
Balanced Allocations: Caching and Packing,
Twinning and Thinning

Dimitrios Los1, Thomas Sauerwald1, John Sylvester2

1University of Cambridge, UK
2University of Glasgow, UK

1

Balanced allocations: Background

2

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

3

Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

■ Applications in hashing, load balancing and routing.

3

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

Meaning with probability
at least 1 − n−c for constant c > 0.

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

4

One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].

4

(1 + β) process: Definition

(1 + β) Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ [Mit96] interpreted (1 − β)/2 as the probability of making an erroneous comparison.

■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. Θ(log n/β) for
1/n ≤ β < 1 − ϵ for constant ϵ > 0.

5

(1 + β) process: Definition

(1 + β) Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ [Mit96] interpreted (1 − β)/2 as the probability of making an erroneous comparison.

■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. Θ(log n/β) for
1/n ≤ β < 1 − ϵ for constant ϵ > 0.

5

(1 + β) process: Definition

(1 + β) Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ [Mit96] interpreted (1 − β)/2 as the probability of making an erroneous comparison.

■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. Θ(log n/β) for
1/n ≤ β < 1 − ϵ for constant ϵ > 0.

5

Two-Thinning and Twinning

6

Two-Thinning with relative thresholds

Relative-Threshold(f(n)) Process:
Parameter: An offset function f(n) ≥ 0.
Iteration: For each t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

■ Mean-Thinning has f(n) = 0.

W t/n
i1 i1

t/n+ f(n)

Open in Visualiser.

7

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Two-Thinning with relative thresholds

Relative-Threshold(f(n)) Process:
Parameter: An offset function f(n) ≥ 0.
Iteration: For each t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

■ Mean-Thinning has f(n) = 0.

W t/n
i1 i1

t/n+ f(n)

Open in Visualiser.

7

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Two-Thinning with relative thresholds

Relative-Threshold(f(n)) Process:
Parameter: An offset function f(n) ≥ 0.
Iteration: For each t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

■ Mean-Thinning has f(n) = 0.

W t/n
i1 i1

t/n+ f(n)

i1 i1 i1 i1

Open in Visualiser.

7

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Two-Thinning with relative thresholds

Relative-Threshold(f(n)) Process:
Parameter: An offset function f(n) ≥ 0.
Iteration: For each t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

■ Mean-Thinning has f(n) = 0.

W t/n
i1 i1

t/n+ f(n)

i1 i1 i1 i1

Open in Visualiser.

7

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Two-Thinning with relative thresholds

Relative-Threshold(f(n)) Process:
Parameter: An offset function f(n) ≥ 0.
Iteration: For each t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

■ Mean-Thinning has f(n) = 0.

W t/n
i1 i1

t/n+ f(n)

i1 i1 i2 i1 i1

Open in Visualiser.

7

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Two-Thinning with relative thresholds

Relative-Threshold(f(n)) Process:
Parameter: An offset function f(n) ≥ 0.
Iteration: For each t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

■ Mean-Thinning has f(n) = 0.

W t/n
i1 i1

t/n+ f(n)

i1 i1 i2 i1 i1

Open in Visualiser.

7

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Two-Thinning with relative thresholds

Relative-Threshold(f(n)) Process:
Parameter: An offset function f(n) ≥ 0.
Iteration: For each t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

■ Mean-Thinning has f(n) = 0.

W t/n
i1 i1

t/n+ f(n)

i1 i1 i2 i1 i2 i1

Open in Visualiser.

7

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Two-Thinning with relative thresholds

Relative-Threshold(f(n)) Process:
Parameter: An offset function f(n) ≥ 0.
Iteration: For each t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

■ Mean-Thinning has f(n) = 0.
■ [FGG21] identified the optimal adaptive Two-Thinning, in the lightly-loaded case.

W t/n
i1 i1

t/n+ f(n)

Open in Visualiser.

7

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Two-Thinning with relative thresholds

Relative-Threshold(f(n)) Process:
Parameter: An offset function f(n) ≥ 0.
Iteration: For each t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

■ Mean-Thinning has f(n) = 0.
■ [FGG21] identified the optimal adaptive Two-Thinning, in the lightly-loaded case.
■ [FGGL21, LS22] analyse Two-Thinning without relative thresholds, in the

heavily-loaded case.

W t/n
i1 i1

t/n+ f(n)

Open in Visualiser.

7

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Two-Thinning with relative thresholds

Relative-Threshold(f(n)) Process:
Parameter: An offset function f(n) ≥ 0.
Iteration: For each t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

■ Mean-Thinning has f(n) = 0.
■ [FGG21] identified the optimal adaptive Two-Thinning, in the lightly-loaded case.
■ [FGGL21, LS22] analyse Two-Thinning without relative thresholds, in the

heavily-loaded case.
■ [IK04, FL20, LS22] analyse d-Thinning processes.

W t/n
i1 i1

t/n+ f(n)

Open in Visualiser.

7

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Two-Thinning with relative thresholds

Relative-Threshold(f(n)) Process:
Parameter: An offset function f(n) ≥ 0.
Iteration: For each t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

■ Mean-Thinning has f(n) = 0.
■ [FGG21] identified the optimal adaptive Two-Thinning, in the lightly-loaded case.
■ [FGGL21, LS22] analyse Two-Thinning without relative thresholds, in the

heavily-loaded case.
■ [IK04, FL20, LS22] analyse d-Thinning processes.

W t/n
i1 i1

t/n+ f(n)

Open in Visualiser.

7

https://dimitrioslos.com/phdthesis/processes/mean_thinning/mean_thinning.html

Two-Thinning as Two-Choice with incomplete information
We can interpret Two-Thinning as an instance of the Two-Choice process, where we
are only able to compare the loads of the two sampled bins if one is above the threshold
and one is below.

8

Two-Thinning as Two-Choice with incomplete information
We can interpret Two-Thinning as an instance of the Two-Choice process, where we
are only able to compare the loads of the two sampled bins if one is above the threshold
and one is below.

i1

✓

i2

✗ These two bins we
can compare

8

Two-Thinning as Two-Choice with incomplete information
We can interpret Two-Thinning as an instance of the Two-Choice process, where we
are only able to compare the loads of the two sampled bins if one is above the threshold
and one is below.

i1

✗

i2

✗ These two bins we
cannot compare

8

Two-Thinning as Two-Choice with incomplete information
We can interpret Two-Thinning as an instance of the Two-Choice process, where we
are only able to compare the loads of the two sampled bins if one is above the threshold
and one is below.

i1

✓

i2

✓
And, these two bins we
cannot compare

8

Two-Thinning: Our results

■ For heavily-loaded case, Mean-Thinning has w.h.p. Gap(m) = O(log n).

■ For sufficiently large m, Mean-Thinning has w.h.p. Gap(m) = Ω(log n).

■ By a coupling argument, Relative-Threshold(f(n)) with f(n) ≥ 0 has w.h.p.

Gap(m) = f(n) + O(log n).

9

Two-Thinning: Our results
■ For heavily-loaded case, Mean-Thinning has w.h.p. Gap(m) = O(log n).

■ For sufficiently large m, Mean-Thinning has w.h.p. Gap(m) = Ω(log n).

■ By a coupling argument, Relative-Threshold(f(n)) with f(n) ≥ 0 has w.h.p.

Gap(m) = f(n) + O(log n).

9

Two-Thinning: Our results
■ For heavily-loaded case, Mean-Thinning has w.h.p. Gap(m) = O(log n).

■ For sufficiently large m, Mean-Thinning has w.h.p. Gap(m) = Ω(log n).

■ By a coupling argument, Relative-Threshold(f(n)) with f(n) ≥ 0 has w.h.p.

Gap(m) = f(n) + O(log n).

9

Two-Thinning: Our results
■ For heavily-loaded case, Mean-Thinning has w.h.p. Gap(m) = O(log n).

■ For sufficiently large m, Mean-Thinning has w.h.p. Gap(m) = Ω(log n).

■ By a coupling argument, Relative-Threshold(f(n)) with f(n) ≥ 0 has w.h.p.

