
Submitted to:
ML 2017

c© J. Yallop & S. Dolan
This work is licensed under the
Creative Commons Attribution License.

First-Class Subtypes

Jeremy Yallop
University of Cambridge

jeremy.yallop@cl.cam.ac.uk

Stephen Dolan
University of Cambridge

stephen.dolan@cl.cam.ac.uk

First class type equalities, in the form of generalized algebraic data types (GADTs), are commonly
found in functional programs. However, first-class representations of other relations between types,
such as subtyping, are not yet directly supported in most functional programming languages.

We present several encodings of first-class subtypes using existing features of the OCaml lan-
guage (made more convenient by the proposed modular implicits extension), show that any such
encodings are interconvertible, and illustrate the utility of the encodings with several examples.

1 Introduction

One appealing feature of ML-family languages is the ability to define fundamental data structures —
pairs, lists, streams, and so on — in user code. For example, although lazy computations are supported
as a built-in construct in OCaml, it is also possible to implement them as a library.

Laziness in variants The following data type can serve as a basis for lazy computations1:

type ’a lazy_cell = | Thunk of (unit → ’a)

| Value of ’a

| Exn of exn

The constructors of a lazy_cell value represent the three possible states of a lazy computation: it may
be an unevaluated thunk, a fully-evaluated value, or a computation whose evaluation terminated with an
exception. Since the state of a lazy computation may change over time, lazy values are represented as
mutable references that hold lazy_cell values:

type ’a lzy = ’a lazy_cell ref

Finally, there are two operations: delay creates a thunk from a function, while force either forces a
thunk and caches the result, or returns the value or exception cached by a previous call.

let delay f = ref (Thunk f) let force r = match !r with

| Thunk f →
(match f () with

| v → r := Value v; v

| exception e → r := Exn e; raise e)

| Value v → v

| Exn e → raise e

1The code in this paper uses the proposed modular implicits extension to OCaml [20]. The modular implicits compiler can
be installed as the OPAM switch 4.02.0+modular-implicits.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 First-Class Subtypes

Laziness invariants The characterising feature of lazy computations is that each computation is run
only once, although the result may be read many times. The delay and force functions enforce this
property. For simplicity, we assume that lazy computations do not invoke themselves recursively. (More
sophisticated implementations of laziness generally include a fourth state In_progress to guard against
this occurrence).

Concealing the representation type of lzy behind a module interface ensures that other parts of the
program cannot violate this invariant:

module Lzy :

sig

type ’a t

val delay : (unit → ’a) → ’a t

val force : ’a t → ’a

end

module Lzy =

struct

type ’a t = ’a lzy

let delay = . . . (* as above *)

let force = . . . (* as above *)

end

Laziness invariance This simple implementation has the same behaviour as the built-in lazy type.
However, there is one notable difference: unlike the built-in type, our Lzy.t is not covariant.

Covariant types are parameterised types that preserve the subtyping relationships between parame-
ters. For example, if u is a subtype of v then, because option is covariant, u option is a subtype of
v option. In OCaml, types may be marked as covariant by adding a + before a type parameter. For
example, here is a definition of the covariant type option:

type +’a option = None | Some of ’a

Not every type can be marked as covariant in this way. For example, it would not be safe to allow
ref, the type of mutable cells, to behave covariantly. If ref were covariant then a program could coerce
a value of type u ref to v ref, and then store a value of another subtype of v, unrelated to u, in the cell.
OCaml therefore prohibits covariance for type parameters that appear under ref, as in the definition of
lzy.

The lack of covariance in our Lzy.t has two significant consequences for programmers. First, com-
putations constructed using the built-in type can be coerced, while computations constructed using our
Lzy.t cannot. Here is a coercion that eliminates a method m from the type of a built-in lazy computation:

let o = object method m = () end;;

val o : < m : unit > = <obj>

(lazy o :> < > Lazy.t);;

- : < > Lazy.t = <lazy>

An attempt to similarly coerce our Lzy.t fails:

(Lzy.delay (fun () → o) :> < > Lzy.t);;

Characters 0-40:

(Lzy.delay (fun () → o) :> < > Lzy.t);;

^^

Error: Type < m : unit > Lzy.t is not a subtype of < > Lzy.t

The second object type has no method m

Second, let-bound computations constructed using the built-in lazy receive polymorphic types,
following the relaxed value restriction, which generalizes type variables that appear only in covariant
positions [12]:

J. Yallop & S. Dolan 3

let f = Lazy.from_fun (fun () → []);;

val f : ’a list Lazy.t = <lazy>

In contrast, types built using our Lzy.t are ungeneralized, as the leading underscore on the type variable
’_a indicates:2

Lzy.delay (fun () → []);;

- : ’_a list Lzy.t = <abstr>

The interface to Lzy.t only exposes read operations, and so it would be safe for the type to be treated
as covariant in its parameter. However, the assignment of variance considers only the use of the parameter
in the definition of Lzy.t, not the broader module interface. Since the type parameter is passed to the the
invariant type ref of mutable cells, the type Lzy.t is also considered invariant.

These shortcomings in the Lzy interface can be overcome with more flexible treatment of subtyping
and variance3. In particular, making subtypes first-class makes it possible to tie together the type defini-
tion and the functions exposed in the interface in the consideration of variance assignment, and so make
Lzy.t covariant.

Variants of first-class subtypes may be found in advanced type systems in the research literature, such
as Cretin and Rémy’s Fι [9]. Our contribution here is to show that first-class subtypes can be encoded
using the features of an existing real-world functional programming language.

First-class subtypes can be defined using a binary type constructor:

type (-’a, +’b) sub

that has a single constructor:

val refl : (’a, ’a) sub

and an operation that turns a sub value into a function:

val (>:) : ’a → (’a, ’b) sub → ’b

These three elements, considered in more detail in Section 2 are sufficient to define a covariant variant
of Lzy. Section 2 adds an additional constuctor, lift that, together with the three elements above, suffices
as a basis to define a range of useful subtyping operations.

Here is a second, covariant interface to lazy computations:

2See https://caml.inria.fr/pub/docs/manual-ocaml/polymorphism.html
3An alternative solution is to switch to a higher-order representation of lazy computations:

type ’a t = unit → ’a

let delay f =

let r = ref (Thunk f) in

fun () → match !r with

| Thunk f →
(match f () with

| v → r := Value v; v

| exception e → r := Exn e; raise e)

| Value v → v

| Exn e → raise e

let force f = f ()

With this representation the type t is covariant in its parameter, which occurs only in a positive position. However, the higher-
order representation makes lazy values more difficult to inspect.

https://caml.inria.fr/pub/docs/manual-ocaml/polymorphism.html

4 First-Class Subtypes

module CovLzy :

sig

type +’a t

val delay : (unit → ’a) → ’a t

val force : ’a t → ’a

end

The implementation of CovLzy can be constructed from the combination of Lzy and first-class sub-
types. Here is the definition of CovLzy.t

type +’b t = L : ’a Lzy.t * (’a, ’b) sub → ’b t

That is, a value of type ’a CovLzy.t is a pair of a lazy computation of type ’a Lzy.t and a value of type
(’a, ’b) sub that supports coercions from ’a to ’b.

Now CovLzy.delay builds on Lzy.delay, pairing a lazy computation with a sub value4:

let delay f = L (Lzy.delay f, refl)

Finally, the definition of CovLzy.force calls Lzy.force and applies a coercion to the value returned:

let force (L (sub, l)) =

match Lzy.force l with

| v → (v >: sub)

| exception e → raise e

These additions to make CovLzy covariant bring its behaviour closer to the behaviour of the built-in
lazy. For example, let-bound values built by CovLzy.delay receive polymorphic types:

CovLzy.delay (fun () → []);;

- : ’a list CovLzy.t = <abstr>

2 First-class subtypes defined

2.1 Subtypes à la Liskov & Wing

The first ingredient in a representation of subtyping proofs is a definition of subtyping. Here is Liskov
and Wing’s characterisation [15]:

Let φ(x) be a property provable about objects x of type T . Then φ(y) should be true for
objects y of type S where S is a subtype of T .

For instance, properties of a record type r should also hold for a widening of r, since the extra fields can
be ignored. And dually, properties of a variant type v should also hold for a narrowing of v: any property
that holds for all constructors also holds for a subset of constructors.

4A reviewer observes that the permission-oriented language Mezzo [4] uses a related approach. In Mezzo, a witness that s
is a subtype of t can be encoded as a permission of the form id @ a → b, which can be read as “the identity function has
type a → b”, and these witnesses are also used in Mezzo to make the lazy type covariant: http://protz.github.io/
mezzo/code_samples/lazy.mz.html.

http://protz.github.io/mezzo/code_samples/lazy.mz.html
http://protz.github.io/mezzo/code_samples/lazy.mz.html

J. Yallop & S. Dolan 5

2.2 Subtypes à la Curry & Howard

The Curry-Howard correspondence turns Liskov and Wing’s characterisation of subtyping into an exe-
cutable program.

