
Balanced Allocations under Incomplete Information

Dimitrios Los1, Thomas Sauerwald1, John Sylvester2

1University of Cambridge, UK
2University of Glasgow, UK

1

Balanced allocations: Background

Balanced allocations: Background 2

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

Balanced allocations: Background 3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

■ Applications in hashing, load balancing and routing.

Balanced allocations: Background 3

Outline of the presentation
■ Part A: Definition of One-Choice, Two-Choice, and the (1 + β) process.

■ Part B: The Quantile Process

■ Part C: The Mean-Threshold Process

■ Part D: Applications: Outdated information and Noise

Balanced allocations: Background 4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 5

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 5

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

Meaning with probability
at least 1 − n−c for constant c > 0.

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 5

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 5

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 5

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 5

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 5

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 5

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

Balanced allocations: Background 5

(1 + β) process: Definition

(1 + β) process:
Parameter: A probability β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ [Mit99] interpreted (1 − β)/2 as the probability of making an erroneous comparison.

■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. Θ(log n/β) for
β < 1 − ϵ for constant ϵ > 0.

Balanced allocations: Background 6

(1 + β) process: Definition

(1 + β) process:
Parameter: A probability β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ [Mit99] interpreted (1 − β)/2 as the probability of making an erroneous comparison.

■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. Θ(log n/β) for
β < 1 − ϵ for constant ϵ > 0.

Balanced allocations: Background 6

(1 + β) process: Definition

(1 + β) process:
Parameter: A probability β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ [Mit99] interpreted (1 − β)/2 as the probability of making an erroneous comparison.

■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. Θ(log n/β) for
β < 1 − ϵ for constant ϵ > 0.

Balanced allocations: Background 6

The Quantile Process

The Quantile Process 7

Quantile(δ) Process

Quantile(δ) Process:
Parameter: A quantile δ ∈ {1/n, 2/n, . . . , 1}.
Iteration: For t ≥ 0, sample two bins independently u.a.r. i1 and i2 independently, and
update: {

xt+1
i1

= xt
i1

+ 1 if Rank(xt, i1) > δ · n,

xt+1
i2

= xt
i2

+ 1 otherwise.

W t/n
i1 δt i1

The Quantile Process 8

Quantile(δ) Process

Quantile(δ) Process:
Parameter: A quantile δ ∈ {1/n, 2/n, . . . , 1}.
Iteration: For t ≥ 0, sample two bins independently u.a.r. i1 and i2 independently, and
update: {

xt+1
i1

= xt
i1

+ 1 if Rank(xt, i1) > δ · n,

xt+1
i2

= xt
i2

+ 1 otherwise.

W t/n
i1 δt

W t/n
i1 δt i1

W t/n
i1 δt i1

The Quantile Process 8

Quantile(δ) Process

Quantile(δ) Process:
Parameter: A quantile δ ∈ {1/n, 2/n, . . . , 1}.
Iteration: For t ≥ 0, sample two bins independently u.a.r. i1 and i2 independently, and
update: {

xt+1
i1

= xt
i1

+ 1 if Rank(xt, i1) > δ · n,

xt+1
i2

= xt
i2

+ 1 otherwise.

W t/n
i1 δt i1

W t/n
i1 δt i1

W t/n
i1 δt i1

The Quantile Process 8

Quantile(δ) Process

Quantile(δ) Process:
Parameter: A quantile δ ∈ {1/n, 2/n, . . . , 1}.
Iteration: For t ≥ 0, sample two bins independently u.a.r. i1 and i2 independently, and
update: {

xt+1
i1

= xt
i1

+ 1 if Rank(xt, i1) > δ · n,

xt+1
i2

= xt
i2

+ 1 otherwise.

W t/n
i1 δt i1

W t/n
i1 i1 δt

W t/n
i1 δt i1

The Quantile Process 8

Quantile(δ) Process

Quantile(δ) Process:
Parameter: A quantile δ ∈ {1/n, 2/n, . . . , 1}.
Iteration: For t ≥ 0, sample two bins independently u.a.r. i1 and i2 independently, and
update: {

xt+1
i1

= xt
i1

+ 1 if Rank(xt, i1) > δ · n,

xt+1
i2

= xt
i2

+ 1 otherwise.

W t/n
i1 δt i1

W t/n
i1 i1 δt i2

W t/n
i1 δt i1

The Quantile Process 8

Quantile(δ) Process

Quantile(δ) Process:
Parameter: A quantile δ ∈ {1/n, 2/n, . . . , 1}.
Iteration: For t ≥ 0, sample two bins independently u.a.r. i1 and i2 independently, and
update: {

xt+1
i1

= xt
i1

+ 1 if Rank(xt, i1) > δ · n,

xt+1
i2

= xt
i2

+ 1 otherwise.

W t/n
i1 δt i1

W t/n
i1 i1 δt i2

W t/n
i1 i1 δt

The Quantile Process 8

Quantile(δ) Process

Quantile(δ) Process:
Parameter: A quantile δ ∈ {1/n, 2/n, . . . , 1}.
Iteration: For t ≥ 0, sample two bins independently u.a.r. i1 and i2 independently, and
update: {

xt+1
i1

= xt
i1

+ 1 if Rank(xt, i1) > δ · n,

xt+1
i2

= xt
i2

+ 1 otherwise.

W t/n
i1 δt i1

W t/n
i1 i1 δt i2

W t/n
i1 i2 i1 δt

The Quantile Process 8

Quantile(δ) as Two-Choice with incomplete information
We can interpret Quantile(δ) as an instance of the Two-Choice process, where we are
only able to compare the loads of the two sampled bins if one is above the quantile and one
is below.

7 3

δt

The Quantile Process 9

Quantile(δ) as Two-Choice with incomplete information
We can interpret Quantile(δ) as an instance of the Two-Choice process, where we are
only able to compare the loads of the two sampled bins if one is above the quantile and one
is below.

3 3

δt

The Quantile Process 9

Quantile(δ) as Two-Choice with incomplete information
We can interpret Quantile(δ) as an instance of the Two-Choice process, where we are
only able to compare the loads of the two sampled bins if one is above the quantile and one
is below.

✗ ✗

δt

The Quantile Process 9

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice, pOne-Choice =
(

1
n , 1

n , . . . , 1
n

)
.

■ For Two-Choice, pTwo-Choice =
(

1
n2 , 3

n2 , . . . , 2i−1
n2 , . . . , 2n−2

n2

)
.

■ For Quantile(δ), pQuantile(δ) =
(δ

n
, . . . ,

δ

n︸ ︷︷ ︸
δ·n entries

,
1 + δ

n
, . . . ,

1 + δ

n︸ ︷︷ ︸
(1−δ)·n entries

)
.

The Quantile Process 10

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice, pOne-Choice =
(

1
n , 1

n , . . . , 1
n

)
.

■ For Two-Choice, pTwo-Choice =
(

1
n2 , 3

n2 , . . . , 2i−1
n2 , . . . , 2n−2

n2

)
.

■ For Quantile(δ), pQuantile(δ) =
(δ

n
, . . . ,

δ

n︸ ︷︷ ︸
δ·n entries

,
1 + δ

n
, . . . ,

1 + δ

n︸ ︷︷ ︸
(1−δ)·n entries

)
.

𝑝

1/𝑛

2/𝑛
ONE-CHOICE

Bin index 𝑖

The Quantile Process 10

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice, pOne-Choice =
(

1
n , 1

n , . . . , 1
n

)
.

■ For Two-Choice, pTwo-Choice =
(

1
n2 , 3

n2 , . . . , 2i−1
n2 , . . . , 2n−2

n2

)
.

■ For Quantile(δ), pQuantile(δ) =
(δ

n
, . . . ,

δ

n︸ ︷︷ ︸
δ·n entries

,
1 + δ

n
, . . . ,

1 + δ

n︸ ︷︷ ︸
(1−δ)·n entries

)
.

𝑝

1/𝑛

2/𝑛
ONE-CHOICE

TWO-CHOICE

Bin index 𝑖

The Quantile Process 10

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th most
loaded bin.

■ For One-Choice, pOne-Choice =
(

1
n , 1

n , . . . , 1
n

)
.

■ For Two-Choice, pTwo-Choice =
(

1
n2 , 3

n2 , . . . , 2i−1
n2 , . . . , 2n−2

n2

)
.

■ For Quantile(δ), pQuantile(δ) =
(δ

n
, . . . ,

δ

n︸ ︷︷ ︸
δ·n entries

,
1 + δ

n
, . . . ,

1 + δ

n︸ ︷︷ ︸
(1−δ)·n entries

)
.

𝑛 ⋅ 𝛿 = 𝑛/2

𝑝

1/𝑛

2/𝑛
ONE-CHOICE

TWO-CHOICE

QUANTILE (1/2)

Bin index 𝑖

The Quantile Process 10

The exponential potential function
■ [PTW15] used the two-sided exponential potential

Γt(xt) :=
n∑

i=1
eα(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−α(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1
n

)
+ c2.

■ This implies E [Γt] ≤ c · n for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
α

(3 · log n + log c)
]

≥ 1 − n−2.

■ For the (1 + β) process, α = Θ(β).
■ Same proof holds for the Quantile(δ) for constant δ ∈ (0, 1).
■ In [PTW15], α = O(1) so the tightest gaps proved were O(log n).

The Quantile Process 11

The exponential potential function
■ [PTW15] used the two-sided exponential potential

Γt(xt) :=
n∑

i=1
eα(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−α(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1
n

)
+ c2.

■ This implies E [Γt] ≤ c · n for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
α

(3 · log n + log c)
]

≥ 1 − n−2.

■ For the (1 + β) process, α = Θ(β).
■ Same proof holds for the Quantile(δ) for constant δ ∈ (0, 1).
■ In [PTW15], α = O(1) so the tightest gaps proved were O(log n).

The Quantile Process 11

The exponential potential function
■ [PTW15] used the two-sided exponential potential

Γt(xt) :=
n∑

i=1
eα(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−α(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1
n

)
+ c2.

■ This implies E [Γt] ≤ c · n for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ cn3]
≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
α

(3 · log n + log c)
]

≥ 1 − n−2.

