
Frex: dependently typed algebraic simplification

GUILLAUME ALLAIS, University of Strathclyde, UK

EDWIN BRADY, University of St. Andrews, UK

NATHAN CORBYN, University of Oxford, UK

OHAD KAMMAR, University of Edinburgh, UK

JEREMY YALLOP, University of Cambridge, UK

We present a new design for an algebraic simplification library structured around concepts from universal

algebra: theories, models, homomorphisms, and universal properties of free algebras and free extensions of

algebras. The library’s dependently typed interface guarantees that both built-in and user-defined simplification

modules are terminating, sound, and complete with respect to a well-specified class of equations. We have

implemented the design in the Idris 2 and Agda dependently typed programming languages and shown that it

supports modular extension to new theories, proof extraction and certification, goal extraction via reflection,

and interactive development.

CCS Concepts: • Theory of computation → Type theory; Constructive mathematics; Equational
logic and rewriting; Automated reasoning; Categorical semantics; Algebraic semantics; • Software and
its engineering→ Formal software verification; Functional languages; •Mathematics of computing→
Solvers; • Computing methodologies→ Representation of polynomials.

Additional Key Words and Phrases: dependent types, frex, free extension, mathematically structured program-

ming, universal algebra, algebraic simplification, homomorphism, universal property

1 Introduction

Algebraic simplification involves using algebraic laws to normalise expressions with unknowns.

For example, the commutative monoid axioms—associativity, neutrality, and commutativity—over

integers with addition serve to simplify the left hand expression to the right hand expression below:

−6 + (𝑥 + 3) + (𝑦 + 𝑥)
simplify

↦−−−−−−→ − 3 + 2𝑥 + 𝑦
Many application domains make use of this kind of simplification. For example, algebraic simplifi-

cation is often a useful first step in a program optimiser, to avoid the need to analyse and transform

distinct but equivalent programs. The present work focuses on another application domain: in-

teractive theorem provers and programming languages based on dependent type theory. In these

systems, users often need to prove to a type checker that terms are equivalent, but constructing

the proofs often involves rote algebraic simplification steps that users resent having to produce

manually.

To free users from the need to construct rote algebraic proofs, dependently typed languages

and their ecosystems often include simplifiers for common algebraic structures such as monoids,

semi-rings, and rings. With these simplifiers, users need only establish the structures’ axioms, such

as neutrality, associativity and commutativity, and can then call the simplifiers to discharge rote

simplification steps. Implementation strategies for simplifiers vary: some, such as the Coq ring

solver [Barras et al. 2021], use tactics to simplify algebraic terms in typing goals, while others,

Authors’ Contact Information: GuillaumeAllais, guillaume.allais@ens-lyon.org, University of Strathclyde, Glasgow, Scotland,

UK; Edwin Brady, ecb10@st-andrews.ac.uk, University of St. Andrews, St. Andrews, Fife, Scotland, UK; Nathan Corbyn,

nathan.corbyn@cs.ox.ac.uk, University of Oxford, Oxford, England, UK; Ohad Kammar, ohad.kammar@ed.ac.uk, University

of Edinburgh, Edinburgh, Scotland, UK; Jeremy Yallop, jeremy.yallop@cl.cam.ac.uk, University of Cambridge, Cambridge,

England, UK.

2025. ACM 2475-1421/2025/10-ART

https://doi.org/

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

HTTPS://ORCID.ORG/0000-0002-2071-0929
https://orcid.org/0000-0002-2071-0929
https://doi.org/

2 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

such as the Agda ring solver [Kidney 2019], use proof-by-reflection to construct propositions to

discharge equations. Some simplifiers, such as the Coq ring solver, group together several algebraic

structures, while others, such as the system by Grégoire and Mahboubi [2005], generalise several

distinct structures to one structure. The state-of-the-art are standalone simplifiers that, through

heuristics and long-term development, can deal with common cases.

1.1 Representation Theorems

Universal algebra has a long tradition concerning algebraic simplification under the collective name

‘representation theorems’. Each such representation theorem characterises canonical representatives

of algebraic expressions in terms of (typically inductive) constructions such as reduced-words and

formal polynomials. Such characterisations often reuse existing representation theorems of simpler

algebraic structures or familiar algebraic structures such as the integers or the natural numbers.

The present work makes use of two kinds of representation theorems. For a free algebra (abbrevi-

ated fral), a representation theorem amounts to an algebraic structure that interprets the algebraic

operations to produce a single canonical representative for all input terms that are equivalent

according to the algebraic laws. For a free extension (abbreviated frex), a representation theorem

chooses a canonical representative using the algebraic laws while also evaluating concrete elements.

Free algebras and free extensions are related: each free extension is also a free algebra of a theory

specialised to a concrete algebra by adding axioms over the concrete elements.

For example, for commutative monoids the fral representation theorem states that the free

commutative monoid over 𝑛 variables is represented by the set of 𝑛-tuples of naturals N𝑛 . We can

use this fral representation to perform simplification by evaluating a term in the fral and then

reifying it back as a term:

−6+ (𝑥 +3) + (𝑦+𝑥)
evaluate(𝑥0+(𝑥2+𝑥1)+(𝑥3+𝑥2))↦−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 2, 1)

reify(𝑥0 ↦→−6,𝑥1 ↦→3,𝑥2 ↦→𝑥,𝑥3 ↦→𝑦)
↦−−−−−−−−−−−−−−−−−−−−−−−−−→ −6+3+2𝑥 +𝑦

In the fral there is no concept of concrete elements, so fral simplification must treat constants such

as −6 and 3 in the same way as variables such as 𝑥 and 𝑦, as abstract and distinct indeterminates.

In contrast, the frex representation theorem for commutative monoids states that the free

extension of a commutative monoid over 𝐶 by 𝑛 variables is represented by the set 𝐶 × N𝑛 , where
the element (𝑐, 𝑎1, . . . , 𝑎𝑛) represents the expression 𝑐 + 𝑎1𝑥1 + . . . + 𝑎𝑛𝑥𝑛 . Simplifying a term using

the frex representation involves evaluating a term in the frex and then reifying it back as a term:

−6 + (𝑥 + 3) + (𝑦 + 𝑥) evaluateZ↦−−−−−−−→ (−3, 2, 1)
reify

↦−−−→ − 3 + 2𝑥 + 𝑦

The frex representation distinguishes variables from concrete elements, gathering the latter together

and evaluating them using the operations of the concrete commutative monoid in use.

Both kinds of representation theorem allow us to choose a unique syntactic representative,

i.e., a normal form. Such normalization by evaluation and then reification also applies to more

sophisticated notions of algebra that include the equational theories of 𝜆-calculi, and is familiar in

those settings as normalization-by-evaluation [Berger and Schwichtenberg 1991]. Its first systematic

applications were in the formal study of various simply typed calculi [Altenkirch et al. 2001, 1995;

Čubrić et al. 1998] and category theoretic constructions [Beylin and Dybjer 1996]. It has served as

a conversion-checking technique during the type-checking of dependently typed calculi from their

inception [Martin-Löf 1975], gaining adoption after the seminal works of Abel et al. [2007a,b], even

for sophisticated calculi [Abel et al. 2017; Hu et al. 2023; Sterling and Angiuli 2021].

This manuscript describes an extensible dependently typed library for algebraic simplifiers

based on fral and frex representation theorems, drawing inspiration from previous work that uses

free extensions for partial evaluation [Yallop et al. 2018]. Current implementations of algebraic

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

Frex: dependently typed algebraic simplification 3

simplifiers, even in dependently typed settings, are restricted to implementing the computational

representation—i.e. the data-structures needed for the normal form together with the normalisation-

by-evaluation algorithm—alongside a formalisation of the soundness proofs. This work investigates

what can be gained by the more radical approach of encoding, in addition, the full meta-theory of

these representation theorems, including generic representations of theories, their algebras and

algebra homomorphisms, and the universal properties of the fral and the frex. For simplicity of

development and exposition we apply this generic machinery to a handful of familiar monoid vari-

eties. Moreover, we ensure all of these concepts remain computational by avoiding the temptation

of postulating axioms that could hinder reduction of closed terms. This last task is challenging

to satisfy while retaining interactive performance, as formalising universal properties tends to

produce large terms that slow type-checkers [Gross et al. 2014].

1.2 Paper Outline and Contributions

Sections 2 and 2.3.1 present background material: a review of the mathematical foundation for the

Frex library (Section 2), and a brief Idris2 tutorial that reviews setoid-based equational reasoning

(Section 2.3.1).