Gap(m) = f(n) + O(log n).

9

Mean-Thinning: Visualisation

10

Twinning: Definition

Twinning Process:
Iteration: For each t ≥ 0, sample a bin i u.a.r., and update its load:

xt+1
i =

{
xt

i + 2 if xt
i < W t

n ,

xt
i + 1 if xt

i ≥ W t

n .

where W t :=
∑n

i=1 xt
i

W t/n
i1 i

W t/n

W t/n
i1 i

W t/n

Open in Visualiser.

11

https://dimitrioslos.com/phdthesis/processes/twinning/twinning.html

Twinning: Definition

Twinning Process:
Iteration: For each t ≥ 0, sample a bin i u.a.r., and update its load:

xt+1
i =

{
xt

i + 2 if xt
i < W t

n ,

xt
i + 1 if xt

i ≥ W t

n . where W t :=
∑n

i=1 xt
i

W t/n
i1 i

W t/n

W t/n
i1 i

W t/n

Open in Visualiser.

11

https://dimitrioslos.com/phdthesis/processes/twinning/twinning.html

Twinning: Definition

Twinning Process:
Iteration: For each t ≥ 0, sample a bin i u.a.r., and update its load:

xt+1
i =

{
xt

i + 2 if xt
i < W t

n ,

xt
i + 1 if xt

i ≥ W t

n . where W t :=
∑n

i=1 xt
i

W t/n
i1 i

W t/n

W t/n
i1 i

W t/n

Open in Visualiser.

11

https://dimitrioslos.com/phdthesis/processes/twinning/twinning.html

Twinning: Definition

Twinning Process:
Iteration: For each t ≥ 0, sample a bin i u.a.r., and update its load:

xt+1
i =

{
xt

i + 2 if xt
i < W t

n ,

xt
i + 1 if xt

i ≥ W t

n . where W t :=
∑n

i=1 xt
i

W t/n
i1 i

W t/n

W t/n
i1 i

W t/n

Open in Visualiser.

11

https://dimitrioslos.com/phdthesis/processes/twinning/twinning.html

Twinning: Definition

Twinning Process:
Iteration: For each t ≥ 0, sample a bin i u.a.r., and update its load:

xt+1
i =

{
xt

i + 2 if xt
i < W t

n ,

xt
i + 1 if xt

i ≥ W t

n . where W t :=
∑n

i=1 xt
i

W t/n
i1 i

W t/n

W t/n
i1 i

W t/n

Open in Visualiser.

11

https://dimitrioslos.com/phdthesis/processes/twinning/twinning.html

Twinning: Properties
■ For the heavily loaded case, Twinning has w.h.p. Gap(m) = O(log n).

■ Twinning w.h.p. uses 1 − ϵ samples per allocatied ball, for const ϵ > 0.

■ However, the twinning operation may not always be implementable in practice.

12

Twinning: Properties
■ For the heavily loaded case, Twinning has w.h.p. Gap(m) = O(log n).

■ Twinning w.h.p. uses 1 − ϵ samples per allocatied ball, for const ϵ > 0.

■ However, the twinning operation may not always be implementable in practice.

12

Twinning: Properties
■ For the heavily loaded case, Twinning has w.h.p. Gap(m) = O(log n).

■ Twinning w.h.p. uses 1 − ϵ samples per allocatied ball, for const ϵ > 0.

■ However, the twinning operation may not always be implementable in practice.

12

Probability allocation vectors

■ Probability allocation vector pt, where pt
i is the prob. of allocating to i-th heaviest

bin.
■ For One-Choice and Two-Choice, p is time-independent,

pOne-Choice =
(1

n
,

1
n

, . . . ,
1
n

)
,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ However, for Mean-Thinning, pt depends on the load distribution,

pt
Mean-Thinning(xt) =

(δt

n
,

δt

n
, . . . ,

δt

n︸ ︷︷ ︸
δ·n entries

,
1 + δt

n
, . . . ,

1 + δt

n︸ ︷︷ ︸
(1−δt)·n entries

)
,

where δt ∈ [1/n, 1] is the quantile of the mean.

13

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th heaviest
bin.

■ For One-Choice and Two-Choice, p is time-independent,

pOne-Choice =
(1

n
,

1
n

, . . . ,
1
n

)
,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ However, for Mean-Thinning, pt depends on the load distribution,

pt
Mean-Thinning(xt) =

(δt

n
,

δt

n
, . . . ,

δt

n︸ ︷︷ ︸
δ·n entries

,
1 + δt

n
, . . . ,

1 + δt

n︸ ︷︷ ︸
(1−δt)·n entries

)
,

where δt ∈ [1/n, 1] is the quantile of the mean.

13

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th heaviest
bin.

■ For One-Choice and Two-Choice, p is time-independent,

pOne-Choice =
(1

n
,

1
n

, . . . ,
1
n

)
,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ However, for Mean-Thinning, pt depends on the load distribution,

pt
Mean-Thinning(xt) =

(δt

n
,

δt

n
, . . . ,

δt

n︸ ︷︷ ︸
δ·n entries

,
1 + δt

n
, . . . ,

1 + δt

n︸ ︷︷ ︸
(1−δt)·n entries

)
,

where δt ∈ [1/n, 1] is the quantile of the mean.

13

Probability allocation vectors
■ Probability allocation vector pt, where pt

i is the prob. of allocating to i-th heaviest
bin.

■ For One-Choice and Two-Choice, p is time-independent,

pOne-Choice =
(1

n
,

1
n

, . . . ,
1
n

)
,

pTwo-Choice =
(1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ However, for Mean-Thinning, pt depends on the load distribution,

pt
Mean-Thinning(xt) =

(δt

n
,

δt

n
, . . . ,

δt

n︸ ︷︷ ︸
δ·n entries

,
1 + δt

n
, . . . ,

1 + δt

n︸ ︷︷ ︸
(1−δt)·n entries

)
,

where δt ∈ [1/n, 1] is the quantile of the mean.

13

Framework: Probability and weight bias
For processes with probability vector pt such that for each round t ≥ 0:

■ Condition P: There exist constants k1, k2, such that
▶ (Overloaded bins) For each bin i with xt

i ≥ t/n,

pt
i ≤ 1

n
− k1 · (1 − δt)

n
=: pt

+.

▶ (Underloaded bins) For each bin i with xt
i < t/n,

pt
i ≥ 1

n
+ k2 · δt

n
=: pt

−.

■ Condition W: When bin i is chosen for allocation,
▶ (Overloaded bins) If xt

i ≥ W t/n, then allocate w+ balls,
▶ (Underloaded bins) If xt

i < W t/n, then allocate w− balls,
where w+, w− are positive integer constants.

k1, k2 ≥ 0 k1, k2 > 0
w+ ≤ w−
w+ < w−

One-Choice

14

Framework: Probability and weight bias
For processes with probability vector pt such that for each round t ≥ 0:
■ Condition P: There exist constants k1, k2, such that

▶ (Overloaded bins) For each bin i with xt
i ≥ t/n,

pt
i ≤ 1

n
− k1 · (1 − δt)

n
=: pt

+.

▶ (Underloaded bins) For each bin i with xt
i < t/n,

pt
i ≥ 1

n
+ k2 · δt

n
=: pt

−.

■ Condition W: When bin i is chosen for allocation,
▶ (Overloaded bins) If xt

i ≥ W t/n, then allocate w+ balls,
▶ (Underloaded bins) If xt

i < W t/n, then allocate w− balls,
where w+, w− are positive integer constants.

k1, k2 ≥ 0 k1, k2 > 0
w+ ≤ w−
w+ < w−

One-Choice

14

Framework: Probability and weight bias
For processes with probability vector pt such that for each round t ≥ 0:
■ Condition P: There exist constants k1, k2, such that

▶ (Overloaded bins) For each bin i with xt
i ≥ t/n,

pt
i ≤ 1

n
− k1 · (1 − δt)

n
=: pt

+.

▶ (Underloaded bins) For each bin i with xt
i < t/n,

pt
i ≥ 1

n
+ k2 · δt

n
=: pt

−.