■ For the (1 + β) process, α = Θ(β).
■ Same proof holds for the Quantile(δ) for constant δ ∈ (0, 1).
■ In [PTW15], α = O(1) so the tightest gaps proved were O(log n).

The Quantile Process 11

The exponential potential function
■ [PTW15] used the two-sided exponential potential

Γt(xt) :=
n∑

i=1
eα(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−α(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1
n

)
+ c2.

■ This implies E [Γt] ≤ c · n for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
α

(3 · log n + log c)
]

≥ 1 − n−2.

■ For the (1 + β) process, α = Θ(β).
■ Same proof holds for the Quantile(δ) for constant δ ∈ (0, 1).
■ In [PTW15], α = O(1) so the tightest gaps proved were O(log n).

The Quantile Process 11

The exponential potential function
■ [PTW15] used the two-sided exponential potential

Γt(xt) :=
n∑

i=1
eα(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−α(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1
n

)
+ c2.

■ This implies E [Γt] ≤ c · n for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
α

(3 · log n + log c)
]

≥ 1 − n−2.

■ For the (1 + β) process, α = Θ(β).

■ Same proof holds for the Quantile(δ) for constant δ ∈ (0, 1).
■ In [PTW15], α = O(1) so the tightest gaps proved were O(log n).

The Quantile Process 11

The exponential potential function
■ [PTW15] used the two-sided exponential potential

Γt(xt) :=
n∑

i=1
eα(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−α(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1
n

)
+ c2.

■ This implies E [Γt] ≤ c · n for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
α

(3 · log n + log c)
]

≥ 1 − n−2.

■ For the (1 + β) process, α = Θ(β).
■ Same proof holds for the Quantile(δ) for constant δ ∈ (0, 1).

■ In [PTW15], α = O(1) so the tightest gaps proved were O(log n).

The Quantile Process 11

The exponential potential function
■ [PTW15] used the two-sided exponential potential

Γt(xt) :=
n∑

i=1
eα(xt

i−t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−α(xt

i−t/n)

︸ ︷︷ ︸
Underload potential

.

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(

1 − c1
n

)
+ c2.

■ This implies E [Γt] ≤ c · n for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
α

(3 · log n + log c)
]

≥ 1 − n−2.

■ For the (1 + β) process, α = Θ(β).
■ Same proof holds for the Quantile(δ) for constant δ ∈ (0, 1).
■ In [PTW15], α = O(1) so the tightest gaps proved were O(log n).

The Quantile Process 11

Quantile(δ1, . . . , δk) process
■ We can extend the Quantile(δ) process to k quantiles.

■ We can only distinguish two bins if they are in different regions.

The Quantile Process 12

Quantile(δ1, . . . , δk) process
■ We can extend the Quantile(δ) process to k quantiles.
■ We can only distinguish two bins if they are in different regions.

δt
1 δt

2

The Quantile Process 12

Quantile(δ1, . . . , δk) process
■ We can extend the Quantile(δ) process to k quantiles.
■ We can only distinguish two bins if they are in different regions.

δt
1 δt

2

The Quantile Process 12

Quantile(δ1, . . . , δk) process
■ We can extend the Quantile(δ) process to k quantiles.
■ We can only distinguish two bins if they are in different regions.

δt
1 δt

2

The Quantile Process 12

Our results
■ A Quantile(δ1, . . . , δk) process with uniform quantiles that achieves w.h.p. an

O(k · (log n)1/k) gap for k = O(log log n).

The Quantile Process 13

Our results
■ A Quantile(δ1, . . . , δk) process with uniform quantiles that achieves w.h.p. an

O(k · (log n)1/k) gap for k = O(log log n).

0.2 0.4 0.6 0.8 1

·105
0

2

4

6

8

10

Number of bins n

G
ap

at
m

=
10
0
0
·n

1-Quantile
Two-Choice

The Quantile Process 13

Our results
■ A Quantile(δ1, . . . , δk) process with uniform quantiles that achieves w.h.p. an

O(k · (log n)1/k) gap for k = O(log log n).

0.2 0.4 0.6 0.8 1

·105
0

2

4

6

8

10

Number of bins n

G
ap

at
m

=
10
0
0
·n

1-Quantile
2-Quantile
Two-Choice

The Quantile Process 13

Our results
■ A Quantile(δ1, . . . , δk) process with uniform quantiles that achieves w.h.p. an

O(k · (log n)1/k) gap for k = O(log log n).

0.2 0.4 0.6 0.8 1

·105
0

2

4

6

8

10

Number of bins n

G
ap

at
m

=
10
0
0
·n

1-Quantile
2-Quantile
Two-Choice

The Quantile Process 13

Our results
■ A Quantile(δ1, . . . , δk) process with uniform quantiles that achieves w.h.p. an

O(k · (log n)1/k) gap for k = O(log log n).

0.2 0.4 0.6 0.8 1

·105
0

2

4

6

8

10

Number of bins n

G
ap

at
m

=
10
0
0
·n

1-Quantile
2-Quantile
3-Quantile
Two-Choice

The Quantile Process 13

Our results
■ A Quantile(δ1, . . . , δk) process with uniform quantiles that achieves w.h.p. an

O(k · (log n)1/k) gap for k = O(log log n).

0.2 0.4 0.6 0.8 1

·105
0

2

4

6

8

10

Number of bins n

G
ap

at
m

=
10
0
0
·n

1-Quantile
2-Quantile
3-Quantile
4-Quantile
Two-Choice

The Quantile Process 13

Our results
■ A Quantile(δ1, . . . , δk) process with uniform quantiles that achieves w.h.p. an

O(k · (log n)1/k) gap for k = O(log log n).
■ Implications:

The Quantile Process 13

Our results
■ A Quantile(δ1, . . . , δk) process with uniform quantiles that achieves w.h.p. an

O(k · (log n)1/k) gap for k = O(log log n).
■ Implications:

▶ For k = Θ(log log n), we recover the Two-Choice Gap(m) = O(log log n).

The Quantile Process 13

Our results
■ A Quantile(δ1, . . . , δk) process with uniform quantiles that achieves w.h.p. an

O(k · (log n)1/k) gap for k = O(log log n).
■ Implications:

▶ For k = Θ(log log n), we recover the Two-Choice Gap(m) = O(log log n).
▶ For (1 + β) with β = 1 − 2−0.5(log n)(k−1)/k

, w.h.p. Gap(m) = O(k · (log n)1/k).

The Quantile Process 13

Our results
■ A Quantile(δ1, . . . , δk) process with uniform quantiles that achieves w.h.p. an

O(k · (log n)1/k) gap for k = O(log log n).
■ Implications:

▶ For k = Θ(log log n), we recover the Two-Choice Gap(m) = O(log log n).
▶ For (1 + β) with β = 1 − 2−0.5(log n)(k−1)/k

, w.h.p. Gap(m) = O(k · (log n)1/k).
▶ Improvements for other processes (d-Thinning, graphical allocations).

The Quantile Process 13

Analysis using super-exponential potential functions
■ For k = 3, we define the quantile process which achives O((log n)1/3) gap:

𝛿2𝛿1 𝛿3

𝑝

The Quantile Process 14

Analysis using super-exponential potential functions
■ For k = 3, we define the quantile process which achives O((log n)1/3) gap:

𝛿2𝛿1 𝛿3

𝑝
Τ1 2

The Quantile Process 14

Analysis using super-exponential potential functions
■ For k = 3, we define the quantile process which achives O((log n)1/3) gap:

𝛿2𝛿1 𝛿3

𝑝
Τ1 2

𝑒−Θ(log 𝑛
Τ1 3)

The Quantile Process 14

Analysis using super-exponential potential functions
■ For k = 3, we define the quantile process which achives O((log n)1/3) gap:

𝛿2𝛿1 𝛿3

𝑝
Τ1 2

𝑒−Θ(log 𝑛
Τ1 3)

𝑒−Θ(log 𝑛
Τ2 3)

The Quantile Process 14

Analysis using super-exponential potential functions
■ For k = 3, we define the quantile process which achives O((log n)1/3) gap:

δ1 := e−Θ((log n)1/3), δ2 := e−Θ((log n)2/3), δ3 := 1/2

The Quantile Process 14

Analysis using super-exponential potential functions
■ For k = 3, we define the quantile process which achives O((log n)1/3) gap:

δ1 := e−Θ((log n)1/3), δ2 := e−Θ((log n)2/3), δ3 := 1/2
■ We define the following exponential potential functions:

Φt
0 :=

n∑
i=1

exp
(

α′ ·
(

xt
i − t

n

)+)
,

O(log n)

Φt
1 :=

n∑
i=1

exp
(

α′ · (log n)1/3 ·
(

xt
i − t

n
− 2

α′ (log n)1/3
)+)

,

O((log n)2/3)

Φt
2 :=

n∑
i=1

exp
(

α′ · (log n)2/3 ·
(

xt
i − t

n
− 4

α′ (log n)1/3
)+)

. O((log n)1/3)

The Quantile Process 14

Analysis using super-exponential potential functions
■ For k = 3, we define the quantile process which achives O((log n)1/3) gap:

δ1 := e−Θ((log n)1/3), δ2 := e−Θ((log n)2/3), δ3 := 1/2
■ We define the following exponential potential functions:

Φt
0 :=

n∑
i=1

exp
(

α′ ·
(

xt
i − t

n

)+)
,

O(log n)

Φt
1 :=

n∑
i=1

exp
(

α′ · (log n)1/3 ·
(

xt
i − t

n
− 2

α′ (log n)1/3
)+)

,

O((log n)2/3)

Φt
2 :=

n∑
i=1

exp
(

α′ · (log n)2/3 ·
(

xt
i − t

n
− 4

α′ (log n)1/3
)+)

. O((log n)1/3)

The Quantile Process 14

Analysis using super-exponential potential functions
■ For k = 3, we define the quantile process which achives O((log n)1/3) gap:

δ1 := e−Θ((log n)1/3), δ2 := e−Θ((log n)2/3), δ3 := 1/2
■ We define the following exponential potential functions:

Φt
0 :=

n∑
i=1

exp
(

α′ ·
(

xt
i − t

n

)+)
,

O(log n)

Φt
1 :=

n∑
i=1

exp
(

α′ · (log n)1/3 ·
(

xt
i − t

n
− 2

α′ (log n)1/3
)+)

,

O((log n)2/3)

Φt
2 :=

n∑
i=1

exp
(

α′ · (log n)2/3 ·
(

xt
i − t

n
− 4

α′ (log n)1/3
)+)

.