Sections 3 and 4 present our central contribution, a fundamentally new approach to building alge-

braic simplifiers. The standard existing approach is to write an ad-hoc simplifier for some particular

algebraic structure such as rings. Our approach is radically different: we teach the implementation

the basic concepts of universal algebra — signatures, theories and models, homomorphisms, and

universal properties (Section 3) — then build a completely generic solver based on free algebras

and free extensions that can be instantiated with a particular algebra to discharge concrete proof

obligations (Section 4). This new approach is inherently modular and extensible, and delivers

solvers that are sound and complete by construction. We have created implementations of our

design in two dependently typed languages: the Fragment
1
library in Agda, and the Frex

2
library

in Idris2.

Section 5 explains the completeness guarantees of the library, and covers proof extraction,

simplification, pretty-printing and certification. (Sections 4 and 5 are technically involved and are

aimed at library designers, and may be skimmed at first reading.)

Section 6 considers a natural question: can one use reflection to invoke Frex automatically? The

answer is a qualified ‘yes’, requiring much library-developer effort, but leading to real advantages

in Agda and limited advantages in Idris2.

Section 7 reports some supplementary evaluation of Frex. The key properties of our design

are guaranteed by the type theories of the languages in which we realise it: it delivers sound and

complete solvers in a completely generic way, with support for proof extraction, certification, etc.

However, the practical questions of usability and viability for interactive development cannot be

established by theorems and so we have also carried out some experiments. These experiments

focus on the varieties of monoids that also serve as our running example, and establish that the

generic solver is comfortably fast enough for interactive use, and can be extended with new algebras

in a modular way and without enormous effort.

Section 8 discusses system design issues that we encountered with Frex, and Sections 9 and 10

conclude with related and further work.

Appendices A–D, which are included in the full version of the paper submitted as supplementary

material, have more information about Frex’s codebase, example code extraction, and involutive

monoids.

1
Available here: https://github.com/frex-project/agda-fragment.

2
Available here: https://github.com/frex-project/idris-frex.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

https://github.com/frex-project/agda-fragment
https://github.com/frex-project/idris-frex

4 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

We also include as supplementary material our implementation, Frex, which consists of 9,500

lines of Idris2 code. The paper includes only those excerpts of code necessary to convey the key

ideas, and we refer the reader to the implementation for full details.

2 Mathematical Overview

Universal algebra concerns the generic description of algebraic structures and relationships between

them [Burris and Sankappanavar 2081, Chp. II]. We summarise the concepts relevant to Frex.

2.1 Presentations of Algebraic Structures

A finitary signature Σ = (Op Σ, arity) consists of a set Op Σ of operators, and an assignment arity :

Op Σ→ Nat of a natural number to each operator called its arity. For example, the signature Σ (2,0)
often used for monoids has two operators Op(Σ (2,0)) := {(+), 0} with respective arities 2 and 0. It is

common to use a succinct notation that groups operators and their arities: Σ (2,0) := {(+) : 2, 0 : 0}.
Signatures determine an algebraic language, whose semantic models are algebras. An algebra

A = (U A, A ⎜−⨆︁) for a signature Σ consists of a set U A called the carrier and an assignment A ⎜𝑓 ⨆︁ :
(U A)𝑛 → U A of an 𝑛-ary operation over this carrier for every 𝑛-ary operator 𝑓 : 𝑛 in Σ. Continuing
the example above, Σ (2,0) -algebras amount to triples (𝑋, ⎜(+)⨆︁ : 𝑋 2 → 𝑋, ⎜0⨆︁ ∈ 𝑋). There may

be many different algebras for a given signature and carrier set: for instance, we can equip the

natural numbers N with the Σ (2,0) -algebra structures of arithmetic addition (N, (+), 0), arithmetic

multiplication (N, (·), 1), or (N,max, 0). Examples abound: subtraction over the integers has a

Σ (2,0) -algebra (Z, (−), 0); 𝑛 × 𝑛 matrices over N have Σ (2,0) -algebra structures given by matrix

addition and multiplication with the zero and identity matrix respectively, and so on.

Each signature determines a language consisting of terms. Given a set X of variables, the Σ-terms
over X are given inductively as either a variable in X or an application 𝑓 (𝑡1, . . . , 𝑡𝑛) of an operator

𝑓 : 𝑛 from Σ to 𝑛 terms over X. The primary role of terms is to designate equations in context
X ⊢ 𝑡 = 𝑠 , i.e. triples consisting of a set X of variables and two terms in context X. For example, the

associativity equation, expressed over the signature Σ (2,0) , is 𝑥,𝑦, 𝑧 ⊢ 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧.
An environment for a context (=set) X in an algebra A is a function e : X → U A. An algebra A

determines, for each term in context X ⊢ 𝑡 , an interpretation function A ⎜𝑡⨆︁ : (U A)X → U A. Given

an environment e, A ⎜𝑡⨆︁ interprets each variable in the environment A ⎜x⨆︁ e := e x, and structurally

interprets each operator application: A ⎜𝑓 (𝑡1, . . . , 𝑡𝑛)⨆︁ e := A ⎜𝑓 ⨆︁ (A ⎜𝑡1⨆︁ e, . . . , A ⎜𝑡𝑛⨆︁ e). For example,

the interpretation of the left-hand-side (LHS) of the associativity axiom in the Σ (2,0) -algebra
(N,max, 0) given the environment {𝑥 ↦→ 5, 𝑦 ↦→ 3, 𝑧 ↦→ 8} is max(5,max(3, 8)) = 8.

We say that an equation is valid in an algebra A, writing A |= (X ⊢ 𝑡 = 𝑠), when A ⎜𝑡⨆︁ e = A ⎜𝑠⨆︁ e
for all environments e : X → U A. For example, the Σ (2,0) -algebras presented so far validate the

associativity axiom, whereas interpreting the binary operation as subtraction over the integers

(Z, (−), 0) does not: taking the environment {𝑥 ↦→ 0, 𝑦 ↦→ 0, 𝑧 ↦→ 1}, we have 0 − (0 − 1) = 1 ≠

−1 = (0 − 0) − 1.
A presentation of an algebraic theory T = (ΣT ,T.Axiom) consists of a signature ΣT and a set

T.Axiom of ΣT-equations in context, which we call axioms. A T -model A is a ΣT-algebra A validating

all T -axioms. For example, the axioms of theMonoid presentation consist of associativity and neu-

trality (𝑥 ⊢ 𝑥 + 0 = 𝑥, 0 + 𝑥 = 𝑥) over the signature Σ (2,0) . The axioms for the CommutativeMonoid
presentation additionally include commutativity 𝑥,𝑦 ⊢ 𝑦 + 𝑥 = 𝑥 + 𝑦. We can now generically ma-

nipulate classes of algebraic structures using these concepts, while generalising the usual examples:

Monoid-models are monoids, CommutativeMonoid-models are commutative monoids, etc.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

Frex: dependently typed algebraic simplification 5

2.2 Homomorphisms, Free Models/Algebras, and Free Extensions

For a presentation T , we consider two classes of simplification problem of interest, which we call

purely abstract and partially concrete, respectively. In the purely abstract case, the input to the

problem consists of a set of variables X and a ΣT-term over X. Usually, X = Fin n is a set of De Bruijn

levels. In the partially concrete case, the input instead consists of a T -model A, a set of variables

X and a ΣT-term over the disjoint union U A ⊎ X. Here, we do not treat the ‘variables’ in the term

coming from the inclusion of U A as variables in the usual sense. Indeed, in both cases, the goal of the

simplification problem is to find a representative modulo the presentation’s axioms and the rules of

deduction. However, in the partially concrete case, simplification must also fold the elements of U A

using the operations of A. When the set X is empty, simplification and evaluation should coincide.

The foregoing description is imprecise, but can be made precise using the notions of free algebra

and free extension, whose definitions are formulated in terms of the unique existence of certain

structure-preserving maps. We dedicate the remainder of this section to introducing these concepts,

drawing connection to the frex and fral simplification examples from page 2. We start with the fral:

−6+ (𝑥 +3) + (𝑦+𝑥)
evaluate(𝑥0+(𝑥2+𝑥1)+(𝑥3+𝑥2))↦−−−−−−−−−−−−−−−−−−−−−−−→ (1, 1, 2, 1)

reify

(
𝑥0 ↦→−6,𝑥1 ↦→3,

𝑥2 ↦→𝑥,𝑥3 ↦→𝑦

)
↦−−−−−−−−−−−−−−−→ −6+3+2𝑥 +𝑦 (1)

Let T be a presentation and X a set of variables. We define a T -model a = (a.Model, Env a)
over X to be a T -model a.Model equipped with an X-environment in this algebra, i.e. a function

e : X → U(a.Model). This concept formalises the inputs to the fral simplification process from (1).

