach representative of other OS-
based compartmentalization technologies.

Figure 12 compares the performance of these approaches.
Three results are very close to the baseline: CHERI, placing
the protection boundary in the application or library, and
Capsicum, with the boundary in the application. The latter
reproduces the results from the Capsicum paper: creating a sec-
ond process is a small, fixed cost, after which unmodified I/O
and compression operations take place. CHERI experiences a
small but measurable additional cost on each call to deflate

within zlib due to protection-domain switching overhead.
Much of this overhead is due to using memory capabilities
to represent all pointers in the sandbox – not because of the
larger cache footprint, but because zlib performs a number of
integer-to-pointer conversions on the critical path. These work
without defeating memory safety, but do defeat a number of
compiler optimizations in our current implementation.

Process-based library compartmentalization is considerably
slower than the baseline due to overheads that scale poorly
with data size: all data is read into the ambient process, sent
via IPC to the child, compressed, and returned via IPC to the
parent to be written to a file. This is extremely inefficient, but

1 16 32 48 64 80 96 112128
0

100

200

300

Number of files

To
ta

l
tim

e
(s

ec
on

ds
)

Capsicum (per-file)
Capsicum (single)
CHERI (per-file)
CHERI (single)
Baseline

Fig. 13. Sandbox creation overhead: time taken to compress varying numbers
of files of size 500,000 bytes with different zlib implementations

0 1 2 3 4 5 6 7 8 9 10

1 Frame

5 Frames

10 Frames

0.86

6.18

9.51

0.8

6.31

9.69

Total time (seconds)

CHERI Unmodified

Fig. 14. gif2png with unmodified and CHERI zlib implementations

is required to maintain current buffer-oriented library APIs.

To investigate sandbox creation costs, we modified the
two zlib compartmentalizations to use a new sandbox for
each compression context (corresponding to a file in the gzip
program). As shown in Figure 13, process-based sandboxing
for zlib sees little variation between single- and multiple-
sandbox versions. This is because the cost of sandbox creation,
while high, remains dominated by IPC cost. In the CHERI
case, there is a small constant overhead for each new sandbox,
which could be reduced through further optimization.

The advantage of library compartmentalization is that a
single investment in developer effort can provide security
gains for many applications. We demonstrated this by linking
gif2png – a simple tool for image format translation that
uses zlib indirectly via another library – to our modified
zlib. This required no code changes in the application,
and illustrates that our approach encourages code reuse in
a security context. Figure 14 compares execution times for
the unmodified and compartmentalized versions of zlib to
convert single-frame (16KB), five-frame (100KB), and ten-
frame (200KB) .gif files to .png. In gif2png, performance
is dominated by work other than the compression, and users
are unlikely to notice the library changes, which are within the
margin of error in these tests.

E. Macro: tcpdump

Three factors dominate the cost of sandbox compartmen-
talization in tcpdump: initialization, domain crossing, and
reset (for models where sandboxes are periodically reset). To
measure the practical overhead, we fed groups of 1000 packets
from a generated TCP packet capture file to tcpdump while
suppressing output, which otherwise dominates performance.
We compared a number of sandbox counts ranging from 1 to
128 for IP flow groups (for 2 to 129 total sandboxes). The
time to initialize tcpdump in each case is shown in Figure 15.
The time to process the 1000 packets is shown in Figure 16.

10 20 30 40 50 60 70 80 90 100 110 120

2

4

6

8

10

1

IP Sandboxes

Ti
m

e
to

in
iti

al
iz

e
(s

ec
on

ds
)

Fig. 15. Time to start tcpdump vs. number of IP flow-group sandboxes

10 20 30 40 50 60 70 80 90 100 110 120
4

6

8

10

1

IP Sandboxes

Ti
m

e
to

pr
oc

es
s

1k
pa

ck
et

s
(s

ec
on

ds
)

