
Balanced Allocations: Relaxing Two-Choice

Dimitrios Los1, Thomas Sauerwald1, John Sylvester2

1University of Cambridge, UK
2University of Glasgow, UK

1



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

2



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

2



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

2



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

2



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

2



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

2



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

■ Applications in hashing, load balancing and routing.

2



One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

3



One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

3



One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

Meaning with probability
at least 1 − n−c for constant c > 0.

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

3



One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

3



One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

3



One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

3



One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

3



One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

3



One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

3



One-Choice and Two-Choice processes

0 0.2 0.4 0.6 0.8 1

·104
0

100

200

300

400

m/n

Gap for n = 104

One-Choice
Two-Choice

“Power of two choices”

Open in Visualiser.

4

https://dimitrioslos.com/phdthesis/phenomena/power_of_two_choices/power_of_two_choices.html


One-Choice and Two-Choice processes

0 0.2 0.4 0.6 0.8 1

·104
0

100

200

300

400

m/n

Gap for n = 104

One-Choice
Two-Choice

“Power of two choices”

Open in Visualiser.

4

https://dimitrioslos.com/phdthesis/phenomena/power_of_two_choices/power_of_two_choices.html


Relaxing with incomplete information

Mean-Thinning Process:
Iteration: For each t ≥ 0, sample two bins i1 and i2 u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n ,

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n .

W t/n
i1 i1

t/n

■ Achieves w.h.p. Gap(m) = O(log n) and uses 2 − ϵ samples. Open in Visualiser.

5

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html


Relaxing with incomplete information

Mean-Thinning Process:
Iteration: For each t ≥ 0, sample two bins i1 and i2 u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n ,

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n .

W t/n
i1 i1

t/n

i1 i1 i1 i1

■ Achieves w.h.p. Gap(m) = O(log n) and uses 2 − ϵ samples. Open in Visualiser.

5

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html


Relaxing with incomplete information

Mean-Thinning Process:
Iteration: For each t ≥ 0, sample two bins i1 and i2 u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n ,

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n .

W t/n
i1 i1

t/n

i1 i1 i1 i1

■ Achieves w.h.p. Gap(m) = O(log n) and uses 2 − ϵ samples. Open in Visualiser.

5

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html


Relaxing with incomplete information

Mean-Thinning Process:
Iteration: For each t ≥ 0, sample two bins i1 and i2 u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n ,

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n .

W t/n
i1 i1

t/n

i1 i1 i2 i1 i1

■ Achieves w.h.p. Gap(m) = O(log n) and uses 2 − ϵ samples. Open in Visualiser.

5

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html


Relaxing with incomplete information

Mean-Thinning Process:
Iteration: For each t ≥ 0, sample two bins i1 and i2 u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n ,

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n .

W t/n
i1 i1

t/n

i1 i1 i2 i1 i1

■ Achieves w.h.p. Gap(m) = O(log n) and uses 2 − ϵ samples. Open in Visualiser.

5

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html


Relaxing with incomplete information

Mean-Thinning Process:
Iteration: For each t ≥ 0, sample two bins i1 and i2 u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n ,

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n .

W t/n
i1 i1

t/n

i1 i1 i2 i1 i2 i1

■ Achieves w.h.p. Gap(m) = O(log n) and uses 2 − ϵ samples. Open in Visualiser.

5

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html


Relaxing with incomplete information

Mean-Thinning Process:
Iteration: For each t ≥ 0, sample two bins i1 and i2 u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n ,

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n .

W t/n
i1 i1

t/n

i1 i1 i2 i1 i2 i1

■ Achieves w.h.p. Gap(m) = O(log n) and uses 2 − ϵ samples. Open in Visualiser.

5

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html


Relaxing with incomplete information

Mean-Thinning Process:
Iteration: For each t ≥ 0, sample two bins i1 and i2 u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n ,

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n .

W t/n
i1 i1

t/n

i1 i1 i2 i1 i2 i1

■ Achieves w.h.p. Gap(m) = O(log n) and uses 2 − ϵ samples.