The starting term is the expression −6 + (𝑥 + 3) + (𝑦 + 𝑥) in the meta-language involving the

meta-level variables 𝑥 and 𝑦. The argument 𝑥0 + (𝑥2 + 𝑥1) + (𝑥3 + 𝑥2) in the label on the left arrow

is a Σ (2,0) -term with object-level variables from X := {𝑥0, . . . , 𝑥3}. The argument to the label on the

right arrow, (𝑥0 ↦→ −6, 𝑥1 ↦→ 3, 𝑥2 ↦→ 𝑥, 𝑥3 ↦→ 𝑦), is an X-environment mapping the object-level

variables 𝑥𝑖 ∈ X to expressions in the meta-level such as the constants −6 and 3 and the meta-level

variable 𝑦. To the fral simplification process these three expressions have the same status. As we

will see later, the frex simplification process will be able to use the concrete nature of −6 and 3 to

further simplify the meta-level expression.

Let A, B be Σ-algebras for a signature Σ. A homomorphism ℎ : A→ B of Σ-algebras is a semantics-

preserving function ℎ : U A→ U B between their carriers. Explicitly, for all operators 𝑓 : 𝑛 in Σ and

elements 𝑎1, . . . , 𝑎𝑛 in U A, we have: ℎ(A ⎜𝑓 ⨆︁(𝑎1, . . . , 𝑎𝑛)) = B ⎜𝑓 ⨆︁(ℎ 𝑎1, . . . , ℎ 𝑎𝑛). A homomorphism

between T -models is a homomorphism between the underlying signature algebras. For example,

the list-length function is a homomorphism from the monoid of concatenation over lists to the

monoid of addition over naturals: length : (ListX, (++), []) → (N, (+), 0).

X

a.Model

b.Model

e

e

h=

A morphism h : a → b of T -models over X is a T -model homomorphism that

moreover makes the diagram on the right commute. A free T -model over X is then
a T -model over X from which there is a unique such morphism to every other

T -model over X. This existence-and-uniqueness property is called the universal
property of free T -models. For example, the free commutative monoid over X = {𝑥0, . . . , 𝑥3} is
the Σ (2,0) -algebra over N

4
given by componentwise arithmetic addition, and equipped with the

X-environment sending 𝑥0 to (1, 0, 0, 0), etc. The unique morphism out of this algebra into any

commutative monoid A, equipped with an environment e, sends (𝑎0, . . . , 𝑎3) to 𝑎0 (e𝑥0)+ . . .+𝑎3 (e𝑥3).
Confusingly, the literature sometimes refers to T -models as T -algebras [Mac Lane 2010, §V.6].

To avoid this confusion, we will use the terminology ‘T -models’ as much as possible, with one

exception. When T is implicit, we will sometimes use the portmanteau ‘fral’ of ‘free algebra’. We

prefer it over alternatives (‘frmo’ or ‘frem’).

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

6 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

In summary, fral simplification provides a guiding principle for designing the data structure in

the middle of (1): it is an implementation of the fral. The success criterion for the design of the

simplification code is the universal property, which singles the fral up to a unique isomorphism of

models over X. The different components of the universal property provide the following methodol-

ogy for this creative process. Failure in each step in this process may provide insight into how the

current data structure fails, and how it may be revised:

(1) Equip the data structure with a ΣT-algebra structure. Failure in this step typically exposes

inputs this simplifier cannot deal with. Revise the data structure to support these operations.

(2) Prove it validates the axioms, i.e., forms a T -model. Failure in this step exposes equations the

structure does not use, i.e., completeness issues. Revise the data structure to use the additional

equations, or relax the presentation, giving up on using these equations.

(3) Define a function out of it to any other T -model over X. Failure in this step typically exposes

‘junk’ in the data structure: components that are not captured by the presentation such as

missing operators. Revise the data structure to exclude the junk, or extend the presentation

with more operators to account for the additional components.

(4) Show this function is a homomorphism. Failure in this step typically exposes unprovable

equations that the data structure validates. Revise the data structure/presentation.

(5) Show this homomorphism is unique. Failure in this step similarly exposes implicit axioms in

the data structure, revise data structure/presentation.

While each step requires mathematical creativity, the overall structure breaks the task down into

smaller steps, a checklist. This checklist organises the simplification code along these steps, making

simplifier development more methodical.

We now turn to frex simplification, through the second example from page 2:

−6 + (𝑥 + 3) + (𝑦 + 𝑥) evaluateZ↦−−−−−−−→ (−3, 2, 1)
reify

↦−−−→ − 3 + 2𝑥 + 𝑦 (2)

Let A be a T -model and X a set whose elements we treat as representing variables. An extension
of A by X is a triple a = (a.Model, a.Var, a.Embed.H) consisting of a T -model a.Model, a function

a.Var : X→ U(a.Model), and a T -homomorphism a.Embed : A→ a.Model. This concept lets us phrase

the distinction between meta-level constants such as 3 and 6, and meta-level variables such as 𝑦 in

the meta-level expression −6 + (𝑥 + 3) + (𝑦 + 𝑥) from (2). Taking A := Z and X := {𝑥,𝑦}, both the

concrete elements of the algebra A (e.g., 3 and −6) and the abstract variables from X are part of the

vocabularly of the simplification process. It uses the evaluation equation −6 + 3 = −3.

X

a.Model

b.Model

UA

e

e

h

a.Embed

b.Embed

= =

A morphism h : a→ b of extensions of A by X is a T -homomorphisms

h : a.Model→ b.Model that moreover makes the two triangles in diagram

on the right commute. A free extension of A by X is then an extension from

which there is a unique such morphism to every other extension of A by

X. For example, the free extension of a commutative monoid A by two variables X := {𝑥,𝑦} is the
Σ (2,0) -algebra over U A × N2

, given componentwise, equipped with the Σ (2,0) -homomorphism that

sends 𝑢 ∈ U A to (𝑢, 0, 0) and the function that sends 𝑥 to (A ⎜0⨆︁ , 1, 0) and 𝑦 to (A ⎜0⨆︁ , 0, 1). The
unique morphism to any extension (B, e, 𝑏) sends (𝑢, 𝑎0, 𝑎1) to 𝑏𝑢 + 𝑎0 (e𝑥) + 𝑎1 (e𝑦).

Figure 1 summarises the frals and frexes considered in this manuscript. All but the last frex are

well-known representations. Our contribution is to implement, alongside these representations,

constructive proofs that they represent the fral or the frex. These proof require the universal

algebraic concepts we introduced so far. Other simplification modules can reuse these concepts

and the representation theorems for existing simplifiers. Overall, this design helps user and library

code to be extensible and modular.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

Frex: dependently typed algebraic simplification 7

monoids commutative monoids involutive monoids

lists of

variables

origin-intercepting

linear polynomials

lists over ordinary &

singly-involuted variables

𝑦𝑥𝑥𝑦𝑥 𝑎1𝑥1+ . . .+𝑎𝑛𝑥𝑛
(𝑎𝑖 : Nat)

𝑦𝑥𝑥𝑥𝑦𝑥

alternating lists

inM2×2 (Nat) [𝑦]
linear polynomials

in A[𝑥1, . . . , 𝑥𝑛]
alternating lists

with tagged variables

in String[𝑥,𝑦](
1 3

0 2

)
𝑦

(
0 1

1 0

)
𝑦 𝑐+𝑎1𝑥1+ . . .+𝑎𝑛𝑥𝑛

(𝑎𝑖 : Nat, 𝑐 : A)
""𝑥"hello"𝑦"olleh"𝑥""

f
r
e
e
a
l
g
e
b
r
a

f
r
e
e
e
x
t
e
n
s
i
o
n

Fig. 1. Frals and frexes for varieties of monoids

X ⊢ 𝑡 = 𝑡
refl

X ⊢ 𝑠 = 𝑡

X ⊢ 𝑡 = 𝑠
sym

X ⊢ 𝑡 = 𝑠 X ⊢ 𝑠 = 𝑟

X ⊢ 𝑡 = 𝑟
trans

(X ⊢ 𝑡 = 𝑠) ∈ T.Axiom
X ⊢ 𝑡 = 𝑠

ax

Y ⊢ 𝑡 = 𝑠 𝜃1, 𝜃2 : Y→ Term Y (X ⊢ 𝜃1𝑦 = 𝜃2𝑦)𝑦∈Y
X ⊢ 𝑡 [𝜃1] = 𝑠 [𝜃2]

cong

UA ⊢ 𝑡
X ⊢ 𝑡 = A ⎜𝑡⨆︁eval

Fig. 2. Provability in (a) equational logic (unshaded) and (b) the evaluation rule

2.3 Setoids

Designing Frex around the general concepts presented in Section 2.1 and Section 2.2 makes it

possible to support term simplification in a uniform way that is not tied to a particular algebra.