■ Condition W: When bin i is chosen for allocation,
▶ (Overloaded bins) If xt

i ≥ W t/n, then allocate w+ balls,
▶ (Underloaded bins) If xt

i < W t/n, then allocate w− balls,
where w+, w− are positive integer constants.

k1, k2 ≥ 0 k1, k2 > 0
w+ ≤ w−
w+ < w−

One-Choice

14

Framework: Probability and weight bias
For processes with probability vector pt such that for each round t ≥ 0:
■ Condition P: There exist constants k1, k2, such that

▶ (Overloaded bins) For each bin i with xt
i ≥ t/n,

pt
i ≤ 1

n
− k1 · (1 − δt)

n
=: pt

+.

▶ (Underloaded bins) For each bin i with xt
i < t/n,

pt
i ≥ 1

n
+ k2 · δt

n
=: pt

−.

■ Condition W: When bin i is chosen for allocation,
▶ (Overloaded bins) If xt

i ≥ W t/n, then allocate w+ balls,
▶ (Underloaded bins) If xt

i < W t/n, then allocate w− balls,
where w+, w− are positive integer constants.

k1, k2 ≥ 0 k1, k2 > 0
w+ ≤ w−
w+ < w−

One-Choice

14

Framework: Probability and weight bias
For processes with probability vector pt such that for each round t ≥ 0:
■ Condition P: There exist constants k1, k2, such that

▶ (Overloaded bins) For each bin i with xt
i ≥ t/n,

pt
i ≤ 1

n
− k1 · (1 − δt)

n
=: pt

+.

▶ (Underloaded bins) For each bin i with xt
i < t/n,

pt
i ≥ 1

n
+ k2 · δt

n
=: pt

−.

■ Condition W: When bin i is chosen for allocation,
▶ (Overloaded bins) If xt

i ≥ W t/n, then allocate w+ balls,
▶ (Underloaded bins) If xt

i < W t/n, then allocate w− balls,
where w+, w− are positive integer constants.

k1, k2 ≥ 0 k1, k2 > 0
w+ ≤ w−
w+ < w−

One-Choice

14

Framework: Probability and weight bias
For processes with probability vector pt such that for each round t ≥ 0:
■ Condition P: There exist constants k1, k2, such that

▶ (Overloaded bins) For each bin i with xt
i ≥ t/n,

pt
i ≤ 1

n
− k1 · (1 − δt)

n
=: pt

+.

▶ (Underloaded bins) For each bin i with xt
i < t/n,

pt
i ≥ 1

n
+ k2 · δt

n
=: pt

−.

■ Condition W: When bin i is chosen for allocation,
▶ (Overloaded bins) If xt

i ≥ W t/n, then allocate w+ balls,
▶ (Underloaded bins) If xt

i < W t/n, then allocate w− balls,
where w+, w− are positive integer constants.

k1, k2 ≥ 0 k1, k2 > 0
w+ ≤ w−
w+ < w−

One-Choice

14

Framework: Probability and weight bias
For processes with probability vector pt such that for each round t ≥ 0:
■ Condition P: There exist constants k1, k2, such that

▶ (Overloaded bins) For each bin i with xt
i ≥ t/n,

pt
i ≤ 1

n
− k1 · (1 − δt)

n
=: pt

+.

▶ (Underloaded bins) For each bin i with xt
i < t/n,

pt
i ≥ 1

n
+ k2 · δt

n
=: pt

−.

■ Condition W: When bin i is chosen for allocation,
▶ (Overloaded bins) If xt

i ≥ W t/n, then allocate w+ balls,
▶ (Underloaded bins) If xt

i < W t/n, then allocate w− balls,
where w+, w− are positive integer constants.

k1, k2 ≥ 0 k1, k2 > 0
w+ ≤ w−
w+ < w−

One-Choice

Twinning
14

Framework: Probability and weight bias
For processes with probability vector pt such that for each round t ≥ 0:
■ Condition P: There exist constants k1, k2, such that

▶ (Overloaded bins) For each bin i with xt
i ≥ t/n,

pt
i ≤ 1

n
− k1 · (1 − δt)

n
=: pt

+.

▶ (Underloaded bins) For each bin i with xt
i < t/n,

pt
i ≥ 1

n
+ k2 · δt

n
=: pt

−.

■ Condition W: When bin i is chosen for allocation,
▶ (Overloaded bins) If xt

i ≥ W t/n, then allocate w+ balls,
▶ (Underloaded bins) If xt

i < W t/n, then allocate w− balls,
where w+, w− are positive integer constants.

k1, k2 ≥ 0 k1, k2 > 0
w+ ≤ w−
w+ < w−

One-Choice

Twinning

Mean-Thinning, (1 + β),
Two-Choice

14

Outline of the analysis

15

The hyperbolic cosine potential function

■ [PTW15] used the hyperbolic cosine potential

Γt := Γt(γ) :=
n∑

i=1
eγ(xt

i−W t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−W t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β) process, γ = Θ(β).
■ [PTW15] show that E

[
Γt+1 | Ft

]
≤ Γt ·

(
1 − c1

n

)
+ c2.

■ By induction, this implies E [Γt] ≤ cn for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
γ

(3 · log n + log c)
]

≥ 1 − n−2.

16

The hyperbolic cosine potential function
■ [PTW15] used the hyperbolic cosine potential

Γt := Γt(γ) :=
n∑

i=1
eγ(xt

i−W t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−W t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β) process, γ = Θ(β).
■ [PTW15] show that E

[
Γt+1 | Ft

]
≤ Γt ·

(
1 − c1

n

)
+ c2.

■ By induction, this implies E [Γt] ≤ cn for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
γ

(3 · log n + log c)
]

≥ 1 − n−2.

16

The hyperbolic cosine potential function
■ [PTW15] used the hyperbolic cosine potential

Γt := Γt(γ) :=
n∑

i=1
eγ(xt

i−W t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−W t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β) process, γ = Θ(β).

■ [PTW15] show that E
[

Γt+1 | Ft
]

≤ Γt ·
(
1 − c1

n

)
+ c2.

■ By induction, this implies E [Γt] ≤ cn for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
γ

(3 · log n + log c)
]

≥ 1 − n−2.

16

The hyperbolic cosine potential function
■ [PTW15] used the hyperbolic cosine potential

Γt := Γt(γ) :=
n∑

i=1
eγ(xt

i−W t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−W t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β) process, γ = Θ(β).
■ [PTW15] show that E

[
Γt+1 | Ft

]
≤ Γt ·

(
1 − c1

n

)
+ c2.

■ By induction, this implies E [Γt] ≤ cn for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
γ

(3 · log n + log c)
]

≥ 1 − n−2.

16

The hyperbolic cosine potential function
■ [PTW15] used the hyperbolic cosine potential

Γt := Γt(γ) :=
n∑

i=1
eγ(xt

i−W t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−W t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β) process, γ = Θ(β).
■ [PTW15] show that E

[
Γt+1 | Ft

]
≤ Γt ·

(
1 − c1

n

)
+ c2.

■ By induction, this implies E [Γt] ≤ cn for any t ≥ 0.

■ By Markov’s inequality, we get Pr
[

Γm ≤ cn3]
≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
γ

(3 · log n + log c)
]

≥ 1 − n−2.

16

The hyperbolic cosine potential function
■ [PTW15] used the hyperbolic cosine potential

Γt := Γt(γ) :=
n∑

i=1
eγ(xt

i−W t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−W t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β) process, γ = Θ(β).
■ [PTW15] show that E

[
Γt+1 | Ft

]
≤ Γt ·

(
1 − c1

n

)
+ c2.

■ By induction, this implies E [Γt] ≤ cn for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
γ

(3 · log n + log c)
]

≥ 1 − n−2.

16

Mean-Thinning: Why the analysis is tricky
■ If δt is very large, say δt = 1 − 1/n, then pt becomes very close to the One-Choice

vector :
pMean-Thinning(xt) =

(1
n

− 1
n2 , . . . ,

1
n

− 1
n2︸ ︷︷ ︸

(n−1) entries

,
2
n

− 1
n2

)
.