With a propositions-as-types perspective [18], a property provable about objects of type T is rep-
resented as a type φ(T) involving T , and a proof of that property is a term of that type 5. Liskov and
Wing’s proposition that S is a subtype of T corresponds to the following (poly)type:

∀φ .φ(T)→ φ(S)

Two points deserve note.
First, although Liskov and Wing’s characterisation is couched in terms of objects x and y, it is really

about their types T and S. To see this, consider that, in the characterisation, it is sufficient to know y’s
type to know that Φ(y) holds. Since the characterisation only involves properties about all the objects of
a type, not properties of individual objects, there is no need for dependent types in the type corresponding
to the subtyping proposition.

Second, a “property about objects” is a context that consumes an object. For example, consider the
property “for every object of type T there is an object of type R”, which can reasonably be described as a
property about objects of type T , but not as a property about objects of type R. In a propositions-as-types
setting, a proof of this property is a context that consumes an object of type T and produces an object of
type R. Since the properties of interest are consumers of objects, φ ranges over negative contexts.

2.3 Contexts and variance

module type POS = sig type +’a t end

module type NEG = sig type -’a t end

module Id = struct type ’a t = ’a end

module ComposePN(F:NEG)(G:POS) = struct type ’a t = ’a F.t G.t end

module ComposePP(F:POS)(G:POS) = struct type ’a t = ’a F.t G.t end

Figure 1: Positive and negative contexts

Figure 1 defines OCaml signatures, POS and NEG, of positive and negative type contexts. The -

preceding the type parameter ’a indicates that ’a can only appear in negative (contravariant) positions
in instantiations of the signature. The Id module and Compose functors represent the identity context
and the composition of two contexts. Each composition of variance in the argument contexts requires a
separate Compose (but see §4 for a generalization).

2.4 Encoding subtypes

Figure 2 defines an interface to subtype witnesses. A value of type (s, t) sub serves as evidence that
s is a subtype of t. There are two ways to construct such evidence. First, refl represents the fact that
every type is a subtype of itself. Second, lift represents the fact that subtyping lifts through covariant

5At least, in total languages. In OCaml the waters are muddied by side-effects and nontermination.

6 First-Class Subtypes

type (-’a, +’b) sub

val refl : (’a, ’a) sub

val lift: {P:POS} → (’a,’b) sub → (’a P.t,’b P.t) sub

val (>:) : ’a → (’a, ’b) sub → ’b

Figure 2: First-class subtypes: minimal interface

contexts, which are passed as implicit arguments [20]. (Lifts through contravariant contexts are defined
below in terms of the minimal interface.) The single destructor, >:, which mimics OCaml’s built-in
coercion operator :>, supports converting a value of type s to a supertype t.

This small interface suffices as a basis for many useful subtyping-related functions. For example, the
transitivity of subtyping is represented by a function of the following type:

val trans : (’a,’b) sub → (’b,’c) sub → (’a,’c) sub

and may be defined as follows:

let trans (type a b c) (x : (a,b) sub) (y : (b,c) sub) =

let module M = struct type +’d t = (a,’d) sub end

in x >: lift {M} y

Here the application lift M y builds a value of type (b M.t, c M.t) sub — that is to say, a value
of type ((a, b) sub, (a, c) sub) sub — which is used to coerce x from type (a, b) sub to type
(a, c) sub.

Similarly, a function that lifts subtyping witnesses through negative contexts

val lift− : {N:NEG} →(’a, ’b) sub → (’b N.t, ’a N.t) sub

may also be defined by supplying a suitable implementation of POS to lift:

let lift− (type a b) {N:NEG} (x: (a,b) sub) : (b N.t,a N.t) sub =

let module M = struct type +’b t = (’b N.t, a N.t) sub end in

refl >: lift {M} x

Using the variance of sub, refl can be used to define a witness for any subtyping fact that holds
in the typing environment. For example, in OCaml the object type < m:int >, with one method m, is a
subtype of the type < > of objects with no methods. This fact can be turned into a sub value by coercing
refl, either by lowering the contravariant parameter:

(refl : (< >, < >) sub :> (<m:int>, < >) sub)

or by raising the covariant parameter:

(refl : (<m:int>, <m:int>) sub :> (<m:int>, < >) sub)

The resulting value can be passed freely through abstraction boundaries that conceal the types involved,
eventually being used to coerce a value of type <m:int> to its supertype < >.