Generalising the design further to use setoids [Bishop 1967; Hofmann 1997] rather than sets

enables the same abstractions to offer more flexible functionality: printing terms and proofs, proof

simplication, code generation, andmore, which are explored in Sections 5 and 6. The ability to extract

such intensional information from terms violates algebraic equality, and differentiates this design

from work involving quotients, for example quotient inductive-inductive types (QIITs) [Altenkirch

et al. 2018; Altenkirch and Kaposi 2016; Kaposi et al. 2019]. This section presents some mathematical

background about setoids and their realisation in Idris2.

A setoid X = (U X, (≡X)) consists of a set U X and an equivalence relation (≡X) over U X. A setoid
homomorphism f : X ~> Y is a relation-preserving function between sets X and Y: f𝑥 ≡Y f𝑦 whenever

𝑥 ≡X 𝑦. We think of elements in U X as representatives of the equivalence classes of (≡X), and so

every setoid homomorphism induces a (unique) function between the quotients X/(≡X) → Y/(≡Y).
One way to construct a setoid is to equip a set X with its equality relation to give (X, (=)), but using
setoids also allows us to explicate sophisticated equivalence relations and define operations on

them that are not supported by the corresponding quotients. For example, given a presentation T
and a set X, we can define the provability relation X ⊢ − = − over terms X ⊢ 𝑡 (cf. Fig. 2). Related
elements in the setoid (Term X, X ⊢ − = −) represent different, but provably equal, terms. In contrast,

elements in the quotient Term X/(X ⊢ − = −) represent equivalence classes of provably equal terms.

Figure 2 also includes the evaluation axiom (eval), which we will use to present the frex.

Setoids and their homomorphisms form a common technique to complete an intensional type

theory with extensional functions and quotients, requiring users to establish that every defined

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

8 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

record Equivalence (A : Type) where

constructor MkEquivalence

0 relation: Rel A

reflexive : (x : A) -> relation x x

symmetric : (x, y : A) -> relation x y -> relation y x

transitive: (x, y, z : A) -> relation x y -> relation y z

-> relation x z

record Setoid where

constructor MkSetoid

0 U : Type

equivalence : Equivalence U

data Setoid : Type where

MkSetoid : (0 U : Type) ->

(equivalence

: Equivalence U) -> Setoid

0

U : Setoid -> Type

U (MkSetoid x _) = x

equivalence : (s : Setoid) ->

Equivalence (U s)

equivalence (MkSetoid _ y) = y

Fig. 3. (a) Equivalence relations and setoids as records and (b) example desugaring into a GADT and projections

function is a setoid homomorphism. However, in Frex we make essential use of setoids that

quotient types [Hofmann 1995] do not allow. For example, the terms-up-to-provability setoid

supports operations such as vars : Term X→ List X which extract the list of variables appearing in a

given term in-order. This function is not a setoid homomorphism. The quotient can only support

such extraction following a canonicalisation. Both flavours of function are useful in applications,

but setoids, and not quotients, support both.

In Frex, we implement universal algebra internal to setoids: carriers are setoids; algebraic

operations are setoid homomorphisms; algebra homomorphisms and environments must also be

setoid homomorphisms; and the unique homomorphisms in the universal properties of the fral and

the frex must be setoid homomorphisms. With this generalisation, the setoid Term X/(X ⊢ − = −)
also satisfies the fral universal property constructively. Therefore, there is a unique canonical setoid

isomorphism to every other fral. Similarly, by including the evaluation equations (eval), we obtain

a setoid frex together with a setoid isomorphism to every other frex. These isomorphisms let us

extract simplification proofs generically out of user-defined simplifiers. We discuss the decision to

use setoids in Section 10 where we refer to the concrete benefits setoids offer.

2.3.1 Setoids in Idris2 We represent equivalence relations and setoids in Idris2 with records in
Fig. 3a. Idris2 records are syntactic sugar for a single-constructor data declaration and automatically

generated field projections, as in Fig. 3b. Idris2 also automatically generates the post-fix projections

for each field using a dotted notation, writing b.equivalence.relation for the nested projection. The

annotation 0 preceding the definition of the field U is a quantity [Atkey 2018; McBride 2016] indicat-

ing that the field is not represented at runtime, but may be used in types. Readers can safely ignore

these annotations. There is only a handful of them in this manuscript. We maintain them to demon-

strate and emphasise that Frex does not require us to retain, for example, runtime representations

of types. If you are reading this manuscript in colour, our listings include semantic highlighting,

designating the semantic class of each lexeme: data constructor, type constructor, defined function

or value, and variable in a binding/bound occurence. We define setoid homomorphisms:

SetoidHomomorphism : (a,b : Setoid)

-> (f : U a -> U b) -> Type

SetoidHomomorphism a b f

= (x,y : U a) -> a.equivalence.relation x y

-> b.equivalence.relation (f x) (f y)

record (~>) (A,B : Setoid) where

constructor MkSetoidHomomorphism

H : U A -> U B

homomorphic : SetoidHomomorphism A B H

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

Frex: dependently typed algebraic simplification 9

(^) : Type -> Nat -> Type

(^) a n = Vect n a

algebraOver : (sig : Signature)

-> (a : Type) -> Type

sig `algebraOver` a =

(f : Op sig) -> a ^ (arity f) -> a

record Algebra (Sig : Signature) where

constructor MakeAlgebra

0 U : Type

Semantics : Sig `algebraOver` U

CongruenceWRT : {n : Nat} -> (a : Setoid) ->

(f : (U a) ^ n -> U a) -> Type

CongruenceWRT a f = SetoidHomomorphism (VectSetoid n a) a f

record SetoidAlgebra (Sig : Signature) where

constructor MkSetoidAlgebra

algebra : Algebra Sig

equivalence : Equivalence (U algebra)

congruence : (f : Op Sig) ->

(MkSetoid (U algebra) equivalence)

`CongruenceWRT` (algebra.Sem f)

Fig. 4. Algebras and setoid algebras in Frex

The Appendix includes expanded examples for setoids of functions and quotient setoids.

This technique is affectionately dubbed ‘setoid hell’, since we need to prove that all our functions

are setoid homomorphisms. Following Hu and Carette [2021], we manage setoid hell by structuring

code categorically, organising results into homomorphisms between appropriate setoids.

3 Universal Algebra in Frex

To define an interface to algebraic simplifiers, we first specify and represent algebraic structures.

We implement signatures and their operators in Frex as follows (below, left and middle):

record Signature where

constructor MkSignature

OpWithArity : Nat -> Type

record Op (sig : Signature) where

constructor MkOp

{arity : Nat}

snd : sig.OpWithArity arity

data Operation

: Nat -> Type where

Neutral : Operation 0

Product : Operation 2

The implementation uses Idris2’s implicit record field for arity. Users define concrete instances of

Signature, such as the signature MkSignature Operation for monoids, by defining a type family for the

indexed field OpWithArity (above, right).

Frex represents the domain of an 𝑛-ary operation with an 𝑛-ary vector (Fig. 4). (As in Haskell,

backticks turn any name into an infix operator.) For example, the additive natural numbers form

an algebra for the monoid signature as follows:

Additive : Algebra Monoid.Theory.Signature

Additive = MkAlgebra {U = Nat, Sem = \case

Neutral => 0

Product => plus}

Instead of specifying the Semantics field directly, this code uses the smart constructor MkAlgebra,

which has a Sem argument, instead of Semantics. This smart constructor transfers its Sem argument

into MakeAlgebra’s Semantics field by uncurrying each n-ary function into a function taking an n-ary

vector of arguments. The departure from our usual naming scheme in which it is the construc-

tor of a record R that is called MkR indicates that the smart constructor MkAlgebra, not the record

constructor MakeAlgebra, is the preferred way to construct Algebra instances. The \case keyword is

an anonymous function that immediately pattern-matches its argument. Setoid algebras further
require an equivalence relation that forms a congruence w.r.t. the operations (Fig. 4).

