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Artificial intelligence has advanced to the point that the best AI systems can now beat the best human
players at the game of Go, a game which takes years for a person to master.  On the other hand, I am
sure we have all seen examples of how machine translation can go wrong.  In an extreme case in
October 2017, a person was mistakenly arrested because Facebook incorrectly translated an Arabic
phrase meaning “good morning” to a Hebrew phrase meaning “attack them”. What makes language so
difficult to model computationally?

In  recent  years,  the  field  of  computational  linguistics  has  become  dominated  by  neural  network
models.  Such models are good at solving tasks that can be defined in narrow terms, but much worse at
tasks requiring problem solving, reasoning, or dealing with unexpected input – in the mistranslation
mentioned above, an unusual phrase for “good morning” was used, which the system had presumably
never seen before.

Fundamentally, neural network models represent information as vectors – that is, as lists of numbers.
Vectors are computationally convenient, enabling efficient algorithms, but they are not naturally suited
for representing semantics.  The aim of my dissertation is to develop a semantic framework which is
both compatible with formal linguistic theory, and also empirically testable using real-world data.  My
motivations are twofold: to shed light on what it means to know a language, and to push forward the
limits  of  machine  learning  and artificial  intelligence.   This  work  is  necessarily inter-disciplinary,
requiring concepts from linguistics, philosophy of language, mathematics, and computer science.  The
core ideas have been published in a series of papers (Emerson and Copestake, 2016, 2017a, 2017b).

The Dissertation in a Nutshell

In my dissertation, I focus on distributional semantics, which has the goal of learning the meanings of
words from a corpus (a body of text).  This plays a central role in modern computational linguistics.
The core idea is that the contexts in which a word appears give us information about its meaning.  For
example,  from the  contexts  shown in  Figure  1,  we  might  learn  that  horses  are  animals,  and  are
involved  in  racing  and  agriculture.   Learning  such  information  automatically  is  the  goal  of
distributional semantics.

… being hurt by another horse especially if some rider …

… beaten by a better horse at the distance on …

… from these studies that horses reared with other horses …

… horses reared with other horses in a free and …

… ‘Is that all your horse gets to eat?’ in …

… cache of cattle and horse bones, while from the …

… was a sterling good horse, especially at Ascot, but …

… way as a domestic horse that it is stabled …

… 1790 – that is, one horse or two cows for …

… as coarse as a horse ’s tail straying from …

Figure 1: Ten instances of “horse” in the British National Corpus.
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The twin challenges are: how do we represent meaning, and how do we learn these representations?
The current state of the art is to represent meanings as vectors (Turney and Pantel, 2010; Mikolov et
al., 2013) – but vectors do not correspond to any traditional notion of meaning.  In particular, there is
no way to talk about truth, a crucial concept in logic and formal semantics.

I have developed a framework for distributional semantics that answers this challenge.  The meanings
of  words  are  not  represented as  vectors,  but  as  mathematical  functions,  which map from entities
(intuitively, objects in the world), to probabilities of truth.  For example, the function for “cup” would
return high probabilities for typical cups, middling values for entities near the boundary of the concept
(such  as  mugs,  glasses,  and  bowls),  and  low values  for  other  entities.   Such  a  function  can  be
interpreted both in the machine learning sense of a  classifier, and in the formal semantic sense of a
truth-conditional function.  This simultaneously allows both the use of machine learning techniques to
exploit  large  datasets,  and  also  the  use  of  formal  semantic  techniques  to  manipulate  the  learnt
representations.  I have empirically demonstrated that this model can improve performance compared
to vector space models.  Furthermore, because the framework is linguistically interpretable, there is a
clear and plausible path from my work to general-purpose linguistic representation and reasoning.

Semantic Functions

I represent the meaning of a word as a function from entities to probabilities of truth, which I call a
semantic function.  The use of probabilities has experimental support (Labov, 1973; Murphy, 2002),
and connects with recent linguistic and philosophical work on vague predicates (Sutton, 2017; Lassiter
and Goodman, 2015).  For example, the word “expensive” is vague because there is no fixed price
above which something should be considered expensive.  Probabilities provide a way to characterise
this uncertainty.