■ With this worst-case probability vector, we can only obtain w.h.p. a gap of O(n log n)
using Γt with γ = Θ(1/n).

But what happens for Γt with constant γ?

17

Mean-Thinning: Why the analysis is tricky
■ If δt is very large, say δt = 1 − 1/n, then pt becomes very close to the One-Choice

vector :
pMean-Thinning(xt) =

(1
n

− 1
n2 , . . . ,

1
n

− 1
n2︸ ︷︷ ︸

(n−1) entries

,
2
n

− 1
n2

)
.

■ With this worst-case probability vector, we can only obtain w.h.p. a gap of O(n log n)
using Γt with γ = Θ(1/n).

But what happens for Γt with constant γ?

17

Mean-Thinning: Why the analysis is tricky
■ If δt is very large, say δt = 1 − 1/n, then pt becomes very close to the One-Choice

vector :
pMean-Thinning(xt) =

(1
n

− 1
n2 , . . . ,

1
n

− 1
n2︸ ︷︷ ︸

(n−1) entries

,
2
n

− 1
n2

)
.

■ With this worst-case probability vector, we can only obtain w.h.p. a gap of O(n log n)
using Γt with γ = Θ(1/n).

But what happens for Γt with constant γ?

17

Mean-Thinning: Bad configuration

i1, i2

. . .

a

b

a·(n−2)+b
2

■ There is a very small bias to allocate away from overloaded bins.
■ The potential Γ := Γ(γ) for constant γ increases in expectation.

18

A closer look at Γt

■ An analysis similar to [PTW15] shows that
▶ (Good step) If δt ∈ (ϵ, 1 − ϵ) for const ϵ > 0, then

E[Γt+1 | Ft, {δt ∈ (ϵ, 1 − ϵ)}, Γt ≥ cn] ≤ Γt ·
(

1 − Θ
(

γ

n

))
.

▶ (Bad step) If δt /∈ (ϵ, 1 − ϵ), then

E[Γt+1 | Ft, Γt ≥ cn] ≤ Γt ·
(

1 + Θ
(

γ2

n

))
.

■ A properly adjusted potential function drops in expectation for any interval with
constant fraction of good steps.

How can we prove that there is a constant fraction of good
steps?

19

A closer look at Γt

■ An analysis similar to [PTW15] shows that

▶ (Good step) If δt ∈ (ϵ, 1 − ϵ) for const ϵ > 0, then

E[Γt+1 | Ft, {δt ∈ (ϵ, 1 − ϵ)}, Γt ≥ cn] ≤ Γt ·
(

1 − Θ
(

γ

n

))
.

▶ (Bad step) If δt /∈ (ϵ, 1 − ϵ), then

E[Γt+1 | Ft, Γt ≥ cn] ≤ Γt ·
(

1 + Θ
(

γ2

n

))
.

■ A properly adjusted potential function drops in expectation for any interval with
constant fraction of good steps.

How can we prove that there is a constant fraction of good
steps?

19

A closer look at Γt

■ An analysis similar to [PTW15] shows that
▶ (Good step) If δt ∈ (ϵ, 1 − ϵ) for const ϵ > 0, then

E[Γt+1 | Ft, {δt ∈ (ϵ, 1 − ϵ)}, Γt ≥ cn] ≤ Γt ·
(

1 − Θ
(

γ

n

))
.

▶ (Bad step) If δt /∈ (ϵ, 1 − ϵ), then

E[Γt+1 | Ft, Γt ≥ cn] ≤ Γt ·
(

1 + Θ
(

γ2

n

))
.

■ A properly adjusted potential function drops in expectation for any interval with
constant fraction of good steps.

How can we prove that there is a constant fraction of good
steps?

19

A closer look at Γt

■ An analysis similar to [PTW15] shows that
▶ (Good step) If δt ∈ (ϵ, 1 − ϵ) for const ϵ > 0, then

E[Γt+1 | Ft, {δt ∈ (ϵ, 1 − ϵ)}, Γt ≥ cn] ≤ Γt ·
(

1 − Θ
(

γ

n

))
.

▶ (Bad step) If δt /∈ (ϵ, 1 − ϵ), then

E[Γt+1 | Ft, Γt ≥ cn] ≤ Γt ·
(

1 + Θ
(

γ2

n

))
.

■ A properly adjusted potential function drops in expectation for any interval with
constant fraction of good steps.

How can we prove that there is a constant fraction of good
steps?

19

A closer look at Γt

■ An analysis similar to [PTW15] shows that
▶ (Good step) If δt ∈ (ϵ, 1 − ϵ) for const ϵ > 0, then

E[Γt+1 | Ft, {δt ∈ (ϵ, 1 − ϵ)}, Γt ≥ cn] ≤ Γt ·
(

1 − Θ
(

γ

n

))
.

▶ (Bad step) If δt /∈ (ϵ, 1 − ϵ), then

E[Γt+1 | Ft, Γt ≥ cn] ≤ Γt ·
(

1 + Θ
(

γ2

n

))
.

■ A properly adjusted potential function drops in expectation for any interval with
constant fraction of good steps.

How can we prove that there is a constant fraction of good
steps?

19

A closer look at Γt

■ An analysis similar to [PTW15] shows that
▶ (Good step) If δt ∈ (ϵ, 1 − ϵ) for const ϵ > 0, then

E[Γt+1 | Ft, {δt ∈ (ϵ, 1 − ϵ)}, Γt ≥ cn] ≤ Γt ·
(

1 − Θ
(

γ

n

))
.

▶ (Bad step) If δt /∈ (ϵ, 1 − ϵ), then

E[Γt+1 | Ft, Γt ≥ cn] ≤ Γt ·
(

1 + Θ
(

γ2

n

))
.

■ A properly adjusted potential function drops in expectation for any interval with
constant fraction of good steps.

How can we prove that there is a constant fraction of good
steps?

19

Mean quantile stabilisation

■ Consider the absolute value potential,

∆t :=
n∑

i=1

∣∣∣∣xt
i − W t

n

∣∣∣∣ .

■ If ∆t = O(n), then δt ∈ (ϵ, 1 − ϵ) w.h.p. for a constant fraction of the next Θ(n) steps.
■ Consider the quadratic potential,

Υt :=
n∑

i=1

(
xt

i − W t

n

)2

.

■ We prove that

E
[

Υt+1 | Ft
]

≤ Υt − κ1

n
· ∆t + κ2.

■ By induction we get,

E[Υt+k+1 | Ft] ≤ Υt − κ1

n
·

t+k∑
r=t

E[∆r | Ft] + κ2 · (k + 1).

20

Mean quantile stabilisation
■ Consider the absolute value potential,

∆t :=
n∑

i=1

∣∣∣∣xt
i − W t

n

∣∣∣∣ .

■ If ∆t = O(n), then δt ∈ (ϵ, 1 − ϵ) w.h.p. for a constant fraction of the next Θ(n) steps.
■ Consider the quadratic potential,

Υt :=
n∑

i=1

(
xt

i − W t

n

)2

.

■ We prove that

E
[

Υt+1 | Ft
]

≤ Υt − κ1

n
· ∆t + κ2.

■ By induction we get,

E[Υt+k+1 | Ft] ≤ Υt − κ1

n
·

t+k∑
r=t

E[∆r | Ft] + κ2 · (k + 1).

20

Mean quantile stabilisation
■ Consider the absolute value potential,

∆t :=
n∑

i=1

∣∣∣∣xt
i − W t

n

∣∣∣∣ .

■ If ∆t = O(n), then δt ∈ (ϵ, 1 − ϵ) w.h.p. for a constant fraction of the next Θ(n) steps.

■ Consider the quadratic potential,

Υt :=
n∑

i=1

(
xt

i − W t

n

)2

.

■ We prove that

E
[

Υt+1 | Ft
]

≤ Υt − κ1

n
· ∆t + κ2.

■ By induction we get,

E[Υt+k+1 | Ft] ≤ Υt − κ1

n
·

t+k∑
r=t

E[∆r | Ft] + κ2 · (k + 1).