Fig. 16. Time to process 1000 packets vs. number of IP flow-group sandboxes

As expected, startup cost is linear in the number of
sandboxes. Packet-processing cost increases steeply from the
one-sandbox case to the eight-sandbox case, settling into a
pattern of very slow and roughly linear growth – roughly
a 1% growth per sandbox at a high statistical significance
explaining roughly 15.5% of variability – demonstrating the
viability of large numbers of intra-process sandboxes. At 128
sandboxes, tcpdump has mapped 1GiB of address space –
the entirety of physical memory of our platform. Further
tcpdump optimization would reduce both sandbox startup time
and the per-object memory footprint, with a primary memory
overhead being large (and mostly unused) global variables that
libcheri replicates for all tcpdump object instances.

VII. DESIGN-SPACE CONSIDERATIONS

Capability systems have a long and rich history, with many
points on the design space across hardware, operating systems,
and programming languages. CHERI adopts ideas from many
of these: hardware grounding to provide strong underlying
integrity and fast-path acceleration; a hybrid design to provide
source-code and binary compatibility with current software;
vulnerability mitigation rather than simply access control; and
a focus on programming languages rather than APIs.

Application compartmentalization drove most design
choices in CHERI: capabilities are linked to the C language,
and tagged memory allows capabilities to replace pointers
within existing data structures. This design allows capabilities
to flow easily through the system as they are propagated by
memory copies and passed implicitly as function arguments
and return values. Supervisor intervention is avoided to keep
all common capability operations, other than invocation and
return, fast. Indirection is explicitly avoided in our RISC
design: there are no segment or capability lookup tables as
found in classical hardware or microkernels.

This makes using and sharing capabilities easy, but re-
voking capabilities hard: we must instead rely on stronger

software invariants (e.g., address-space non-reuse) and tech-
niques such as information flow control and garbage collection.
Tags facilitate these goals: reliable C garbage collection is
possible on CHERI, but this means that applications requiring
frequent synchronous revocation, not just frequent sharing,
may experience greater overhead. We believe that the benefits
of tight language integration substantially outweigh the costs
of more subtle security semantics for memory – but it remains
to be seen what implications this will have for larger code
bases. A key concern will be “leaked capabilities” – either
application-level programming errors in which data and objects
are accidentally leaked to callers or callees, or implementation
errors in the compiler or memory management.

An early goal was for CHERI to support a single-cycle
domain-transition model via a dedicated instruction, reducing
its cost to that of an ordinary function call; this goal was
not met, although a multiple orders-of-magnitude reduction
was accomplished. On reflection, the goal was naive: as
our analysis shows, much of the remaining domain-transition
overhead, relative to more porous function calls, lies in the
cache footprint of additional operations required for security.

Further, it became clear that there were a huge variety
of security models that could be built over CHERI memory
protection, spanning asynchronous and synchronous designs,
with or without notions of TCB-supported exception recovery,
and linked in various ways to memory safety models (e.g.,
garbage collection). Our current hardware-assisted exception-
based domain switch allows the TCB to implement complex
behaviors not suitable for a RISC pipeline (e.g., trusted-stack
manipulation). While some of that behavior could be shifted
to caller and callee contexts, other elements cannot: restricting
the flow of local capabilities and trusted-stack manipulation
protects the object model itself, and are not just defensive
behaviors for mutually distrusting compartments.

If we were to start again from scratch, there are choices
that we might make differently, but these are largely surface
aspects; for example, separating general-purpose and capability
registers reduced ABI change, but came at a cost to cache
footprint. The fundamental choices to retain an MMU to
support current software, tagged capabilities to allow lan-
guage integration, tight compiler integration to avoid RPC-like
stubs, and a software-defined security model over a memory-
protection substrate, have proved transformative foundations.

VIII. FUTURE WORK

We have demonstrated that the CHERI ISA and software
stack can act as the foundations for a both more programmer-
friendly and more scalable software compartmentalization plat-
form. However, our current prototypes scratch only the surface
of the possible explorations that could be performed, and we
hope to continue this work in the following ways.