O((log n)1/3)

The Quantile Process 14

Analysis using super-exponential potential functions
■ For k = 3, we define the quantile process which achives O((log n)1/3) gap:

δ1 := e−Θ((log n)1/3), δ2 := e−Θ((log n)2/3), δ3 := 1/2
■ We define the following exponential potential functions:

Φt
0 :=

n∑
i=1

exp
(

α′ ·
(

xt
i − t

n

)+)
, O(log n)

Φt
1 :=

n∑
i=1

exp
(

α′ · (log n)1/3 ·
(

xt
i − t

n
− 2

α′ (log n)1/3
)+)

,

O((log n)2/3)

Φt
2 :=

n∑
i=1

exp
(

α′ · (log n)2/3 ·
(

xt
i − t

n
− 4

α′ (log n)1/3
)+)

.

O((log n)1/3)

The Quantile Process 14

Analysis using super-exponential potential functions
■ For k = 3, we define the quantile process which achives O((log n)1/3) gap:

δ1 := e−Θ((log n)1/3), δ2 := e−Θ((log n)2/3), δ3 := 1/2
■ We define the following exponential potential functions:

Φt
0 :=

n∑
i=1

exp
(

α′ ·
(

xt
i − t

n

)+)
, O(log n)

Φt
1 :=

n∑
i=1

exp
(

α′ · (log n)1/3 ·
(

xt
i − t

n
− 2

α′ (log n)1/3
)+)

, O((log n)2/3)

Φt
2 :=

n∑
i=1

exp
(

α′ · (log n)2/3 ·
(

xt
i − t

n
− 4

α′ (log n)1/3
)+)

.

O((log n)1/3)

The Quantile Process 14

Analysis using super-exponential potential functions
■ For k = 3, we define the quantile process which achives O((log n)1/3) gap:

δ1 := e−Θ((log n)1/3), δ2 := e−Θ((log n)2/3), δ3 := 1/2
■ We define the following exponential potential functions:

Φt
0 :=

n∑
i=1

exp
(

α′ ·
(

xt
i − t

n

)+)
, O(log n)

Φt
1 :=

n∑
i=1

exp
(

α′ · (log n)1/3 ·
(

xt
i − t

n
− 2

α′ (log n)1/3
)+)

, O((log n)2/3)

Φt
2 :=

n∑
i=1

exp
(

α′ · (log n)2/3 ·
(

xt
i − t

n
− 4

α′ (log n)1/3
)+)

. O((log n)1/3)

The Quantile Process 14

Analysis using super-exponential potential functions
■ For k = 3, we define the quantile process which achives O((log n)1/3) gap:

δ1 := e−Θ((log n)1/3), δ2 := e−Θ((log n)2/3), δ3 := 1/2
■ We define the following exponential potential functions:

Φt
0 :=

n∑
i=1

exp
(

α′ ·
(

xt
i − t

n

)+)
, O(log n)

Φt
1 :=

n∑
i=1

exp
(

α′ · (log n)1/3 ·
(

xt
i − t

n
− 2

α′ (log n)1/3
)+)

, O((log n)2/3)

Φt
2 :=

n∑
i=1

exp
(

α′ · (log n)2/3 ·
(

xt
i − t

n
− 4

α′ (log n)1/3
)+)

. O((log n)1/3)

■ When α = Ω(1), the potential may not necessarily drop in expectation.

The Quantile Process 14

Analysis using super-exponential potential functions
■ For k = 3, we define the quantile process which achives O((log n)1/3) gap:

δ1 := e−Θ((log n)1/3), δ2 := e−Θ((log n)2/3), δ3 := 1/2
■ We define the following exponential potential functions:

Φt
0 :=

n∑
i=1

exp
(

α′ ·
(

xt
i − t

n

)+)
, O(log n)

Φt
1 :=

n∑
i=1

exp
(

α′ · (log n)1/3 ·
(

xt
i − t

n
− 2

α′ (log n)1/3
)+)

, O((log n)2/3)

Φt
2 :=

n∑
i=1

exp
(

α′ · (log n)2/3 ·
(

xt
i − t

n
− 4

α′ (log n)1/3
)+)

. O((log n)1/3)

■ When α = Ω(1), the potential may not necessarily drop in expectation.
■ We prove that when yt

δ3−j ·n < 2
α′ j(log n)1/3, then

E
[

Φt+1
j | Ft

]
≤ Φt

j ·
(

1 − 1
n

)
+ 2.

The Quantile Process 14

Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛

Φ0
𝑡 = 𝒪 𝑛 ⇒ 𝑦1

𝑡 < log𝑛

The Quantile Process 15

Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛 1/3

log𝑛

The Quantile Process 15

Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛 1/3

log𝑛

Φ0
𝑡 = 𝒪 𝑛 ⇒ 𝑦𝛿2⋅𝑛

𝑡 < log𝑛 1/3

𝛿2

The Quantile Process 15

Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛 1/3

log𝑛

𝛿2

The Quantile Process 15

Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛 1/3

2 log𝑛 1/3

log𝑛

log 𝑛 1/3 + log𝑛 2/3

Φ1
𝑡 = 𝒪 𝑛

𝛿2

The Quantile Process 15

Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛 1/3

2 log𝑛 1/3

log𝑛

log 𝑛 1/3 + log𝑛 2/3

Φ1
𝑡 = 𝒪 𝑛 ⇒ 𝑦𝛿1⋅𝑛

𝑡 < 2 log𝑛 1/3

𝛿2𝛿1

The Quantile Process 15

Proving Gap(m) = O(k · (log n)1/k)

𝑦𝑡

0

log𝑛 1/3

2 log𝑛 1/3

log𝑛

log 𝑛 1/3 + log𝑛 2/3

2 ⋅ log𝑛 1/3 + log𝑛 1/3

𝛿2𝛿1

Φ2
𝑡 = 𝒪 𝑛

The Quantile Process 15

Mean-Threshold

Mean-Threshold 16

Threshold process

Threshold(f(n)) Process:
Parameter: A threshold function f(n) ≥ 0.
Iteration: For t ≥ 0, sample two uniform bins i1 and i2 independently, and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

Decentralised

■ Mean-Threshold has f(n) = 0.

W t/n
i1 i1

t/n+ f(n)

Mean-Threshold 17

Threshold process

Threshold(f(n)) Process:
Parameter: A threshold function f(n) ≥ 0.
Iteration: For t ≥ 0, sample two uniform bins i1 and i2 independently, and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

Decentralised

■ Mean-Threshold has f(n) = 0.

W t/n
i1 i1

t/n+ f(n)

Mean-Threshold 17

Threshold process

Threshold(f(n)) Process:
Parameter: A threshold function f(n) ≥ 0.
Iteration: For t ≥ 0, sample two uniform bins i1 and i2 independently, and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

Decentralised

■ Mean-Threshold has f(n) = 0.

W t/n
i1 i1

t/n+ f(n)

Mean-Threshold 17

Threshold process

Threshold(f(n)) Process:
Parameter: A threshold function f(n) ≥ 0.
Iteration: For t ≥ 0, sample two uniform bins i1 and i2 independently, and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

Decentralised

■ Mean-Threshold has f(n) = 0.

W t/n
i1 i1

t/n+ f(n)

i1 i1
Mean-Threshold 17

Threshold process

Threshold(f(n)) Process:
Parameter: A threshold function f(n) ≥ 0.
Iteration: For t ≥ 0, sample two uniform bins i1 and i2 independently, and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

Decentralised

■ Mean-Threshold has f(n) = 0.

W t/n
i1 i1

t/n+ f(n)

i1 i1
Mean-Threshold 17

Threshold process

Threshold(f(n)) Process:
Parameter: A threshold function f(n) ≥ 0.
Iteration: For t ≥ 0, sample two uniform bins i1 and i2 independently, and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

Decentralised

■ Mean-Threshold has f(n) = 0.

W t/n
i1 i1

t/n+ f(n)

i1 i1 i2
Mean-Threshold 17

Threshold process

Threshold(f(n)) Process:
Parameter: A threshold function f(n) ≥ 0.
Iteration: For t ≥ 0, sample two uniform bins i1 and i2 independently, and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

Decentralised

■ Mean-Threshold has f(n) = 0.
■ [FGG21] found the asymptotically optimal threshold in the lightly-loaded case.

W t/n
i1 i1

t/n+ f(n)

Mean-Threshold 17

Threshold process

Threshold(f(n)) Process:
Parameter: A threshold function f(n) ≥ 0.
Iteration: For t ≥ 0, sample two uniform bins i1 and i2 independently, and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

Decentralised

■ Mean-Threshold has f(n) = 0.
■ [FGG21] found the asymptotically optimal threshold in the lightly-loaded case.
■ [IK05, FL20] analysed a d-sample version for the lightly-loaded case.

W t/n
i1 i1

t/n+ f(n)

Mean-Threshold 17

Threshold as Two-Choice with incomplete information
We can interpret Threshold as an instance of the Two-Choice process, where we are
only able to compare the loads of the two sampled bins if one is above the threshold and
one is below.

Mean-Threshold 18

Threshold as Two-Choice with incomplete information
We can interpret Threshold as an instance of the Two-Choice process, where we are
only able to compare the loads of the two sampled bins if one is above the threshold and
one is below.

✓ ✗

Mean-Threshold 18

Threshold as Two-Choice with incomplete information
We can interpret Threshold as an instance of the Two-Choice process, where we are
only able to compare the loads of the two sampled bins if one is above the threshold and
one is below.

✗ ✗

Mean-Threshold 18

Mean-Threshold: Message/sample efficiency
■ Mean-Threshold does not require communication of the load.

■ Requires 1-bit responses.

■ Or we can completely avoid responses to the allocator.

Mean-Threshold 19

Mean-Threshold: Message/sample efficiency
■ Mean-Threshold does not require communication of the load.
■ Requires 1-bit responses.

■ Or we can completely avoid responses to the allocator.