Open in Visualiser.

5

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html


Relaxing with incomplete information

Mean-Thinning Process:
Iteration: For each t ≥ 0, sample two bins i1 and i2 u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n ,

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n .

W t/n
i1 i1

t/n

i1 i1 i2 i1 i2 i1

■ Achieves w.h.p. Gap(m) = O(log n) and uses 2 − ϵ samples. Open in Visualiser.

5

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html


Relaxing with outdated information

■ Allocate balls in batches of size b [BCE+12].

■ For b = n, improved Gap(m) = O(log n) to Gap(m) = Θ(log n/ log log n).
■ For b ≥ n log n, achieves Gap(m) = Θ(b/n).

Open in Visualiser.

6

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


Relaxing with outdated information
■ Allocate balls in batches of size b [BCE+12].

■ For b = n, improved Gap(m) = O(log n) to Gap(m) = Θ(log n/ log log n).
■ For b ≥ n log n, achieves Gap(m) = Θ(b/n).

Open in Visualiser.

6

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


Relaxing with outdated information
■ Allocate balls in batches of size b [BCE+12].

■ For b = n, improved Gap(m) = O(log n) to Gap(m) = Θ(log n/ log log n).
■ For b ≥ n log n, achieves Gap(m) = Θ(b/n).

Open in Visualiser.

6

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


Relaxing with outdated information
■ Allocate balls in batches of size b [BCE+12].

i1 i2

■ For b = n, improved Gap(m) = O(log n) to Gap(m) = Θ(log n/ log log n).
■ For b ≥ n log n, achieves Gap(m) = Θ(b/n).

Open in Visualiser.

6

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


Relaxing with outdated information
■ Allocate balls in batches of size b [BCE+12].

i1 i2

■ For b = n, improved Gap(m) = O(log n) to Gap(m) = Θ(log n/ log log n).
■ For b ≥ n log n, achieves Gap(m) = Θ(b/n).

Open in Visualiser.

6

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


Relaxing with outdated information
■ Allocate balls in batches of size b [BCE+12].

i1 i2

■ For b = n, improved Gap(m) = O(log n) to Gap(m) = Θ(log n/ log log n).

■ For b ≥ n log n, achieves Gap(m) = Θ(b/n).

Open in Visualiser.

6

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


Relaxing with outdated information
■ Allocate balls in batches of size b [BCE+12].

i1 i2

■ For b = n, improved Gap(m) = O(log n) to Gap(m) = Θ(log n/ log log n).
■ For b ≥ n log n, achieves Gap(m) = Θ(b/n).

Open in Visualiser.

6

https://dimitrioslos.com/phdthesis/settings/batched/batched.html


Our techniques
■ Interplay between (i) linear, (ii) quadratic and (iii) exponential potentials.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

·106Number of balls m

Sc
al

ed
qu

an
tit

ie
s

Exponential potential
Quadratic potential
Absolute potential
Quantile position

7



Visualisations: dimitrioslos.com/halg22
8

https://dimitrioslos.com/halg22


Bibliography I
▶ Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J.

Comput. 29 (1999), no. 1, 180–200. MR 1710347

▶ P. Berenbrink, A. Czumaj, M. Englert, T. Friedetzky, and L. Nagel, Multiple-choice
balanced allocation in (almost) parallel, 16th International Workshop on Randomization
and Computation (RANDOM’12), Springer-Verlag, 2012, pp. 411–422.

▶ P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: the heavily
loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350–1385. MR 2217150

▶ G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J.
Assoc. Comput. Mach. 28 (1981), no. 2, 289–304. MR 612082

▶ R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a
distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517–542. MR 1407587

▶ M. Raab and A. Steger, “Balls into bins”—a simple and tight analysis, 2nd
International Workshop on Randomization and Computation (RANDOM’98), vol. 1518,
Springer, 1998, pp. 159–170. MR 1729169

9



Bibliography II

10


	anm0: 
	0.0: 