An illustration of a semantic function is given in Figure 2, for the word “pepper”.  Peppers come in
many colours, most typically green, yellow, or red.  The semantic function for “pepper” is given by the
solid bars – it is high for all the peppers, but lower for the unusual colours, which a person might be
hesitant to call a pepper.  The function takes the value 0 for the carrot and the cucumber, which are
definitely not  peppers.   Because this  function produces  probabilities,  we can use it  for  Bayesian
inference, a method for logical reasoning under uncertain knowledge.  For example, suppose I have
one of the vegetables in Figure 2, but you don’t know which.  Your uncertainty could be represented
by the black shaded bars – blue peppers do not exist, so there is no probability of that, while purple
peppers are rare, so there is a low probability of that.  If I now tell you that what I have is a pepper,
you could update your beliefs to the orange bars – the carrot and cucumber are ruled out, while the
peppers  are  more  likely.   In  Bayesian  terminology,  this  is  an  update  from  a  prior probability
distribution, to a posterior probability distribution.

2

Figure 2: An illustration of a semantic function and its use in Bayesian inference. See text for details.



Probabilistic Model Theory

A standard approach to formal semantics is model theory (Cann, 1993; Allan, 2011; Kamp and Reyle,
2013).  In model theory, we have a set of entities, and predicates which are true or false of each entity.
Meanings of sentences are represented using logical formulae – given the entities in the model, we can
work out whether a particular formula is true or false. In my dissertation, I develop a probabilistic
version of model theory, which uses semantic functions.

From the machine learning perspective, probabilities make model theory easier to work with, as we
can smoothly change between different entities, and between different truth values – for example, in
the simple  model  in Figure 2,  we can make any of  the bars larger  or  smaller.   Furthermore,  the
connection with formal semantics provides natural operations for  logical entailment (determining if
one sentence implies another) and semantic composition (determining the meaning of a phrase from
the meanings of its parts).  These are decisive advantages over vector space models.

From the formal semantic perspective, probabilities provide a new analytical tool.  One problem much
discussed in the literature is  context  dependence.   For example,  the word “cut” can refer  to both
cutting  grass  and  cutting  cake,  despite  the  different  tools  and  different  physical  actions  –  the
interpretation of “cut” depends on the context (Searle, 1980).  In my dissertation, I provide an account
of context dependence that overcomes difficulties pointed out in the literature (Recanati, 2012).  The
meaning of a predicate is represented by a function, but the entity the predicate refers to (a particular
event of cutting grass or cutting cake) depends on the context, in a way that can be formalised using
Bayesian inference.  This is a new mechanism for studying context dependence, which can leverage
both formal semantic theory and machine learning techniques.

Graphical Models: A Link Between Formal Semantics and Machine Learning

Logical formulae are inconvenient for many machine learning algorithms. However, Copestake (2009)
showed that  logical  formulae can be represented as  semantic dependency graphs,  as illustrated in
Figures 3 and 4.  A dependency graph consists of nodes (typically corresponding to words), and links
between the nodes (specifying how the nodes are related).

The  benefit  of  using  graphs  is  that  they are  more  convenient  for  machine  learning  models  –  in
particular, for probabilistic graphical models.  I have developed a probabilistic graphical model, which
incorporates  the  probabilistic  version  of  model  theory  described  above,  and  which  can  generate
semantic  dependency graphs.   The aim is  to  get  the  best  of  both formal  semantics  and machine
learning:  the  overall  structure  comes  from semantic  theory (in  the  form of  semantic  dependency
graphs), but the details are left for machine learning to fill in based on observed data (such as what
kinds of entities tend to occur together, and whether one predicate implies another).
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Figure 3: A semantic dependency graph for the sentence “Every picture tells a story”

