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Abstract

In this note we shall consider the upper tail P[Bin(n,p) > k| for the Binomial dis-
tribution Bin(n,p) when np — 0 and k > np. We derive a simple expression for
P[Bin(n,p) > k] which shows that the Chernoff bound for the Binomial is out by a
factor v2mwk aysmtotically .

Let Bin(n,p) denote a binomially distributed random variable with parameters n and p,
that is for k € {0,...,n},

PlBin(n.p) = = ()40

Our main result is the following exact asymptotic expression for the upper tail of Bin(n, p).

Theorem 1. Let k € N, k> 1 and p = p(n) € (0,1) be such that np — 0. Then
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Where in the above the o(1) is respect to n.
Recall the classical Chernoff bound [1, Thm 4.4(1)] for the Binomial distribution
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for any 6 > 0. Thus letting 6 = k/np — 1 for k > np > 0 we have

P[Bin(n, p) > k] < (W)np — e (%)k, (1)

Combining (1) with the result of Theorem 1 shows that the Chernoff bound over estimates
the upper tail by a multiplicative v/27k factor.
Theorem 1 will follow from the expression for the upper tail below.

Lemma 2. The following holds for any 0 < k <n and p = p(n) € (0,1),

eBincrp) > 1= 3 o (1) ()

j=k+1 i=0
_ n E+1 - _1\k+i jl) <”) j
(1)) o (0

*The author is currently supported by Thomas Sauerwald’s ERC Starting Grant 679660 (DYNAMIC
MARCH).



Proof. Recall the identity (}) (";k) = (kij) (kﬂ ) and observe the following

P[Bin(n, p) = k] = (“)pk(1 _ )k

Recall the identity Zfzo(—l)i(k) = 0. Using the above expression for P[Bin(n,p) = k] we
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shall now prove the first equality in the Lemma’s statement by induction on k,
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where the base case holds since P[Bin(n, 0] =(1-p)".
Recall the identity Zfzo(—l)i(i) = (=1)*(?,."), combining this with (2) yields
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which gives the second identity from the statement. O

Proof of Theorem 1. Notice that
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So if np — 0 then we have the following by Lemma 2
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by Stirling’s inequality. O

P[Bin(n,p) > k] = (
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