20

Mean quantile stabilisation
■ Consider the absolute value potential,

∆t :=
n∑

i=1

∣∣∣∣xt
i − W t

n

∣∣∣∣ .

■ If ∆t = O(n), then δt ∈ (ϵ, 1 − ϵ) w.h.p. for a constant fraction of the next Θ(n) steps.
■ Consider the quadratic potential,

Υt :=
n∑

i=1

(
xt

i − W t

n

)2

.

■ We prove that

E
[

Υt+1 | Ft
]

≤ Υt − κ1

n
· ∆t + κ2.

■ By induction we get,

E[Υt+k+1 | Ft] ≤ Υt − κ1

n
·

t+k∑
r=t

E[∆r | Ft] + κ2 · (k + 1).

20

Mean quantile stabilisation
■ Consider the absolute value potential,

∆t :=
n∑

i=1

∣∣∣∣xt
i − W t

n

∣∣∣∣ .

■ If ∆t = O(n), then δt ∈ (ϵ, 1 − ϵ) w.h.p. for a constant fraction of the next Θ(n) steps.
■ Consider the quadratic potential,

Υt :=
n∑

i=1

(
xt

i − W t

n

)2

.

■ We prove that
E

[
Υt+1 | Ft

]
≤ Υt − (pt

− · w− − pt
+ · w+) · ∆t + 4 · (w−)2.

E
[

Υt+1 | Ft
]

≤ Υt − κ1

n
· ∆t + κ2.

■ By induction we get,

E[Υt+k+1 | Ft] ≤ Υt − κ1

n
·

t+k∑
r=t

E[∆r | Ft] + κ2 · (k + 1).

20

Mean quantile stabilisation
■ Consider the absolute value potential,

∆t :=
n∑

i=1

∣∣∣∣xt
i − W t

n

∣∣∣∣ .

■ If ∆t = O(n), then δt ∈ (ϵ, 1 − ϵ) w.h.p. for a constant fraction of the next Θ(n) steps.
■ Consider the quadratic potential,

Υt :=
n∑

i=1

(
xt

i − W t

n

)2

.

■ We prove that
E

[
Υt+1 | Ft

]
≤ Υt − κ1

n
· ∆t + κ2.

■ By induction we get,

E[Υt+k+1 | Ft] ≤ Υt − κ1

n
·

t+k∑
r=t

E[∆r | Ft] + κ2 · (k + 1).

20

Mean quantile stabilisation
■ Consider the absolute value potential,

∆t :=
n∑

i=1

∣∣∣∣xt
i − W t

n

∣∣∣∣ .

■ If ∆t = O(n), then δt ∈ (ϵ, 1 − ϵ) w.h.p. for a constant fraction of the next Θ(n) steps.
■ Consider the quadratic potential,

Υt :=
n∑

i=1

(
xt

i − W t

n

)2

.

■ We prove that
E

[
Υt+1 | Ft

]
≤ Υt − κ1

n
· ∆t + κ2.

■ By induction we get,

E[Υt+k+1 | Ft] ≤ Υt − κ1

n
·

t+k∑
r=t

E[∆r | Ft] + κ2 · (k + 1).

20

Mean quantile stabilisation
■ Consider the absolute value potential,

∆t :=
n∑

i=1

∣∣∣∣xt
i − W t

n

∣∣∣∣ .

■ If ∆t = O(n), then δt ∈ (ϵ, 1 − ϵ) w.h.p. for a constant fraction of the next Θ(n) steps.
■ Consider the quadratic potential,

Υt :=
n∑

i=1

(
xt

i − W t

n

)2

.

■ We prove that
E

[
Υt+1 | Ft

]
≤ Υt − κ1

n
· ∆t + κ2.

■ By induction we get,

E[Υt+k+1 | Ft] ≤ Υt − κ1

n
·

t+k∑
r=t

E[∆r | Ft] + κ2 · (k + 1).

For k = Θ(Υt), for constant fraction of
steps r ∈ [t, t + k], E [∆r | Ft] = O(n).

20

Recovery from a bad configuration (n = 1000)

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

·106Number of balls m

Recovery for Mean-Thinning

Exponential potential
Quadratic potential
Absolute potential
Quantile position

■ As long as ∆t = Ω(n), Υt drops in expectation.
■ As ∆t becomes smaller, δt improves and Γt drops in expectation.

21

Recovery from a bad configuration (n = 1000)

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

·106Number of balls m

Recovery for Mean-Thinning

Exponential potential
Quadratic potential
Absolute potential
Quantile position

■ As long as ∆t = Ω(n), Υt drops in expectation.

■ As ∆t becomes smaller, δt improves and Γt drops in expectation.

21

Recovery from a bad configuration (n = 1000)

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

·106Number of balls m

Recovery for Mean-Thinning

Exponential potential
Quadratic potential
Absolute potential
Quantile position

■ As long as ∆t = Ω(n), Υt drops in expectation.
■ As ∆t becomes smaller, δt improves and Γt drops in expectation.

21

Recovery from a bad configuration (n = 1000)

5.35 5.4 5.45 5.5 5.55 5.6 5.65 5.7 5.75 5.8 5.85 5.9 5.95 6

·105Number of balls m

First steps of recovery for Mean-Thinning

Exponential potential
Quadratic potential
Absolute potential
Quantile position

■ As long as ∆t = Ω(n), Υt drops in expectation.
■ As ∆t becomes smaller, δt improves and Γt drops in expectation.

21

Completing the analysis

Γt

𝑚− 𝑛3 log4 𝑛 𝑚

𝑡

exp(𝒪 𝑛 log 𝑛)
Base Case

Other applications of quantile stabilisation:

■ Sample efficiency: 2 − ϵ for Mean-Thinning and 1 − ϵ for Twinning.
■ Lower bound of Ω(log n) for Mean-Thinning and Twinning.

22

Completing the analysis

Γt

𝑐𝑛

𝑚+ 𝑛 log 𝑛𝑚 − 𝑛3 log4 𝑛 𝑠0 𝑚

Recovery phase

𝑡

exp(𝒪 𝑛 log 𝑛)
Base Case

Other applications of quantile stabilisation:

■ Sample efficiency: 2 − ϵ for Mean-Thinning and 1 − ϵ for Twinning.
■ Lower bound of Ω(log n) for Mean-Thinning and Twinning.

22

Completing the analysis

Γt

𝑐𝑛

𝑚− 𝑛3 log4 𝑛 𝑠0

…
𝑚

Recovery phase

𝑛3 log3 𝑛

𝑡

exp(𝒪 𝑛 log 𝑛)
Base Case

𝑛3 log3 𝑛 𝑛3 log3 𝑛

Other applications of quantile stabilisation:

■ Sample efficiency: 2 − ϵ for Mean-Thinning and 1 − ϵ for Twinning.
■ Lower bound of Ω(log n) for Mean-Thinning and Twinning.

22

Completing the analysis

Γt

𝑐𝑛

𝑚+ 𝑛 log 𝑛𝑚 − 𝑛3 log4 𝑛 𝑠0

…
𝑟1 𝑠1 𝑟2 𝑚

< 𝑛 log𝑛

Stabilization phaseRecovery phase

𝑛3 log3 𝑛

𝑡

2𝑐𝑛

exp(𝒪 𝑛 log 𝑛)
Base Case

𝑛3 log3 𝑛 𝑛3 log3 𝑛 < 𝑛 log𝑛

Other applications of quantile stabilisation:

■ Sample efficiency: 2 − ϵ for Mean-Thinning and 1 − ϵ for Twinning.
■ Lower bound of Ω(log n) for Mean-Thinning and Twinning.

22

Completing the analysis

Γt

𝑐𝑛

𝑚+ 𝑛 log 𝑛𝑚 − 𝑛3 log4 𝑛 𝑠0

…
𝑟1 𝑠1 𝑟2 𝑚

< 𝑛 log𝑛

Stabilization phaseRecovery phase

𝑛3 log3 𝑛

𝑡

2𝑐𝑛

exp(𝒪 𝑛 log 𝑛)
Base Case

𝑛3 log3 𝑛 𝑛3 log3 𝑛 < 𝑛 log𝑛

Other applications of quantile stabilisation:

■ Sample efficiency: 2 − ϵ for Mean-Thinning and 1 − ϵ for Twinning.
■ Lower bound of Ω(log n) for Mean-Thinning and Twinning.