We describe a simple userspace memory model that pro-
vides safe communication between compartments with mutual
distrust. Previous focus has been spatial integrity rather than
temporal protection, leaving opportunities for programmer
error if memory is freed too quickly by the larger application.
Tagged capabilities offer a straightforward solution: accurate
garbage collection is a real possibility. In CheriBSD, we chose
to support tagged capabilities only for anonymous (swap-
backed) memory, retaining current filesystems and avoiding

temporal safety problems associated with stale address-space
assumptions for persistent capabilities. However, mechanisms
exist within the CheriBSD VM subsystem to implement more
complex models, such as persistent stores in which tags are
maintained across application crash or system reboot.

Many questions remain open regarding how to develop
software to best benefit from the CHERI architecture. Auto-
matic tools to implement compartmentalization are far more
feasible with a CHERI-like substrate, where introducing se-
curity boundaries does not require substantial restructuring of
code to employ message passing – as is the case with con-
ventional process-based privilege separation. We have focused
on hybridization with current software designs, exploiting
the retained MMU to support existing operating systems and
programming models. However, the CHERI ISA can support
many other models – e.g., deemphasizing the MMU to imple-
ment a single-address-space capability model.

This paper informally summarizes some of the properties
required for CHERI to be meaningfully trustworthy – relating
to correctness of the hardware specification, security and
system integrity, compartmentalization, and so on. We are
conducting formal analyses of the hardware and to some
extent low-level software, having developed the infrastructure
to facilitate such analyses and their hierarchical closure.

IX. RELATED WORK

Our CHERI hardware-software security model draws on a
long history of work on the principles of computer security,
access control, capability systems, operating systems, and
programming languages [43], [4]. Early access-control sys-
tems focused on discretionary and mandatory access control,
employing security attributes or labels to control information
and control flow to protect confidentiality [7], integrity [9], and
availability. Multics [16] was an early testbed for many of these
ideas, with detailed investigations [8], [26] of implications
of the security techniques. During the 1990s, OS-centered
access control transitioned from user-focused policies [24] to
vulnerability mitigation [5], with systems such as Linux [32],
FreeBSD, and Mac OS X/iOS [52] employing access controls
to limit attacker rights in increasingly single-user systems.

Capability systems also have a long history [17], [31],
with hardware-software systems such as the tagged and typed-
object PSOS design [40] and the CAP [55] implementation,
and through the 1990s and 2000s transitioning first to op-
erating systems such as Hydra [58], Mach [2], EROS [45],
and SeL4 [28], and later programming languages such as
E [35], [48], Joe-E [34], and Caja [36]. This transition from
capabilities referring to low-level, fixed-function objects to a
more general compartmentalization model, groundwork laid
by systems such as Hydra and PSOS, and building on notions
of “protected subsystem” from earlier designs, becomes the
foundation for object-capability systems in which interposition
at an object level becomes a key means of supporting higher-
level policies. Hybrid capability systems represent an effort
to provide an incremental adoption path for capability-system
benefits in conventional system designs, and are epitomized by
systems such as Capsicum [53] and Joe-E [34].

CheriBSD’s object-capability model is strongly influenced
by HYDRA: our trusted stack records synchronous object
invocations able to pass typed capabilities between protection

domains within a thread of execution. However, whereas
CHERI’s capabilities are represented directly in the ISA,
HYDRA relied on an MMU-based process model with capabil-
ities implemented in the kernel. CheriBSD invocation requires
explicit type checking and unsealing of argument objects by
the callee (i.e., no implicit amplification).

CHERI is also strongly influenced by M-Machine [13],
which provided tagged memory in support of fine-grained
memory capabilities. Whereas M-Machine implemented an
asynchronous model (reasonably described as secure closures,
combining code and data references in entry and return capa-
bilities, allowing a single-instruction call/return mechanism),
CheriBSD implements secure object invocation based on a
TCB-maintained reliable return stack, and separate code and
data capabilities. CHERI’s exception-handler-based approach
can support a range of software-defined models including
the M-Machine model. Unlike M-Machine, CHERI maintains
source-code and binary compatibility with current software
stacks through retention of a conventional MMU, process
model, C language, and interoperable ABIs.