Mean-Threshold 19

Mean-Threshold: Message/sample efficiency
■ Mean-Threshold does not require communication of the load.
■ Requires 1-bit responses.

■ Or we can completely avoid responses to the allocator.

Mean-Threshold 19

Mean-Threshold: Message/sample efficiency
■ Mean-Threshold does not require communication of the load.
■ Requires 1-bit responses.

■ Or we can completely avoid responses to the allocator.

Mean-Threshold 19

Mean-Threshold: Message/sample efficiency
■ Mean-Threshold does not require communication of the load.
■ Requires 1-bit responses.

■ Or we can completely avoid responses to the allocator.

Mean-Threshold 19

Mean-Threshold: Message/sample efficiency
■ Mean-Threshold does not require communication of the load.
■ Requires 1-bit responses.

■ Or we can completely avoid responses to the allocator.

Mean-Threshold 19

Mean-Threshold: Message/sample efficiency
■ Mean-Threshold does not require communication of the load.
■ Requires 1-bit responses.
■ Or we can completely avoid responses to the allocator.

Mean-Threshold 19

Mean-Threshold: Message/sample efficiency
■ Mean-Threshold does not require communication of the load.
■ Requires 1-bit responses.
■ Or we can completely avoid responses to the allocator.

Mean-Threshold 19

Mean-Threshold: Message/sample efficiency
■ Mean-Threshold does not require communication of the load.
■ Requires 1-bit responses.
■ Or we can completely avoid responses to the allocator.

Allocate

Mean-Threshold 19

Mean-Threshold: Our results
■ For heavily-loaded case, Mean-Threshold achieves w.h.p. Gap(m) = O(log n).

■ For sufficiently large m, Mean-Threshold achieves w.h.p. Gap(m) = Ω(log n).

■ Mean-Threshold uses w.h.p. 2 − ϵ samples per allocation.

Mean-Threshold 20

Mean-Threshold: Our results
■ For heavily-loaded case, Mean-Threshold achieves w.h.p. Gap(m) = O(log n).

■ For sufficiently large m, Mean-Threshold achieves w.h.p. Gap(m) = Ω(log n).

■ Mean-Threshold uses w.h.p. 2 − ϵ samples per allocation.

Mean-Threshold 20

Mean-Threshold: Our results
■ For heavily-loaded case, Mean-Threshold achieves w.h.p. Gap(m) = O(log n).

■ For sufficiently large m, Mean-Threshold achieves w.h.p. Gap(m) = Ω(log n).

■ Mean-Threshold uses w.h.p. 2 − ϵ samples per allocation.

Mean-Threshold 20

Mean-Threshold: Why the analysis is tricky
■ Let δt be the quantile position of the mean.

■ If δt is very large, say δt = 1 − 1/n, then p becomes very close to the One-Choice
vector :

pMean-Threshold(xt) =
(1

n
− 1

n2 , . . . ,
1
n

− 1
n2︸ ︷︷ ︸

(n−1) entries

,
2
n

− 1
n2

)
.

■ With this worst-case probability vector, we can only obtain w.h.p. a gap of O(n log n)
using Γt with α = Θ(1/n).

But what happens for Γt with constant α?

Mean-Threshold 21

Mean-Threshold: Why the analysis is tricky
■ Let δt be the quantile position of the mean.
■ If δt is very large, say δt = 1 − 1/n, then p becomes very close to the One-Choice

vector :
pMean-Threshold(xt) =

(1
n

− 1
n2 , . . . ,

1
n

− 1
n2︸ ︷︷ ︸

(n−1) entries

,
2
n

− 1
n2

)
.

■ With this worst-case probability vector, we can only obtain w.h.p. a gap of O(n log n)
using Γt with α = Θ(1/n).

But what happens for Γt with constant α?

Mean-Threshold 21

Mean-Threshold: Why the analysis is tricky
■ Let δt be the quantile position of the mean.
■ If δt is very large, say δt = 1 − 1/n, then p becomes very close to the One-Choice

vector :
pMean-Threshold(xt) =

(1
n

− 1
n2 , . . . ,

1
n

− 1
n2︸ ︷︷ ︸

(n−1) entries

,
2
n

− 1
n2

)
.

■ With this worst-case probability vector, we can only obtain w.h.p. a gap of O(n log n)
using Γt with α = Θ(1/n).

But what happens for Γt with constant α?

Mean-Threshold 21

Mean-Threshold: Why the analysis is tricky
■ Let δt be the quantile position of the mean.
■ If δt is very large, say δt = 1 − 1/n, then p becomes very close to the One-Choice

vector :
pMean-Threshold(xt) =

(1
n

− 1
n2 , . . . ,

1
n

− 1
n2︸ ︷︷ ︸

(n−1) entries

,
2
n

− 1
n2

)
.

■ With this worst-case probability vector, we can only obtain w.h.p. a gap of O(n log n)
using Γt with α = Θ(1/n).

But what happens for Γt with constant α?

Mean-Threshold 21

Mean-Threshold: Bad configuration

i1, i2

. . .

a

b

a·(n−2)+b
2

■ There is a very small bias away from overloaded bins.
■ The exponential potential for constant α increases in expectation.

Mean-Threshold 22

Mean-Threshold: Recovery from a bad configuration

Mean-Threshold 23

A closer look at Γt

■ An analysis similar to [PTW15] shows that

▶ (Good step) If δt ∈ (ϵ, 1 − ϵ) for const ϵ > 0, then

E[Γt+1 | Ft, {δt ∈ (ϵ, 1 − ϵ)}, Γt ≥ c · n] ≤ Γt ·
(

1 − Θ
(

α

n

))
.

▶ (Bad step) If δt /∈ (ϵ, 1 − ϵ), then

E[Γt+1 | Ft, Γt ≥ c · n] ≤ Γt ·
(

1 + Θ
(

α2

n

))
.

■ A properly tweaked potential function drops in expectation for any interval with
constant fraction of good steps.

How can we prove that there is a constant fraction of good
steps?

Mean-Threshold 24

A closer look at Γt

■ An analysis similar to [PTW15] shows that
▶ (Good step) If δt ∈ (ϵ, 1 − ϵ) for const ϵ > 0, then

E[Γt+1 | Ft, {δt ∈ (ϵ, 1 − ϵ)}, Γt ≥ c · n] ≤ Γt ·
(

1 − Θ
(

α

n

))
.

▶ (Bad step) If δt /∈ (ϵ, 1 − ϵ), then

E[Γt+1 | Ft, Γt ≥ c · n] ≤ Γt ·
(

1 + Θ
(

α2

n

))
.

■ A properly tweaked potential function drops in expectation for any interval with
constant fraction of good steps.

How can we prove that there is a constant fraction of good
steps?

Mean-Threshold 24

A closer look at Γt

■ An analysis similar to [PTW15] shows that
▶ (Good step) If δt ∈ (ϵ, 1 − ϵ) for const ϵ > 0, then

E[Γt+1 | Ft, {δt ∈ (ϵ, 1 − ϵ)}, Γt ≥ c · n] ≤ Γt ·
(

1 − Θ
(

α

n

))
.

▶ (Bad step) If δt /∈ (ϵ, 1 − ϵ), then

E[Γt+1 | Ft, Γt ≥ c · n] ≤ Γt ·
(

1 + Θ
(

α2

n

))
.

■ A properly tweaked potential function drops in expectation for any interval with
constant fraction of good steps.

How can we prove that there is a constant fraction of good
steps?

Mean-Threshold 24

A closer look at Γt

■ An analysis similar to [PTW15] shows that
▶ (Good step) If δt ∈ (ϵ, 1 − ϵ) for const ϵ > 0, then

E[Γt+1 | Ft, {δt ∈ (ϵ, 1 − ϵ)}, Γt ≥ c · n] ≤ Γt ·
(

1 − Θ
(

α

n

))
.

▶ (Bad step) If δt /∈ (ϵ, 1 − ϵ), then

E[Γt+1 | Ft, Γt ≥ c · n] ≤ Γt ·
(

1 + Θ
(

α2

n

))
.

■ A properly tweaked potential function drops in expectation for any interval with
constant fraction of good steps.

How can we prove that there is a constant fraction of good
steps?

Mean-Threshold 24

A closer look at Γt

■ An analysis similar to [PTW15] shows that
▶ (Good step) If δt ∈ (ϵ, 1 − ϵ) for const ϵ > 0, then

E[Γt+1 | Ft, {δt ∈ (ϵ, 1 − ϵ)}, Γt ≥ c · n] ≤ Γt ·
(

1 − Θ
(

α

n

))
.

▶ (Bad step) If δt /∈ (ϵ, 1 − ϵ), then

E[Γt+1 | Ft, Γt ≥ c · n] ≤ Γt ·
(

1 + Θ
(

α2

n

))
.

■ A properly tweaked potential function drops in expectation for any interval with
constant fraction of good steps.

How can we prove that there is a constant fraction of good
steps?

Mean-Threshold 24

Recovery from a bad configuration (n = 1000)
■ Consider the absolute value and quadratic potentials,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ and Υt :=
n∑

i=1

(
xt

i − t

n

)2
.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

·106Number of balls m

Exponential potential
Quadratic potential
Absolute potential
Quantile position

■ As long as ∆t = Ω(n), Υt drops in expectation.
■ As ∆t becomes smaller, δt improves and Γt drops in expectation.

Mean-Threshold 25

Recovery from a bad configuration (n = 1000)
■ Consider the absolute value and quadratic potentials,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ and Υt :=
n∑

i=1

(
xt

i − t

n

)2
.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

·106Number of balls m

Exponential potential
Quadratic potential
Absolute potential
Quantile position

■ As long as ∆t = Ω(n), Υt drops in expectation.

■ As ∆t becomes smaller, δt improves and Γt drops in expectation.

Mean-Threshold 25

Recovery from a bad configuration (n = 1000)
■ Consider the absolute value and quadratic potentials,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ and Υt :=
n∑

i=1

(
xt

i − t

n

)2
.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

·106Number of balls m

Exponential potential
Quadratic potential
Absolute potential
Quantile position

■ As long as ∆t = Ω(n), Υt drops in expectation.
■ As ∆t becomes smaller, δt improves and Γt drops in expectation.