22

Completing the analysis

Γt

𝑐𝑛

𝑚+ 𝑛 log 𝑛𝑚 − 𝑛3 log4 𝑛 𝑠0

…
𝑟1 𝑠1 𝑟2 𝑚

< 𝑛 log𝑛

Stabilization phaseRecovery phase

𝑛3 log3 𝑛

𝑡

2𝑐𝑛

exp(𝒪 𝑛 log 𝑛)
Base Case

𝑛3 log3 𝑛 𝑛3 log3 𝑛 < 𝑛 log𝑛

Other applications of quantile stabilisation:
■ Sample efficiency: 2 − ϵ for Mean-Thinning and 1 − ϵ for Twinning.

■ Lower bound of Ω(log n) for Mean-Thinning and Twinning.

22

Completing the analysis

Γt

𝑐𝑛

𝑚+ 𝑛 log 𝑛𝑚 − 𝑛3 log4 𝑛 𝑠0

…
𝑟1 𝑠1 𝑟2 𝑚

< 𝑛 log𝑛

Stabilization phaseRecovery phase

𝑛3 log3 𝑛

𝑡

2𝑐𝑛

exp(𝒪 𝑛 log 𝑛)
Base Case

𝑛3 log3 𝑛 𝑛3 log3 𝑛 < 𝑛 log𝑛

Other applications of quantile stabilisation:
■ Sample efficiency: 2 − ϵ for Mean-Thinning and 1 − ϵ for Twinning.
■ Lower bound of Ω(log n) for Mean-Thinning and Twinning.

22

Packing (and Caching)

23

Packing: Definition

W t/n
i1 i

W t/n

W t/n
i1 i

W t/n

24

Packing: Definition

W t/n
i1 i

W t/n

W t/n
i1 i

W t/n

24

Packing: Definition

W t/n
i1 i

W t/n

W t/n
i1 i

W t/n

Packing Process:
Iteration: For each t ≥ 0, sample bin i u.a.r., and update its load:

xt+1
i =

{⌈
W t

n

⌉
+ 1 if xt

i < W t

n ,

xt
i + 1 if xt

i ≥ W t

n .

24

Packing: Definition

W t/n
i1 i

W t/n

W t/n
i1 i

W t/n

■ We analyze another general framework that includes Packing and Caching [MPS02].
■ We prove an O(log n) gap for these processes.

24

Conclusion

Summary of results:
■ Proved Gap(m) = O(log n) for a set of processes including Mean-Thinning and

Twinning.
■ Proved a matching lower bound for Mean-Thinning and Twinning.
■ Proved Gap(m) = O(log n) for a set of processes including Packing and Caching.

Future work:
■ Extend the framework to non-constant probability and weight biases.
■ Find a natural framework that implies o(log n) gap bounds.
■ Investigate Mean-Thinning with outdated information and noise.

25

Conclusion
Summary of results:

■ Proved Gap(m) = O(log n) for a set of processes including Mean-Thinning and
Twinning.

■ Proved a matching lower bound for Mean-Thinning and Twinning.
■ Proved Gap(m) = O(log n) for a set of processes including Packing and Caching.

Future work:
■ Extend the framework to non-constant probability and weight biases.
■ Find a natural framework that implies o(log n) gap bounds.
■ Investigate Mean-Thinning with outdated information and noise.

25

Conclusion
Summary of results:
■ Proved Gap(m) = O(log n) for a set of processes including Mean-Thinning and

Twinning.

■ Proved a matching lower bound for Mean-Thinning and Twinning.
■ Proved Gap(m) = O(log n) for a set of processes including Packing and Caching.

Future work:
■ Extend the framework to non-constant probability and weight biases.
■ Find a natural framework that implies o(log n) gap bounds.
■ Investigate Mean-Thinning with outdated information and noise.

25

Conclusion
Summary of results:
■ Proved Gap(m) = O(log n) for a set of processes including Mean-Thinning and

Twinning.
■ Proved a matching lower bound for Mean-Thinning and Twinning.

■ Proved Gap(m) = O(log n) for a set of processes including Packing and Caching.
Future work:
■ Extend the framework to non-constant probability and weight biases.
■ Find a natural framework that implies o(log n) gap bounds.
■ Investigate Mean-Thinning with outdated information and noise.

25

Conclusion
Summary of results:
■ Proved Gap(m) = O(log n) for a set of processes including Mean-Thinning and

Twinning.
■ Proved a matching lower bound for Mean-Thinning and Twinning.
■ Proved Gap(m) = O(log n) for a set of processes including Packing and Caching.

Future work:
■ Extend the framework to non-constant probability and weight biases.
■ Find a natural framework that implies o(log n) gap bounds.
■ Investigate Mean-Thinning with outdated information and noise.

25

Conclusion
Summary of results:
■ Proved Gap(m) = O(log n) for a set of processes including Mean-Thinning and

Twinning.
■ Proved a matching lower bound for Mean-Thinning and Twinning.
■ Proved Gap(m) = O(log n) for a set of processes including Packing and Caching.

Future work:

■ Extend the framework to non-constant probability and weight biases.
■ Find a natural framework that implies o(log n) gap bounds.
■ Investigate Mean-Thinning with outdated information and noise.

25

Conclusion
Summary of results:
■ Proved Gap(m) = O(log n) for a set of processes including Mean-Thinning and

Twinning.
■ Proved a matching lower bound for Mean-Thinning and Twinning.
■ Proved Gap(m) = O(log n) for a set of processes including Packing and Caching.

Future work:
■ Extend the framework to non-constant probability and weight biases.

■ Find a natural framework that implies o(log n) gap bounds.
■ Investigate Mean-Thinning with outdated information and noise.

25

Conclusion
Summary of results:
■ Proved Gap(m) = O(log n) for a set of processes including Mean-Thinning and

Twinning.
■ Proved a matching lower bound for Mean-Thinning and Twinning.
■ Proved Gap(m) = O(log n) for a set of processes including Packing and Caching.

Future work:
■ Extend the framework to non-constant probability and weight biases.
■ Find a natural framework that implies o(log n) gap bounds.

■ Investigate Mean-Thinning with outdated information and noise.

25

Conclusion
Summary of results:
■ Proved Gap(m) = O(log n) for a set of processes including Mean-Thinning and

Twinning.
■ Proved a matching lower bound for Mean-Thinning and Twinning.
■ Proved Gap(m) = O(log n) for a set of processes including Packing and Caching.

Future work:
■ Extend the framework to non-constant probability and weight biases.
■ Find a natural framework that implies o(log n) gap bounds.
■ Investigate Mean-Thinning with outdated information and noise.

25

Questions?

Visualisations: dimitrioslos.com/soda22
26

https://dimitrioslos.com/soda22

Questions?

Visualisations: dimitrioslos.com/soda22
27

https://dimitrioslos.com/soda22

Appendix

28

Appendix A: Table of results

Process
Lightly Loaded Case m = O(n) Heavily Loaded Case m = ω(n)

Lower Bound Upper Bound Lower Bound Upper Bound

(1 + β), const β ∈ (0, 1) log n
log log n [PTW15] log n log n

Caching log log n [MPS02] – log n

Packing log n
log log n

log n
log log n log n

Twinning log n
log log n log n

Mean-Thinning log n
log log n log n

Relative-Threshold(f(n))
√

log n
log log n [FL20] log n

log log n
log n

log log n [LS22] f(n) + log n

Adaptive-Two-Thinning
√

log n
log log n [FL20] log n

log log n [LS22] log n
log log n [FGGL21]

Table: Overview of the Gap achieved (with probability at least 1 − n−1), by different allocation
processes considered in this work (rows in Green) and related works (rows in white and Gray).