Hardware foundations for security have co-evolved with
both access-control and capability-system techniques. Extend-
ing then-contemporary user/supervisor splits, Multics pro-
moted a more granular ring-based model [44] and fine-grained
separation via independent segments, as did many successor
systems such as the Intel x86 architecture (until removal in
recent 64-bit extensions). These protection mechanisms were
deemphasized through the 1990s, but there has been a recent
resurgence due to interest in full-system virtualization, system
management modes, and hardware-supported security models.

ARM’s TrustZone [3] and Intel’s Software Guard Exten-
sion (SGX) [22] also address a form of compartmentalized
software design in which commodity operating systems are
considered insufficiently trustworthy to host critical security
functions such as authentication and financial transactions.
They respectively provide support for an independent security-
focused kernel or application elements alongside the cur-
rent operating system, and a hardware-supported model for
“application enclaves” in which components of applications
running on top of the conventional OS are protected from
its interference. CHERI’s fine-grained compartmentalization
could be viewed as complementary: TrustZone- and SGX-
protected software elements would benefit from fine-grained
internal compartmentalization to mitigate attacks from the
untrustworthy software platform.

These features were deemphasized in favor of a more
coarse-grained paging model used by UNIX-like systems
through the 1990s. More recently, interest in stronger mem-
ory safety within processes has grown, including software-
based C-language-based systems such as Cyclone [23], Soft-
bound [38], CCured [39], low-fat pointers [29], and Control-
Flow Integrity (CFI) [1]. Hardware solutions have also been
proposed: HardBound [18], and more recently, Intel Memory
Protection eXtensions (MPX) [21] have attempted to accelerate
fat-pointer performance. However, these systems focus on
exploit mitigation rather than compartmentalization.

Software and hardware systems have been used to ex-
plore compartmentalization efficiency. Software transformation
approaches such as Software Fault Isolation (SFI) [49] and
Google NaCl [59] have focused on strong and efficient isola-

tion without hardware support, rather than catering to many
tightly interlinked compartments. In hardware, Mondriaan
investigated an access-control-centered approach based on a
TLB/MMU page-table-like mechanism to represent in-address-
space security domains, including running an adaptation of
Linux [56]. CRASH-SAFE has more recently explored flexi-
ble, software-defined, tagged security models, often grounded
in information flow, based on clean-slate ISA approaches [14].
Hypervisors have been used to provide contained execution
environments [37], and Dune utilizes hardware virtualization
features to accelerate intra-process isolation [6].

Software compartmentalization to mitigate vulnerabilities
was first proposed by Karger [25] using capability-system
approaches, and later popularized using sandboxed UNIX
processes by Provos [41] and Kilpatrick [27]. It has since
become widespread in systems such as FreeBSD and Mac
OS X [52], as well as applications such as Chromium [42].
Automated techniques for privilege separation, as well as
optimization of its primitives, has been the focus of systems
such as Privtrans [12], Wedge [10], and Capsicum [53].

X. CONCLUSION

We have described extensions to the CHERI Instruction-Set
Architecture that enable the building of scalable and highly
compatible object-capability systems. Building on CHERI’s
hybrid capability-model approach, and in contrast to historic
hardware capability-system designs, we demonstrate that a
fine-grained in-address-space protection model can be the
foundation for efficient protection-domain switching that re-
tains support for the UNIX process model and C-language
software stacks. As a result, the CHERI object-capability
model is incrementally deployable to current code bases that
have experienced long histories of vulnerabilities – and also
adoptable in “less than clean-slate” processor designs.