The generality of the interface in Figure 2 places constraints on the implementation. Most notably,
since lift can transport subtyping evidence through any positive context, coercion must pass values
through unexamined. For example, lift might be used to build a value of type (s list, t list) sub

from a value of type (s, t) sub:

let l : (s list, t list) sub = lift {List} s_sub_t

but applying l cannot involve list traversal, since the subtyping interface says nothing about list structure.
A polymorphic interface thus ensures an efficient implementation.

J. Yallop & S. Dolan 7

3 Implementations of subtyping

3.1 First-class subtypes via contexts

type (-’a, +’b) sub = {N:NEG} → (’b N.t → ’a N.t)

let refl {N:NEG} x = x

let lift {P:POS} s {Q:NEG} x = s {ComposePN(Q)(P)} x

let (>:) (type b) x f =

let module M = struct type -’a t = ’a → b end in

f {M} id x

Figure 3: First-class subtypes via negative contexts

type (-’a, +’b) sub = {P:POS} → (’a P.t → ’b P.t)

let refl {P:POS} x = x

let lift {P:POS} s {Q:POS} x = s {ComposePP(P)(Q)} x

let (>:) x f = f {Id} x

Figure 4: First-class subtypes via positive contexts

Figure 3 gives an implementation of Figure 2 based on negative contexts that directly follows Liskov
& Wing’s definition6. A value of type (s, t) sub is a proof that t can be replaced with s in any negative
context; operationally it must be the identity, as discussed above, and so the two constructors lift and
refl both correspond to the identity function. Figure 4 gives a similar but simpler implementation, based
on positive contexts. Apart from the variance annotations, these definitions mirror the standard Leibniz
encoding of type equality [21].

3.2 First-class subtypes as an inductive type

Consider an ordinary inductive type, say the Peano natural numbers:

type nat = Zero | Suc nat

We can write its constructors in the form of a module signature as follows:

module type NAT = sig

type t

val zero : t

val suc : t → t

end

What it means for the type nat to be inductive is that it is an initial algebra for this signature: first, it
implements the signature by providing Zero and Suc, and secondly, for any other implementation M, we
have a function mapping nat to M.t that maps Zero to M.zero and Suc to M.suc:

let rec primrec = function

| Zero → M.zero

| Suc n → M.suc (primrec n)

6Edward Kmett has used this approach in the magpie library [14], as we discovered after writing this note.

8 First-Class Subtypes

In defining the type nat, we made use of OCaml’s built-in support for inductive types. Lacking this,
we could have used the initial algebra definition directly, and defined the type nat as follows:

type nat = {M : NAT} → M.t

This corresponds to the Church encoding of the natural numbers [8], in which a natural number is
anything that can produce a M.t from M.zero : M.t and M.suc : M.t → M.t. Here and elsewhere
we’re using the modular implicits extension to OCaml [20] — not for implicit instantiation of argu-
ments, but because modular implicits support higher-kinded quantification with propagation of variance
information. Other approaches to higher-kinded polymorphism could perhaps be used instead [22].

This approach to inductive types also makes sense for GADTs, such as the equality GADT defined
below [3, 7, 19]:

type (’a, ’b) eq = Refl : (’a, ’a) eq

This uses OCaml’s GADT syntax, but we can do without it by building a Church encoding of equal-
ity [2], using the same technique as before:

module type EQ = sig

type (’a, ’b) t

val refl : (’a, ’a) t

end

type (’a, ’b) eq = {E : EQ} → (’a, ’b) E.t

We can use this encoding to implement the standard operations on the equality GADT by providing
a suitable implementation of the EQ interface. For instance, we can implement the coercion function

val cast : (’a, ’b) eq → ’a → ’b

by supplying an implementation of EQ using function types:

let cast (f : (’a, ’b) eq) x =

let module L = struct

type (’a, ’b) t = ’a → ’b

let refl = fun x → x

end in

f {L} x

If we modify the signature EQ by adding co- and contra-variance markers to the parameters of the
type t, then we get the Church encoding of first-class subtypes, as shown in Figure 5, from which we
can implement the refl, lift and (:>) functions.