29

Appendix B: Experimental results

0.2 0.4 0.6 0.8 1

·105
0

10

20

Number of bins n

G
ap

at
m

=
1
0
00

·n

(1 + β) for β = 0.5
Twinning
Packing

Mean-Thinning
Caching

Two-Choice

Figure: Average Gap vs. n ∈ {103, 104, 5 · 104, 105} and m = 1000 · n.

30

Appendix C: Detailed experimental results

n Mean-Thinning Twinning Packing Caching

105

8 : 3%
9 : 32%

10 : 38%
11 : 15%
12 : 6%
13 : 3%
14 : 3%

14 : 2%
15 : 5%
16 : 25%
17 : 28%
18 : 17%
19 : 10%
20 : 8%
21 : 1%
22 : 1%
23 : 3%

12 : 2%
13 : 16%
14 : 20%
15 : 28%
16 : 23%
17 : 5%
18 : 3%
19 : 1%
20 : 2%

3 : 100%

Table: Summary of observed gaps for n ∈ {103, 104, 105} bins and m = 1000 · n number of balls,
for 100 repetitions. The observed gaps are in bold and next to that is the % of runs where this
gap value was observed.

31

Appendix D1: Recovery from a bad configuration

32

Appendix D2: Recovery from a bad configuration

i1, i2
250 300 350 400 450

Number of balls m

Potential functions

Quadratic potential
Absolute potential

Exponential potential

33

Bibliography I
▶ Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, Balanced allocations, SIAM J.

Comput. 29 (1999), no. 1, 180–200.

▶ P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, Balanced allocations: the heavily
loaded case, SIAM J. Comput. 35 (2006), no. 6, 1350–1385.

▶ O. N. Feldheim and O. Gurel-Gurevich, The power of thinning in balanced allocation,
Electron. Commun. Probab. 26 (2021), Paper No. 34, 8.

▶ O. N. Feldheim, O. Gurel-Gurevich, and J. Li, Long-term balanced allocation via
thinning, 2021, arXiv:2110.05009.

▶ O. N. Feldheim and J. Li, Load balancing under d-thinning, Electron. Commun. Probab.
25 (2020), Paper No. 1, 13.

▶ G. H. Gonnet, Expected length of the longest probe sequence in hash code searching, J.
Assoc. Comput. Mach. 28 (1981), no. 2, 289–304.

34

Bibliography II
▶ Kazuo Iwama and Akinori Kawachi, Approximated two choices in randomized load

balancing, 15th International Symposium on Algorithms and Computation (ISAAC’04),
Lecture Notes in Computer Science, vol. 3341, Springer, 2004, pp. 545–557.

▶ R. M. Karp, M. Luby, and F. Meyer auf der Heide, Efficient PRAM simulation on a
distributed memory machine, Algorithmica 16 (1996), no. 4-5, 517–542.

▶ Dimitrios Los and Thomas Sauerwald, Balanced allocations with incomplete
information: The power of two queries, 13th Innovations in Theoretical Computer
Science Conference (ITCS’22), vol. 215, Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022, pp. 103:1–103:23.

▶ M. Mitzenmacher, The power of two choices in randomized load balancing, Ph.D. thesis,
University of California at Berkeley, 1996.

▶ M. Mitzenmacher, B. Prabhakar, and D. Shah, Load balancing with memory, 43rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS’02), IEEE, 2002,
pp. 799–808.

35

Bibliography III
▶ Y. Peres, K. Talwar, and U. Wieder, Graphical balanced allocations and the

(1 + β)-choice process, Random Structures & Algorithms 47 (2015), no. 4, 760–775.

▶ M. Raab and A. Steger, “Balls into bins”—a simple and tight analysis, 2nd
International Workshop on Randomization and Computation (RANDOM’98), vol. 1518,
Springer, 1998, pp. 159–170.

36

	Balanced allocations: Background
	Two-Thinning and Twinning
	Outline of the analysis
	Packing (and Caching)
	Appendix