Our hardware-software prototype enables an integrated
approach to security design and evaluation that explores
transformative scalability improvements – multiple orders-of-
magnitude reductions in domain-transition costs – through
realistic research artifacts. We demonstrate that our choice of
execution substrate eases many of the challenges of previous
software compartmentalization. For example, library com-
partmentalization (which had previously challenged OS-based
approaches) with CHERI allows binary-compatible improve-
ments in security and robustness, without modifying containing
applications. We have open-sourced our hardware and software
designs to support greater experimental reproducibility, as well
as to encourage further exploration of our approach.

XI. ACKNOWLEDGMENTS

We thank our colleagues Ross Anderson, Ruslan Bukin,
Gregory Chadwick, Steve Hand, Alexandre Joannou, Chris
Kitching, Wojciech Koszek, Bob Laddaga, Patrick Lincoln,
Ilias Marinos, A Theodore Markettos, Ed Maste, Andrew W.
Moore, Alan Mujumdar, Prashanth Mundkur, Colin Rothwell,
Philip Paeps, Jeunese Payne, Hassen Saidi, Howie Shrobe, and
Bjoern Zeeb, our anonymous reviewers, and shepherd Frank
Piessens, for their feedback and assistance. This work is part of
the CTSRD and MRC2 projects sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contracts FA8750-10-C-
0237 and FA8750-11-C-0249. The views, opinions, and/or

findings contained in this paper are those of the authors and
should not be interpreted as representing the official views
or policies, either expressed or implied, of the Department
of Defense or the U.S. Government. We acknowledge the EP-
SRC REMS Programme Grant [EP/K008528/1], Isaac Newton
Trust, UK Higher Education Innovation Fund (HEIF), Thales
E-Security, and Google, Inc.

REFERENCES

[1] ABADI, M., BUDIU, M., ÚLFAR ERLINGSSON, AND LIGATTI, J.
Control-flow integrity: Principles, implementations, and applications.
In Proceedings of the 12th ACM conference on Computer and Commu-
nications Security (2005), ACM, pp. 340–353.

[2] ACCETTA, M., BARON, R., GOLUB, D., RASHID, R., TEVANIAN,
A., AND YOUNG, M. Mach: A New Kernel Foundation for UNIX
Development. Tech. rep., Computer Science Department, Carnegie
Mellon University, August 1986.

[3] ALVES, T., AND FELTON, D. TrustZone: Integrated hardware and
software security. Information Quarterly 3, 4 (2004).

[4] ANDERSON, J. Computer security technology planning study. Tech.
Rep. ESD-TR-73-51, U.S. Air Force Electronic Systems Division,
October 1972. (Two volumes).

[5] BADGER, L., STERNE, D., SHERMAN, D., WALKER, K., AND
HAGHIGHAT, S. Practical domain and type enforcement for Unix. In
Proceedings of the 1995 Symposium on Security and Privacy (May
1995), IEEE.

[6] BELAY, A., BITTAU, A., MASHTIZADEH, A., TEREI, D., MAZIÈRES,
D., AND KOZYRAKIS, C. Dune: safe user-level access to privileged
CPU features. In Proceedings of the 10th Conference on Operating
Systems Design and Implementation (2012), USENIX.

[7] BELL, D., AND PADULA, L. L. Secure computer systems : Volume I –
mathematical foundations; volume II – a mathematical model; volume
III – a refinement of the mathematical model. Tech. Rep. MTR-
2547 (three volumes), The Mitre Corporation, Bedford, Massachusetts,
March–December 1973.

[8] BELL, D., AND PADULA, L. L. Secure computer system: Unified
exposition and Multics interpretation. Tech. Rep. ESD-TR-75-306, The
Mitre Corporation, Bedford, Massachusetts, March 1976.

[9] BIBA, K. Integrity considerations for secure computer systems. Tech.
Rep. MTR 3153, The Mitre Corporation, Bedford, Massachusetts, June
1975. Also available from USAF Electronic Systems Division, Bedford,
Massachusetts, as ESD-TR-76-372, April 1977.

[10] BITTAU, A., MARCHENKO, P., HANDLEY, M., AND KARP, B. Wedge:
Splitting Applications into Reduced-Privilege Compartments. In Pro-
ceedings of the 5th Symposium on Networked Systems Design and
Implementation (2008), USENIX.