Mean-Threshold 25

Recovery from a bad configuration (n = 1000)
■ Consider the absolute value and quadratic potentials,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ and Υt :=
n∑

i=1

(
xt

i − t

n

)2
.

5.35 5.4 5.45 5.5 5.55 5.6 5.65 5.7 5.75 5.8 5.85 5.9 5.95 6

·105Number of rounds m

First steps of recovery

Exponential potential
Quadratic potential
Absolute potential
Quantile position

■ As long as ∆t = Ω(n), Υt drops in expectation.
■ As ∆t becomes smaller, δt improves and Γt drops in expectation.

Mean-Threshold 25

Conclusion
Summary of results:
■ Analysed various processes including k-Quantile, Mean-Threshold and (1 + β) for

β close to 1.

■ Introduced two techniques for analysing balanced allocation processes:
▶ Layered induction over super-exponential potentials.
▶ Interplay between the absolute value and quadratic potentials.

■ Further applications of the presented techniques:
▶ Balls allocated in batches of b ≥ n balls : O(b/n + log n) gap for Two-Choice, (1 + β)

and Quantile(δ) [LS22a].
▶ Two-Choice with adversarial noise g ≤ log n : O(g

log g
· log log n) [LS22b].

Several directions for future work:
■ Investigating the robustness of Mean-Threshold.
■ Loosening the fully random hash function assumption.
■ Analysing these processes in the graphical setting.

Mean-Threshold 26

Conclusion
Summary of results:
■ Analysed various processes including k-Quantile, Mean-Threshold and (1 + β) for

β close to 1.
■ Introduced two techniques for analysing balanced allocation processes:

▶ Layered induction over super-exponential potentials.
▶ Interplay between the absolute value and quadratic potentials.

■ Further applications of the presented techniques:
▶ Balls allocated in batches of b ≥ n balls : O(b/n + log n) gap for Two-Choice, (1 + β)

and Quantile(δ) [LS22a].
▶ Two-Choice with adversarial noise g ≤ log n : O(g

log g
· log log n) [LS22b].

Several directions for future work:
■ Investigating the robustness of Mean-Threshold.
■ Loosening the fully random hash function assumption.
■ Analysing these processes in the graphical setting.

Mean-Threshold 26

Conclusion
Summary of results:
■ Analysed various processes including k-Quantile, Mean-Threshold and (1 + β) for

β close to 1.
■ Introduced two techniques for analysing balanced allocation processes:

▶ Layered induction over super-exponential potentials.

▶ Interplay between the absolute value and quadratic potentials.
■ Further applications of the presented techniques:

▶ Balls allocated in batches of b ≥ n balls : O(b/n + log n) gap for Two-Choice, (1 + β)
and Quantile(δ) [LS22a].

▶ Two-Choice with adversarial noise g ≤ log n : O(g
log g

· log log n) [LS22b].
Several directions for future work:
■ Investigating the robustness of Mean-Threshold.
■ Loosening the fully random hash function assumption.
■ Analysing these processes in the graphical setting.

Mean-Threshold 26

Conclusion
Summary of results:
■ Analysed various processes including k-Quantile, Mean-Threshold and (1 + β) for

β close to 1.
■ Introduced two techniques for analysing balanced allocation processes:

▶ Layered induction over super-exponential potentials.
▶ Interplay between the absolute value and quadratic potentials.

■ Further applications of the presented techniques:
▶ Balls allocated in batches of b ≥ n balls : O(b/n + log n) gap for Two-Choice, (1 + β)

and Quantile(δ) [LS22a].
▶ Two-Choice with adversarial noise g ≤ log n : O(g

log g
· log log n) [LS22b].

Several directions for future work:
■ Investigating the robustness of Mean-Threshold.
■ Loosening the fully random hash function assumption.
■ Analysing these processes in the graphical setting.

Mean-Threshold 26

Conclusion
Summary of results:
■ Analysed various processes including k-Quantile, Mean-Threshold and (1 + β) for

β close to 1.
■ Introduced two techniques for analysing balanced allocation processes:

▶ Layered induction over super-exponential potentials.
▶ Interplay between the absolute value and quadratic potentials.

■ Further applications of the presented techniques:
▶ Balls allocated in batches of b ≥ n balls : O(b/n + log n) gap for Two-Choice, (1 + β)

and Quantile(δ) [LS22a].

▶ Two-Choice with adversarial noise g ≤ log n : O(g
log g

· log log n) [LS22b].
Several directions for future work:
■ Investigating the robustness of Mean-Threshold.
■ Loosening the fully random hash function assumption.
■ Analysing these processes in the graphical setting.

Mean-Threshold 26

Conclusion
Summary of results:
■ Analysed various processes including k-Quantile, Mean-Threshold and (1 + β) for

β close to 1.
■ Introduced two techniques for analysing balanced allocation processes:

▶ Layered induction over super-exponential potentials.
▶ Interplay between the absolute value and quadratic potentials.

■ Further applications of the presented techniques:
▶ Balls allocated in batches of b ≥ n balls : O(b/n + log n) gap for Two-Choice, (1 + β)

and Quantile(δ) [LS22a].
▶ Two-Choice with adversarial noise g ≤ log n : O(g

log g
· log log n) [LS22b].

Several directions for future work:
■ Investigating the robustness of Mean-Threshold.
■ Loosening the fully random hash function assumption.
■ Analysing these processes in the graphical setting.

Mean-Threshold 26

Conclusion
Summary of results:
■ Analysed various processes including k-Quantile, Mean-Threshold and (1 + β) for

β close to 1.
■ Introduced two techniques for analysing balanced allocation processes:

▶ Layered induction over super-exponential potentials.
▶ Interplay between the absolute value and quadratic potentials.

■ Further applications of the presented techniques:
▶ Balls allocated in batches of b ≥ n balls : O(b/n + log n) gap for Two-Choice, (1 + β)

and Quantile(δ) [LS22a].
▶ Two-Choice with adversarial noise g ≤ log n : O(g

log g
· log log n) [LS22b].

Several directions for future work:

■ Investigating the robustness of Mean-Threshold.
■ Loosening the fully random hash function assumption.
■ Analysing these processes in the graphical setting.

Mean-Threshold 26

Conclusion
Summary of results:
■ Analysed various processes including k-Quantile, Mean-Threshold and (1 + β) for

β close to 1.
■ Introduced two techniques for analysing balanced allocation processes:

▶ Layered induction over super-exponential potentials.
▶ Interplay between the absolute value and quadratic potentials.

■ Further applications of the presented techniques:
▶ Balls allocated in batches of b ≥ n balls : O(b/n + log n) gap for Two-Choice, (1 + β)

and Quantile(δ) [LS22a].
▶ Two-Choice with adversarial noise g ≤ log n : O(g

log g
· log log n) [LS22b].

Several directions for future work:
■ Investigating the robustness of Mean-Threshold.

■ Loosening the fully random hash function assumption.
■ Analysing these processes in the graphical setting.

Mean-Threshold 26

Conclusion
Summary of results:
■ Analysed various processes including k-Quantile, Mean-Threshold and (1 + β) for

β close to 1.
■ Introduced two techniques for analysing balanced allocation processes:

▶ Layered induction over super-exponential potentials.
▶ Interplay between the absolute value and quadratic potentials.

■ Further applications of the presented techniques:
▶ Balls allocated in batches of b ≥ n balls : O(b/n + log n) gap for Two-Choice, (1 + β)

and Quantile(δ) [LS22a].
▶ Two-Choice with adversarial noise g ≤ log n : O(g

log g
· log log n) [LS22b].

Several directions for future work:
■ Investigating the robustness of Mean-Threshold.
■ Loosening the fully random hash function assumption.

■ Analysing these processes in the graphical setting.

Mean-Threshold 26

Conclusion
Summary of results:
■ Analysed various processes including k-Quantile, Mean-Threshold and (1 + β) for

β close to 1.
■ Introduced two techniques for analysing balanced allocation processes:

▶ Layered induction over super-exponential potentials.
▶ Interplay between the absolute value and quadratic potentials.

■ Further applications of the presented techniques:
▶ Balls allocated in batches of b ≥ n balls : O(b/n + log n) gap for Two-Choice, (1 + β)

and Quantile(δ) [LS22a].
▶ Two-Choice with adversarial noise g ≤ log n : O(g

log g
· log log n) [LS22b].

Several directions for future work:
■ Investigating the robustness of Mean-Threshold.
■ Loosening the fully random hash function assumption.
■ Analysing these processes in the graphical setting.

Mean-Threshold 26

Questions?

More visualisations: tinyurl.com/lss21-visualisations
Mean-Threshold 27

https://tinyurl.com/lss21-visualisations

Questions?

More visualisations: tinyurl.com/lss21-visualisations
Mean-Threshold 28

https://tinyurl.com/lss21-visualisations

Appendix

Appendix 29

Appendix A: Table of results

Process
Lightly Loaded Case m = O(n) Heavily Loaded Case m = ω(n)

Lower Bound Upper Bound Lower Bound Upper Bound

(1 + β), const β ∈ (0, 1) log n
log log n [PTW15] log n

Caching log log n [MPS02] – log n

Packing log n
log log n log n

Twinning log n
log log n log n

Mean-Threshold log n
log log n log n

2-Thinning
(

Θ(
√

log n
log log n)

) √
log n

log log n [FL20] log n
log log n [LS21] log n

Adaptive-2-Thinning
√

log n
log log n [FL20] log n

log log n [LS21] log n
log log n [FGGL21]

Table: Overview of the Gap achieved (with probability at least 1 − n−1), by different allocation
processes considered in this work (and related works).

Appendix 30

Appendix B: Detailed experimental results (I)
n Mean-Threshold Twinning Packing Caching

105

8 : 3%
9 : 32%

10 : 38%
11 : 15%
12 : 6%
13 : 3%
14 : 3%

14 : 2%
15 : 5%
16 : 25%
17 : 28%
18 : 17%
19 : 10%
20 : 8%
21 : 1%
22 : 1%
23 : 3%

12 : 2%
13 : 16%
14 : 20%
15 : 28%
16 : 23%
17 : 5%
18 : 3%
19 : 1%
20 : 2%

3 : 100%

Table: Summary of observed gaps for n ∈ {103, 104, 105} bins and m = 1000 · n number of balls,
for 100 repetitions. The observed gaps are in bold and next to that is the % of runs where this
was observed.