We implement terms over a signature as follows, mirroring their mathematical definition:

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

10 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

data Axiom = LftNeutrality

| RgtNeutrality

| Associativity

MonoidTheory : Presentation

MonoidTheory = MkPresentation Theory.Signature Theory.Axiom $ \case

LftNeutrality => lftNeutrality Neutral Product

RgtNeutrality => rgtNeutrality Neutral Product

Associativity => associativity Product

MonoidStructure : Type

MonoidStructure = SetoidAlgebra Signature

Monoid : Type

Monoid = Model MonoidTheory

Fig. 5. Axiomatising monoids in Frex

data Term : (0 sig : Signature) -> Type -> Type where

||| A variable with the given index

Done : {0 sig : Signature} -> a -> Term sig a

||| An operator, applied to a vector of sub-terms

Call : {0 sig : Signature} -> (f : Op sig) ->

Vect (arity f) (Term sig a) -> Term sig a

Terms form an algebra, the free algebra, with symbols denoting term formers:

Free : (0 sig : Signature) -> (0 x : Type) -> Algebra sig

Free sig x = MakeAlgebra (Term sig x) Call

Terms also form a monad, with Done as its unit and substitution as its sequencing operation.

Turning to equations, Frex only needs equations in a finite context, and we call its cardinality

the support of the equation. We implement equations and presentations as follows:

record Equation

(Sig : Signature) where

constructor MkEq

support : Nat

lhs, rhs :

Term Sig (Fin support)

record Presentation where

constructor MkPresentation

signature : Signature

0 Axiom : Type

axiom : (ax : Axiom) ->

Equation signature

associativity : {sig : Signature} 1

-> EqSpec sig [2] 2

associativity product = 3

let (+) = call product in 4

MkEquation 3 $ X 0 + (X 1 + X 2) 5

=-= (X 0 + X 1) + X 2 6

For example, the monoid presentation Monoid has three axioms: left and right neutrality, and

associativity. Frex defines a generic collection of axiom schemes (above, right). The second argument

to EqSpec lists the arities [n1, ..., nk] of the operations in a scheme, so on lines 1–2 the argument

[2] in the type EqSpec sig [2] states that the scheme involves a single binary operation. The first

argument 3 in MkEquation 3 (lines 5–6) indicates that the declaration of the scheme involves three

variables X 0, X 1, and X 2. We use these generic axiom schemes to construct, for example, the theory

of monoids in the middle of Fig. 5.

Fig. 6 shows Frex’s representation of what it means for an algebra to validate an equation. We

use Idris2’s dependent pairing construct to pair an algebra with an environment in the standard

entailment syntax . The following code validates the monoid axioms for our running example:

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

Frex: dependently typed algebraic simplification 11

models : {sig : Signature} -> (a : SetoidAlgebra sig) -> (eq : Equation sig) ->

(env : Fin eq.support -> U a.algebra) -> Type

models a eq env = a.equivalence.relation (a.Sem eq.lhs env) (a.Sem eq.rhs env)

(=|) : {sig : Signature} -> (eq : Equation sig) ->

(a : SetoidAlgebra sig ** Fin eq.support -> U a.algebra) -> Type

eq =| (a ** env) = models a eq env

ValidatesEquation : (eq : Equation sig) -> (a : SetoidAlgebra sig) -> Type

ValidatesEquation eq a = (env : Fin eq.support -> U a.algebra) -> eq =| (a ** env)

Validates : (pres : Presentation) -> (a : SetoidAlgebra pres.signature) -> Type

Validates pres a = (ax : pres.Axiom) -> ValidatesEquation (pres.axiom ax) a

Fig. 6. Equational validity in an algebra

IsMonoid : Validates MonoidTheory NatAdditive

IsMonoid LftNeutrality env = Refl

IsMonoid RgtNeutrality env = plusZeroRightNeutral _

IsMonoid Associativity env = plusAssociative _ _ _

We define models for a presentation:

record Model (Pres : Presentation) where

constructor MkModel

Algebra : SetoidAlgebra (Pres).signature

Validate : Validates Pres Algebra

We can now define a monoid to be aMonoid-model, as in Fig. 5. For another example, now putting

everything together, we validate the monoid structure of multiplication as follows:

Multiplicative : Monoid 1

Multiplicative = MkModel 2

{ Algebra = cast {from = Algebra Signature} $ 3

MkAlgebra {U = Nat, Sem = \case Neutral => 1 4

Product => mult} 5

, Validate = \case 6

LftNeutrality => \env => plusZeroRightNeutral _ 7

RgtNeutrality => \env => multOneRightNeutral _ 8

Associativity => \env => multAssociative _ _ _ 9

} 10

The coercion function (cast : from -> to) on Line 3 is amethod in the standard Idris type-class/interface

Cast from to. Frex exports a Cast-instance that converts an algebra into a setoid algebra whose equiv-

alence relation is propositional equality (=). Lines 7–9 use results about the natural numbers from

Idris2’s standard library.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

12 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

ListInvMonoid : {0 a : Type} -> InvolutiveMonoid

ListInvMonoid = MkModel

{ Algebra = cast $ MkAlgebra

{sig = Monoid.Involutive.Theory.Signature}

{ U = List a -- Carrier

, Sem = \case -- Operations

Mono monoidOp => case monoidOp of -- Inherited from monoids

Neutral => []

Product => (++)

Involution => reverse

}

, Validate = \case -- Validate equations

Mon LftNeutrality => \env => Refl -- Directly, or

Mon RgtNeutrality => \env => appendNilRightNeutral _ -- use existing standard

Mon Associativity => \env => appendAssociative _ _ _ -- library functions

Involutivity => \env => reverseInvolutive _

Antidistributivity => \env => sym (revAppend _ _)

}

Fig. 7. The involutive monoids of list reversal

Using Frex

Unless they are already working abstractly with an algebraic structure, we expect that in practice

users start by recognising that their concrete algebra validates the axioms of an existing simplifica-

tion module—frexlet for short. Such modules export a presentation, convenient notation suites for

its signature, and fral and/or frex simplifiers for this presentation.

As a concrete example, we will take computations with lists that also involve the reverse function.

These form an involutive monoid: a monoid A equipped with a unary involution operator 𝑥 ↦→ 𝑥 :

UA→ UA satisfying two axioms x = x and xy = y x. We then equip our type of interest, lists, with an

involutive structure as in Fig. 7. We can use this algebra and the involutive monoid to discharge

equations containing list variables and concrete lists:

1 lemma : {x : List a} -> (i,j : a) ->

2 reverse ([i] ++ reverse x ++ []) ++ [j]

3 =

4 x ++ [i, j]

5 lemma i j = solve 1 (Involutive.Frex.Frex ListInvMonoid) $

6 ((Sta [i] .*. (Dyn 0) .inv .*. I1) .inv) .*. Sta [j]

7 =-=

8 Dyn 0 .*. Sta [i, j]

The solve function takes as argument the number of variables (n=2 on line 2) in the algebraic term

to simplify, and an algebraic simplifier from the frexlet (Involutive.Frex.Frex on line 4). The final

argument is a pair of terms with n=2 variables (Dyn 0 and Dyn 1) and concrete values from the algebra.

By importing notation modules the frexlet provides, we can use infix multiplicative notation such

as (.*.). The type-checker then infers the terms to substitute for each variable.

In this example, we used solve to define a stand-alone lemma, but we may also call solve directly

from a chain of equational reasoning steps. When we extract lemmas, we often want to prove them

more abstractly, for all involutive monoids. In that case we use a fral:

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

Frex: dependently typed algebraic simplification 13

1 ExampleFral : {a : InvolutiveMonoid} -> (x,y,z : U a)

2 -> let %hint notation : ? -- Open notation hints for the monoid

3 notation = a.Notation1 -- for infix operator (.*.) and

4 in a.rel -- postfix operator (.inv)

5 (x .*. y.inv .*. z).inv

6 (z.inv .*. y .*. x.inv)

7 ExampleFral x y z =

8 let %hint notation : ? -- ditto, but for terms

9 notation = Involutive.Notation.multiplicative1

10 in solve 3 (Involutive.Free.FreeInvolutiveMonoidOver 3) $

11 (X 0 .*. (X 1).inv .*. X 2).inv =-= (X 2).inv .*. X 1 .*. (X 0).inv

Lines 2–3 and 8–9 overload the infix and postfix notation using the frexlet’s built-in notation suites.

