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Applications in hashing, load balancing and routing.
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Two-CHOICE Process: \
Iteration: For each ¢ > 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

In the lightly-loaded case (m = n), w.h.p. Gap(n) = log, logn + @(1)
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Relaxing with incomplete information

MEAN-THINNING Process:

{

Iteration: For each ¢t > 0, sample two bins ¢; and i u.a.r., and update:

t+1 _ ¢ ot ot
v, =a, + 1 ifr <o,

t+1 _ ot se ot t
T, =z, +1 1fxi12n.



https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Relaxing with incomplete information

MEAN-THINNING Process:
Iteration: For each ¢t > 0, sample two bins ¢; and i u.a.r., and update:

41t et
{mil =w; +1 ifx

t+1 _ ot se ot t

T, =z, +1 1fxi12n.

©)

t/n

OO0

00O
(@6)
@)

©

90 00)
[0/0/0/0 00
(0/0/0/00)


https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Relaxing with incomplete information

MEAN-THINNING Process:
Iteration: For each ¢t > 0, sample two bins ¢; and i u.a.r., and update:

t+1 _ ¢ et t
{mil =x;, +1 1fgci1<n7

t+1 _ ot se ot t
T, =z, +1 1fxi12n.

©)

t/n

00000000
[0/0/0/0 00
(0/0/0/00)
[0/0/0/0'0)
00O

(@6)

@)

©
(00/0/0/9/0/0/0)
COOOOO0
[0/0/0/00)


https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Relaxing with incomplete information

MEAN-THINNING Process:
Iteration: For each ¢t > 0, sample two bins ¢; and i u.a.r., and update:

41t et t

{mil =w; +1 ifx <
t+1 ot et

T, =z, +1 1faz-1 >

©) ©)

t/n

00000000
[0/0/0/0 00
(0/0/0/00)
[0/0/0/0'0)
00O

(@6)

©

©
(00/0/0/9/0/0/0)
COOOOO0
[0/0/0/00)

@06
{ee

o

o


https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Relaxing with incomplete information

MEAN-THINNING Process:

Iteration: For each ¢t > 0, sample two bins ¢; and i u.a.r., and update:

t+1 _ ¢ et t
{mil =x;, +1 1fgcl-1<n7

t+1 _ ot se ot t
T, =z, +1 1fxi12n.

t/n

©) ©)

00000000
[0/0/0/0 00
(0/0/0/00)
[0/0/0/0'0)

00O
(@6)
@)

[0/0/0/0'0)
©OO
(@6)

©
©

©
(00/0/0/9/0/0/0)
COOOOO0
[0/0/0/00)
©OO

(©0)

©

(@)
(0/0/0/0/0/0/0/0)
[0/0/0/0 00



https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Relaxing with incomplete information

MEAN-THINNING Process:

Iteration: For each ¢t > 0, sample two bins ¢; and i u.a.r., and update:

t+1 ¢ et t
;" =x, +1 1fgcl-1<n7
t+1 _ ot se ot t
T, =z, +1 1fxi12n.

©) ©) ©)

t/n

00000000
[0/0/0/0 00
(0/0/0/00)
[0/0/0/0'0)

[0/0/0/0'0)
©OO
(@6)

©
©

00O
(@6)
@)
©
(00/0/0/9/0/0/0)
COOOOO0
[0/0/0/00)
©OO
(@e)
©
©
(0/0/0/0/0/0/0/0)



https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Relaxing with incomplete information

MEAN-THINNING Process:

Iteration: For each ¢t > 0, sample two bins ¢; and i u.a.r., and update:

t+1 ¢ et t
;" =x, +1 1fgcl-1<n7
t+1 _ ot se ot t
T, =z, +1 1fxi12n.

©) ©) ©)

t/n

00000000
[0/0/0/0 00
(0/0/0/00)
[0/0/0/0'0)

[0/0/0/0'0)
©OO
(@6)

©
©

00O
(@6)
@)
©
(00/0/0/9/0/0/0)
COOOOO0
[0/0/0/00)
©OO
(@e)
©
©
(0/0/0/0/0/0/0/0)



https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Relaxing with incomplete information

MEAN-THINNING Process:
Iteration: For each ¢t > 0, sample two bins ¢; and i u.a.r., and update:
tHl _ ot et t
{mil =w; +1 ifx < |

t+1 _ ot se ot t
T, =z, +1 1fxi12n.

©) ©) ©)

t/n é‘

[0/0/0/0'0)
©OO
(@6)

(0/0/0/00)
[0/0/0/0'0)
(00/0/0/9/0/0/0)
COOOOO0
[0/0/0/00)
(0/0/0/0/0/0/0/0)
©

©

:
i

Achieves w.h.p. Gap(m) = O(logn) and uses 2 — ¢ samples.

380 8800

iy iy iy in i



https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Relaxing with incomplete information

MEAN-THINNING Process:
Iteration: For each ¢t > 0, sample two bins ¢; and i u.a.r., and update:

41t et t

{l‘il =w; +1 ifx <
t+1 ot et

T, =z, +1 1faz-1 >

©) ©) ©)

%\@
3

Achieves w.h.p. Gap(m) = O(logn) and uses 2 — ¢ samples.

(0/0/0/00)
[0/0/0/0'0)
(00/0/0/9/0/0/0)
COOOOO0
[0/0/0/00)
(0/0/0/0/0/0/0/0)
[0/0/0/0'0)
©OO

(@6)

(@)

©

380 8800

iy iy iy in i

1=t Open in Visualiser.



https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Relaxing with outdated information

000000 0)

OOOO
00 000)
00 000)
@)



https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Relaxing with outdated information

Allocate balls in batches of size b [BCET12].

%

OOOO
00 000)
00 000)
@)



https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Relaxing with outdated information

Allocate balls in batches of size b [BCET12].

%

000000
OO0

OO0
OO0



https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Relaxing with outdated information

Allocate balls in batches of size b [BCET12].

%

OO0
OO0
00O

000000



https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Relaxing with outdated information

Allocate balls in batches of size b [BCET12].

)

%

OO0
OO0
00O



https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Relaxing with outdated information

Allocate balls in batches of size b [BCET12].

% 288

For b = n, improved Gap(m) = O(logn) to Gap(m) = O(logn/loglogn).

i1 23


https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Relaxing with outdated information

Allocate balls in batches of size b [BCET12].

% 288

For b = n, improved Gap(m) = O(logn) to Gap(m) = O(logn/loglogn).

i1 i
For b > nlogn, achieves Gap(m) = ©(b/n).



https://dimitrioslos.com/phdthesis/settings/batched/batched.html

Our techniques

Interplay between (i) linear, (ii) quadratic and (iii) exponential potentials.

— Exponential potential
—— Quadratic potential
— Absolute potential
—  Quantile position

Scaled quantities

L L
0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Number of balls m -106
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Visualisations: dimitrioslos.com/halg22
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