Appendix 31

Appendix B: Detailed experimental results (II)
n (1 + β), for β = 0.5 k = 1 k = 2 k = 3 k = 4 Two-Choice

105

20 : 2%
21 : 7%
22 : 9%
23 : 26%
24 : 27%
25 : 14%
26 : 6%
27 : 3%
28 : 4%
29 : 1%
34 : 1%

8 : 28%
9 : 42%

10 : 18%
11 : 7%
12 : 3%
14 : 1%
15 : 1%

4 : 72%
5 : 26%
6 : 2%

3 : 46%
4 : 54%

3 : 79%
4 : 21% 3 : 100%

Table: Summary of our Experimental Results (m = 1000 · n).

Appendix 32

Appendix C: Recovery from a bad configuration

i1, i2
250 300 350 400 450

Number of balls m

Potential functions

Quadratic potential
Absolute potential

Exponential potential

Appendix 33

Appendix D: Filling framework
■ We analyze a more general framework that includes Packing and Caching [MPS02].

■ We prove an O(log n) gap for these processes.

W t/n
i1 i

W t/n

W t/n
i1 i

W t+1/n

Appendix 34

Appendix D: Filling framework
■ We analyze a more general framework that includes Packing and Caching [MPS02].
■ We prove an O(log n) gap for these processes.

W t/n
i1 i

W t/n

W t/n
i1 i

W t+1/n

Appendix 34

Appendix D: Filling framework
■ We analyze a more general framework that includes Packing and Caching [MPS02].
■ We prove an O(log n) gap for these processes.

W t/n
i1 i

W t/n

W t/n
i1 i

W t+1/n

Appendix 34

Appendix D: Filling framework
■ We analyze a more general framework that includes Packing and Caching [MPS02].
■ We prove an O(log n) gap for these processes.

W t/n
i1 i

W t/n

W t/n
i1 i

W t+1/n

Appendix 34

Appendix E: Completing the Mean-Threshold analysis

Γt

𝑚− 𝑛3 log4 𝑛 𝑚

𝑡

exp(𝒪 𝑛 log 𝑛)
Base Case

Appendix 35

Appendix E: Completing the Mean-Threshold analysis

Γt

𝑐𝑛

𝑚+ 𝑛 log 𝑛𝑚 − 𝑛3 log4 𝑛 𝑠0 𝑚

Recovery phase

𝑡

exp(𝒪 𝑛 log 𝑛)
Base Case

Appendix 35

Appendix E: Completing the Mean-Threshold analysis

Γt

𝑐𝑛

𝑚− 𝑛3 log4 𝑛 𝑠0

…
𝑚

Recovery phase

𝑛3 log3 𝑛

𝑡

exp(𝒪 𝑛 log 𝑛)
Base Case

𝑛3 log3 𝑛 𝑛3 log3 𝑛

Appendix 35

Appendix E: Completing the Mean-Threshold analysis

Γt

𝑐𝑛

𝑚+ 𝑛 log 𝑛𝑚 − 𝑛3 log4 𝑛 𝑠0

…
𝑟1 𝑠1 𝑟2 𝑚

< 𝑛 log𝑛

Stabilization phaseRecovery phase

𝑛3 log3 𝑛

𝑡

2𝑐𝑛

exp(𝒪 𝑛 log 𝑛)
Base Case

𝑛3 log3 𝑛 𝑛3 log3 𝑛 < 𝑛 log𝑛

Appendix 35

Appendix F: Outdated information
In “Balanced Allocations in Batches: Simplified and Generalized” [LS22a], we study
process with outdated information:

■ In the batched setting balls arrive in batches of size b.
■ For b = n, [BCE+12] proved that Two-Choice has w.h.p. an O(log n) gap.
■ We show that a large class of proceses (including (1 + β) and Quantile(δ) for const

β and δ) have an O(b/n · log n) gap for any b ≥ n.
■ The proof follows by looking at Γ with α = Θ(n/b).
■ By using a second potential Γ̃ with α̃ = Θ(min(1/ log n, n/b)) and conditioning on

Γ = O(n), we prove an O(n/b + log n) gap for b ≥ n.

Appendix 36

Appendix F: Outdated information
In “Balanced Allocations in Batches: Simplified and Generalized” [LS22a], we study
process with outdated information:
■ In the batched setting balls arrive in batches of size b.

■ For b = n, [BCE+12] proved that Two-Choice has w.h.p. an O(log n) gap.
■ We show that a large class of proceses (including (1 + β) and Quantile(δ) for const

β and δ) have an O(b/n · log n) gap for any b ≥ n.
■ The proof follows by looking at Γ with α = Θ(n/b).
■ By using a second potential Γ̃ with α̃ = Θ(min(1/ log n, n/b)) and conditioning on

Γ = O(n), we prove an O(n/b + log n) gap for b ≥ n.

Appendix 36

Appendix F: Outdated information
In “Balanced Allocations in Batches: Simplified and Generalized” [LS22a], we study
process with outdated information:
■ In the batched setting balls arrive in batches of size b.
■ For b = n, [BCE+12] proved that Two-Choice has w.h.p. an O(log n) gap.

■ We show that a large class of proceses (including (1 + β) and Quantile(δ) for const
β and δ) have an O(b/n · log n) gap for any b ≥ n.

■ The proof follows by looking at Γ with α = Θ(n/b).
■ By using a second potential Γ̃ with α̃ = Θ(min(1/ log n, n/b)) and conditioning on

Γ = O(n), we prove an O(n/b + log n) gap for b ≥ n.

Appendix 36

Appendix F: Outdated information
In “Balanced Allocations in Batches: Simplified and Generalized” [LS22a], we study
process with outdated information:
■ In the batched setting balls arrive in batches of size b.
■ For b = n, [BCE+12] proved that Two-Choice has w.h.p. an O(log n) gap.
■ We show that a large class of proceses (including (1 + β) and Quantile(δ) for const

β and δ) have an O(b/n · log n) gap for any b ≥ n.

■ The proof follows by looking at Γ with α = Θ(n/b).
■ By using a second potential Γ̃ with α̃ = Θ(min(1/ log n, n/b)) and conditioning on

Γ = O(n), we prove an O(n/b + log n) gap for b ≥ n.

Appendix 36

Appendix F: Outdated information
In “Balanced Allocations in Batches: Simplified and Generalized” [LS22a], we study
process with outdated information:
■ In the batched setting balls arrive in batches of size b.
■ For b = n, [BCE+12] proved that Two-Choice has w.h.p. an O(log n) gap.
■ We show that a large class of proceses (including (1 + β) and Quantile(δ) for const

β and δ) have an O(b/n · log n) gap for any b ≥ n.
■ The proof follows by looking at Γ with α = Θ(n/b).

■ By using a second potential Γ̃ with α̃ = Θ(min(1/ log n, n/b)) and conditioning on
Γ = O(n), we prove an O(n/b + log n) gap for b ≥ n.

Appendix 36

Appendix F: Outdated information
In “Balanced Allocations in Batches: Simplified and Generalized” [LS22a], we study
process with outdated information:
■ In the batched setting balls arrive in batches of size b.
■ For b = n, [BCE+12] proved that Two-Choice has w.h.p. an O(log n) gap.
■ We show that a large class of proceses (including (1 + β) and Quantile(δ) for const

β and δ) have an O(b/n · log n) gap for any b ≥ n.
■ The proof follows by looking at Γ with α = Θ(n/b).
■ By using a second potential Γ̃ with α̃ = Θ(min(1/ log n, n/b)) and conditioning on

Γ = O(n), we prove an O(n/b + log n) gap for b ≥ n.

Appendix 36

Appendix G: Two-Choice with Adversarial Noise
In “Balanced Allocations with the Choice of Noise” [LS22b], we study Two-Choice with
noise:

■ In the adversarial noise setting, an adversary can perturb the observed loads by some
amount g.

■ Using an interplay between ∆t and Υ, we prove an O(g + log n) gap.
■ Using layered induction of super-exponential potentials we get O(g

log g · log log n) for
g ≤ log n, which is tight.

■ Implies tight bounds for random noise from sub-exponential distributions.
■ Implies tight upper bounds for Two-Choice with batch sizes of b = O(n).
■ In particular, implies Gap(n) = Θ(log n/ log log n) for b = n.
■ And for the setting where the load of a bin is chosen adversarially from the last b steps.

Appendix 37

Appendix G: Two-Choice with Adversarial Noise
In “Balanced Allocations with the Choice of Noise” [LS22b], we study Two-Choice with
noise:
■ In the adversarial noise setting, an adversary can perturb the observed loads by some

amount g.

■ Using an interplay between ∆t and Υ, we prove an O(g + log n) gap.
■ Using layered induction of super-exponential potentials we get O(g

log g · log log n) for
g ≤ log n, which is tight.

■ Implies tight bounds for random noise from sub-exponential distributions.
■ Implies tight upper bounds for Two-Choice with batch sizes of b = O(n).
■ In particular, implies Gap(n) = Θ(log n/ log log n) for b = n.
■ And for the setting where the load of a bin is chosen adversarially from the last b steps.

Appendix 37

Appendix G: Two-Choice with Adversarial Noise
In “Balanced Allocations with the Choice of Noise” [LS22b], we study Two-Choice with
noise:
■ In the adversarial noise setting, an adversary can perturb the observed loads by some

amount g.
■ Using an interplay between ∆t and Υ, we prove an O(g + log n) gap.

■ Using layered induction of super-exponential potentials we get O(g
log g · log log n) for

g ≤ log n, which is tight.
■ Implies tight bounds for random noise from sub-exponential distributions.
■ Implies tight upper bounds for Two-Choice with batch sizes of b = O(n).
■ In particular, implies Gap(n) = Θ(log n/ log log n) for b = n.
■ And for the setting where the load of a bin is chosen adversarially from the last b steps.

Appendix 37

Appendix G: Two-Choice with Adversarial Noise
In “Balanced Allocations with the Choice of Noise” [LS22b], we study Two-Choice with
noise:
■ In the adversarial noise setting, an adversary can perturb the observed loads by some

amount g.
■ Using an interplay between ∆t and Υ, we prove an O(g + log n) gap.
■ Using layered induction of super-exponential potentials we get O(g

log g · log log n) for
g ≤ log n, which is tight.