[11] BOEBERT, W., AND KAIN, R. A practical alternative to hierarchical
integrity policies. In Proceedings of the Eighth DoD/NBS Computer
Security Initiative Conference (1–3 October 1985).

[12] BRUMLEY, D., AND SONG, D. Privtrans: Automatically Partitioning
Programs for Privilege Separation. In Proceedings of the 13th USENIX
Security Symposium (2004), USENIX.

[13] CARTER, N. P., KECKLER, S. W., AND DALLY, W. J. Hardware
support for fast capability-based addressing. SIGPLAN Not. 29, 11
(Nov. 1994), 319–327.

[14] CHIRICESCU, S., DEHON, A., DEMANGE, D., IYER, S., KLIGER,
A., MORRISETT, G., PIERCE, B. C., REUBENSTEIN, H., SMITH,
J. M., SULLIVAN, G. T., THOMAS, A., TOV, J., WHITE, C. M., AND
WITTENBERG, D. SAFE: A clean-slate architecture for secure systems.
In Proceedings of the IEEE International Conference on Technologies
for Homeland Security (Nov. 2013).

[15] CHISNALL, D., ROTHWELL, C., DAVIS, B., WATSON, R. N.,
WOODRUFF, J., VADERA, M., MOORE, S. W., NEUMANN, P. G., AND
ROE, M. Beyond the PDP-11: Processor support for a memory-safe C
abstract machine. In Proceedings of the 20th Architectural Support for
Programming Languages and Operating Systems (2015), ACM.

[16] CORBATÓ, F. J., AND VYSSOTSKY, V. A. Introduction and overview
of the Multics system. In AFIPS ’65 (Fall, part I): Proceedings of the
November 30–December 1, 1965, fall joint computer conference, part
I (New York, NY, USA, 1965), ACM, pp. 185–196.

[17] DENNIS, J. B., AND VAN HORN, E. C. Programming semantics for
multiprogrammed computations. Commun. ACM 9, 3 (1966), 143–155.

[18] DEVIETTI, J., BLUNDELL, C., MARTIN, M. M. K., AND ZDANCEWIC,
S. Hardbound: architectural support for spatial safety of the C
programming language. SIGARCH Comput. Archit. News 36, 1 (Mar.
2008), 103–114.

[19] GONG, L., MUELLER, M., PRAFULLCHANDRA, H., AND SCHEMERS,
R. Going beyond the sandbox: An overview of the new security
architecture in the Java Development Kit 1.2. In Proceedings of the
Symposium on Internet Technologies and Systems (December 1997),
USENIX.

[20] HEINRICH, J. MIPS R4000 Microprocessor User’s Manual (Second
Edition). MIPS Technologies, Inc, 1994.

[21] INTEL PLC. Introduction to Intel memory protection exten-
sions. http://software.intel.com/en-us/articles/introduction-to-intel-
memory-protection-extensions, July 2013.

[22] INTEL PLC. Intel Software Guard Extensions Programming Ref-
erence. https://software.intel.com/sites/default/files/managed/48/88/
329298-002.pdf, October 2014.

[23] JIM, T., MORRISETT, J. G., GROSSMAN, D., HICKS, M. W., CHENEY,
J., AND WANG, Y. Cyclone: A safe dialect of C. In Proceedings of the
USENIX Annual Technical Conference (2002), pp. 275–288.

[24] KAMP, P., AND WATSON, R. N. M. Jails: Confining the omnipotent
root. In Proceedings of the 2nd International SANE Conference (2000).

[25] KARGER, P. Limiting the damage potential of discretionary Trojan
horses. In Proceedings of the 1987 Symposium on Security and Privacy
(April 1987), IEEE.