Every storyatellspicture

ARG1 ARG2

RSTR RSTR

Figure 4: A logical formula for the sentence “Every picture tells a story”



Experimental Results

My framework is  more expressive than vector space models,  but  this  comes at  a cost.   The core
problem is that when training a model on text, we do not observe the entities themselves, but only their
textual descriptions.  In machine learning terminology, the entities are latent variables.  In principle,
we  can  apply Bayesian inference  to  work out  which  entities  are  likely for  a  particular  sentence.
However,  an  exact  calculation  requires  considering  every  possible  combination  of  entities  and
checking how they match the sentence.  This is intractable, because there are too many entities, and
too many combinations of them.  To use the framework in practice, we need simpler calculations that
approximate Bayesian inference.

I have adapted two approximate inference techniques for my framework.  The first is a Markov Chain
Monte Carlo method, which considers a small set of likely entities, rather than all possible entities.
Given enough time for the calculations, this technique is guaranteed to give a good approximation.
The second is a Variational Inference method, in which I make simplifying assumptions, and find the
exact solution under these assumptions.  This second technique does not have the same theoretical
guarantees as the first technique, but it can be calculated much faster.

Armed with these approximate inference techniques, I have verified my framework works in practice,
by training a model on the English Wikipedia, and testing it on several evaluation datasets.  The results
have shown that it can learn information not captured by vector space models.  The most exciting
result is on the RELPRON dataset (Rimell et al., 2017), which tests how well a model can understand
the meaning of phrases, rather than individual words.  Rimell et al. concluded that they may have
reached the limits of performance with vector space models.  However, using my semantic function
model, I have achieved better results.  In particular, I improved performance on the “confounders” that
Rimell et al. included – these are particularly challenging phrases which tripped up every vector space
model they tested.

The Bigger Picture

Read narrowly, my dissertation introduces a linguistically interpretable and computationally tractable
framework for learning the meanings of words from text.  However, the dissertation also represents the
basis  of  a  larger  research project.   I  plan to  extend my framework to  further  levels  of  linguistic
structure – this is necessary, because sentences do not exist in isolation, but must be understood in
their full context, including both other sentences and the outside world.

Many phrases cannot be understood by simply combining their parts.  For example, a “magic carpet”
is both magic and a carpet, but there is the connotation that it is a flying carpet – rather than a carpet
that  magically  cleans  itself.   Such  semi-compositional  expressions  are  poorly  understood  both
theoretically  and  computationally  (Sag et  al.,  2002;  Reddy et  al.,  2011;  Vincze,  2012),  but  their
ubiquity means they must be properly accounted for.  I plan to extend my model to allow phrases to
carry additional meaning not associated with any of their parts.

A traditional distinction in linguistics is that, while semantics deals with literal meanings, pragmatics
deals with meanings in context – for example, “some of the babies were smiling” might be taken to
mean  “some  but  not  all of  the  babies  were  smiling”.  Current  work  in  computational  pragmatics
assumes a hand-written semantic model for a small domain, and investigates how to automatically
produce pragmatic inferences (Frank and Goodman, 2012).  My framework is compatible with these
pragmatic models, and could provide a semantic model across a large domain, allowing us to test these
pragmatic models when scaled up to a realistic size.

4



Finally,  all  distributional  semantic  models  come  up  against  the  symbol  grounding  problem –  if
meanings of words are defined in terms of other words, the definitions are circular (Harnad, 1990).
Indeed, people do not learn language from text or speech alone, but also connect words with their
sensory  perception.   With  its  connection  to  both  machine  learning  and  formal  semantics,  my
framework provides a basis for exploring this problem, as state-of-the-art image processing techniques
could be directly incorporated into the semantic functions.

A good model of language must be able to represent semantic structure, must be sensitive to the larger
context,  and must  be able to learn from disparate data sources (including both text  and grounded
information such as  images).   Producing such a  model  would constitute  a major  step forward in
computational linguistics and artificial intelligence.
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