Balanced Allocations: Relaxing Two-Choice

Dimitrios Los', Thomas Sauerwald®, John Sylvester?

1University of Cambridge, UK
2University of Glasgow, UK

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) =j", where xt is the load vector after ball ¢.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load max;c,) =j", where xt is the load vector after ball ¢.

@e)
e ee)
0O

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.

< minimise the gap, where Gap(m) = max;e,) (z{* —m/n).

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.

< minimise the gap, where Gap(m) = max;e,) (z{* —m/n).

Gap

Balanced allocations setting

Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load max;c,) 2", where z* is the load vector after ball ¢.

< minimise the gap, where Gap(m) = max;e,) (z{* —m/n).

Gap

Applications in hashing, load balancing and routing.

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:

Iteration: For each ¢ > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = ®<log’ﬁ)gn> [Gon81].
T~

Meaning with probability
at least 1 — n~¢ for constant ¢ > 0.

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

Two-CHOICE Process:
Iteration: For each ¢t > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

Two-CHOICE Process:
Iteration: For each ¢t > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + (1)
[KLMadH96, ABKU99].

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% v log n) (e.g. [RS98]).

1

1

Two-CHOICE Process: '
Iteration: For each ¢ > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two. /

7

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + (1)
[KLMadH96, ABKU99].

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = @(logn) [Gon81].

loglogn

In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).

Two-CHOICE Process:
Iteration: For each ¢t > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + (1)
[KLMadH96, ABKU99].

In the heavily-loaded case (m > n), w.h.p. Gap(m) = log, logn 4+ ©(1) [BCSV06].

ONE-CHOICE and TwoO-CHOICE processes

ONE-CHOICE Process:
Iteration: For each t > 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = O &2 Gon8l1].
loglogn
In the heavily-loaded case (m > n), w.h.p. Gap(m) = @(,/% -log n) (e.g. [RS98]).
x

AY

AY

Two-CHOICE Process: \
Iteration: For each ¢ > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + @(1)
[KLMadH96, ABKU99). /

In the heavily-loaded case (m > n), w.h.p. Gap(m) = log, log n O(1) [BCSV06].

ONE-CHOICE and TwoO-CHOICE processes

400

300

200

100

Gap for n = 10*

—— ONE-CHOICE
—— Two-CHOICE

wer of two choices”

https://dimitrioslos.com/phdthesis/phenomena/power_of_two_choices/power_of_two_choices.html

ONE-CHOICE and TwoO-CHOICE processes

400

300

200

100

Gap for n = 10*

—— ONE-CHOICE
—— Two-CHOICE

wer of two choices”

1=t Open in Visualiser.

https://dimitrioslos.com/phdthesis/phenomena/power_of_two_choices/power_of_two_choices.html

Relaxing with incomplete information

MEAN-THINNING Process:

{

Iteration: For each ¢t > 0, sample two bins ¢; and i u.a.r., and update:

t+1 _ ¢ ot ot
v, =a, + 1 ifr <o,

t+1 _ ot se ot t
T, =z, +1 1fxi12n.

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Relaxing with incomplete information

MEAN-THINNING Process:
Iteration: For each ¢t > 0, sample two bins ¢; and i u.a.r., and update:

41t et
{mil =w; +1 ifx

t+1 _ ot se ot t

T, =z, +1 1fxi12n.

©)

t/n

OO0

00O
(@6)
@)

©

90 00)
[0/0/0/0 00
(0/0/0/00)

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Relaxing with incomplete information

MEAN-THINNING Process:
Iteration: For each ¢t > 0, sample two bins ¢; and i u.a.r., and update:

t+1 _ ¢ et t
{mil =x;, +1 1fgci1<n7

t+1 _ ot se ot t
T, =z, +1 1fxi12n.

©)

t/n

00000000
[0/0/0/0 00
(0/0/0/00)
[0/0/0/0'0)
00O

(@6)

@)

©
(00/0/0/9/0/0/0)
COOOOO0
[0/0/0/00)

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Relaxing with incomplete information

MEAN-THINNING Process:
Iteration: For each ¢t > 0, sample two bins ¢; and i u.a.r., and update:

41t et t

{mil =w; +1 ifx <
t+1 ot et

T, =z, +1 1faz-1 >

©) ©)

t/n

00000000
[0/0/0/0 00
(0/0/0/00)
[0/0/0/0'0)
00O

(@6)

©

©
(00/0/0/9/0/0/0)
COOOOO0
[0/0/0/00)

@06
{ee

o

o

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Relaxing with incomplete information

MEAN-THINNING Process:

Iteration: For each ¢t > 0, sample two bins ¢; and i u.a.r., and update:

t+1 _ ¢ et t
{mil =x;, +1 1fgcl-1<n7

t+1 _ ot se ot t
T, =z, +1 1fxi12n.

t/n

©) ©)

00000000
[0/0/0/0 00
(0/0/0/00)
[0/0/0/0'0)

00O
(@6)
@)

[0/0/0/0'0)
©OO
(@6)

©
©

©
(00/0/0/9/0/0/0)
COOOOO0
[0/0/0/00)
©OO

(©0)

©

(@)
(0/0/0/0/0/0/0/0)
[0/0/0/0 00

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Relaxing with incomplete information

MEAN-THINNING Process:

Iteration: For each ¢t > 0, sample two bins ¢; and i u.a.r., and update:

t+1 ¢ et t
;" =x, +1 1fgcl-1<n7
t+1 _ ot se ot t
T, =z, +1 1fxi12n.

