A Collusion Attack on Pairwise Key Presdistribution Schemes for Distributed Sensor Networks

Tyler W Moore

University of Cambridge Computer Laboratory

IEEE Workshop on Pervasive Computing and Communications Security 2006
Pisa, Italy

Introduction

- Key predistribution schemes considered the safest way to bootstrap trust in a sensor network
- Main drawback: high storage overhead
- Key predistribution can actually be quite insecure
 - Many pre-loaded global secrets strengthen attacker incentive
 - Localised communication helps hide misbehaviour
- We describe an attack where colluding nodes reuse selected pairwise keys to create many false identities and hijack majority of communications

Bootstrapping a sensor network

- Constraints for establishing secure communication
 - Sensors deployed in hostile environments ⇒ global passive adversary
 - No tamper-resistant hardware ⇒ several corrupt nodes
 - Network topology unknown prior to deployment
 - No access to centralised server, trusted third party, etc.
- Solution
 - Assign keys to nodes in advance
 - Must balance security against storage and computing limitations of sensors

Options for predistributing keys

- Single master key predistribution
 - Inexpensive but susceptible to single compromise
- Pairwise key predistribution
 - Resilient to widespread compromise but storage infeasible for large networks (requires n-1 keys per node)
- Random key predistribution (Eschenauer & Gligor CCS 2002)
 - Nodes are assigned a random subset of keys from a large key space
 - If nodes share a common key, then a link can be established
 - Probabilistic guarantees based on random graph theory
 - Efficient, though fails badly when a small group of nodes are compromised

Options for predistributing keys (ctd.)

- Random pairwise scheme (Chan et al. IEEE S&P 2003)
 - Combines the random graph approach with pairwise key assignment
 - More efficient than pure pairwise scheme, but requires much more storage than EG 2003 (each node typically stores between 0.2n and 0.4n keys, depending on parameters)
 - No duplicate keys, so secure against eavesdropping attacks
 - Authors claim that pairwise key assignment enables mutual authentication at no added cost
- But is it secure from a colluding attacker?

Notation and system parameters

- Notation
 - n: Network size
 - n': expected number of neighbour nodes in radio range
 - p: probability of two nodes sharing a pairwise key
 - N(d): set of neighbours of node d
 - U(d): set of usable pairwise keys for node d
- System model
 - Nodes have limited communication radius
 - Nodes distributed uniformly across a space
 - Nodes pre-loaded with n*p pairwise keys
 - Nodes broadcast their identifiers to neighbours, who check ID to see if they share a pairwise key

Attack preconditions

- Threat model
 - Attacker compromises a set of nodes $A,\ q=|A|,$ obtaining keys and controlling all communications
 - Attacker nodes may collude across network via existing routing mechanism or an out-of-band channel
 - Attack targets the integrity and availability of communications
- Weaknesses of key predistribution
 - Many more secrets pre-loaded than actually used for communication (n * p >> n')
 - Sensors have localised interactions, but global key assignment
- Key insight: colluding attackers can exploit latent secrets and communication gaps

Attack description

- ullet Consider two nodes controlled by an attacker, $a,b\in A$
 - a tells b its secrets
 - b masquerades as a to all of b's neighbours that a shares a pairwise key with, and vice versa
 - ullet Repeat for all pairs of nodes in A
- As more nodes are compromised, more keys can be reused
- Like a Sybil attack (each node presents multiple identities)
- Like a node replication attack (multiple copies of same node)
- Attacker nodes pretend to be different nodes to different neighbours

Example attack

	Independence	Collusion	
	$\begin{cases} k_{ad} \\ \{k_{bh}, k_{bi} \} \end{cases}$	$\{k_{ad}, k_{be}\}\$ $\{k_{bh}, k_{bi}, k_{ag}, k_{ah}\}$	UNIVERSITY OF CAMBRIDGE

Overlap

- ullet Only one of nodes a and c should masguerade as b to node e
- Node c gains nothing by pretending to be a to d
- Overlap unavoidable as $q o rac{n}{n'}$

Attack Discussion

- Integrity, availability of communications targeted, not confidentiality
 - Many false channels can overwhelm legitimate ones
 - Authentication based on pairwise key possession inadequate
 - Node revocation, redundant routing schemes undermined
- Attack variables
 - Coordination levels: ratio $\frac{n'}{n}$ between average node neighbourhood and network size
 - Key storage: as p increases, more secrets can be exploited

Impact Analysis & Measurement

- We focus on the number of usable pairwise secret keys available to an attacker
 - A pairwise key is usable if it is shared between nodes in communication range and it is not already in use within this range
- Attack Metrics
 - Number of usable pairwise keys available to a colluding attacker
 - Ratio of usable keys for attacker to keys available to attacker's neighbours
- Simulations
 - Nodes uniformly distributed over a plane
 - n = 1000, n' = 60, p = .25 and varied q, averaging results from 20 rounds

Increased usable pairwise keys

Measures $\sum_{a \in A} |U(a)|$ for increasing q

Per-node usable pairwise keys

As q grows large, each colluding node can establish n * p fake communication channels

Quantifying attacker penetration

• But what is the overall impact of a collusion attack?

$$I(A) = \frac{\sum_{a \in A} |U(a)|}{\sum_{a \in A} \sum_{b \in N(a)} |U(b)|}$$

- ullet I(A) compares the number of usable pairwise keys available to an attacker to the keys available to attacker-controlled nodes' neighbours
- ullet I(A) reveals the fraction of working communication channels controlled by the attacker

Quantifying attacker penetration (ctd.)

- Corrupting 5% of nodes grants power to half of communication channels
- Any application requiring honest interaction with majority of neighbours is susceptible

Storage requirements

- How can colluding nodes actually store extra keys?
 - n * p keys predistributed
 - Up to n * p additional keys from collusion
 - Storing twice as many keys is too onerous
- Attack optimisation
 - Pairwise keys can only be used once by definition
 - After a node shares a pairwise key with another attacker-controlled node, it can delete the key and replace it with keys from the other node
 - So key-sharing becomes key-swapping
 - Attacker nodes still store no more than n * p keys

Countermeasures

- Reduce value of compromised nodes to attackers
 - Discard unused keys after initialisation phase
 - No new nodes may join after initialisation
 - Reduce the number of pre-loaded keys
 - Exploit geographical proximity (topology foreknowledge)
 - Key infection (weaker attacker model)
- Detection mechanisms
 - Count connected neighbours
 - ullet For normal usage, should share keys with n'*p neighbours
 - Attacked node may have up to q*p more
 - Identifying which neighbours are lying is difficult
 - Require nodes to transmit locations
 - Key reuse may be detected if nodes recursively ask neighbours for nodes' locations (Parno et al. 2005)
 - Location broadcast identifies new targets
 - Significant storage and transmission costs

Conclusions

- We have presented a collusion attack on the class of pairwise key predistribution schemes
- Small fraction of compromised nodes required to control majority of communication channels
- We question the wisdom of assigning global secrets to locally-communicating nodes
- More research is needed for pairing limited secrets to localised interactions
- For more, visit http://www.cl.cam.ac.uk/~twm29/

