
Effective Concurrency through Algebraic Effects

Stephen Dolan1, Leo White2, KC Sivaramakrishnan1, Jeremy Yallop1, and Anil Madhavapeddy1

1University of Cambridge
2Jane Street Capital

Algebraic effects and handlers provide a modular ab-
straction for expressing effectful computation, allowing
the programmer to separate the expression of an effectful
computation from its implementation. We present an ex-
tension to OCaml for programming with linear algebraic
effects, and demonstrate its use in expressing concurrency
primitives for multicore OCaml.

1 Motivation
Multicore-capable functional programming language

implementations such as Glasgow Haskell Compiler, F#,
Manticore and MultiMLton expose one or more libraries
for expressing concurrent programs. The concurrent
threads of execution instantiated through the library are
in turn multiplexed over the available cores for speed up.
A common theme among such runtimes is that the prim-
itives for concurrency along with the concurrent thread
scheduler is baked into the runtime system. Over time, the
runtime system itself tends to become a complex, mono-
lithic piece of software, with extensive use of locks, con-
dition variables, timers, thread pools, and other arcana.
As a result, it becomes difficult to maintain existing con-
currency libraries, let alone add new ones. Such lack of
malleability is particularly unfortunate as it prevents de-
velopers from experimenting with custom concurrency li-
braries and scheduling strategies, preventing innovation
in the ecosystem. Our goal with this work is to pro-
vide a minimal set of tools with which programmers can
implement new concurrency primitives and schedulers as
OCaml libraries.

2 A Taste of Effects
Let us illustrate the algebraic effect extension in mul-

ticore OCaml by constructing a concurrent round-robin
scheduler with the following interface:

(* Control operations on threads *)
val fork : (unit -> unit) -> unit
val yield : unit -> unit
(* Runs the scheduler. *)
val run : (unit -> unit) -> unit

The basic tenet of programming with algebraic effects
is that performing an effectful computation is separate
from its interpretation [1, 5]. In particular, the interpreta-
tion is dynamically chosen based on the context in which
an effect is performed. In our example, spawning a new
thread and yielding control to another are effectful ac-
tions, for which we declare the following effects:
type _ eff +=
| Fork : (unit -> unit) -> unit eff
| Yield : unit eff

The type ’a eff is the predefined extensible variant
type for effects, where ’a represents the return type of
performing the effect. For convenience, we introduce new
syntax using which the same declarations are expressed as
follows:
effect Fork : (unit -> unit) -> unit
effect Yield : unit

Effects are performed using the primitive perform of
type ’a eff -> ’a. We define the functions fork and
yield as follows:
let fork f = perform (Fork f)
let yield () = perform Yield

What is left is to provide an interpretation of what it
means to perform fork and yield. This interpretation is
provided with the help of handlers.
1 let run main =
2 let run_q = Queue.create () in
3 let enqueue k = Queue.push k run_q in
4 let rec dequeue () =
5 if Queue.is_empty run_q then ()
6 else continue (Queue.pop run_q) ()
7 in
8 let rec spawn f =
9 match f () with

10 | () -> dequeue ()
11 | exception e ->
12 print_string (to_string e);
13 dequeue ()
14 | effect Yield k ->
15 enqueue k; dequeue ()
16 | effect (Fork f) k ->
17 enqueue k; spawn f
18 in
19 spawn main

1



The function spawn f (line 8) evaluates f in a new
thread of control. f may return normally with value ()

or exceptionally with an exception e or effectfully with
the effect performed along with the delimited continua-
tion [4] k. In the pattern effect e k, if the effect e has
type ’a eff, then the delimited continuation k has type
(’a,’b) continuation, i.e., the return type of the ef-
fect ’a matches the argument type of the continuation,
and the return type of the delimited continuation is ’b.

Observe that we represent the scheduler queue with a
queue of delimited continuations, with functions to ma-
nipulate the queue (lines 2–6). In the case of normal or ex-
ceptional return, we pop the scheduler queue and resume
the resultant continuation using the continue primitive
(line 6). continue k v resumes the continuation k :

(’a,’b) continuation with value v : ’a and re-
turns a value of type ’b. In the case of effectful return with
Fork f effect (lines 16–17), we enqueue the current con-
tinuation to the scheduler queue and spawn a new thread
of control for evaluating f. In the case of Yield effect
(lines 14–15), we enqueue the current continuation, and
resume some other saved continuation from the scheduler
queue.

3 Implementing Algebraic Effects
The main challenge in the implementation of algebraic

effects is the efficient management of delimited continu-
ations. In multicore OCaml [3], the delimited continua-
tions are implemented using fibers, which are small heap-
allocated, dynamically resized stacks. Fibers represent the
unit of concurrency in the runtime system.

Our continuations are linear (one-shot) [2], in that once
captured, they may be resumed at most once. Captur-
ing a one-shot continuation is fast, since it involves only
obtaining a pointer to the underlying fiber, and requires
no allocation. OCaml uses a calling convention without
callee-save registers, so capturing a one-shot continuation
requires saving no more context than that necessary for a
normal function call.

Since OCaml does not have linear types, we enforce the
one-shot property at runtime by raising an exception the
second time a continuation is invoked. For applications
requiring true multi-shot continuations (such as proba-
bilistic programming [6]), we envision providing an ex-
plicit operation to copy a continuation.

While continuation based concurrent functional pro-
gramming runtimes such as Manticore and MultiMLton
use undelimited continuations, our continuations are de-
limited. We believe delimited continuations enable com-
plex nested and hierarchical schedulers to be expressed
more naturally due to the fact that they introduce parent-

child relationship between fibers similar to a function in-
vocation.

4 Running on Multiple Cores
Multicore OCaml provides support for shared-memory

parallel execution. The unit of parallelism is a do-
main, each running a separate system thread, with a rela-
tively small local heap and a single shared heap shared
among all of the domains. In order to distributed the
fibers amongst the available domains, work sharing/steal-
ing schedulers are initiated on each of the domains. The
multicore runtime exposes to the programmer a small set
of locking and signalling primitives for achieving mutual
exclusion and inter-domain communication.

The multicore runtime has the invariant that there are
no pointers between the domain local heaps. However, the
programmer utilising the effect library to write schedulers
need not be aware of this restriction as fibers are transpar-
ently promoted from local to shared heap on demand.

References
[1] A. Bauer and M. Pretnar. Programming with Algebraic Ef-

fects and Handlers. CoRR, abs/1203.1539, 2012.

[2] C. Bruggeman, O. Waddell, and R. K. Dybvig. Represent-
ing Control in the Presence of One-shot Continuations. In
PLDI, 1996.

[3] S. Dolan, L. White, and A. Madhavapeddy. Multicore
OCaml. In OCaml Users and Developers Workshop, 2014.

[4] A. Filinski. Representing Monads. In POPL, 1994.

[5] O. Kammar, S. Lindley, and N. Oury. Handlers in Action.
In ICFP, 2013.

[6] O. Kiselyov and C.-C. Shan. Embedded probabilistic pro-
gramming. In Domain-Specific Languages, 2009.

2