Concretely, the projection Notation1 brings into scope the functions (.*.) and (.inv) when writing

algebraic terms. The solve function takes the number of free variables and a corresponding fral

simplifier (line 10), as well as the two terms representing the equation of interest. The variables x, y,

z (bound in line 7) are implicitly used in this call. §4.2 covers the type of solve in more detail.

4 Free Extensions and Free Models/Algebras

Before delving into the details of Frex’s core, we revisit our frexlet representations using examples

for elements in the fral and the frex for ordinary, commutative, and involutive monoids (see Fig. 1).

The elements in the free monoid are lists of the variables appearing in the term. The elements in

the free extension of a monoid are lists alternating between concrete elements in the given monoid,

and freely adjoined variables. The figure shows an element in the free extension by 1 variable (𝑦)

of the multiplicative monoid of 2 × 2 matrices with natural-number components. The matrix 𝑦 is

unknown, and so its occurrence separates the elements in the list.

Further assuming commutativity equates more terms, resulting in a representation of the free

commutative monoid over n variables as an n-vector of coefficients, representing a linear polynomial.

Freely extending a commutative monoid A by n variables can be represented by a concrete coefficient

𝑐 : A together with an n-vector of coefficients, representing a linear polynomial over A.

If we instead include an involutive operation 𝑥 ↦→ 𝑥 over the monoid, we get lists of variables

and alternating lists whose letters may be tagged as involuted. The figure demonstrates the free

extension of the monoid structure of String concatenation, with string reversal for the involution.

4.1 Universal Properties

We now show the Idris2 realisation of the universal algebraic concepts from Section 2. In the

previous Section 3, we introduced these definitions:

• An Algebra for a signature, which consists of a carrier and an interpretation of operations

(Fig. 4). It does not have to satisfy any equation.

• A SetoidAlgebra is simultaneously a setoid structure (an equivalence relation) and an algebra

structure over the same carrier, whose operations are setoid homomorphisms (Fig. 4).

• A (setoid) Model for a presentation is a setoid algebra validating the presentation’s axioms.

In this section, we introduce these definitions:

• Homomorphisms of setoid algebras.

• A ModelOver a setoid X is a model A equipped with a setoid homomorphism X to A.

• A Extension of a model A by a setoid X is another model B together with a setoid homomorphism

from X to B and a model homomorphism from A to B.

• Their morphisms.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

14 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

Preserves : {sig : Signature}

-> (a, b : SetoidAlgebra sig)

-> (h : U a -> U b)

-> (f : Op sig) -> Type

Preserves {sig} a b h f

= (xs : Vect (arity f) (U a))

-> b.equivalence.relation

(h $ a.Sem f xs)

(b.Sem f (map h xs))

Homomorphism : {sig : Signature}

-> (a, b : SetoidAlgebra sig) -> (h : U a -> U b) -> Type

Homomorphism a b h = (f : Op sig) -> Preserves a b h f

record (~>) {Sig : Signature} (a, b : SetoidAlgebra Sig) where

constructor MkSetoidHomomorphism

H : cast {to = Setoid} a ~> cast b

preserves : Homomorphism a b (.H H)

Fig. 8. Setoid algebra homomorphisms in Frex

We can will then show how we define in Idris2 both the free model (fral) over a setoid X and the

free extension (frex) of A by X as the initial ones.

Frex defines homomorphisms of setoid algebras in Fig. 8, by requiring the underlying function

to be a setoid homomorphism between the corresponding setoids. The code uses an appropriate

cast function (see page 11) that assembles these setoids from the data in each setoid algebra. Each

a : Algebra sig defines a homomorphic extension operator a.Sem : Term sig x -> (x -> U a) -> U a

by structural induction over the term (i.e. folding). The following term valuates to 5+0+7, e.g.:

(Nat.Additive).Sem (X 0.+.O1.+.X 1) (\case {0=>5; 1=>7})

Similarly, Fig. 9 presents the declarations for models over a setoid and extension of a model by a

setoid. It expresses the equations in the commuting diagrams through the extensionality relation

on the setoid of functions from Fig. 16b in Appendix B and the power of an algebra by a setoid (see

§4.3). As Idris2 supports type-directed disambiguation, we overload the record name (~>).

The free model over a set (fral) and the free extension (frex) of an algebra by a set is then the

initial such structure: there is a unique structure-preserving map from the free structure to every

structure. This succinct definition, while standard, packs much structure. By way of introduction,

we will unpack it for the free commutative monoid over Fin n, the finite set with n elements.

First, we designate a commutative monoid for the the fral. This structure is the data structure

our simplifier will use to represent the equivalence classes of terms. In Fig. 1, we mentioned the

carrier consists of origin-intercepting linear polynomials with Nat coefficients 𝑝 = 𝑎1𝑥1 + . . . + 𝑎n𝑥n,
which we represent with n-tuples of natural numbers and pointwise addition:

Carrier : (n : Nat) -> Setoid

Carrier n = VectSetoid n

(cast Nat)

0 := 0𝑥1 + . . . + 0𝑥𝑛 𝑝+𝑞 := (𝑎1 + 𝑏1)𝑥1 + . . . + (𝑎n + 𝑏n)𝑥n
:= [0, . . . ,0] := [𝑎1+𝑏2, . . . ,𝑎n+𝑏n]

= replicate n 0 = map (uncurry (+)) (zip as bs)

Denote the resulting CommutativeMonoid by Model n. For the Env component, use tabulation to define

unit n : Fin n→ Carrier n, with 1 in the argument position and 0 elsewhere:

unit n 𝑖 := 1𝑥𝑖

:= [0, . . . ,0,1,0, . . . ,0]

= tabulate $ dirac i

where
3
:

dirac i j :=

{
i = j : 1

i ≠ j : 0

The initiality of this structure follows from the normal form property — every origin-intersecting

linear polynomial 𝑝 can be represented as 𝑝 =
∑𝑛

𝑖=1 𝑎𝑖 · unit n i:

3
This function is in fact Kronecker’s delta, but the shorter name Dirac’s delta seems more familiar to readers.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

Frex: dependently typed algebraic simplification 15

record ModelOver

(Pres : Presentation)

(X : Setoid) where

constructor MkModelOver

Model : Model Pres

Env : X ~> cast Model

PreservesEnv : {Pres : Presentation}

-> {X : Setoid}

-> (a, b : Pres `ModelOver` X) ->

(cast {to = Setoid} a.Model

~> cast b.Model) -> Type

PreservesEnv a b h =

(X ~~> cast b.Model).equivalence.relation

(h . a.Env) b.Env

record (~>)

{Pres : Presentation} {X : Setoid}

(A, B : Pres `ModelOver` X) where

constructor MkHomomorphism

H : (A .Model) ~> (B .Model)

preserves : PreservesEnv A B (H .H)

record Extension {Pres : Presentation}

(A : Model Pres)(X : Setoid) where

constructor MkExtension

Model : Model Pres

Embed : A ~> Model

Var : X ~> cast Model

record (~>) {Pres : Presentation}

{A : Model Pres} {X : Setoid}

(Extension1, Extension2 : Extension A X) where

constructor MkExtensionMorphism

H : (Extension1).Model ~> (Extension2).Model

PreserveEmbed :

(cast A ~~> (Extension2).Model)

.equivalence.relation

(H . (Extension1).Embed)

(Extension2).Embed

PreserveVar :

(X ~~> cast (Extension2).Model)

.equivalence.relation

((H).H . (Extension1).Var)

(Extension2).Var

Fig. 9. Structure and its preservation for (a) models over a setoid, and (b) extensions of a model

normalForm : (n : Nat) -> (xs : U (Model n)) ->

xs = (Model n).sum (tabulate $ \i => (index i xs) *. (unit n i))

Since monoid homomorphisms preserve the summation and multiplication-by-a-natural, the unique

structure preserving map h : (Model n, unit n) → a is this homomorphism:

h xs = a.Model.sum (mapWithPos (\i,k => k *. a.Env.H i) xs)

This standard argument lies behind many simplifiers, as well as more advanced techniques like

normalisation-by-evaluation. Frex takes the same approach, but also explores how to use general-

purpose constructions involving frals and frexes, and bespoke facts about algebraic structures, to

construct new frals and frexes.