3.3 Converting between encodings

Despite the different starting points, the three implementations are interdefinable. In fact, given any two
implementations A and B of the subtyping interface, a subtyping witness of type (’a,’b) A.t can be
converted to a witness of type (’a,’b) B.t.
The SUB module type contains the four elements of Figure 2 (t, refl, lift, >:):

module type SUB =

sig

type (’a, ’b) t

val refl : (’a, ’a) t

val lift : {P:POS} → (’a, ’b) t → (’a P.t, ’b P.t) t

val (>:) : ’a → (’a, ’b) sub → ’b

end

J. Yallop & S. Dolan 9

module type SUB =

sig

type (-’a, +’b) t

val refl : (’a, ’a) t

end

type (-’a, +’b) sub = {S:SUB} → (’a,’b) S.t

let refl {S:SUB} = S.refl

let lift {P:POS} (f : (’a, ’b) sub) =

let module L = struct

type (’a,’b) t = (’a P.t,’b P.t) sub

let refl = refl

end in f {L}

let (>:) x (f : (’a, ’b) sub) =

let module L = struct

type (’a, ’b) t = ’a → ’b

let refl = fun x → x

end in f {L} x

Figure 5: First-class subtypes as an initial algebra

The function conv takes two implementations of SUB, A and B, and converts a value in A.t to a value of
B.t:

val conv : {A:SUB} → {B: SUB} → (’a, ’b) A.t → (’a, ’b) B.t

As often, implementing conv is a matter of finding a suitable implementation of POS to pass to lift:

let conv (type a b) {A:SUB} {B:SUB} (x : (a,b) A.t) =

let module M = struct type ’a t = (a, ’a) B.t end in

A.(>:) B.refl (A.lift {M} x)

The function conv works as follows. The value x is a proof that a ≤A b — that is, that a is an A-
subtype of b. The type M.t represents the positive context a ≤B -. The call to lift then lifts the proof
a ≤A b through the context M.t to produce a proof (a ≤B a) ≤A (a ≤B b). Finally, this proof can be
used to coerce a proof of the reflexivity of B-subtyping (at type a) a ≤B a to a proof that a ≤B b. That
is, from a proof a ≤A b, the operations of A.sub and B.sub produce a proof a ≤B b.

4 First-class subtypes: further examples

4.1 Arrays and rows

Here is a function that prints arrays by calling the name method of each element:

let print_array = Array.iter (fun o → print o#name)

To call name, print_array does not need to know the full element type: it needs only to know that there
is a method name returning string. OCaml gives print_array a row type, indicating that the element
type may have other methods:

10 First-Class Subtypes

val print_array : <name: string; ..> array → unit

But rows are sometimes too inflexible. Given two arrays a, b, of different element types

val a : < m : int; name : string > array

val b : < n : bool; name : string > array

unification will fail:

List.iter print_array [a; b];;

^

Error: This expression has type < n : bool; name : string > array

but an expression was expected of type

< m : int; name : string > array

The second object type has no method n

Using first-class subtypes it is possible to combine iterations over arrays whose element types belong to
the same subtyping hierarchy.

type +’a arr = Arr : ’x array * (’x, ’a) sub → ’a arr

let aiter f (Arr (a,sub)) = Array.iter (fun s → f (s >: sub)) a

List.iter

(aiter (fun o → print o#name)) [Arr (a,refl); Arr (b,refl)]

4.2 Selective abstraction

A third class of examples arises from selective abstraction, where an abstract type comes with a proof of
a property about that type. For example, here is a module that exports a type t along with a proof that t
is a subtype of int:

module M:

sig type t

val t_sub_int : (t,int) sub

(* . . . *)
end

Outside the module, values of type t can be coerced to int, but not vice versa. This approach supports a
style similar to refinement types, in which abstraction boundaries distinguish values of a type for which
some additional predicate has been shown to hold.

These are known as partially abstract types [6], and are available as a language feature in OCaml [13]
and Moby [11]. However, implementing these via first-class subtypes allows more flexibility: for exam-
ple, they allow some of the methods of an object type to be hidden from the exposed interface, and
also support the dual of private types (called invisible types [16]), and zero cost-coercions [5], where
coercions in both directions are available, but actual type equality is not exposed.