■ Implies tight bounds for random noise from sub-exponential distributions.
■ Implies tight upper bounds for Two-Choice with batch sizes of b = O(n).
■ In particular, implies Gap(n) = Θ(log n/ log log n) for b = n.
■ And for the setting where the load of a bin is chosen adversarially from the last b steps.

Appendix 37

Appendix G: Two-Choice with Adversarial Noise
In “Balanced Allocations with the Choice of Noise” [LS22b], we study Two-Choice with
noise:
■ In the adversarial noise setting, an adversary can perturb the observed loads by some

amount g.
■ Using an interplay between ∆t and Υ, we prove an O(g + log n) gap.
■ Using layered induction of super-exponential potentials we get O(g

log g · log log n) for
g ≤ log n, which is tight.

■ Implies tight bounds for random noise from sub-exponential distributions.

■ Implies tight upper bounds for Two-Choice with batch sizes of b = O(n).
■ In particular, implies Gap(n) = Θ(log n/ log log n) for b = n.
■ And for the setting where the load of a bin is chosen adversarially from the last b steps.

Appendix 37

Appendix G: Two-Choice with Adversarial Noise
In “Balanced Allocations with the Choice of Noise” [LS22b], we study Two-Choice with
noise:
■ In the adversarial noise setting, an adversary can perturb the observed loads by some

amount g.
■ Using an interplay between ∆t and Υ, we prove an O(g + log n) gap.
■ Using layered induction of super-exponential potentials we get O(g

log g · log log n) for
g ≤ log n, which is tight.

■ Implies tight bounds for random noise from sub-exponential distributions.
■ Implies tight upper bounds for Two-Choice with batch sizes of b = O(n).

■ In particular, implies Gap(n) = Θ(log n/ log log n) for b = n.
■ And for the setting where the load of a bin is chosen adversarially from the last b steps.

Appendix 37

Appendix G: Two-Choice with Adversarial Noise
In “Balanced Allocations with the Choice of Noise” [LS22b], we study Two-Choice with
noise:
■ In the adversarial noise setting, an adversary can perturb the observed loads by some

amount g.
■ Using an interplay between ∆t and Υ, we prove an O(g + log n) gap.
■ Using layered induction of super-exponential potentials we get O(g

log g · log log n) for
g ≤ log n, which is tight.

■ Implies tight bounds for random noise from sub-exponential distributions.
■ Implies tight upper bounds for Two-Choice with batch sizes of b = O(n).
■ In particular, implies Gap(n) = Θ(log n/ log log n) for b = n.
■ And for the setting where the load of a bin is chosen adversarially from the last b steps.

Appendix 37

Appendix H: Mean quantile stabilisation
■ Consider the absolute value potential,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t = O(n), then δt ∈ (ϵ, 1 − ϵ) w.h.p. for a constant fraction of the next Θ(n) steps.
■ Consider the quadratic potential,

Υt :=
n∑

i=1

(
xt

i − t

n

)2
.

■ We prove that

■ By induction we get,

E[Υt+k+1 | Ft] ≤ Υt − 1
n

·
t+k∑
r=t

E[∆r | Ft] + (k + 1).

Appendix 38

Appendix H: Mean quantile stabilisation
■ Consider the absolute value potential,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t = O(n), then δt ∈ (ϵ, 1 − ϵ) w.h.p. for a constant fraction of the next Θ(n) steps.

■ Consider the quadratic potential,

Υt :=
n∑

i=1

(
xt

i − t

n

)2
.

■ We prove that

■ By induction we get,

E[Υt+k+1 | Ft] ≤ Υt − 1
n

·
t+k∑
r=t

E[∆r | Ft] + (k + 1).

Appendix 38

Appendix H: Mean quantile stabilisation
■ Consider the absolute value potential,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t = O(n), then δt ∈ (ϵ, 1 − ϵ) w.h.p. for a constant fraction of the next Θ(n) steps.
■ Consider the quadratic potential,

Υt :=
n∑

i=1

(
xt

i − t

n

)2
.

■ We prove that

■ By induction we get,

E[Υt+k+1 | Ft] ≤ Υt − 1
n

·
t+k∑
r=t

E[∆r | Ft] + (k + 1).

Appendix 38

Appendix H: Mean quantile stabilisation
■ Consider the absolute value potential,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t = O(n), then δt ∈ (ϵ, 1 − ϵ) w.h.p. for a constant fraction of the next Θ(n) steps.
■ Consider the quadratic potential,

Υt :=
n∑

i=1

(
xt

i − t

n

)2
.

■ We prove that
E

[
Υt+1 | Ft

]
≤ Υt − ∆t + 1.

■ By induction we get,

E[Υt+k+1 | Ft] ≤ Υt − 1
n

·
t+k∑
r=t

E[∆r | Ft] + (k + 1).

Appendix 38

Appendix H: Mean quantile stabilisation
■ Consider the absolute value potential,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t = O(n), then δt ∈ (ϵ, 1 − ϵ) w.h.p. for a constant fraction of the next Θ(n) steps.
■ Consider the quadratic potential,

Υt :=
n∑

i=1

(
xt

i − t

n

)2
.

■ We prove that
E

[
Υt+1 | Ft

]
≤ Υt − ∆t + 1.

■ By induction we get,

E[Υt+k+1 | Ft] ≤ Υt − 1
n

·
t+k∑
r=t

E[∆r | Ft] + (k + 1).

Appendix 38

Appendix H: Mean quantile stabilisation
■ Consider the absolute value potential,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t = O(n), then δt ∈ (ϵ, 1 − ϵ) w.h.p. for a constant fraction of the next Θ(n) steps.
■ Consider the quadratic potential,

Υt :=
n∑

i=1

(
xt

i − t

n

)2
.

■ We prove that
E

[
Υt+1 | Ft

]
≤ Υt − ∆t + 1.

■ By induction we get,

E[Υt+k+1 | Ft] ≤ Υt − 1
n

·
t+k∑
r=t

E[∆r | Ft] + (k + 1).

Appendix 38

Appendix H: Mean quantile stabilisation
■ Consider the absolute value potential,

∆t :=
n∑

i=1

∣∣∣∣xt
i − t

n

∣∣∣∣ .

■ If ∆t = O(n), then δt ∈ (ϵ, 1 − ϵ) w.h.p. for a constant fraction of the next Θ(n) steps.
■ Consider the quadratic potential,

Υt :=
n∑

i=1

(
xt

i − t

n

)2
.

■ We prove that
E

[
Υt+1 | Ft

]
≤ Υt − ∆t + 1.

■ By induction we get,

E[Υt+k+1 | Ft] ≤ Υt − 1
n

·
t+k∑
r=t

E[∆r | Ft] + (k + 1).

For k = Θ(Υt), for constant fraction of
steps r ∈ [t, t + k], E [∆r | Ft] = O(n).

Appendix 38

Bibliography I
▶ Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J.

Comput. 29 (1999), no. 1, 180–200. MR 1710347

▶ Petra Berenbrink, Artur Czumaj, Matthias Englert, Tom Friedetzky, and Lars Nagel,
Multiple-choice balanced allocation in (almost) parallel, Proceedings of 16th
International Workshop on Approximation, Randomization, and Combinatorial
Optimization (RANDOM’12) (Berlin Heidelberg), Springer-Verlag, 2012, pp. 411–422.

▶ P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: the heavily
loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350–1385. MR 2217150

▶ Ohad N. Feldheim and Ori Gurel-Gurevich, The power of thinning in balanced
allocation, Electron. Commun. Probab. 26 (2021), Paper No. 34, 8. MR 4275960

▶ O. N. Feldheim, O. Gurel-Gurevich, and J. Li, Long-term balanced allocation via
thinning, 2021, arXiv:2110.05009.

▶ O. N. Feldheim and J. Li, Load balancing under d-thinning, Electron. Commun. Probab.
25 (2020), Paper No. 1, 13. MR 4053904

Appendix 39

Bibliography II
▶ G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J.

Assoc. Comput. Mach. 28 (1981), no. 2, 289–304. MR 612082

▶ K. Iwama and A. Kawachi, Approximated two choices in randomized load balancing,
Algorithms and Computation (Berlin, Heidelberg) (Rudolf Fleischer and Gerhard
Trippen, eds.), Springer Berlin Heidelberg, 2005, pp. 545–557.

▶ R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a
distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517–542. MR 1407587

▶ D. Los and T. Sauerwald, Balanced allocations with incomplete information: The power
of two queries, 2021, arXiv:2107.03916.

▶ Dimitrios Los and Thomas Sauerwald, Balanced allocations in batches: Simplified and
generalized, 2022.

▶ , Balanced allocations with the choice of noise, 2022.
▶ , Tight bounds for repeated balls-into-bins, 2022.

Appendix 40

Bibliography III
▶ Dimitrios Los, Thomas Sauerwald, and John Sylvester, The power of filling bins, 2022.
▶ M. Mitzenmacher, On the analysis of randomized load balancing schemes, Theory

Comput. Syst. 32 (1999), no. 3, 361–386. MR 1678304

▶ M. Mitzenmacher, B. Prabhakar, and D. Shah, Load balancing with memory, The 43rd
Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings.,
IEEE, 2002, pp. 799–808.