	3.Plus:
	3.Reset:
	3.Minus:
	3.EndRight:
	3.StepRight:
	3.PlayPauseRight:
	3.PlayRight:
	3.PauseRight:
	3.PlayPauseLeft:
	3.PlayLeft:
	3.PauseLeft:
	3.StepLeft:
	3.EndLeft:
	anm3:
	3.656:
	3.655:
	3.654:
	3.653:
	3.652:
	3.651:
	3.650:
	3.649:
	3.648:
	3.647:
	3.646:
	3.645:
	3.644:
	3.643:
	3.642:
	3.641:
	3.640:
	3.639:
	3.638:
	3.637:
	3.636:
	3.635:
	3.634:
	3.633:
	3.632:
	3.631:
	3.630:
	3.629:
	3.628:
	3.627:
	3.626:
	3.625:
	3.624:
	3.623:
	3.622:
	3.621:
	3.620:
	3.619:
	3.618:
	3.617:
	3.616:
	3.615:
	3.614:
	3.613:
	3.612:
	3.611:
	3.610:
	3.609:
	3.608:
	3.607:
	3.606:
	3.605:
	3.604:
	3.603:
	3.602:
	3.601:
	3.600:
	3.599:
	3.598:
	3.597:
	3.596:
	3.595:
	3.594:
	3.593:
	3.592:
	3.591:
	3.590:
	3.589:
	3.588:
	3.587:
	3.586:
	3.585:
	3.584:
	3.583:
	3.582:
	3.581:
	3.580:
	3.579:
	3.578:
	3.577:
	3.576:
	3.575:
	3.574:
	3.573:
	3.572:
	3.571:
	3.570:
	3.569:
	3.568:
	3.567:
	3.566:
	3.565:
	3.564:
	3.563:
	3.562:
	3.561:
	3.560:
	3.559:
	3.558:
	3.557:
	3.556:
	3.555:
	3.554:
	3.553:
	3.552:
	3.551:
	3.550:
	3.549:
	3.548:
	3.547:
	3.546:
	3.545:
	3.544:
	3.543:
	3.542:
	3.541:
	3.540:
	3.539:
	3.538:
	3.537:
	3.536:
	3.535:
	3.534:
	3.533:
	3.532:
	3.531:
	3.530:
	3.529:
	3.528:
	3.527:
	3.526:
	3.525:
	3.524:
	3.523:
	3.522:
	3.521:
	3.520:
	3.519:
	3.518:
	3.517:
	3.516:
	3.515:
	3.514:
	3.513:
	3.512:
	3.511:
	3.510:
	3.509:
	3.508:
	3.507:
	3.506:
	3.505:
	3.504:
	3.503:
	3.502:
	3.501:
	3.500:
	3.499:
	3.498:
	3.497:
	3.496:
	3.495:
	3.494:
	3.493:
	3.492:
	3.491:
	3.490:
	3.489:
	3.488:
	3.487:
	3.486:
	3.485:
	3.484:
	3.483:
	3.482:
	3.481:
	3.480:
	3.479:
	3.478:
	3.477:
	3.476:
	3.475:
	3.474:
	3.473:
	3.472:
	3.471:
	3.470:
	3.469:
	3.468:
	3.467:
	3.466:
	3.465:
	3.464:
	3.463:
	3.462:
	3.461:
	3.460:
	3.459:
	3.458:
	3.457:
	3.456:
	3.455:
	3.454:
	3.453:
	3.452:
	3.451:
	3.450:
	3.449:
	3.448:
	3.447:
	3.446:
	3.445:
	3.444:
	3.443:
	3.442:
	3.441:
	3.440:
	3.439:
	3.438:
	3.437:
	3.436:
	3.435:
	3.434:
	3.433:
	3.432:
	3.431:
	3.430:
	3.429:
	3.428:
	3.427:
	3.426:
	3.425:
	3.424:
	3.423:
	3.422:
	3.421:
	3.420:
	3.419:
	3.418:
	3.417:
	3.416:
	3.415:
	3.414:
	3.413:
	3.412:
	3.411:
	3.410:
	3.409:
	3.408:
	3.407:
	3.406:
	3.405:
	3.404:
	3.403:
	3.402:
	3.401:
	3.400:
	3.399:
	3.398:
	3.397:
	3.396:
	3.395:
	3.394:
	3.393:
	3.392:
	3.391:
	3.390:
	3.389:
	3.388:
	3.387:
	3.386:
	3.385:
	3.384:
	3.383:
	3.382:
	3.381:
	3.380:
	3.379:
	3.378:
	3.377:
	3.376:
	3.375:
	3.374:
	3.373:
	3.372:
	3.371:
	3.370:
	3.369:
	3.368:
	3.367:
	3.366:
	3.365:
	3.364:
	3.363:
	3.362:
	3.361:
	3.360:
	3.359:
	3.358:
	3.357:
	3.356:
	3.355:
	3.354:
	3.353:
	3.352:
	3.351:
	3.350:
	3.349:
	3.348:
	3.347:
	3.346:
	3.345:
	3.344:
	3.343:
	3.342:
	3.341:
	3.340:
	3.339:
	3.338:
	3.337:
	3.336:
	3.335:
	3.334:
	3.333:
	3.332:
	3.331:
	3.330:
	3.329:
	3.328:
	3.327:
	3.326:
	3.325:
	3.324:
	3.323:
	3.322:
	3.321:
	3.320:
	3.319:
	3.318:
	3.317:
	3.316:
	3.315:
	3.314:
	3.313:
	3.312:
	3.311:
	3.310:
	3.309:
	3.308:
	3.307:
	3.306:
	3.305:
	3.304:
	3.303:
	3.302:
	3.301:
	3.300:
	3.299:
	3.298:
	3.297:
	3.296:
	3.295:
	3.294:
	3.293:
	3.292:
	3.291:
	3.290:
	3.289:
	3.288:
	3.287:
	3.286:
	3.285:
	3.284:
	3.283:
	3.282:
	3.281:
	3.280:
	3.279:
	3.278:
	3.277:
	3.276:
	3.275:
	3.274:
	3.273:
	3.272:
	3.271:
	3.270:
	3.269:
	3.268:
	3.267:
	3.266:
	3.265:
	3.264:
	3.263:
	3.262:
	3.261:
	3.260:
	3.259:
	3.258:
	3.257:
	3.256:
	3.255:
	3.254:
	3.253:
	3.252:
	3.251:
	3.250:
	3.249:
	3.248:
	3.247:
	3.246:
	3.245:
	3.244:
	3.243:
	3.242:
	3.241:
	3.240:
	3.239:
	3.238:
	3.237:
	3.236:
	3.235:
	3.234:
	3.233:
	3.232:
	3.231:
	3.230:
	3.229:
	3.228:
	3.227:
	3.226:
	3.225:
	3.224:
	3.223:
	3.222:
	3.221:
	3.220:
	3.219:
	3.218:
	3.217:
	3.216:
	3.215:
	3.214:
	3.213:
	3.212:
	3.211:
	3.210:
	3.209:
	3.208:
	3.207:
	3.206:
	3.205:
	3.204:
	3.203:
	3.202:
	3.201:
	3.200:
	3.199:
	3.198:
	3.197:
	3.196:
	3.195:
	3.194:
	3.193:
	3.192:
	3.191:
	3.190:
	3.189:
	3.188:
	3.187:
	3.186:
	3.185:
	3.184:
	3.183:
	3.182:
	3.181:
	3.180:
	3.179:
	3.178:
	3.177:
	3.176:
	3.175:
	3.174:
	3.173:
	3.172:
	3.171:
	3.170:
	3.169:
	3.168:
	3.167:
	3.166:
	3.165:
	3.164:
	3.163:
	3.162:
	3.161:
	3.160:
	3.159:
	3.158:
	3.157:
	3.156:
	3.155:
	3.154:
	3.153:
	3.152:
	3.151:
	3.150:
	3.149:
	3.148:
	3.147:
	3.146:
	3.145:
	3.144:
	3.143:
	3.142:
	3.141:
	3.140:
	3.139:
	3.138:
	3.137:
	3.136:
	3.135:
	3.134:
	3.133:
	3.132:
	3.131:
	3.130:
	3.129:
	3.128:
	3.127:
	3.126:
	3.125:
	3.124:
	3.123:
	3.122:
	3.121:
	3.120:
	3.119:
	3.118:
	3.117:
	3.116:
	3.115:
	3.114:
	3.113:
	3.112:
	3.111:
	3.110:
	3.109:
	3.108:
	3.107:
	3.106:
	3.105:
	3.104:
	3.103:
	3.102:
	3.101:
	3.100:
	3.99:
	3.98:
	3.97:
	3.96:
	3.95:
	3.94:
	3.93:
	3.92:
	3.91:
	3.90:
	3.89:
	3.88:
	3.87:
	3.86:
	3.85:
	3.84:
	3.83:
	3.82:
	3.81:
	3.80:
	3.79:
	3.78:
	3.77:
	3.76:
	3.75:
	3.74:
	3.73:
	3.72:
	3.71:
	3.70:
	3.69:
	3.68:
	3.67:
	3.66:
	3.65:
	3.64:
	3.63:
	3.62:
	3.61:
	3.60:
	3.59:
	3.58:
	3.57:
	3.56:
	3.55:
	3.54:
	3.53:
	3.52:
	3.51:
	3.50:
	3.49:
	3.48:
	3.47:
	3.46:
	3.45:
	3.44:
	3.43:
	3.42:
	3.41:
	3.40:
	3.39:
	3.38:
	3.37:
	3.36:
	3.35:
	3.34:
	3.33:
	3.32:
	3.31:
	3.30:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.0:
	anm1:
	1.268:
	1.267:
	1.266:
	1.265:
	1.264:
	1.263:
	1.262:
	1.261:
	1.260:
	1.259:
	1.258:
	1.257:
	1.256:
	1.255:
	1.254:
	1.253:
	1.252:
	1.251:
	1.250:
	1.249:
	1.248:
	1.247:
	1.246:
	1.245:
	1.244:
	1.243:
	1.242:
	1.241:
	1.240:
	1.239:
	1.238:
	1.237:
	1.236:
	1.235:
	1.234:
	1.233:
	1.232:
	1.231:
	1.230:
	1.229:
	1.228:
	1.227:
	1.226:
	1.225:
	1.224:
	1.223:
	1.222:
	1.221:
	1.220:
	1.219:
	1.218:
	1.217:
	1.216:
	1.215:
	1.214:
	1.213:
	1.212:
	1.211:
	1.210:
	1.209:
	1.208:
	1.207:
	1.206:
	1.205:
	1.204:
	1.203:
	1.202:
	1.201:
	1.200:
	1.199:
	1.198:
	1.197:
	1.196:
	1.195:
	1.194:
	1.193:
	1.192:
	1.191:
	1.190:
	1.189:
	1.188:
	1.187:
	1.186:
	1.185:
	1.184:
	1.183:
	1.182:
	1.181:
	1.180:
	1.179:
	1.178:
	1.177:
	1.176:
	1.175:
	1.174:
	1.173:
	1.172:
	1.171:
	1.170:
	1.169:
	1.168:
	1.167:
	1.166:
	1.165:
	1.164:
	1.163:
	1.162:
	1.161:
	1.160:
	1.159:
	1.158:
	1.157:
	1.156:
	1.155:
	1.154:
	1.153:
	1.152:
	1.151:
	1.150:
	1.149:
	1.148:
	1.147:
	1.146:
	1.145:
	1.144:
	1.143:
	1.142:
	1.141:
	1.140:
	1.139:
	1.138:
	1.137:
	1.136:
	1.135:
	1.134:
	1.133:
	1.132:
	1.131:
	1.130:
	1.129:
	1.128:
	1.127:
	1.126:
	1.125:
	1.124:
	1.123:
	1.122:
	1.121:
	1.120:
	1.119:
	1.118:
	1.117:
	1.116:
	1.115:
	1.114:
	1.113:
	1.112:
	1.111:
	1.110:
	1.109:
	1.108:
	1.107:
	1.106:
	1.105:
	1.104:
	1.103:
	1.102:
	1.101:
	1.100:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