©) ©) ©)

t/n

00000000
[0/0/0/0 00
(0/0/0/00)
[0/0/0/0'0)

[0/0/0/0'0)
©OO
(@6)

©
©

00O
(@6)
@)
©
(00/0/0/9/0/0/0)
COOOOO0
[0/0/0/00)
©OO
(@e)
©
©
(0/0/0/0/0/0/0/0)

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Relaxing with incomplete information

MEAN-THINNING Process:

Iteration: For each ¢t > 0, sample two bins ¢; and i u.a.r., and update:

t+1 ¢ et t
;" =x, +1 1fgcl-1<n7
t+1 _ ot se ot t
T, =z, +1 1fxi12n.

©) ©) ©)

t/n

00000000
[0/0/0/0 00
(0/0/0/00)
[0/0/0/0'0)

[0/0/0/0'0)
©OO
(@6)

©
©

00O
(@6)
@)
©
(00/0/0/9/0/0/0)
COOOOO0
[0/0/0/00)
©OO
(@e)
©
©
(0/0/0/0/0/0/0/0)

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Relaxing with incomplete information

MEAN-THINNING Process:
Iteration: For each ¢t > 0, sample two bins ¢; and i u.a.r., and update:
tHl _ ot et t
{mil =w; +1 ifx < |

t+1 _ ot se ot t
T, =z, +1 1fxi12n.

©) ©) ©)

t/n é‘

[0/0/0/0'0)
©OO
(@6)

(0/0/0/00)
[0/0/0/0'0)
(00/0/0/9/0/0/0)
COOOOO0
[0/0/0/00)
(0/0/0/0/0/0/0/0)
©

©

:
i

Achieves w.h.p. Gap(m) = O(logn) and uses 2 — ¢ samples.

380 8800

iy iy iy in i

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Relaxing with incomplete information

MEAN-THINNING Process:
Iteration: For each ¢t > 0, sample two bins ¢; and i u.a.r., and update:

41t et t

{l‘il =w; +1 ifx <
t+1 ot et

T, =z, +1 1faz-1 >

©) ©) ©)

%\@
3

Achieves w.h.p. Gap(m) = O(logn) and uses 2 — ¢ samples.

(0/0/0/00)
[0/0/0/0'0)
(00/0/0/9/0/0/0)
COOOOO0
[0/0/0/00)
(0/0/0/0/0/0/0/0)
[0/0/0/0'0)
©OO

(@6)

(@)

©

380 8800

iy iy iy in i

1=t Open in Visualiser.

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Relaxing with outdated information

000000 0)

OOOO
00 000)
00 000)
@)

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Relaxing with outdated information

Allocate balls in batches of size b [BCET12].

%

OOOO
00 000)
00 000)
@)

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Relaxing with outdated information

Allocate balls in batches of size b [BCET12].

%

000000
OO0

OO0
OO0

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Relaxing with outdated information

Allocate balls in batches of size b [BCET12].

%

OO0
OO0
00O

000000

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Relaxing with outdated information

Allocate balls in batches of size b [BCET12].

)

%

OO0
OO0
00O

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Relaxing with outdated information

Allocate balls in batches of size b [BCET12].

% 288

For b = n, improved Gap(m) = O(logn) to Gap(m) = O(logn/loglogn).

i1 23

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Relaxing with outdated information

Allocate balls in batches of size b [BCET12].

% 288

For b = n, improved Gap(m) = O(logn) to Gap(m) = O(logn/loglogn).

i1 i
For b > nlogn, achieves Gap(m) = ©(b/n).

https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Our techniques

Interplay between (i) linear, (ii) quadratic and (iii) exponential potentials.

— Exponential potential
—— Quadratic potential
— Absolute potential
— Quantile position

Scaled quantities

L L
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Number of balls m -106

[0/0]0/0]0/0/0]0/0]0/0]

[0/0]0/0]0/0/0]0/0]0/0]

o:

P S

— 000000080000 OOO000000000

= Bas asens
o]

CO0000000000

— X

Visualisations: dimitrioslos.com/halg22

https://dimitrioslos.com/halg22

Bibliography I

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, STAM J.
Comput. 29 (1999), no. 1, 180-200. MR 1710347

P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel, Multiple-choice
balanced allocation in (almost) parallel, 16th International Workshop on Randomization
and Computation (RANDOM’12), Springer-Verlag, 2012, pp. 411-422.

P. Berenbrink, A. Czumaj, A. Steger, and B. Vocking, Balanced allocations: the heavily
loaded case, STAM J. Comput. 35 (2006), no. 6, 1350-1385. MR 2217150

G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J.
Assoc. Comput. Mach. 28 (1981), no. 2, 289-304. MR 612082

R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a
distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517-542. MR 1407587

M. Raab and A. Steger, “Balls into bins”—a simple and tight analysis, 2nd
International Workshop on Randomization and Computation (RANDOM’98), vol. 1518,
Springer, 1998, pp. 159-170. MR 1729169

Bibliography 11

10

	anm0:
	0.0:

