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Robust Registration of Dynamic Facial Sequences
Evangelos Sariyanidi, Hatice Gunes, and Andrea Cavallaro

Abstract—Accurate face registration is a key step for several
image analysis applications. However, existing registration meth-
ods are prone to temporal drift errors or jitter among consecutive
frames. In this paper we propose an iterative rigid registration
framework that estimates the misalignment with trained regres-
sors. The input of the regressors is a robust motion representation
that encodes the motion between a misaligned frame and the
reference frame(s), and enables reliable performance under non-
uniform illumination variations. Drift errors are reduced when
the motion representation is computed from multiple reference
frames. Furthermore, we use the L2 norm of the representation
as a cue for performing coarse-to-fine registration efficiently.
Importantly, the framework can identify registration failures
and correct them. Experiments show that the proposed approach
achieves significantly higher registration accuracy than state-of-
the-art techniques in challenging sequences.

I. INTRODUCTION

Face registration is the process of compensating for rigid
transformations caused by head, body or camera movements in
an image sequence. This is a fundamental pre-processing step
for applications that interpret the non-rigid motions of facial
features, such as facial action recognition [1], visual speech
recognition [2], emotion recognition [3] and micro-expression
recognition [4]. Rigid registration for facial analysis needs
to address multiple challenges, namely non-uniform illumi-
nation variations, occlusions and facial activity itself, which
generates non-rigid motions that become outliers for rigid
registration. Moreover, significant drift errors may accumulate
over time with online registration, even when individual regis-
tration errors remain under a tolerance threshold, thus leading
to registration failures. Undetected registration failures then
become false references for subsequent frames, thus generating
additional registration errors.

Facial registration can be conducted considering the whole
face or its parts [5]. Part-based registration refers to regis-
tering selected facial regions independently from one another
(e.g., each eye and the mouth are registered as three separate
cropped sequences). Though part-based registration is useful
to reduce the effect of out-of-plane head rotations [5], it is a
challenging task as a large proportion of pixels undergo non-
rigid motions.

Registration is often approached as an optimisation problem
and solved with a gradient-descent method [6], [7], [8],
[9], [10]. However, gradient descent may underperform with
untextured regions, particularly when high-gradient regions
are associated with outlier motions. An emerging approach
to optimisation in computer vision is using statistical learning
[11], [12], [13], [14]. The original idea of Cootes et al. [15]
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was to construct an algorithm by learning the relationship
between the parameters to be optimised and the residual error
caused by non-optimal parameters. We argue that optimisation
based on learning is also promising for rigid facial registration,
as invariance to non-rigid motions can be improved by training
with sequences that contain facial activity. Moreover, robust-
ness to non-uniform illumination variations can be improved
with a robust feature extraction scheme without analytically
modelling the relationship between features and misalignment
parameters.

In this paper, we propose to use optimisation via statistical
learning for rigid facial registration. The proposed iterative
framework (Fig. 1) reduces drift errors by computing Gabor
motion energy with respect to multiple reference frames, and
can identify and correct registration failures via probabilistic
learning. We show that, in iterative registration, misalignment
can be estimated effectively with a pre-trained regressor of
Gabor motion energy and that this regressor can generalise
and perform accurately on data with illumination variations
even when trained using controlled data. Moreover, we show
that the L2 norm of Gabor motion energy can be used to
train multiple regressors with different granularities and also
to efficiently perform coarse-to-fine registration with these
regressors. We refer to the proposed framework as MUMIE
(Multiple regressors for Misalignment Estimation), and eval-
uate it both for whole-face and part-based registration and
obtain significantly higher accuracy than classical registration
frameworks. Particularly notable is the part-based registration
performance in the presence of large facial activity due to
facial expressions, and its robustness to non-uniform illumi-
nation variations. The code of the method is made available
for research purposes.

The paper is organised as follows. Section II reviews exist-
ing registration approaches. Section III presents the problem
formulation. Section IV describes the registration process.
Section V explains how registration failures are identified and
corrected. Experimental results are discussed in Section VI.
Section VII concludes the paper.

II. RELATED WORK

We discuss existing registration approaches and focus on
their ability to deal with illumination variations, outlier mo-
tions and drift errors. We first cover a method specific to faces,
namely registration by localising fiducial points [5]. Then we
cover generic registration techniques, which can be grouped
in three main classes, namely keypoint, transformation-based
and direct methods.

A popular approach to rigid facial registration is to localise
and align fiducial landmark points (e.g., eyes) [5]. There exist
landmark localisers that are robust to illumination variations
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Fig. 1: Overview of the proposed MUMIE framework. The top part represents the training of the misalignment estimators. The
bottom part represents the iterative registration scheme, followed by a convergence test. The input to registration is an ordered
set of reference frames Īt´1, the misaligned frame It and the initial misalignment estimation p̂t. The dashed lines represent
the conditional paths that are followed when the labelled conditions hold (C1/C2) or do not hold (C̄1{C̄2), and || ¨ || is the L2

norm. :The condition C2 is satisfied also if a maximal number of iterations, Kmax, is reached.

[16] (e.g., [13], [11], [17]). Moreover, this approach can
be made robust to outlier non-rigid motions by selecting
landmarks that are less affected by facial activity (e.g., eye
corners). However, registration based on landmark localisation
is prone to jitter among consecutive frames due to localisation
errors [18] that occur even in relatively controlled condi-
tions [2]. The detrimental effect of jittering caused by land-
mark localisation errors has already been observed in visual
speech recognition [2]. Similar jittering errors are detrimental
also to facial action analysis [1].

Keypoint methods perform registration using sparsely lo-
cated image points that are centred on visually salient regions
with rich texture [23]. While these methods are tolerant to
large outlier motions thanks to the use of robust estimators
such as RANSAC [27], keypoint methods may not perform
reliably when outlier motions occur around visually salient
regions (i.e., regions with texture variations). This occurs with
part-based registration or when illumination variations severely
reduce the number of matched features [28].

Global transformation-based methods use the invariance
properties of the Fourier transform [7], [22], Fourier-Mellin
transform [29] or Radon transform [30], [23]. These methods
are generally unsuitable for challenging real-life problems
as they are sensitive to outlier motions and illumination
variations [24]. Although a robust version of the fast Fourier
transform (FFT) [24] is successful against these challenges, its
accuracy in simpler conditions without illumination variations
can be lower than that of keypoint-based methods [28].

Direct methods minimise an error function of a pair of
misaligned frames. The Lucas-Kanade (LK) method minimises
the sum of squared difference between two frames and can be
rendered partially robust to outliers by dividing frames into
blocks [6] or by employing robust estimators [31]. LK methods
perform minimisation via gradient descent and may therefore
not perform reliably if regions of outlier motions yield high
gradient while the remaining regions are relatively flat, which

is likely to happen in part-based registration. Extensions of LK
differ in the error function that is optimised, the optimisation
algorithm or the domain where the optimisation is performed
[6], [7], [9], [25], [32], [33]. Methods that operate on the pixel
domain are particularly sensitive to illumination variations [7].
Pre-processing with Gabor filters [25] helps improve robust-
ness of LK methods against illumination variations [7]. One
of the most robust methods against non-uniform illumination
variations is based on the direct maximisation of the gradient
correlation coefficient (GradCorr) [7]. GradCorr employs a
cosine kernel, which improves robustness against outliers and
illumination variations by eliminating local mismatches [7].

Keypoint, transformation-based and direct methods are
prone to drift errors in long sequences as they register each
frame with respect to a reference frame. This problem was
highlighted for the LK framework [34] and addressed by a
number of methods [10], [34], [26], [35], which were validated
on data with limited illumination variations only.

Table I summarises the methods discussed in this section.
Note that while methods exist that independently tackle drift
errors, outlier motions or challenging non-uniform illumi-
nation variations, to the best of our knowledge no method
addresses all these challenges within the same framework. We
initially investigated the benefits of learning-based registration
in our preliminary work [28]. With respect to our preliminary
work the main novelties in this paper are (i) the misalignment
estimation through a continuous model that is simpler to train
than the discrete model; (ii) computing the motion represen-
tation using multiple reference frames to reduce drift errors;
(iii) the strategy for correcting registration failures; (iv) using
the magnitude of motion representation as a prior cue about
the amount of misalignment, thereby improving computational
efficiency.
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TABLE I: Representative methods from various registration categories and how they address illumination variations, drift errors
and outlier motions. Key: (K)eypoint, (T)ransformation-based, (D)irect, (S)tatistical Learning.

Ref. Approach Illumination
Variations

Drift
Errors

Outlier
Motions

Failure
Identif.

Failure
Correct.

Tested for
part-based
registration?

(K)
[19] SURF feature matching Robust features — RANSAC — — —
[20] MSER feature matching Robust features — RANSAC — — —
[21] SIFT feature matching Robust features Drift correction RANSAC — — —

(T)
[22] Multi-layer Fourier transf. — — — — — —
[23] Radon transf. — — — — — —
[24] Robust Fourier transf. Gradient correlation — Cosine kernel — — —

(D)

[6] Lucas-Kanade (LK) matching — — Robust estimator — — —
[25] LK matching Gabor Filtering — Robust estimator — — —
[26] Robust LK matching — Drift correction Robust estimator — — —
[10] Extended LK matching — Backgr. modelling Robust estimator — — —
[7] Gradient correlation max. Gradient correlation — Cosine kernel — — —

(S) This
Work Optimisastion via learning 3D Gabor representation Multi-frame

motion encoding
Pooling, training
with noisy data

14 Sequences
(294 Images)

III. PROBLEM FORMULATION

Let S “ pI1, I2, . . . , It, . . . , IT q be a sequence of arbitrary
length T with unregistered frames It. The goal is to generate
a registered sequence S̄ “ pĪ1, Ī2, . . . , ĪT q with no rigid
misalignment between any two frames Īj , Īk. When S is
acquired via streaming, a frame It must be registered as
soon as it is obtained (online registration). Let I1 be the
reference frame that subsequent frames will be registered to
(i.e., Ī1 “ I1).

Let pt be the parameters of the rigid motion responsible for
the misalignment in It. Īt can be obtained by transforming
It with a warping operator Wpx; ptq that maps each pixel
x “ px, yqT based on pt [6]:

ĪtpWpx; ptqq “ Itpxq. (1)

The critical task is to obtain an accurate estimation of rigid
motion, p̂t. The rigid motion in It can be estimated with
respect to a single frame (for example the most recently reg-
istered frame, Īt´1); or by considering multiple past reference
frames. For example, one can use an ordered set that contains
the last TR registered frames Īt´1 “ pĪτ , Īτ`1, . . . , Īt´1q

where τ “ maxt1, t ´ TRu. We refer to registration with
TR “ 1 as single-frame registration and with TR ą 1 as
multi-frame registration.

IV. MISALIGNMENT ESTIMATION

Faces are non-planar objects and compensating for rigid mo-
tion with an affine transformation may distort facial geometry
and undermine facial activity analysis. Therefore, we model
rigid motion as a Euclidean transformation.

A. Optimisation via learning

Let pt “ pp1, p2, p3, p4q be a vector whose elements define
the horizontal and vertical translation, scale and rotation,
respectively. Registration via optimisation starts computing the
rigid motion between two images Īt´1 and It with an initial
estimate p̂t that is then updated iteratively as:

p̂t Ð p̂t `∆p̂t, (2)
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Fig. 2: Illustration of drift errors that can occur over time,
through an exemplar sequence that starts and ends with the
same eye expression. Registration output of a Lucas-Kanade
(LK) method [7] (top) and MUMIE (bottom). LK is prone to
drift errors, as seen by comparing the first and last frames of
the registered sequences. Drift errors are highlighted in the last
column where the difference between the first and last frames
is depicted. (Dark values indicate registration errors.)

until the norm of the increment, ||∆p̂t||, is smaller than a
threshold ε. ∆p̂t is generally computed with the LK algo-
rithm [8], [10] that uses gradient descent for optimisation.
Convergence is successful under constant illumination condi-
tions and limited occlusions [6]. Extensions of LK can tackle
illumination variations and occlusions using a robust estimator
[31] or a cosine kernel that eliminates outliers caused by local
texture mismatches [7]. However, as mentioned in Section I,
algorithms based on gradient-descent may underperform when
high-gradient image regions are related to outlier motions.

Registration for facial analysis needs to cope with the
non-rigid motions caused by facial activity, which affect a
large proportion of pixels and is problematic for part-based
registration. Facial activity evolves slowly and may not be
eliminated as a local mismatch, thus causing drift errors. Fig. 2
illustrates this problem: the first and last frame should be
aligned as they depict the same eye expression at two different
instants of a sequence; however, another expression appearing
in the in-between frames causes drift errors for the LK-based
algorithm [7].

An emerging approach to optimisation is to perform the
updates with a pre-computed function [15], [13], [11]. The
increment ∆p̂t can be computed with a regressor that mod-
els the relationship between misalignment and the residuals
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(b) Small, horizontal translation (c) Large, vertical translation (d) Large, horizontal translation(a) Small, vertical translation

Fig. 3: Illustration of the usefulness of the Gabor motion energy for registration via four example cases (a–d) that involve
different types (horizontal/vertical translation) and amounts (small/large) of misalignment. For each case, the Gabor motion
energy is computed with four different filter pairs tuned to a particular speed (vS(mall) or vL(arge)) and orientation (θh(orizontalq or
θv(ertical)). The energy is maximal when the filters are in tune with the misalignment.

caused by misalignment. We use regression for rigid facial
registration: at each iteration, we compute the rigid motion
between Īt´1 and It (or more generally, between Īt´1 and It)
with a regressor f as:

∆p̂t “ fpΦp̄It´1, Itq; Θq, (3)

where Θ is the vector of input-independent regressor pa-
rameters, and Φp¨q is a feature extraction process that we
discuss later in this section. Θ is computed from a dataset
D “ tp̄In, In,pnquNn“1 that contains N misaligned samples
and their misalignment labels. Invariance against an outlier can
be encouraged by augmenting D with training samples that
are affected by the outlier [36]. This strategy is particularly
useful for dealing with outliers that are difficult to model an-
alytically [36], such as the non-rigid motions caused by facial
activity. Moreover, invariance against illumination variations
can be encouraged with a robust feature extraction scheme.
Unlike algorithms based on gradient descent (e.g., LK), the
computation in (3) does not require a differentiable expression
to minimise. For this reason, we can employ feature extraction
schemes that are difficult to differentiate or not differentiable.
However, while optimisation with regression provides an ef-
ficient means for dealing with outliers, an important issue
has to be addressed for a pre-computed regressor, namely the
generalisation to unseen faces and imaging conditions.

Generalisation can be improved with a feature extraction
scheme that is sensitive to rigid motion and insensitive to irrel-
evant factors, such as skin colour and illumination variations.
To this end, we use a spatio-temporal Gabor representation,
which encodes motion without computing motion vectors ex-
plicitly [37] and is robust against illumination variations [28].
The Gabor representation encodes the motion between two
frames Īt´1 and It by convolving this pair with speed- and

orientation-selective Gabor filters that are defined as [38]

gφv,θpx, y, t
1q “

γ
?

8π3σ2τ
e´

x̄2`γȳ2

2σ2 ´
pt´µtq

2

2τ2

cos
2π

λ
px̄` vt1 ` φq, (4)

where x̄ “ x cos θ`y sin θ and ȳ “ ´x sin θ`y cos θ, and the
phase offset φ can be set to φ “ 0 to obtain an even-phased
(cosine) filter and to φ “ π

2 to obtain an odd-phased (sine)
filter — the two filters together form a quadrature pair. The
parameters θ and υ define the orientation and speed of motion
that the filter is tuned for (see [38] for the definition and
details of the remaining parameters). An important property
of the Gabor representation is direction selectivity (e.g., dis-
tinguishing between leftwards and rightwards motion), which
is acquired by computing the Gabor motion energy through a
quadrature filter pair as:

Ev,θ “ ppĪt´1, Itq ˚ g
0
v,θq

2 ` ppĪt´1, Itq ˚ g
π
2

v,θq
2, (5)

where ˚ denotes convolution.
Fig. 3 illustrates why the Gabor representation is useful

for registration. We plot four pairs of images along with the
motion energies computed through four pairs of Gabor filters.
The energy produced with filters tuned to small, horizontal
motions gets maximal when the misalignment involves a
small, horizontal translation, as illustrated in Fig. 3a. More
generally, misalignment in different directions or magnitudes
activate different Gabor filters. This property is critical for
optimisation, as it guides which direction each optimisation
step should take, and what the step size should be. The usage
of such a motion representation enables generalisation; if we
would replace the images Īt´1 and It in Fig. 3 with the images
of other subjects, the energy output would change. However,
the essential relationship would not: each filter would still
reach its maximal response only if the rigid motion (i.e., the
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misalignment) is in tune with the filter parameters. The overall
representation, Φ1pĪt´1, Itq “ pφt,1, φt,2, . . . , φt,d, . . . , φt,Dq,
is computed by pooling the energy matrices Ev,θ after par-
titioning them into M ˆM non-overlapping subregions. An
advantage of pooling is to facilitate generalisation in terms of
image size. While the size of the energy matrices Ev,θ depends
on the size of the images Īt´1 and It, after pooling we have
M ˆM “ M2 coefficients per energy matrix independently
of image size. The dimensionality of the overall representation
is D “ M2 ˆKG, where KG is the number of Gabor filter
pairs or, equivalently, the number of energy matrices. The
implementation details of the representation are provided in
Section VI-C.

To reduce drift errors, we extend the above-described
scheme to encode motion with respect to multiple reference
frames, Īt´1. We denote this multi-frame motion represen-
tation between It and Īt´1 as Φt “ Φp̄It´1, Itq. Φt com-
putes pair-wise motion representations between the misaligned
frame and each of the reference frames in Īt´1, and then
averages them over time:

Φt “ Φp̄It´1, Itq “
1

t´ τ

t´1
ÿ

t1“τ

Φ1pĪt1 , Itq, (6)

where τ “ maxt1, t´ TRu. For brevity, we rewrite (3) as:

∆p̂t “ fpΦt; Θq (7)

and denote the training set as DΦ “ tpΦn,pnq : Φn “

Φp̄In, InquNn“1.
As Fig. 3 exemplifies, there is a non-linear relation between

the Gabor representation (input) and rigid motion parameters
(output). Therefore, it is reasonable to choose a non-linear
regression function to model the intended input-output re-
lationship. We choose f to be a single-hidden-layer neural
network as it is a well-established non-linear regressor and
one whose properties are well understood [39]. Then the
parameter vector Θ includes the hidden-layer weights, output
layer weights and biases [36].

The optimal parameters Θ˚ are those that minimise the
regularised mean squared error on DΦ:

Θ˚
“ argmin

Θ

N
ÿ

n“1

||pn ´∆p̂n||2 ` α||Θ||2, (8)

where ∆p̂n “ fpΦn; Θq and α P p0, 1s is the regularisation
parameter defined during training through cross-validation.

The iterative process in Fig. 1 can achieve accurate reg-
istration if the errors of the estimator f get smaller as the
amount of rigid motion in It gets smaller. However, since
the initial error in a given It may be high, D must contain
samples with both large and small misalignments. In a dataset
with such a broad range of input–output mapping, because
of the bias/variance trade-off [40] the estimator may not be
able to attain the desired level of accuracy. Although bias
can be reduced by increasing model complexity, this would
increase the variance of the estimator, thus increasing the risk
of overfitting [40]. We address this problem with a coarse-to-
fine misalignment estimation, as discussed next.
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Fig. 4: Correlation between the magnitude of the Gabor
representation and misalignment. This correlation suggests that
the magnitude of the representation provides information about
the amount of misalignment.

B. Coarse-to-fine Misalignment Estimation

To improve the bias/variance trade-off, one can employ a
coarse-to-fine cascade of K estimators tfkuKk“1 with coarse
estimators tuned to large amounts of misalignment and fine
estimators tuned to small amounts of misalignment (e.g., [41]).
Such a cascade produces better bias/variance trade-offs as
each estimator models an input-output mapping with a smaller
range [40]. However, typical coarse-to-fine estimation schemes
use all the estimators in the cascade, even when the initial
registration is small and the finest estimator would suffice [42].

Coarse-to-fine estimation is more efficient when coarse
estimators are used only if the initial registration error is large.
However, this can be achieved only if we have a prior cue
about the amount of misalignment in It. Our spatio-temporal
Gabor representation provides this cue: Large-magnitude mo-
tion activates Gabor filters with large spatial support [38],
as was exemplified in Fig. 3. For this reason, the L2 norm
(magnitude) of the representation,

ρt “ ||Φt|| “

D
ÿ

d“1

φ2
t,d, (9)

generally gets larger as rigid motion gets larger. Fig. 4 illus-
trates this relationship, which allows us to use the L2 norm of
a representation as a prior on the amount of misalignment It.

We exploit magnitude while constructing the estimators of
different granularities, tfkuKk“1. We choose all estimators fk

to have the same structure and therefore the estimators differ
in their granularity due to the dataset they are trained with.
Coarse estimators are trained with samples of larger magnitude
and fine estimators with samples of smaller magnitude.

Let us denote the training dataset of each estimator as Dk
Φ,

with
ŤK
k“1 Dk

Φ “ DΦ. A simple way to create the sets tDk
Φu

is to first compute the magnitudes of all training samples,
Dρ “ tρn : ρn “ ||Φn||, @pΦn,pnq P DΦu, and to partition
the range of rmintDρu,maxtDρus into K uniform intervals.
However, this partitioning would be sensitive to the sample
with maximal magnitude maxtDρu, as a large maxtDρu value
would affect all intervals. Instead, we allow for non-uniform
lengths. To this end, we cluster the set Dρ into K clusters by
using a Gaussian Mixture Model. Each cluster is a distribution
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N pρ|µk, σ2
kq where the variance σ2

k controls distribution width
and is learnt from data. We create a subset Dk

Φ by picking the
samples that are close to the kth center. Specifically, we create
Dk

Φ as Dk
Φ “ tpΦn,pnq : N pρn|µk, σkq ď 2σku (i.e. we

cover approximately 95% of the distribution with the 2σk rule
[43]). Then we train each fk by applying the empirical risk
minimisation in (8) using the dataset Dk

Φ.
We estimate misalignment at each iteration as:

∆p̂t “ fk
˚

pΦtq, (10)

where k˚ “ argk maxN pρt|µk, σkq. For clarity, we dropped
the regressor parameters.

If no registration failure occurs, the procedure described in
this section can register each It sequentially for t “ 2, . . . , T
(Fig. 1). However, when the registration of a frame fails, the
corresponding frame must be identified and removed prior to
registering subsequent frames, otherwise it becomes a false
reference for subsequent frames. This problem is addressed in
the next section.

V. FAILURE HANDLING

A. Probabilistic Failure Identification

To account for possible registration failures, it is desirable
to generate a second output in addition to the registered
sequence S̄. This second output, a vector λ, should indi-
cate whether the registration at each frame was successful:
λ “ pλ1, λ2, . . . , λT q, where λt “ 1 indicates that Īt was
registered correctly and λt “ 0 indicates that the registration
failed.

Let xp̂t,ptyc define the average error in the estimation of
canonical points [6] between two registered frames Īt and
Īt´1. We choose two canonical points1 x1 and x2 as the
leftmost and rightmost points in the vertical middle of the
image plane. Then xp̂t,ptyc can be computed as:

xp̂t,ptyc “
2

ÿ

i“1

a

||Wpxi; p̂tq ´Wpxi; ptq||. (11)

When this error is smaller than a convergence threshold,
εy , the registration is considered successful. We cast failure
identification as a binary classification problem where the two
classes are converged (i.e., xp̂t,ptyc ď εy) and not converged
(i.e., xp̂t,ptyc ą εy). We denote those two classes with a
binary variable ỹ P t0, 1u.

This problem could be solved with a classifier trained with
a labelled dataset D̃Φ “ tpΦn, ỹnqu. However, if we mislabel
a frame Īt as converged, then the mislabelled frame will
become a false reference to all subsequent frames; therefore,
false positives are more costly than false negatives. A minimal
false positive rate is therefore desirable, even if this causes a
relatively higher rate of false negatives. False positives can
be reduced if we have a confidence measure associated with
each estimation, and we reject labelling a sample as converged
unless the estimation confidence is above an acceptance
threshold θconv. A probabilistic classifier can be used to this

1Two points suffice to define Euclidean motion.
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Fig. 5: Failure identification performance on the Synthesised
dataset (left) and on the PIE dataset (right) illustrated via
ROC curves. The FPR range is restricted to r0, 0.05s for
better interpretation. Each curve is computed from 500 positive
and 500 negative samples for εy “ 1. Results suggest that
the Gabor representation is more robust against illumination
variations than the optical flow representation.

end, as the confidence value we seek is the probability assigned
with the estimation.

We compute the convergence probability via Bayesian learn-
ing as [36]:

ppỹt “ 1|Φt, D̃Φq “

ż

ppỹt “ 1|Φt, Θ̃qppΘ̃|D̃ΦqdΘ̃, (12)

where Θ̃ is the vector that contains classifier parameters,
ppΘ̃|D̃Φq is the prior distribution over parameters Θ̃, and
ppỹt “ 1|Φt, Θ̃q is the probability of a segment with motion
representation Φt having converged when the parameters
are Θ̃.

The closed-form expression of ppỹt “ 1|Φt, Θ̃q depends on
the classifier type, and the type of the distribution ppΘ̃|D̃Φq

is usually selected in a way that would allow (12) to have a
closed-form approximation (i.e., conjugate prior) [36]. Since
the processes of failure identification and misalignment es-
timation share a common input space (i.e., spatio-temporal
Gabor representation), we choose statistical models with the
same structure and use a single-hidden-layer neural network as
a classifier. We implement Bayesian learning on this classifier
through evidence approximation [44].

The decision on failure identification, λt, is defined as

λt “ λpΦtq “

#

1 if ppỹt “ 1|Φt, D̃Φq ą θconv

0 otherwise.
(13)

We set the threshold θconv automatically as follows. We com-
pute the ROC curve of the failure identification function of λ
by evaluating the true positive rate (TPR) and false positive
rate (FPR) on a validation set for a range of threshold values
θconv, and select the θconv that produces a low false positive
rate (e.g., 0.01) on the ROC curve.

Fig. 5 illustrates the failure identification performance of the
employed Bayesian neural network on two validation sets: one
with constant illumination and one with illumination variations
(the datasets are described in Section VI-B). Fig. 5a shows that
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Algorithm 1 Procedure CORRECT

Input Failed frame, aligned frames: pItf , Īq
Output Registered frame, convergence index: pĪtf , λtf q

for Ī P tĪku do
Ītf Ð IterativeRegistrationpĪ , Itf q
λtf Ð λpΦpĪ , Itf qq
if λtf “ 1 then

break
end if

end for
return pĪtf , λtf q

a Bayesian neural network enables reliable failure identifica-
tion with a TPR larger than 0.90 for a FPR as low as 0.01 for
both representations. To highlight the importance of a robust
motion representation, we also compare the performance with
an optical flow representation [45] that replaces the Gabor
representation in the pipeline. Fig. 5b shows that the Gabor
representation is significantly more robust against illumination
variations than the optical flow representation. The robustness
is due to the Gabor filters being localised in space and the
Gabor response being normalised in time [28].

B. Failure Correction

Let tf denote a time when a registration failure occurs.
This failure may be corrected by registering with respect
to temporally farther frames. To this end, we search for a
reference within a set of previously registered frames

Ī “ tĪτ : Īτ “ Īτmin , Īτmin`1, . . . , Ītf´1 ^ λτ “ 1u, (14)

where τmin “ maxttf ´ TD, 1u and TD is the length of
the temporal window within which correction is attempted.
If a reference frame is found, then the failure is corrected
and the registration index is updated as λtf “ 1. The
correction process is summarised in Algorithm 1. Note that
IterativeRegistration refers to the set of operational blocks
with the same label in the lower part of Fig. 1.

The likelihood of a correction can be increased by using
frames after the failure time tf , that is by constructing Ī as

Ī “ tĪτ : Īτ “ Īτmin , Īτmin`1 , . . . , Īτmax ^ λτ “ 1u, (15)

where τmax “ mintT, tf ` TDu. In this case, the registration
process will have a delay of TD frames, which may become
acceptable with small TD values.

VI. EXPERIMENTAL VALIDATION

In this section we validate the ability of the proposed
framework to prevent drift errors, to perform robustly in the
presence of facial expressions and non-uniform illumination
variations, to identify failures reliably and to generalise to
unseen conditions. We first compare multi-frame and single-
frame registration for MUMIE. Then we compare MUMIE
with state-of-the-art methods on sequences with facial expres-
sion variations and on sequences with non-uniform illumina-
tion variations. The latter cause registration failures, enabling

us to evaluate the failure identification and correction of the
proposed framework. We validate generalisation by always
conducting experiments in a cross-database manner, that is,
by training only on one dataset and testing on different ones.

A. Evaluation Measures

We validate sequence registration performance by evaluat-
ing the ability of a method to reduce the overall registration
error and its tendency to generate drift errors. To identify and
compare drift errors, we also illustrate sequence registration
performance by visualising the error variation over time.

We measure the registration error, es,t, of the tth frame of
the sth sequence by measuring the error in the estimation of
the canonical points (see Section V-A):

es,t “
1

2

2
ÿ

i“1

b

||xi,t ´Wpx1i,t; p̂
s
t q||, (16)

where p̂st is the estimated transformation, xi,t is a canonical
point and x1i,t is the canonical point after perturbation by a
rigid motion pst . The average error, ēs, over a sequence s is:

ēs “
1

T ´ 1

T
ÿ

t“2

es,t, (17)

where T is the sequence length. (Note that the error is mea-
sured with respect to the initial frame.) The overall average
error, ē, for a dataset is:

ē “
1

NS

Ns
ÿ

s“1

ēs, (18)

where NS is the number of sequences in the dataset. The
average drift error, ēdrift, is defined as:

ēdrift “
1

NS

NS
ÿ

s“1

es,T . (19)

Since drift error accumulates over time, the registration error
between the first and last frames of the sequences serves as
a useful measure of drift [46]. Finally, we use the percentage
of converged frames measure, c, which is commonly used for
registration algorithms [6], [7]:

c “ 100ˆ
|tes,t : es,t ă 1, s P Nr1,NSs, t P Nr2,T su|

NSpT ´ 1q
, (20)

where | ¨ | denotes set cardinality. The measure c is a useful
alternative to the overall average error when the average error
is biased by a few frames with a high registration error.

Following [6], we introduce a registration error to frames
by perturbing the canonical points with a random value drawn
from a Gaussian white noise distribution with σperturb standard
deviation. Since we focus on measuring registration accuracy
and tendency to drift errors, we set σperturb “ 2 when com-
paring with other methods, as LK methods may not converge
for larger values [7]. However, we test our method with larger
σperturb values when analysing its performance for coarse-to-
fine registration in Section VI-F.
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disgust sadness fear

happiness anger surprise

disgust sadness fear

Fig. 6: The apex frame of the six-basic expressions in the Syn-
thesised dataset. The top-left facial image shows the cropping
regions for part-based registration.

B. Test Datasets

To validate performance with real sequences of facial ex-
pression variations, we perform registration on three facial
datasets: CK+ [47], MMI [48] and AFEW [49]. CK+ and
MMI contains sequences of posed facial expressions of frontal
faces. AFEW comprises sequences cropped from movies;
the challenges of this dataset include out-of-plane head pose
variations, illumination variations and background motion.
Registered videos from these sequences are available for
qualitative analysis as supplementary material 2.

To quantify robustness against illumination variations we
use the PIE dataset [50]. This dataset is collected from
subjects that are sitting stably in front of a camera while the
illumination conditions are changed rapidly in a controlled
manner (see Fig. 7). We use 67 sequences (all the sequences
that contain a frontal face). Each sequence is 21 frames long.

To quantify robustness against non-rigid facial motions we
synthesised facial sequences with expression variations. We
will refer to this as the Synthesised dataset. The need for
such a test sequence arises from the goal of having only
expression variations without head or body movements. People
tend to move while displaying an expression even in controlled
datasets such as MMI [48] and therefore a ground truth for
rigid registration cannot be obtained. To produce realistic
faces, we use Autodesk Maya and two publicly available facial
rigs3, Old Man (Subject 1) and Ilana (Subject 2). Subject 1
is an old male with a wrinkled face, whereas Subject 2 is a
young female with a smooth skin (see Fig. 6). We created
sequences that contain the six basic expressions by using the
Action Units that are associated with those expressions. All
sequences start with a neutral facial appearance, reach the
apex, and then return to neutral appearance. We also include
one sequence where there are no expression variations, thus
yielding to a total of 14 sequences for the two subjects.

Prior to registration, we crop and resize the frames for
all datasets. For whole-face registration, we first crop faces

2Supplementary material is on ftp://spit.eecs.qmul.ac.uk/pub/es/s.zip
3http://facewaretech.com/sdm categories/rigs/

Fig. 7: Sample frames from the PIE dataset. All the sequences
in this dataset undergo similar illumination variations.

based on eye locations, and then resize the cropped frames to
200 ˆ 200 pixels. For part-based registration, we first locate
the centres of both eyes and mouth, and then crop each of
these components so that the eye/mouth sits in the centre of
frame after cropping. The cropped frames are then resized to
50ˆ50 pixels. Fig. 6 illustrates the boundaries of the cropped
components. For the Synthesised dataset we locate the centres
of eyes and mouth manually. For the PIE and CK+ datasets
we use the facial landmarks provided with the dataset. For the
MMI and AFEW datasets we detect faces using OpenCV and
locate landmarks using SDM [13].

C. Implementation details and parameter sensitivity

To compute the Gabor representation, we partition the
energy matrices into M ˆ M “ 3 ˆ 3 pooling subregions.
We use standard deviation pooling (i.e., compute the standard
deviation of the values in each subregion), as it outperforms
mean and max pooling [28]. We use Gabor filters across
8 orientations, t0˝, 45˝, . . . , 315˝u and 3 scales, t2ju2j“0,
yielding a filter bank with KG “ 24 filters, and an overall
representation with D “ 9ˆ 24 “ 216 features.

For optimisation we used the scaled conjugate gradients
algorithm. We conducted the training on MATLAB using the
NETLAB [44] library and the testing on a C++ implementa-
tion. We set the convergence threshold εy “ 1 pixel, which
is the value used for the evaluation of the LK framework [6].
During correction, the width of the temporal window is set
to TD “ 5 and we apply correction with a temporal window
that considers also subsequent frames (i.e., online-with-delay).
We created the training samples from CK+ [47] by perturbing
frames from 20 sequences where we perceived no head or body
motion. We fix the number of training samples to N “ 15, 000.
We set the maximum number of iterations to Kmax “ 12,
which is sufficient for convergence for σperturb “ 2 (see Section
VI-A). Note that in Section VI-F we analyse performance
against large registration errors with more iterations.

The number of estimators is K “ 5, the number of
hidden nodes in the neural network is Nhidden “ 10, and the
number of iterations is Niter “ 500. We will present below
an experimental analysis that shows the effect of varying
these parameters. For this purpose, we create testing data

ftp://spit.eecs.qmul.ac.uk/pub/es/s.zip
http://facewaretech.com/sdm_categories/rigs/
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Fig. 8: (Left): average registration error against the number of
estimators, K, suggests that K ă 4 estimators are insufficient
for accurate registration. (Right): The mean and standard de-
viation of misalignment of samples in each dataset Dk

Φ against
the average magnitude of representations in Dk

Φ, highlights the
coarse-to-fine structure of the set of 5 estimators.

from the 6-basic expression sequences of the Synthesised
dataset; specifically, we create misaligned image pairs (i.e.,
two-frame sequences) by picking all consecutive image pairs
and perturbing the second image with σperturb “ 2, and thus
obtain NS “ 228 two-frame sequences.

Fig. 8 (left) reports the performance in terms of overall
average error, ē, when varying K. The error is particularly high
for K “ 1, which suggests that a single neural-network cannot
model the entire range of input-output mapping efficiently
(see Section IV-B). In fact, when K “ 1, the optimisation
algorithm stops after only 26 iterations, which is a symptom
of inefficient learning. Limited improvement is obtained when
K is increased up to 3 as, similarly, training stops early.
When K “ 4 (and beyond) there is a significant performance
improvement. In Fig. 8 (right) we illustrate the coarse-to-fine
structure of the K “ 5 estimators through the statistics of
their corresponding datasets, tDk

Φu
5
k“1. Specifically, we show

the average and the standard deviation of the registration error
of all the samples in a Dk

Φ against the average magnitude
of the representations in Dk

Φ. Some estimators have a coarse
structure as their training samples have large misalignment
(e.g., k “ 2, 5), and others have a fine structure as their training
samples have smaller misalignment (e.g., k “ 1, 4).

To prevent overfitting, it is useful to add a random noise to
the motion representations computed from the training images.
This noise is drawn from an isotropic zero-mean Gaussian
distribution with standard deviation σnoise “ 0.5. Other well-
known strategies to prevent overfitting are reducing Nhidden
(i.e., using a simpler model) or reducing Niter (i.e., performing
early termination) [36]. Fig. 9 compares the efficiency of these
three approaches in preventing overfitting by providing the
average convergence rate in the presence of three additional
image variations. The first two variations are image blur with
a Gaussian kernel of standard deviation 2 and additive white
noise with standard deviation of 8 (similarly to [6]); these
variations are applied to the second images of the test pairs
created from the Synthesised dataset. The third variation is
illumination, for which we created NS “ 400 two-frame test
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Fig. 9: Registration performance against the (a) number of
iterations, (b) number of hidden nodes and (c) σnoise of the
training samples. Adding noise to training samples with a σnoise
of approximately 0.6 enables the best generalisation against
image blur, white noise and illumination variations.

sequences from the PIE dataset. Fig. 9a shows that adjusting
the Niter parameter provides no performance improvement
against image variations. The Nhidden parameter can be ad-
justed to improve performance against white noise. However,
only limited improvement can be achieved against blur and
illumination variations. On the other hand, adding noise to
training samples, can improve performance significantly: With
σnoise “ 0.5, σnoise “ 0.6, the performance in the presence of
blur, white noise or illumination variations becomes similar to
the performance without those variations.

D. Methods under comparison

We compare the proposed framework, MUMIE, with a
method from each of the categories listed in Table I. We
selected recently proposed robust methods with available
software. In categories where there are multiple methods,
we select experimentally the best-performing ones for the
comparison: (i) the SURF-based method as the keypoint-based
method, which generally outperformed the MSER method; (ii)
the Robust FFT (R-FFT) method [24] as the transformation-
based method, which, to the best of our knowledge, is the
only method that proved robust against illumination variations
and other outliers; (iii) the GradCorr method [7] as the direct
method, which outperformed a number of Lucas-Kanade (LK)
variants, namely IC-LK [6], ECC-LK [9] and Fourier-LK [25].
We also compare with (iv) SDM [13], a registration based
on landmark localisation. Specifically, we perform registration
by computing an Euclidean transformation based on the eye
corners, which are useful reference points for rigid registration.
However, SDM (and recent landmark localisers [18]) requires
the entire face for localising landmarks and therefore we
perform only whole-face registration.
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Fig. 10: Registration results for R-FFT, GradCorr our method,
MUMIE, on a sequence with a disgust expression followed
by blinking. MUMIE accumulates little drift error and is not
affected by the sudden motions that occur during blinking.

t=1 t=37 t=1 t=37

t=1 t=37

Fig. 11: Illustration that depicts the advantage of part-based
registration for addressing out-of-plane rotations. The subject
displays a small pitch rotation between the neutral phase (t “
1) and the apex phases (t “ 37) of the expression. With whole-
face registration (left), the effect of head-pose rotation is more
evident, as the eye corners move visibly downwards in t “ 37.
The effect is less visible in part-based registration for left and
right eye, as the eye corners are better aligned.

E. Results and discussion

The results produced by MUMIE to register real sequences
from the CK+, MMI and AFEW datasets with various types
of facial activity (e.g., talking and facial expressions other
than those of the six-basic emotions), out-of-plane head pose
variations, occlusions and background motion are provided as
supplementary material.

Fig. 10 shows registered frames from an 80-frame long
MMI sequence that contains a disgust expression. The se-
quence contains also a blinking expression, which is a chal-
lenging quick facial action that may cause other algorithms to
fail. MUMIE achieves accurate registration and a considerably
smaller drift error.

Fig. 11 shows results from an anger sequence that contains
a pitch rotation. Whole-face registration causes a downward
motion around the eyes, which may be detrimental to the
analysis of facial activity. When the eyes are registered
independently, the effect of head rotation is reduced to a
better extent. Sequences with head pose variation highlight the
importance of doing part-based registration instead of whole-
face registration.

We now quantify the benefits of using multiple reference
frames and then compare MUMIE with other methods.

Fig. 12 depicts the overall average error and average drift
error on the Synthesised dataset when varying the number
of reference frames, TR. When TR “ 2 instead of TR “ 1
the error decreases consistently. The average registration error
for the whole-face, left eye, right eye and mouth decrease
respectively to 13%, 55%, 64%, 78% when TR is set to 2
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Fig. 12: Average drift error, edrift, and overall average error,
ē, on the Synthesised dataset for varying numbers of reference
frames, TR.
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Fig. 13: Sequence registration performance in terms of average
registration error over 14 sequences (Synthesised dataset).

instead of 1. When TR is larger than 2 the error decreases
generally at a lower rate and sometimes increases. The fact
that performance saturates with TR “ 2 is desirable from
a computational complexity perspective, as computation time
increases with TR. In the remaining experiments, we therefore
set TR “ 2 while obtaining the multi-frame registration results
for our method. The averaging that takes place when we
integrate information from multiple frames as in (6) may be
responsible in providing little improvement when TR ą 2.
While taking the average has the advantage of keeping the
input representation at a limited length that is independent of
TR, it also reduces the weight of each individual frame as
TR increases, since the average is computed by dividing the
contribution of each frame with TR.

Fig. 13 compares the average registration error of MUMIE
with other methods on the Synthesised dataset. Overall, Fig. 13
suggests that MUMIE outperforms other methods significantly
on sequences with facial expression variations. The error
variation for each sequence over time is plotted in Fig. 15
for landmark-based whole-face registration and in Fig. 14
for other methods. Small landmark localisation errors among
consecutive frames cause jittering when using landmark-based
registration. Fig. 16 shows the difference between a sample
pair of consecutive frames from the neutral sequence of Sub-
ject 1. A similar jittering can also be observed when using the
R-FFT method. On the other hand, registration using SURF,
GradCorr and MUMIE produces only little jittering, also for
non-neutral sequences (registered sequences are provided as
supplementary material). Even though the registration error
may increase with expression variations (see Fig. 14), this
increase happens gradually without a jittering effect and the
registration error at the end of the sequences becomes low,



IEEE TRANSACTIONS ON IMAGE PROCESSING 11

Whole-face Left eye Right eye Mouth

t t t t

t t t t

t t t t

t t t t

t t t t

R
-F

F
T

G
ra

d
C

o
rr

S
U

R
F

M
U

M
IE

 (
s
in

g
le

-f
ra

m
e

)
M

U
M

IE
 (

m
u
lt
i-
fr

a
m

e
)

S
u

b
je

c
t 

1
S
u

b
je

c
t 

2
S
u

b
je

c
t 

1
S
u

b
je

c
t 

2
S
u

b
je

c
t 

1
S
u

b
je

c
t 

2
S
u

b
je

c
t 

1
S
u

b
je

c
t 

2
S
u

b
je

c
t 

1
S
u

b
je

c
t 

2
4

10

1

7

4

10

1

7

4

10

1

7

4

10

1

7

4

10

1

7

4

10

1

7

4

1

7

4

1

7

4

1

7

4

1

7

neu hap ang

sur dis sad

fea

Fig. 14: Whole-face and part-based registration errors of compared methods on the Synthesised dataset. Each line represents
the error over time, es,t, for one sequence (see legend on top right). MUMIE (multi-frame) results are obtained with TR “ 2.
MUMIE outperforms other methods, with a notable difference in part-based registration.

which is indicative of low drift error. The best results are
obtained with MUMIE (multi-frame) and, expectedly, MUMIE
(single-frame) produces higher drift errors compared to its
multi-frame variant.

However, the whole-face registration performance of SURF
and GradCorr do not generalise to part-based registration.
SURF keypoints are extracted from regions with rich tex-
ture. In part-based registration, frames contain less texture
and relatively higher non-rigid motions. Therefore, finding
keypoints for rigid registration becomes more challenging. The
part-based registration error of GradCorr generally increases
gradually over time. However, unlike whole-face registration,
the error is not reversed in the offset of the expression;

therefore, part-based registration with GradCorr yields visible
drift errors. While the failure of a generic rigid registration
method when the input has considerable non-rigid variations
is not surprising, the large error for the neutral sequences is
an unexpected result. This may suggest that GradCorr requires
some texture variation to operate reliably, even for simple
cases without outlier motions.

Part-based registration is problematic also for R-FFT: see
for example the large performance difference between the left
and right eye of Subject 2 in Fig. 14. While investigating this
irregular outcome further, we noticed a difference between the
unregistered versions of the left and the right eye sequences.
The initial registration error in left eye sequences of Subject 2
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Fig. 15: Performance of landmark-based registration on se-
quences of the Synthesised dataset depicted separately for
sequences of Subject 1 and Subject 2. See legend of Fig. 14
for the expression corresponding to each colour.

was causing the facial contour to appear in some frames and
disappear in others. The R-FFT method operates on gradient
images, and the contour of the face produces a high gradient
which may be misleading the FFT-based algorithm.

The part-based registration errors of MUMIE are consider-
ably smaller than those of other methods (Fig. 13 and Fig. 14).
The error for whole-face registration does generalise to part-
based registration; that is, even though the error grows as the
expression evolves to apex, the error decreases during offset.
MUMIE outperforms other methods, even when it is used
with a single reference frame, i.e., TR “ 1. The performance
of MUMIE with TR “ 2 is particularly high, as the final
error is less then 1 pixel for all sequences except the mouth
sequences of Subject 1 and 2 for the surprise expression (see
Fig. 14), which is the expression that involves arguably the
largest non-rigid variation. The left and right eye performance
of each subject is quite similar, which implies that symmetrical
non-rigid motions of the same subject yield consistent results.
The surprise and fear expressions cause higher errors when
registering the eyes of Subject 2; this may be due to the
eyebrows of Subject 2 being raised higher than those of
Subject 1. (For both subjects, we raised eyebrows as much
as possible when synthesising sequences, however, there are
differences between facial rigs of the subjects.) Other inter-
subject performance differences may be due to the skin texture;
while Subject 1 has wrinkles, the skin of Subject 2 is smooth.
Wrinkles are advantageous as additional texture if they are not
moved by the expression, or they may be disadvantageous if
they cause more non-rigid motion.

Non-uniform illumination variations typically cause reg-
istration failures on the PIE dataset, rendering the average
sequence registration error of little use for quantitative evalu-
ation. Therefore, we discuss the compared methods using the
error visualised over time, where the performance of methods
before and after failure is observed directly. Fig. 17 illustrates
the performance of all compared methods for 5 randomly
selected PIE sequences. (The results of all 67 sequences are
shown as videos in the supplementary material.) Landmark-
based registration deteriorates in the presence of illumination
variations due to increased error in landmark localisation.
SURF-based registration does not perform reliably in the PIE
dataset as the number of matched keypoints falls significantly.

R-FFT is only slightly affected by illumination variations
due to the robustness in the design of this method. R-FFT fails
while registering the 17th frame of almost all PIE sequences,
due to the sudden illumination variation in this frame (see

Landmark-based R-FFT GradCorr SURF MUMIE

Fig. 16: Difference images computed from a consecutive
pair of images from the neutral sequences of Subject 1 and
Subject 2 of the Synthesised dataset. Grey levels visualise
the registration errors. GradCorr, SURF and MUMIE produce
little jittering error.

Fig. 7). GradCorr is also designed to be robust, and its perfor-
mance deteriorates only slightly with illumination variations.
Similarly to R-FFT, registration via GradCorr typically fails
in the 17th frames of the sequences. Compared to SURF
or landmark-based registration, both R-FFT and GradCorr
achieve significantly better performance in the presence of
illumination variations. However, both methods accumulate
drift errors over time.

Fig. 17 depicts the performance of MUMIE in after failure
identification and correction. Uncorrected failures occurred
only in two frames of Subject-34’s sequence with MUMIE
(single-frame). Overall, Fig. 17 suggests a considerable differ-
ence between MUMIE and other methods: the error is lower
than that of other methods and, even though error does increase
over time, the increase is lower than R-FFT or GradCorr.
MUMIE (multi-frame) performs particularly well, as the error
in the last frame is smaller than 1 pixel for all sequences.

Finally, Fig. 18 (bottom row) shows the average error,
ēs, for each sequence of MUMIE (multi-frame) with and
without failure identification and correction. The former is
computed by eliminating the frames where correction was
not possible — Fig. 18 (top row) shows the ratio of those
frames. The performance of our method is notably accurate
after failures are automatically corrected, with an average
error smaller than 1 pixel for 65 out of 67 sequences. Our
method has successfully corrected most of failures of the PIE
sequences (see Fig. 18 top). However, correcting a failure
within a sequence may not be possible if a sudden appearance
variation (e.g., out-of-plane head rotation) makes a frame
visually dissimilar from all preceding frames. This may cause
subsequent registration failures, and a reasonable action to take
after a number of failures is to restart the registration process
by changing the reference frame to the one where the sudden
appearance variation caused the registration failure.

F. Computation time and convergence rate

We report the computation time of the proposed framework
and highlight the usefulness of employing the magnitude of the
motion representation as prior information while performing
coarse-to-fine estimation.

Fig. 19 (left) shows the computation time per frame with
respect to the amount of initial registration error. The overall
average computation takes 2.74 seconds when all estimators
are applied in a cascaded manner, and 1.59 seconds when
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TABLE II: Convergence rate against the amount of registration
error. A representation computed from Gabor filters across 5
scales, t2ju4j“0, can tackle larger registration errors than one
computed from filters at 3 scales, t2ju2j“0.

Amount of registration error (pixels, ˘1)
4 6 8 10 12 14 16 18

Conv. rate with 3 scales 100 100 100 66.7 38.9 16.7 16.7 0.0
Conv. rate with 5 scales 100 100 100 100 100 100 100 79.2

estimators are selected at each iteration based on the mag-
nitude of the motion representation (i.e., adaptively). For the
cascaded approach, we allowed 6 iterations for the estimators
except the finest one, as allowing for fewer iterations prevented
convergence for some samples. The adaptive approach is on
average faster, as coarse estimators are employed only when
the initial registration error is large. Also, even when coarse
estimators are used, they are generally used for less iterations,
as we need not define a termination criterion for each estimator
in the cascade.

Fig. 19 (right) highlights the advantage of the adaptive
approach by showing the error against the number of iterations
on two different test sets: one that includes samples with
a registration error up to 4 pixels (i.e., small misalignment)
and one where the registration error of samples reaches up to
15 pixels (i.e., large misalignment). As the registration error
decreases, the magnitude of the representation also decreases,

and therefore the adaptive approach proceeds registration with
finer estimators, which results in a monotonic decrease in
average error, and an earlier convergence compared to the
cascaded approach when misalignment is small. With the
cascaded approach, the error is not always reduced mono-
tonically as in some cases the coarse estimators reach their
granularity limit before they reach their limit of iterations, in
which case they cannot reduce the registration error further.
The cascaded and adaptive approaches reduce the error at a
similar rate on the set with samples of large misalignment.
However, the cascaded approach is still slower on average,
as in some cases the convergence occurs before the last (i.e.,
finest) estimator, yet, the cascaded approach needs to proceed
with the subsequent estimators in the cascade at least for one
iteration.

The maximal amount of registration error that can be tackled
by our method depends on the scale of the Gabor filters that
we use to compute the representation. We used filters at three
scales, t2ju2j“0, which may not converge if the registration
error is 10 pixels or larger (see Table II). However, larger
filters can tackle larger errors, as we report in Table II, where
we trained a model that is based on a representation computed
from filters at five scales, t2ju4j“0.

VII. CONCLUSION

We proposed a novel rigid registration framework based
on optimisation via statistical learning that can cope with
outlier non-rigid facial motions, drift errors and registration
failures. Extensive experiments showed that using multiple
reference frames during registration reduces drift errors and
the proposed framework performs accurate registration in the
presence of facial expressions or non-uniform illumination
variations. Overall, the proposed framework performs reliably
and consistently across various scenarios, both for whole-face
or part-based registration. The code of the proposed method
and the synthesised facial expression sequences are available
as supplementary material.

Future work includes investigating motion representations
that are both robust and computationally efficient, and investi-
gating the benefits of the proposed framework further in visual
speech recognition and micro-expression detection.
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Fig. 19: The efficiency improvement achieved by choosing
the estimators based on the motion representation’s magni-
tude (i.e., adaptively) instead of applying all estimators in
a cascaded manner. (Left): Computation time against initial
registration error, shows that registration takes less time with
the adaptive approach as coarse estimators are used only when
misalignment is large. (Right): Registration error against the
number of iterations, depicted separately for samples of small
misalignment and large misalignment. Note that the error
decreases monotonically with the adaptive approach.
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