[26] KARGER, P., AND SCHELL, R. Multics security evaluation: Vulnera-
bility analysis. In Proceedings of the 18th Annual Computer Security
Applications Conference (ACSAC), Classic Papers section (Las Vegas,
Nevada, December 2002). Originally available as U.S. Air Force report
ESD-TR-74-193, Vol. II, Hanscomb Air Force Base, Massachusetts.

[27] KILPATRICK, D. Privman: A Library for Partitioning Applications. In
Proceedings of 2003 USENIX Annual Technical Conference (2003).

[28] KLEIN, G., ANDRONICK, J., ELPHINSTONE, K., HEISER, G., COCK,
D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K., KOLANSKI, R.,
NORRISH, M., SEWELL, T., TUCH, H., AND WINWOOD, S. seL4:
Formal verification of an operating-system kernel. Commun. ACM 53
(June 2009), 107–115.

[29] KWON, A., DHAWAN, U., SMITH, J. M., KNIGHT, JR., T. F., AND DE-
HON, A. Low-fat pointers: Compact encoding and efficient gate-level
implementation of fat pointers for spatial safety and capability-based
security. In 20th ACM Conference on Computer and Communications
Security (November 2013).

[30] LATTNER, C., AND ADVE, V. LLVM: A compilation framework
for lifelong program analysis & transformation. In Proceedings of
the International Symposium on Code Generation and Optimization:
Feedback-directed and runtime optimization (2004), IEEE.

[31] LEVY, H. M. Capability-Based Computer Systems. Butterworth-
Heinemann, Newton, MA, USA, 1984.

[32] LOSCOCCO, P. A., AND SMALLEY, S. D. Integrating Flexible Support
for Security Policies into the Linux Operating System. In Proceedings
of the USENIX Annual Technical Conference (June 2001).

[33] MCKUSICK, M. K., NEVILLE-NEIL, G. V., AND WATSON, R. N. M.
The Design and Implementation of the FreeBSD Operating System.
Pearson, 2014.

[34] METTLER, A., WAGNER, D., AND CLOSE, T. Joe-E: A Security-
Oriented Subset of Java. In NDSS 2010: Proceedings of the Network
and Distributed System Security Symposium (2010).

[35] MILLER, M. S. Robust composition: towards a unified approach to
access control and concurrency control. PhD thesis, Johns Hopkins
University, Baltimore, MD, USA, 2006.

[36] MILLER, M. S., SAMUEL, M., LAURIE, B., AWAD, I., AND STAY, M.
Caja: Safe active content in sanitized javascript, May 2008. http://
google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf.

[37] MURRAY, D. G., AND HAND, S. Privilege Separation Made Easy.
In Proceedings of the ACM SIGOPS European Workshop on System
Security (EUROSEC) (2008), ACM.

[38] NAGARAKATTE, S., ZHAO, J., MARTIN, M. M. K., AND ZDANCEWIC,
S. SoftBound: highly compatible and complete spatial memory safety

for C. In Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementation (2009), ACM.

[39] NECULA, G. C., MCPEAK, S., AND WEIMER, W. CCured: Type-safe
retrofitting of legacy code. ACM SIGPLAN Notices 37, 1 (2002), 128–
139.

[40] NEUMANN, P., BOYER, R., FEIERTAG, R., LEVITT, K., AND ROBIN-
SON, L. A Provably Secure Operating System: The system, its
applications, and proofs. Tech. rep., Computer Science Laboratory, SRI
International, May 1980. 2nd edition, Report CSL-116.

[41] PROVOS, N., FRIEDL, M., AND HONEYMAN, P. Preventing Privilege
Escalation. In Proceedings of the 12th USENIX Security Symposium
(2003), USENIX.

[42] REIS, C., AND GRIBBLE, S. D. Isolating web programs in modern
browser architectures. In EuroSys ’09: Proceedings of the 4th ACM
European Conference on Computer Systems (2009), ACM.

[43] SALTZER, J. Protection and the control of information sharing in
Multics. Commun. ACM 17, 7 (July 1974), 388–402.