4.3 Bounded quantification

Dual to abstraction, combining first-class subtypes with OCaml’s first-class polymorphism encodes
bounded quantification. For example, the type ∀α ≤ t. α → t might be written as follows:

type s = { f: ’a. (’a, t) sub → ’a → t }

J. Yallop & S. Dolan 11

4.4 Proofs of variance

Finally, first-class subtypes can express proofs of variance. For example, the covariance of list can be
represented by a value of the following type:

(’a,’b) sub → (’a list, ’b list) sub

4.5 Unsoundness in Java

Amin and Tate [1] present an encoding of first-class subtypes in Java, which they use to demonstrate a
soundness bug. They use Java’s bounded quantification to define a type Constrain<A, B> which is well-
formed only when A ≤ B. Then, the type ∃X ≥ T. Constrain<U,X> corresponds to a subtyping witness
(U,T) sub: if this type is inhabited, then some X ≥ T exists making Constrain<U, X> well-formed,
giving U ≤ X ≤ T. Unfortunately, in Java (unlike OCaml), the value null inhabits every reference type,
giving an invalid subtyping witness that allows any type to be coerced to any other.

5 Discussion

The encodings given here are useful for exploratory work, for demonstrating soundness, and for show-
casing OCaml’s expressivity. However, direct language support would make first-class subtypes more
usable. Scherer and Rémy [16] discuss design issues and related work (e.g. [10, 17]).

The encodings suffer from some awkwardness, since contexts must be applied explicitly, unlike the
equalities revealed by pattern matching with GADTs, which the type checker applies implicitly.

Our encodings share another issue with similar encodings of GADTs [21]: they lack inversion princi-
ples. Given (’a, ’b) sub, our encodings can be used to derive (’a list, ’b list) sub, from the co-
variance of the list type constructor. However, going the other direction, from (’a list, ’b list) sub

to (’a, ’b) sub, is equally valid but not expressible with our encodings.
With language support for subtype witnesses, coercions would still be explicit, but constraints in

scope could be implicitly lifted through contexts, and inversion principles could be applied.

Acknowledgements We thank François Pottier, Leo White, the ML 2017 reviewers, and the ML &
OCaml 2017 post-proceedings reviewers for helpful comments.

References

[1] Nada Amin & Ross Tate (2016): Java and Scala’s type systems are unsound: the existential crisis of null
pointers. In: Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The
Netherlands, October 30 - November 4, 2016, pp. 838–848, doi:10.1145/2983990.2984004.

[2] Robert Atkey (2012): Relational Parametricity for Higher Kinds. In Patrick Cégielski & Arnaud Durand,
editors: Computer Science Logic (CSL’12), LIPIcs 16, doi:10.4230/LIPIcs.CSL.2012.46.

[3] Arthur I. Baars & S. Doaitse Swierstra (2002): Typing Dynamic Typing. In: Proceedings of the 7th ACM SIG-
PLAN International Conference on Functional Programming, ICFP ’02, ACM, doi:10.1145/581478.581494.

[4] Thibaut Balabonski, François Pottier & Jonathan Protzenko (2016): The Design and Formalization of Mezzo,
a Permission-Based Programming Language. ACM Trans. Program. Lang. Syst. 38(4), pp. 14:1–14:94,
doi:10.1145/2837022.

http://dx.doi.org/10.1145/2983990.2984004
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.46
http://dx.doi.org/10.1145/581478.581494
http://dx.doi.org/10.1145/2837022

12 First-Class Subtypes

[5] Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones & Stephanie Weirich (2014): Safe Zero-cost
Coercions for Haskell. In: Proceedings of the 19th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’14, ACM, doi:10.1145/2628136.2628141.

[6] Luca Cardelli & Peter Wegner (1985): On Understanding Types, Data Abstraction, and Polymorphism. ACM
Comput. Surv. 17(4), pp. 471–523, doi:10.1145/6041.6042.

[7] James Cheney & Ralf Hinze (2003): First-Class Phantom Types. Technical Report, Cornell University.
[8] Alonzo Church (1940): A Formulation of the Simple Theory of Types. The Journal of Symbolic Logic 5(2),

doi:10.2307/2266170. Available at http://www.jstor.org/stable/2266170.
[9] Julien Cretin & Didier Rémy (2012): On the Power of Coercion Abstraction. In: POPL 2012: 39th ACM

SIGPLAN-SIGACT Symposium on Principle Of Programming Languages, Proceedings of the 39th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, ACM, ACM, Philadelphia,
United States, doi:10.1145/2103656.2103699.

[10] Burak Emir, Andrew Kennedy, Claudio Russo & Dachuan Yu (2006): Variance and Generalized Constraints
for C# Generics. In: Proceedings of the 20th European Conference on Object-Oriented Programming,
ECOOP’06, Springer-Verlag, doi:10.1007/11785477 18.

[11] Kathleen Fisher & John Reppy (2000): Extending Moby with Inheritance-Based Subtyping. In Elisa Bertino,
editor: ECOOP 2000 — Object-Oriented Programming, Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
83–107, doi:10.1007/3-540-45102-1 5.

[12] Jacques Garrigue (2004): Functional and Logic Programming: 7th International Symposium, FLOPS 2004,
Nara, Japan, April 7-9, 2004. Proceedings, chapter Relaxing the Value Restriction. Springer Berlin Heidel-
berg.

[13] Jacques Garrigue (2006): Private Row Types: Abstracting the Unnamed. In Naoki Kobayashi, editor:
Programming Languages and Systems: 4th Asian Symposium, APLAS 2006, Springer Berlin Heidelberg,
doi:10.1007/11924661 3.

[14] Edward Kmett (2010): Magpie. https://github.com/ekmett/magpie/. See also https://issues.

scala-lang.org/browse/SI-4040.
[15] Barbara H. Liskov & Jeannette M. Wing (1994): A Behavioral Notion of Subtyping. ACM Trans. Program.

Lang. Syst. 16(6), doi:10.1145/197320.197383.
[16] Gabriel Scherer & Didier Rémy (2013): GADTs Meet Subtyping. In Matthias Felleisen & Philippa Gardner,

editors: 22nd European Symposium on Programming, ESOP 2013, Lecture Notes in Computer Science 7792,
Springer, doi:10.1007/978-3-642-37036-6 30.

[17] Benoit Vaugon (2016): Subtyping by Constraint Saturation, Theory and Implementation. Theses, Université
Paris-Saclay. Available at https://pastel.archives-ouvertes.fr/tel-01356695.

[18] Philip Wadler (2015): Propositions As Types. Commun. ACM 58(12), doi:10.1145/2699407.
[19] Stephanie Weirich (2004): Functional Pearl: type-safe cast. Journal of Functional Programming 14,

doi:10.1017/S0956796804005179.
[20] Leo White, Frédéric Bour & Jeremy Yallop (2015): Modular Implicits. ACM Workshop on ML 2014 post-

proceedings, doi:10.4204/EPTCS.198.2.
[21] Jeremy Yallop & Oleg Kiselyov (2010): First-class modules: hidden power and tantalizing promises. ACM

SIGPLAN Workshop on ML. Baltimore, Maryland, United States.
[22] Jeremy Yallop & Leo White (2014): Lightweight Higher-Kinded Polymorphism. In Michael Codish &

Eijiro Sumii, editors: Functional and Logic Programming - 12th International Symposium, FLOPS 2014,
Kanazawa, Japan. Proceedings, doi:10.1007/978-3-319-07151-0 8.

http://dx.doi.org/10.1145/2628136.2628141
http://dx.doi.org/10.1145/6041.6042
http://dx.doi.org/10.2307/2266170
http://www.jstor.org/stable/2266170
http://dx.doi.org/10.1145/2103656.2103699
http://dx.doi.org/10.1007/11785477_18
http://dx.doi.org/10.1007/3-540-45102-1_5
http://dx.doi.org/10.1007/11924661_3
https://github.com/ekmett/magpie/
https://issues.scala-lang.org/browse/SI-4040
https://issues.scala-lang.org/browse/SI-4040
http://dx.doi.org/10.1145/197320.197383
http://dx.doi.org/10.1007/978-3-642-37036-6_30
https://pastel.archives-ouvertes.fr/tel-01356695
http://dx.doi.org/10.1145/2699407
http://dx.doi.org/10.1017/S0956796804005179
http://dx.doi.org/10.4204/EPTCS.198.2
http://dx.doi.org/10.1007/978-3-319-07151-0_8

	Introduction
	First-class subtypes defined
	Subtypes à la Liskov & Wing
	Subtypes à la Curry & Howard
	Contexts and variance
	Encoding subtypes

	Implementations of subtyping
	First-class subtypes via contexts
	First-class subtypes as an inductive type
	Converting between encodings

	First-class subtypes: further examples
	Arrays and rows
	Selective abstraction
	Bounded quantification
	Proofs of variance
	Unsoundness in Java

	Discussion

