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Balanced allocations: Background
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Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).

Goal: minimise the maximum load maxi∈[n] xm
i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

3



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

3



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

3



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.

⇔ minimise the gap, where Gap(m) = maxi∈[n](xm
i − m/n).

3



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

3



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

3



Balanced allocations setting
Allocate m tasks (balls) sequentially into n machines (bins).
Goal: minimise the maximum load maxi∈[n] xm

i , where xt is the load vector after ball t.
⇔ minimise the gap, where Gap(m) = maxi∈[n](xm

i − m/n).

Gap

■ Applications in hashing, load balancing and routing.
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One-Choice and Two-Choice processes

One-Choice Process:
Iteration: For each t ≥ 0, sample one bin uniformly at random (u.a.r.) and place the
ball there.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = Θ
(

log n
log log n

)
[Gon81].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = Θ
(√

m
n · log n

)
(e.g. [RS98]).

Two-Choice Process:
Iteration: For each t ≥ 0, sample two bins independently u.a.r. and place the ball in
the least loaded of the two.

■ In the lightly-loaded case (m = n), w.h.p. Gap(n) = log2 log n + Θ(1)
[KLMadH96, ABKU99].

■ In the heavily-loaded case (m ≫ n), w.h.p. Gap(m) = log2 log n + Θ(1) [BCSV06].
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Meaning with probability
at least 1 − n−c for constant c > 0.
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(1 + β) process: Definition

(1 + β) Process:
Parameter: A mixing factor β ∈ (0, 1].
Iteration: For each t ≥ 0, with probability β allocate one ball via the Two-Choice
process, otherwise allocate one ball via the One-Choice process.

■ [Mit96] interpreted (1 − β)/2 as the probability of making an erroneous comparison.

■ In the heavily-loaded case, [PTW15] proved that the gap is w.h.p. Θ(log n/β) for
1/n ≤ β < 1 − ϵ for constant ϵ > 0.
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Two-Thinning and Twinning
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Two-Thinning with relative thresholds

Relative-Threshold(f(n)) Process:
Parameter: An offset function f(n) ≥ 0.
Iteration: For each t ≥ 0, sample two bins i1 and i2 independently u.a.r., and update:{

xt+1
i1

= xt
i1

+ 1 if xt
i1

< t
n + f(n),

xt+1
i2

= xt
i2

+ 1 if xt
i1

≥ t
n + f(n).

■ Mean-Thinning has f(n) = 0.

W t/n
i1 i1

t/n+ f(n)

Open in Visualiser.
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Two-Thinning as Two-Choice with incomplete information
We can interpret Two-Thinning as an instance of the Two-Choice process, where we
are only able to compare the loads of the two sampled bins if one is above the threshold
and one is below.
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Two-Thinning as Two-Choice with incomplete information
We can interpret Two-Thinning as an instance of the Two-Choice process, where we
are only able to compare the loads of the two sampled bins if one is above the threshold
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Two-Thinning: Our results

■ For heavily-loaded case, Mean-Thinning has w.h.p. Gap(m) = O(log n).

■ For sufficiently large m, Mean-Thinning has w.h.p. Gap(m) = Ω(log n).

■ By a coupling argument, Relative-Threshold(f(n)) with f(n) ≥ 0 has w.h.p.

Gap(m) = f(n) + O(log n).
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Mean-Thinning: Visualisation
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Twinning: Definition

Twinning Process:
Iteration: For each t ≥ 0, sample a bin i u.a.r., and update its load:

xt+1
i =

{
xt

i + 2 if xt
i < W t

n ,

xt
i + 1 if xt

i ≥ W t

n .

where W t :=
∑n

i=1 xt
i

W t/n
i1 i

W t/n

W t/n
i1 i

W t/n

Open in Visualiser.
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Twinning: Properties
■ For the heavily loaded case, Twinning has w.h.p. Gap(m) = O(log n).

■ Twinning w.h.p. uses 1 − ϵ samples per allocatied ball, for const ϵ > 0.

■ However, the twinning operation may not always be implementable in practice.
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Probability allocation vectors

■ Probability allocation vector pt, where pt
i is the prob. of allocating to i-th heaviest

bin.
■ For One-Choice and Two-Choice, p is time-independent,

pOne-Choice =
( 1

n
,

1
n

, . . . ,
1
n

)
,

pTwo-Choice =
( 1

n2 ,
3
n2 , . . . ,

2i − 1
n2 , . . . ,

2n − 2
n2

)
.

