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State-of-the-art multi-stage languages currently provide no guarantees beyond the well-typedness
of the resulting code. For safety- and security-critical systems, formal proofs of correctness are
necessary to establish confidence in the system. In this work, we embed C [5] within Agda [2] to
enable mechanised proof over the staged C code. We then use this embedding to implement the
Strymonas streams library [7] and prove the correctness of its transformations.

1 Introduction

Staging [9] is a generative metaprogramming technique that allows quoted code to be manipulated as
data. Generative metaprogramming is often essential for performance [10], since it allows programs
to incorporate optimisations based on domain-specific knowledge not available to compilers. State-of-
the-art multi-stage languages (e.g., BER MetaOCaml [6]) are expressive and safe: code generators are
written in a full-scale language, and well-typed generators are guaranteed to generate well-typed code.

However, existing languages have two key limitations. First, although they make guarantees about
static semantics of generated programs, there are no guarantees of the dynamic semantics. Consequently,
it is sometimes necessary to debug generated code; this is a difficult task, since the issue is caused
indirectly by the generating program, which may no longer be running when the error is discovered.
Recent work [1] generates specifications alongside code and then runs solvers to verify the specifications.
However, where a specification is not met, debugging again involves examining the generating program.
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Figure 1: Generative metaprogramming:
homogeneous vs. heterogeneous

Second, most multi-stage languages are homogeneous,
where the generator and generated code use the same lan-
guage. Most languages are not well-suited to both tasks;
high-level languages are useful for code generators, while
low-level languages are better targets for generated code.

We address both of these limitations, decoupling gener-
ating and generated languages in a system of heterogeneous
staging (Figure 1). With our approach, the generating lan-
guage may be arbitrarily expressive, while the low-level ob-
ject language may have desirable performance properties.
Where the host language is dependently-typed, generators
can make arbitrary guarantees about generated code.

To illustrate our design, we first embed of a fragment
of C [5] within the dependently-typed language Agda [2],
then build a certified and heterogeneous reimplementation
of the Strymonas streams library [7].
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2 Certified Optimisation of Stream Operations using Heterogeneous Staging

_;_ : Statement → Statement → Statement
decl : (’a : c_type) →
(Ref ’a → Statement) → Statement

...

 -assignment : E ` e ⇒ v →
S (x := e) k E  S nop k (x 7→ v , E)

...

map : (Expr ’a → Expr ’b) →
Stream ’a → Stream ’b

...

map-map : map f (map g s) ∼= map (f ◦ g) s
...
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Figure 2: High-level architecture; arrows indicate dependencies between components.

2 Status

Figure 2 illustrates our high-level framework. Rows divide language-specific and streams-specific com-
ponents; columns separate executable components from proofs.

2.1 Embedded Language and Semantics

Our fragment of C (Figure 2a) includes pure expressions, potentially side-effectful statements, and ref-
erences. The tagless-final style [3] enables typed embeddings of domain-specific languages, and we
use this to embed our fragment of C in Agda. Dynamic memory allocation, higher-order functions and
recursion are excluded from our fragment, because they would dramatically increase the complexity of
the fragment and the code generated by the Strymonas library does not require these constructs. These
omissions make the embedded language Turing-incomplete and make termination decidable.

The embedding of a language and the encoding of its semantics should be separate, because there
are multiple paradigms for expressing dynamic program behaviour, and proofs over dynamic semantics
are not always required. From an abstract semantic model, properties can be proven across all conform-
ing implementations of the language. We follow this principle and encode the CompCert C small-step
reduction semantics [8] (Figure 2b) separately from our language specification.

We use two notions of semantic equivalence: expression and program. Expressions are equivalent if
they resolve to the same value under all valid environments. Pure programs (statements) are equivalent
if their execution converges or neither program terminates. From a suitable abstract semantic model, β -
and η-equivalences of programs can be concluded.

2.2 Streams Library

The Strymonas library [7] uses staging and stream fusion [4] to implement the generality of stream
processing with full elimination of overheads. The correctness of each transformation is shown with
pen-and-paper proofs and examples. Using our embedding of C, we have reimplemented the Strymonas
in Agda (Figure 2c). We currently support fold, unfold, map, flatmap, filter, and take operators,
but not zip.
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Streams are equivalent if the programs generated by folding over the streams are equivalent. That is,

s∼= t ≡ (∀ f z. fold f z s∼=p fold f z t)

where∼=p is the program equivalence relation. With this definition, we prove natural stream equivalences
(Figure 2d), such as (filter (λx. true) s)∼= s and (map f (map g s))∼= map ( f ◦g) s.

3 Future Work

Our immediate focus for further work is enabling zip functionality using only host language pairs which
are unpacked in the generated code. We will then show correctness by deriving natural properties of zip.

Heterogeneous staging typically uses a pretty-printer to delegate compilation of the generated code
to a dedicated compiler. For complete end-to-end verification, the high-level dynamic semantics of the
pretty-printer must be tied to the semantics of the delegate compiler. We propose that this can be partially
achieved by proving that direct evaluation of the AST conforms to the necessary semantics, and that the
pretty-printer only outputs this AST. A compiler that guarantees the same semantics should then be used,
to ensure that the resulting binary also conforms.

Generative metaprogramming is often used to exploit domain-specific knowledge for performance
gains. In our work, we have used knowledge of streams to enable generation of optimised code. To
validate these optimisations, we will benchmark our streams library against prior work.
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