To summarise, to implement a fral/frex simplifier, the developer follows these steps:

• Design a data-structure for the carrier of the frex/fral’s algebra, e.g. for commutative monoids:

Vect n Nat for the fral and (U a, Vect n Nat) for the frex.

• Equip it with a setoid algebra structure: pointwise operations with propositional equality.

• Equip it with the appropriate additional structure, e.g. the unit for the fral and the Variable

function and the Embedding homomorphism for the frex.

• Define the function underlying the homomorphism into any other algebra over the variable

setoid or extension, e.g. linear combination for commutative monoids.

• Prove that this function is a homomorphism and its uniqueness.

These steps realise the simplifier development methodology we described in Section 2.2 (page 6).

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

16 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

1 solveVect : {0 n : Nat} -> {pres : Presentation} -> {a : Model pres} ->

2 (frex : Frex a (irrelevantCast $ Fin n)) -> (env : Vect n (U a)) ->

3 (eq : (Term pres.signature (U a `Either` Fin n)

4 , Term pres.signature (U a `Either` Fin n))) ->

5 {auto prf : frex.Data.Model.rel

6 (frex.Sem (fst eq) (frexEnv {x = cast $ Fin n} frex).H)

7 (frex.Sem (snd eq) (frexEnv {x = cast $ Fin n} frex).H)}

8 ->

9 a.rel (a.Sem (fst eq) (either Prelude.id (flip Vect.index env)))

10 (a.Sem (snd eq) (either Prelude.id (flip Vect.index env)))

Fig. 10. Core frex-based simplification routine

4.2 Solver interface

We can now explain the interface Frex gives to the solve functions. We describe the frex-based

interface in detail; the fral-based interface is similar. We implement the core functionality in the

auxiliary function solveVect in Fig. 10.

The argument frex (line 2) is an implementation of a frex simplifier for some pres-model a,

extended with n free variables (line 1). We erase the number of variables at runtime, and so we also

erase the type Fin n. We cast an erased type to a setoid instead of an unerased type, i.e.:

irrelevantCast : (0 a : Type) -> Setoid instead of cast : (a : Type) -> Setoid

The function also takes an environment of terms to substitute for the free variables in the simpli-

fication equation (line 2). In this auxiliary function, we present the environment using an n-ary

vector of terms over the algebra’s carrier. Next comes the equation we want to discharge (line 3),

involving either concrete values (of type U a) and any of the n available variables. Both the frex and

the algebra with its environment give rise to extensions in the formal sense, which we can use to

give an environment for the equation in question, namely a setoid homomorphism from the joint

setoid of constants and free variables to the carrier of the model underlying the extension:

extEnv : {a : Model pres} -> {x : Setoid} -> (ext : Extension a x) ->

Either (cast a) x ~> cast ext.Model

extEnv ext = either ext.Embed.H ext.Var

where: either : {0 a, b, c : Setoid} -> (a ~> c) -> (b ~> c) -> (a `Either` b) ~> c

We use these environments to interpret the equation, once in the frex (lines 6–7) and once in the

given algebra (lines 9–10). If the equation holds in all extensions, it will hold in the frex and in a,

and, moreover, homomorphisms of extensions will preserve this interpretation. Interpreting this

equation in the frex may have better decidability properties over equivalence in a.

We use Idris2’s auto-implicits mechanism to search for the equivalence of the frex interpretations.

This mechanism will try to find terms that resolve the implicit argument prf, using a heuristic

informed by unification, that will also attempt to apply data constructors.

Typically, Idris2’s judgemental equality decides the frex setoid’s equivalence relation, and the

number of variables we extend by is known statically. This case can happen when the equivalence

relation on the setoid algebra a is decidable by judgemental equality. Then, the type of the prf

argument (line 5) is a propositional equality between closed terms. Judgemental equality decides

this relation between the interpretations in the type of prf. In Idris2, the auto-search heuristic tries to

use Refl, and promotes the required equation to a judgemental equality constraint. Even when the

setoid relation is not decidable by judgemental equality, making prf an auto-implicit may provide

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

Frex: dependently typed algebraic simplification 17

data Visibility = Visible | Hidden | Auto

Pi : Visibility -> (a : Type) -> (a -> Type) -> Type

Pi Visible a b = (x : a) -> b x

Pi Hidden a b = {x : a} -> b x

Pi Auto a b = {auto x : a} -> b x

PI : (n : Nat) -> Visibility -> (a : Type) -> (Vect n a -> Type) -> Type

PI Z vis a b = b []

PI (S n) vis a b = Pi vis a (\ x => PI n vis a (b . (x ::)))

Fig. 11. Metaprogramming abstractions for curried Π-types

1 solve : (n : Nat) -> {pres : Presentation} -> {a : Model pres} ->

2 (frex : Frex a (cast $ Fin n)) ->

3 PI n Hidden (U a) $ (\ env =>

4 (eq : (Term pres.signature (U a `Either` Fin n)

5 , Term pres.signature (U a `Either` Fin n))) ->

6 {auto prf : frex.Data.Model.rel

7 (frex.Sem (fst eq) (frexEnv frex).H)

8 (frex.Sem (snd eq) (frexEnv frex).H)}

9 ->

10 a.rel (a.Sem (fst eq) (either Prelude.id (flip Vect.index env)))

11 (a.Sem (snd eq) (either Prelude.id (flip Vect.index env))))

Fig. 12. User-facing frex-based simplification routine

more functionality in the future. We may be able to freely extend algebras whose propositional

equality is only partially decidable by judgemental equality (e.g. function types in a type theory

with function extensionality), or by a sophisticated decision procedure (e.g. multiset equality).

We use metaprogramming abstractions (Fig. 11) to simplify the user-facing interface. The PI

combinator produces an n-ary telescope of Visible/Hidden/Auto arguments, packaged as an n-ary

vector which it passes this its argument b. Using this abstraction to reduce solve (Fig. 12) to solveVect

(Fig. 10). Compare their types: solve curries the environment 𝑛-vector into 𝑛 implicit arguments.

Unification can resolve these arguments to the free variables in the discharged equation.

4.3 Powers

X

a.Model ~~> A

b.Model ~~> A

a.Eval

b.Eval

pre Hh=

The commutative monoid structure Model n instantiates a general construction:

T -models have powers by setoids. The power of an algebra A by a set(oid)

X is the terminal parameterisation. Parameterisations, shown succinctly on

the right, are an X-indexed collection of algebra homomorphisms a.Eval f :

a.Model→ A.

Requiring a.Eval f to be homomorphic implies that operations are given pointwise. The structure

preservation uses the contravariant action pre Hh precomposing a homomorphism Hh : a.Model→
b.Model. Universality singles out the carrier of the power as the function-space X ~~> a.Model. For

X = Fin n, we can represent it by n-tuples from U A.

4.4 Frex via Coproducts with Fral

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

18 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

A1

a.Sink

b.Sink

A2

a.Lft

b.Lft

Hh

a.Rgt

b.Rgt

= =
The fral and the frex are related: the free extension of A by X is the coproduct
of A with the free algebra over X. A cospan a between A1 and A2 consists of

two homomorphisms with a shared codomain: A1
a.Lft−−−−−→a.Sink

a.Rgt←−−−−− A2. A

cospan homomorphism ℎ : a → b is a homomorphism H : a.Sink → b.Sink

preserving the cospan as in the diagram on the right. The coproducts A1 ⊕ A2 of two models A1 and

A2 is then the initial cospan. All models have coproducts, but these may be difficult to represent.

However, in cases such as commutative monoids, the coproduct is straightforward to represent: its

carrier is the cartesian product of the components carriers.

The universal property of the frex A[X] combines those of the fral FreeTX and its coproduct with

A. Consider the following two diagrams:

X

A[X]

a.Model

UA

Var

a.Var

Hh

Embed.H

a.Embed.H

= = Free T X

(Free T X) ⊕ A

a.Sink

A

Lft

a.Lft

Hh

Rgt

a.Rgt

= =

The Var-arrows and the Lft-arrows correspond through the universal property of the fral: Lft is

the unique homomorphic extension of the Var-arrows. The Embed-homomorphisms are exactly the

Rgt-homomorphism. This identification lets us construct:

CoproductAlgebraWithFree pres a x : (free : Free pres x) ->

(coprod : Coproduct a free.Data.Model) -> Frex a x

For commutative monoids it gives the commutative monoid of linear polynomials with natural

numbers as degree-1 coefficients whose carrier is represented by (U A, Vect n Nat).