[44] SCHROEDER, M., AND SALTZER, J. A hardware architecture for
implementing protection rings. Commun. ACM 15, 3 (March 1972).

[45] SHAPIRO, J., SMITH, J., AND FARBER, D. EROS: a fast capability
system. In Proceedings of the seventeenth ACM Symposium on
Operating Systems Principles (Dec 1999).

[46] SZEKERES, L., PAYER, M., WEI, T., AND SONG, D. Eternal war in
memory. In IEEE Symposium on Security and Privacy (2013).

[47] THE MITRE CORPORATION. Common Vulnerabilities and Exposures
List. https://cve.mitre.org, Feb 2015.

[48] WAGNER, D., AND TRIBBLE, D. A security analysis of the combex
darpabrowser architecture, March 2002. http://www.combex.com/
papers/darpa-review/security-review.pdf.

[49] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM, S. U. L.
Efficient software-based fault isolation. In Proceedings of the 14th
Symposium on Operating Systems Principles (1993), ACM.

[50] WANG, Z., AND LEE, R. Covert and side channels due to processor
architecture. In Computer Security Applications Conference, 2006.
ACSAC ’06. 22nd Annual (Dec 2006), pp. 473–482.

[51] WATSON, R. N., WOODRUFF, J., CHISNALL, D., DAVIS, B., KOSZEK,
W., MARKETTOS, A. T., MOORE, S. W., MURDOCH, S. J., NEU-
MANN, P. G., NORTON, R., AND ROE, M. Bluespec Extensible RISC
Implementation: BERI Hardware reference. Tech. Rep. UCAM-CL-TR-
852, University of Cambridge, Computer Laboratory, Apr. 2014.

[52] WATSON, R. N. M. A decade of OS access-control extensibility.
Commun. ACM 56, 2 (Feb. 2013).

[53] WATSON, R. N. M., ANDERSON, J., LAURIE, B., AND KENNAWAY,
K. Capsicum: Practical capabilities for Unix. In Proceedings of the
19th USENIX Security Symposium (August 2010), USENIX.

[54] WATSON, R. N. M., NEUMANN, P. G., WOODRUFF, J., ANDER-
SON, J., CHISNALL, D., DAVIS, B., LAURIE, B., MOORE, S. W.,
MURDOCH, S. J., AND ROE, M. Capability Hardware Enhanced
RISC Instructions: CHERI Instruction-set architecture. Tech. Rep.
UCAM-CL-TR-864, University of Cambridge, Computer Laboratory,
Dec. 2014.

[55] WILKES, M., AND NEEDHAM, R. The Cambridge CAP computer and
its operating system. Elsevier North Holland, New York, 1979.

[56] WITCHEL, E., CATES, J., AND ASANOVIĆ, K. Mondrian memory
protection. ACM SIGPLAN Notices 37, 10 (2002), 304–316.

[57] WOODRUFF, J., WATSON, R. N. M., CHISNALL, D., MOORE, S. W.,
ANDERSON, J., DAVIS, B., LAURIE, B., NEUMANN, P. G., NORTON,
R., AND ROE, M. The CHERI capability model: Revisiting RISC in
an age of risk. In Proceedings of the 41st International Symposium on
Computer Architecture (June 2014).

[58] WULF, W., COHEN, E., CORWIN, W., JONES, A., LEVIN, R., PIER-
SON, C., AND POLLACK, F. HYDRA: the kernel of a multiprocessor
operating system. Commun. ACM 17, 6 (1974), 337–345.

[59] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH, R., OR-
MANDY, T., OKASAKA, S., NARULA, N., AND FULLAGAR, N. Native
Client: A sandbox for portable, untrusted x86 native code. In Proceed-
ings of the 30th Symposium on Security and Privacy (2009), IEEE.

http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
http://google-caja.googlecode.com/files/caja-spec-2008-06-07.pdf
https://cve.mitre.org
http://www.combex.com/papers/darpa-review/security-review.pdf
http://www.combex.com/papers/darpa-review/security-review.pdf