■ However, for Mean-Thinning, pt depends on the load distribution,

pt
Mean-Thinning(xt) =

( δt

n
,

δt

n
, . . . ,

δt

n︸ ︷︷ ︸
δ·n entries

,
1 + δt

n
, . . . ,

1 + δt

n︸ ︷︷ ︸
(1−δt)·n entries

)
,

where δt ∈ [1/n, 1] is the quantile of the mean.
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Framework: Probability and weight bias
For processes with probability vector pt such that for each round t ≥ 0:

■ Condition P: There exist constants k1, k2, such that
▶ (Overloaded bins) For each bin i with xt

i ≥ t/n,

pt
i ≤ 1

n
− k1 · (1 − δt)

n
=: pt

+.

▶ (Underloaded bins) For each bin i with xt
i < t/n,

pt
i ≥ 1

n
+ k2 · δt

n
=: pt

−.

■ Condition W: When bin i is chosen for allocation,
▶ (Overloaded bins) If xt

i ≥ W t/n, then allocate w+ balls,
▶ (Underloaded bins) If xt

i < W t/n, then allocate w− balls,
where w+, w− are positive integer constants.

k1, k2 ≥ 0 k1, k2 > 0
w+ ≤ w−
w+ < w−

One-Choice
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Outline of the analysis
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The hyperbolic cosine potential function

■ [PTW15] used the hyperbolic cosine potential

Γt := Γt(γ) :=
n∑

i=1
eγ(xt

i−W t/n)

︸ ︷︷ ︸
Overload potential

+
n∑

i=1
e−γ(xt

i−W t/n)

︸ ︷︷ ︸
Underload potential

.

■ For the (1 + β) process, γ = Θ(β).
■ [PTW15] show that E

[
Γt+1 | Ft

]
≤ Γt ·

(
1 − c1

n

)
+ c2.

■ By induction, this implies E [ Γt ] ≤ cn for any t ≥ 0.
■ By Markov’s inequality, we get Pr

[
Γm ≤ cn3 ]

≥ 1 − n−2 which implies

Pr
[

Gap(m) ≤ 1
γ

(3 · log n + log c)
]

≥ 1 − n−2.
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Mean-Thinning: Why the analysis is tricky
■ If δt is very large, say δt = 1 − 1/n, then pt becomes very close to the One-Choice

vector :
pMean-Thinning(xt) =

( 1
n

− 1
n2 , . . . ,

1
n

− 1
n2︸ ︷︷ ︸

(n−1) entries

,
2
n

− 1
n2

)
.

■ With this worst-case probability vector, we can only obtain w.h.p. a gap of O(n log n)
using Γt with γ = Θ(1/n).

But what happens for Γt with constant γ?
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Mean-Thinning: Bad configuration

i1, i2

. . .

a

b

a·(n−2)+b
2

■ There is a very small bias to allocate away from overloaded bins.
■ The potential Γ := Γ(γ) for constant γ increases in expectation.
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A closer look at Γt

■ An analysis similar to [PTW15] shows that
▶ (Good step) If δt ∈ (ϵ, 1 − ϵ) for const ϵ > 0, then

E[ Γt+1 | Ft, {δt ∈ (ϵ, 1 − ϵ)}, Γt ≥ cn ] ≤ Γt ·
(

1 − Θ
(

γ

n

))
.

▶ (Bad step) If δt /∈ (ϵ, 1 − ϵ), then

E[ Γt+1 | Ft, Γt ≥ cn ] ≤ Γt ·
(

1 + Θ
(

γ2

n

))
.

■ A properly adjusted potential function drops in expectation for any interval with
constant fraction of good steps.

How can we prove that there is a constant fraction of good
steps?
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Mean quantile stabilisation

■ Consider the absolute value potential,

∆t :=
n∑

i=1

∣∣∣∣xt
i − W t

n

∣∣∣∣ .

■ If ∆t = O(n), then δt ∈ (ϵ, 1 − ϵ) w.h.p. for a constant fraction of the next Θ(n) steps.
■ Consider the quadratic potential,

Υt :=
n∑

i=1

(
xt

i − W t

n

)2

.