▶ Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the
(1 + β)-choice process, Random Structures Algorithms 47 (2015), no. 4, 760–775. MR
3418914

▶ M. Raab and A. Steger, “Balls into bins”—a simple and tight analysis, Proceedings of
2nd International Workshop on Randomization and Approximation Techniques in
Computer Science (RANDOM’98), vol. 1518, Springer, 1998, pp. 159–170. MR 1729169

Appendix 41

	Balanced allocations: Background
	The Quantile Process
	Mean-Threshold
	Appendix

	anm2:
	2.0:
	anm1:
	1.268:
	1.267:
	1.266:
	1.265:
	1.264:
	1.263:
	1.262:
	1.261:
	1.260:
	1.259:
	1.258:
	1.257:
	1.256:
	1.255:
	1.254:
	1.253:
	1.252:
	1.251:
	1.250:
	1.249:
	1.248:
	1.247:
	1.246:
	1.245:
	1.244:
	1.243:
	1.242:
	1.241:
	1.240:
	1.239:
	1.238:
	1.237:
	1.236:
	1.235:
	1.234:
	1.233:
	1.232:
	1.231:
	1.230:
	1.229:
	1.228:
	1.227:
	1.226:
	1.225:
	1.224:
	1.223:
	1.222:
	1.221:
	1.220:
	1.219:
	1.218:
	1.217:
	1.216:
	1.215:
	1.214:
	1.213:
	1.212:
	1.211:
	1.210:
	1.209:
	1.208:
	1.207:
	1.206:
	1.205:
	1.204:
	1.203:
	1.202:
	1.201:
	1.200:
	1.199:
	1.198:
	1.197:
	1.196:
	1.195:
	1.194:
	1.193:
	1.192:
	1.191:
	1.190:
	1.189:
	1.188:
	1.187:
	1.186:
	1.185:
	1.184:
	1.183:
	1.182:
	1.181:
	1.180:
	1.179:
	1.178:
	1.177:
	1.176:
	1.175:
	1.174:
	1.173:
	1.172:
	1.171:
	1.170:
	1.169:
	1.168:
	1.167:
	1.166:
	1.165:
	1.164:
	1.163:
	1.162:
	1.161:
	1.160:
	1.159:
	1.158:
	1.157:
	1.156:
	1.155:
	1.154:
	1.153:
	1.152:
	1.151:
	1.150:
	1.149:
	1.148:
	1.147:
	1.146:
	1.145:
	1.144:
	1.143:
	1.142:
	1.141:
	1.140:
	1.139:
	1.138:
	1.137:
	1.136:
	1.135:
	1.134:
	1.133:
	1.132:
	1.131:
	1.130:
	1.129:
	1.128:
	1.127:
	1.126:
	1.125:
	1.124:
	1.123:
	1.122:
	1.121:
	1.120:
	1.119:
	1.118:
	1.117:
	1.116:
	1.115:
	1.114:
	1.113:
	1.112:
	1.111:
	1.110:
	1.109:
	1.108:
	1.107:
	1.106:
	1.105:
	1.104:
	1.103:
	1.102:
	1.101:
	1.100:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.656:
	0.655:
	0.654:
	0.653:
	0.652:
	0.651:
	0.650:
	0.649:
	0.648:
	0.647:
	0.646:
	0.645:
	0.644:
	0.643:
	0.642:
	0.641:
	0.640:
	0.639:
	0.638:
	0.637:
	0.636:
	0.635:
	0.634:
	0.633:
	0.632:
	0.631:
	0.630:
	0.629:
	0.628:
	0.627:
	0.626:
	0.625:
	0.624:
	0.623:
	0.622:
	0.621:
	0.620:
	0.619:
	0.618:
	0.617:
	0.616:
	0.615:
	0.614:
	0.613:
	0.612:
	0.611:
	0.610:
	0.609:
	0.608:
	0.607:
	0.606:
	0.605:
	0.604:
	0.603:
	0.602:
	0.601:
	0.600:
	0.599:
	0.598:
	0.597:
	0.596:
	0.595:
	0.594:
	0.593:
	0.592:
	0.591:
	0.590:
	0.589:
	0.588:
	0.587:
	0.586:
	0.585:
	0.584:
	0.583:
	0.582:
	0.581:
	0.580:
	0.579:
	0.578:
	0.577:
	0.576:
	0.575:
	0.574:
	0.573:
	0.572:
	0.571:
	0.570:
	0.569:
	0.568:
	0.567:
	0.566:
	0.565:
	0.564:
	0.563:
	0.562:
	0.561:
	0.560:
	0.559:
	0.558:
	0.557:
	0.556:
	0.555:
	0.554:
	0.553:
	0.552:
	0.551:
	0.550:
	0.549:
	0.548:
	0.547:
	0.546:
	0.545:
	0.544:
	0.543:
	0.542:
	0.541:
	0.540:
	0.539:
	0.538:
	0.537:
	0.536:
	0.535:
	0.534:
	0.533:
	0.532:
	0.531:
	0.530:
	0.529:
	0.528:
	0.527:
	0.526:
	0.525:
	0.524:
	0.523:
	0.522:
	0.521:
	0.520:
	0.519:
	0.518:
	0.517:
	0.516:
	0.515:
	0.514:
	0.513:
	0.512:
	0.511:
	0.510:
	0.509:
	0.508:
	0.507:
	0.506:
	0.505:
	0.504:
	0.503:
	0.502:
	0.501:
	0.500:
	0.499:
	0.498:
	0.497:
	0.496:
	0.495:
	0.494:
	0.493:
	0.492:
	0.491:
	0.490:
	0.489:
	0.488:
	0.487:
	0.486:
	0.485:
	0.484:
	0.483:
	0.482:
	0.481:
	0.480:
	0.479:
	0.478:
	0.477:
	0.476:
	0.475:
	0.474:
	0.473:
	0.472:
	0.471:
	0.470:
	0.469:
	0.468:
	0.467:
	0.466:
	0.465:
	0.464:
	0.463:
	0.462:
	0.461:
	0.460:
	0.459:
	0.458:
	0.457:
	0.456:
	0.455:
	0.454:
	0.453:
	0.452:
	0.451:
	0.450:
	0.449:
	0.448:
	0.447:
	0.446:
	0.445:
	0.444:
	0.443:
	0.442:
	0.441:
	0.440:
	0.439:
	0.438:
	0.437:
	0.436:
	0.435:
	0.434:
	0.433:
	0.432:
	0.431:
	0.430:
	0.429:
	0.428:
	0.427:
	0.426:
	0.425:
	0.424:
	0.423:
	0.422:
	0.421:
	0.420:
	0.419:
	0.418:
	0.417:
	0.416:
	0.415:
	0.414:
	0.413:
	0.412:
	0.411:
	0.410:
	0.409:
	0.408:
	0.407:
	0.406:
	0.405:
	0.404:
	0.403:
	0.402:
	0.401:
	0.400:
	0.399:
	0.398:
	0.397:
	0.396:
	0.395:
	0.394:
	0.393:
	0.392:
	0.391:
	0.390:
	0.389:
	0.388:
	0.387:
	0.386:
	0.385:
	0.384:
	0.383:
	0.382:
	0.381:
	0.380:
	0.379:
	0.378:
	0.377:
	0.376:
	0.375:
	0.374:
	0.373:
	0.372:
	0.371:
	0.370:
	0.369:
	0.368:
	0.367:
	0.366:
	0.365:
	0.364:
	0.363:
	0.362:
	0.361:
	0.360:
	0.359:
	0.358:
	0.357:
	0.356:
	0.355:
	0.354:
	0.353:
	0.352:
	0.351:
	0.350:
	0.349:
	0.348:
	0.347:
	0.346:
	0.345:
	0.344:
	0.343:
	0.342:
	0.341:
	0.340:
	0.339:
	0.338:
	0.337:
	0.336:
	0.335:
	0.334:
	0.333:
	0.332:
	0.331:
	0.330:
	0.329:
	0.328:
	0.327:
	0.326:
	0.325:
	0.324:
	0.323:
	0.322:
	0.321:
	0.320:
	0.319:
	0.318:
	0.317:
	0.316:
	0.315:
	0.314:
	0.313:
	0.312:
	0.311:
	0.310:
	0.309:
	0.308:
	0.307:
	0.306:
	0.305:
	0.304:
	0.303:
	0.302:
	0.301:
	0.300:
	0.299:
	0.298:
	0.297:
	0.296:
	0.295:
	0.294:
	0.293:
	0.292:
	0.291:
	0.290:
	0.289:
	0.288:
	0.287:
	0.286:
	0.285:
	0.284:
	0.283:
	0.282:
	0.281:
	0.280:
	0.279:
	0.278:
	0.277:
	0.276:
	0.275:
	0.274:
	0.273:
	0.272:
	0.271:
	0.270:
	0.269:
	0.268:
	0.267:
	0.266:
	0.265:
	0.264:
	0.263:
	0.262:
	0.261:
	0.260:
	0.259:
	0.258:
	0.257:
	0.256:
	0.255:
	0.254:
	0.253:
	0.252:
	0.251:
	0.250:
	0.249:
	0.248:
	0.247:
	0.246:
	0.245:
	0.244:
	0.243:
	0.242:
	0.241:
	0.240:
	0.239:
	0.238:
	0.237:
	0.236:
	0.235:
	0.234:
	0.233:
	0.232:
	0.231:
	0.230:
	0.229:
	0.228:
	0.227:
	0.226:
	0.225:
	0.224:
	0.223:
	0.222:
	0.221:
	0.220:
	0.219:
	0.218:
	0.217:
	0.216:
	0.215:
	0.214:
	0.213:
	0.212:
	0.211:
	0.210:
	0.209:
	0.208:
	0.207:
	0.206:
	0.205:
	0.204:
	0.203:
	0.202:
	0.201:
	0.200:
	0.199:
	0.198:
	0.197:
	0.196:
	0.195:
	0.194:
	0.193:
	0.192:
	0.191:
	0.190:
	0.189:
	0.188:
	0.187:
	0.186:
	0.185:
	0.184:
	0.183:
	0.182:
	0.181:
	0.180:
	0.179:
	0.178:
	0.177:
	0.176:
	0.175:
	0.174:
	0.173:
	0.172:
	0.171:
	0.170:
	0.169:
	0.168:
	0.167:
	0.166:
	0.165:
	0.164:
	0.163:
	0.162:
	0.161:
	0.160:
	0.159:
	0.158:
	0.157:
	0.156:
	0.155:
	0.154:
	0.153:
	0.152:
	0.151:
	0.150:
	0.149:
	0.148:
	0.147:
	0.146:
	0.145:
	0.144:
	0.143:
	0.142:
	0.141:
	0.140:
	0.139:
	0.138:
	0.137:
	0.136:
	0.135:
	0.134:
	0.133:
	0.132:
	0.131:
	0.130:
	0.129:
	0.128:
	0.127:
	0.126:
	0.125:
	0.124:
	0.123:
	0.122:
	0.121:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