■ We prove that

E
[

Υt+1 | Ft
]

≤ Υt − κ1

n
· ∆t + κ2.

■ By induction we get,

E[ Υt+k+1 | Ft ] ≤ Υt − κ1

n
·

t+k∑
r=t

E[ ∆r | Ft ] + κ2 · (k + 1).
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Recovery from a bad configuration (n = 1000)
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■ As long as ∆t = Ω(n), Υt drops in expectation.
■ As ∆t becomes smaller, δt improves and Γt drops in expectation.
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Recovery from a bad configuration (n = 1000)
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Completing the analysis

Γt

𝑚− 𝑛3 log4 𝑛 𝑚

𝑡

exp(𝒪 𝑛 log 𝑛 )
Base Case

Other applications of quantile stabilisation:

■ Sample efficiency: 2 − ϵ for Mean-Thinning and 1 − ϵ for Twinning.
■ Lower bound of Ω(log n) for Mean-Thinning and Twinning.
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Packing (and Caching)
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Packing: Definition
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Packing Process:
Iteration: For each t ≥ 0, sample bin i u.a.r., and update its load:

xt+1
i =

{⌈
W t

n

⌉
+ 1 if xt

i < W t

n ,

xt
i + 1 if xt

i ≥ W t

n .
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Packing: Definition

W t/n
i1 i

W t/n

W t/n
i1 i

W t/n

■ We analyze another general framework that includes Packing and Caching [MPS02].
■ We prove an O(log n) gap for these processes.
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Conclusion

Summary of results:
■ Proved Gap(m) = O(log n) for a set of processes including Mean-Thinning and

Twinning.
■ Proved a matching lower bound for Mean-Thinning and Twinning.
■ Proved Gap(m) = O(log n) for a set of processes including Packing and Caching.

Future work:
■ Extend the framework to non-constant probability and weight biases.
■ Find a natural framework that implies o(log n) gap bounds.
■ Investigate Mean-Thinning with outdated information and noise.
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Visualisations: dimitrioslos.com/soda22
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Appendix A: Table of results

Process
Lightly Loaded Case m = O(n) Heavily Loaded Case m = ω(n)

Lower Bound Upper Bound Lower Bound Upper Bound

(1 + β), const β ∈ (0, 1) log n
log log n [PTW15] log n log n

Caching log log n [MPS02] – log n

Packing log n
log log n

log n
log log n log n

Twinning log n
log log n log n

Mean-Thinning log n
log log n log n

Relative-Threshold(f(n))
√

log n
log log n [FL20] log n

log log n
log n

log log n [LS22] f(n) + log n

Adaptive-Two-Thinning
√

log n
log log n [FL20] log n

log log n [LS22] log n
log log n [FGGL21]

Table: Overview of the Gap achieved (with probability at least 1 − n−1), by different allocation
processes considered in this work (rows in Green ) and related works (rows in white and Gray ).
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Appendix B: Experimental results

0.2 0.4 0.6 0.8 1

·105
0

10

20

Number of bins n

G
ap

at
m

=
1
0
00

·n

(1 + β) for β = 0.5
Twinning
Packing

Mean-Thinning
Caching

Two-Choice

Figure: Average Gap vs. n ∈ {103, 104, 5 · 104, 105} and m = 1000 · n.
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Appendix C: Detailed experimental results

n Mean-Thinning Twinning Packing Caching

105

8 : 3%
9 : 32%

10 : 38%
11 : 15%
12 : 6%
13 : 3%
14 : 3%

14 : 2%
15 : 5%
16 : 25%
17 : 28%
18 : 17%
19 : 10%
20 : 8%
21 : 1%
22 : 1%
23 : 3%

12 : 2%
13 : 16%
14 : 20%
15 : 28%
16 : 23%
17 : 5%
18 : 3%
19 : 1%
20 : 2%

3 : 100%

Table: Summary of observed gaps for n ∈ {103, 104, 105} bins and m = 1000 · n number of balls,
for 100 repetitions. The observed gaps are in bold and next to that is the % of runs where this
gap value was observed.
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Appendix D1: Recovery from a bad configuration
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Appendix D2: Recovery from a bad configuration

i1, i2
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Number of balls m

Potential functions
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