4.5 Fral via a Frex

We use the relationship between the fral and frex, described in §4.4, to derive a fral from a corre-

sponding frex. In particular, the following calculation shows that every free algebra arises as a free

extension of FreeT∅. We use ⊎ for the disjoint union, i.e., the coproduct of sets:

FreeT X � FreeT (X ⊎ ∅) (X � X ⊎ ∅)
� (FreeT X) ⊕ (FreeT∅) (FreeT left adjoint, left adjoints preserve coproducts)
� (FreeT∅)[X]

Therefore, we may construct a fral from an initial algebra and its frex:

ByFrex : (initial : Free pres (cast Void)) ->

Frex initial.Data.Model s -> Free pres s

This generic construction can produce suboptimal representations. For example, the initial monoid

is easy to construct: its carrier is the unit type. Freely extending this initial monoid produces

alternating lists, that interleave the unit value. Taking lists of variables instead leads to a simpler

representation but requires more complicated proofs. However, generic constructions such as the

foregoing allow us to trade efficiency for rapid prototyping.

4.6 Reusing Frexlets

The final example demonstrates reuse of one simplifier when constructing another. Recall the

presentation of involutive monoids from the end of Section 3.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

Frex: dependently typed algebraic simplification 19

Proposition 4.1 (Jacobs). The carrier set and monoid operations of the free involutive monoid on
X are those of the free monoid on the product (Bool,X). Similarly, the frex of an involutive monoid by X

is the frex of its underlying monoid by (Bool,X), extended with an involution operation.

We can prove this proposition directly, establishing the involutive axioms, and have taken this

strategy in Frex. However, it is possible to prove this result without referring to the specific

representation of the monoid fral/frex, resulting in a simplifier-transformer reusing the code

implementing simplifiers for monoids to implement simplifiers for involutive monoid. The potential

for this kind of reuse extends beyond monoids. We can phrase the result in much greater generality,

and give a higher-level proof, using Jacobs’s [2021] axiomatisation of involutions. This more abstract

proof generalises to other notions of involutive algebras, and we plan to exploit it in the future for

generic frexlet reuse. The more abstract proof goes beyond the scope of this manuscript, involving

more abstract category theoretic notions. We include it in Appendix D for reviewing purposes.

5 Completeness and Certification

Frex uses setoids to extract intensional information: it automatically extracts printable representa-

tions of simplification proofs, and moreover formalises the completeness of fral/frex simplifiers.

Here is how it works:

• It is easy to construct a frex and a fral using a quotient setoid: terms quotiented by provability.

• The equivalence relation in this setoid is not necessarily effective/decidable.
• An effective fral/frex must be constructed manually/creatively.

• Any fral/frex is canonically isomorphic to the setoid frex, and an effective fral/frex with a

constructive universality proof has an effective isomorphism to the quotient setoid.

• In this way, a simplifier using an effective frex is constructively sound and complete.

• The universal property of the effective fral/frex lets us interpret equations it simplifies to the

same value as related values in every model/extension.

• So the effective fral/frex lets us extract the data structure that represents equivalence in the

setoid. For the quotient fral/frex, it is a representation of the equational proof.

Through this mechanism, there is no need to write any proof extraction code for our simplifiers.

The universal properties of the fral/frex have done all the presentation-specific heavy-lifting. The

remainder of this section expands this description in more technical detail (§5.1), how Frex we

represent certificates (§5.2), and how we simplify proofs (§5.3).

5.1 Completeness

It is straightforward to represent the deduction rules of equational logic from Fig. 2 as a datatype

Provability 𝑡 𝑠 relating pairs of terms 𝑡 and 𝑠 . There are two variations on this provability relation:

for free models and for free extensions.

For free models over X, we index the relation by 𝑡, 𝑠 ∈ Term X. Its definition consists of the

unshaded rules in Fig. 2. The quotient setoid 𝑄 := Term X/Provability then satisfies the universal

property of the free model over X. For the free extension of a model a by X, we index the relation by

𝑡, 𝑠 ∈ Term (X ⊎ U a), i.e., terms with variables in the disjoint union X ⊎ U a. The left-injected values

represent variables from X. For each 𝑐 ∈ U a, the corresponding right-injected variable, which we

denote by 𝑐 , is a term representing 𝑐 . The provability relation then adds the shaded evaluation

equation from Fig. 2. It amounts to datatype constructor, for every operator 𝑓 : 𝑛 and constants

𝑐1, . . . , 𝑐𝑛 ∈ U a, representing the equation (𝑐
1
, . . . , 𝑐

𝑛
) = a ⎜𝑓 ⨆︁ (𝑐1, . . . , 𝑐𝑛). The quotient setoid

𝑄 := Term (X ⊎ U a)/Provability then satisfies the universal property of the frex of a by X.

The interpretation of a term 𝑡 in 𝑄 is 𝑡 itself, and so the quotient setoid does not help at all with

simplification. Since 𝑄 satisfies the universal property, it is canonically isomorphic to every other

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

20 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

fral/frex. So the interpretation of every two terms 𝑠, 𝑡 in every fral/frex is related iff the datatype

Provability 𝑡 𝑠 is inhabited. Therefore evaluation in fral/frex is sound and complete for algebraic

simplification. After designing a fral/frex 𝑆 whose equivalence relation is effective, we can use 𝑄

as follows. The input type to the function solve is exactly the carrier of 𝑄 . By appealing to the

universal property of the fral/frex 𝑆 , we obtain an inhabitant of Provability, and we extracted the

simplification proof, which we call the certificate.

5.2 Representing certificates

Frex provides the Lemma pres type, consisting of a pres.signature-equation and derivation for it in the

quotient fral for pres. Such lemmata are sound: every Lemma for a theory holds in all models of this

theory. Frex provides a mkLemma smart constructor which runs the given fral simplifier, constructs a

proof that a stated equivalence holds, and returns a valid Lemma. This mechanism allows users to

build up a library of lemmata for their theories. Users can then seamlessly invoke these lemmata in

any model, avoiding further Frex calls.

This approach forces the user’s project to depend on most of Frex indirectly through such

modules. If users do not want to introduce that dependency, Frex gives them the option not to

depend on it. Frex also supports proof-certificate extraction, allowing users to produce standalone

libraries of ordinary Idris2 functions rather than Lemma independent of the Frex library. For example,

the fral simplifier for monoids generates a module exporting the following Idris2 function:

units : (x : U m) -> O1 .+. (x .+. O1) .+. O1 =~= x

together with an explicit equational proof that does not call any Frex simplification steps (see

Fig. 19 in the Appendix C). We now explain the certification process in technical detail.

Our goals for this extraction are to (1) produce libraries from lemmata, and (2) produce somewhat

idiomatic Idris2 code. The derivation found by Frex may not be what a human would have chosen

but it should nonetheless be possible for a sufficiently patient human to follow the reasoning steps.

The main challenge was to go from the rich type of derivations trees, i.e., the quotient setoid

relation, to a representation that we can print in a relatively readable way. The derivation trees

have arbitrarily nested transitivity, symmetry, and 𝑛-ary congruence steps. We transform them into

a type of linear/flat derivations that could be pretty-printed using combinators for setoid reasoning.

We represent derivations in layers:

(a) the reflexive-transitive closure of (b) the symmetric closure of

(c) the unary congruence closure of (d) axiomatic reasoning steps.

We now detail each of these layers, implementing each layer by a dedicated data structure (cf. Fig. 17

in Appendix C for the full details):

(a) Reflexive-transitive closure (RTList): type-aligned [van der Ploeg and Kiselyov 2014] lists of steps

in the closed-over relation: the target element of each list position is the source element of the next.

(b) Symmetric closure (Symmetrise): either the relation or its opposite.

(c) Unary congruence closure (Locate): It suffices to pair a term with a distinguished variable for

the contextual hole, together with a step in the closed-over relation. To ease our pretty-printing

code, we distinguish between using the closed-over relation in an empty context, and using it in a

context with a distinguished variable represented by the Idris value Nothing.

(d) Axiomatic steps (Step): An atomic step is either a setoid equivalence, or an axiom.

Putting these together gives the type Derivation of linear derivations (cf. Fig. 17(e) in Appendix C).

Every derivation tree decomposes into a value in this layered representation. The modular

definition of Derivation as a composition of the relation-transformers RTList, Symmetrise, Locate and

Step makes decomposition straightforward. We use generic combinators for each closure relation-

transformers. Closure under congruence is the trickiest part, decomposing an 𝑛-ary congruence in

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

Frex: dependently typed algebraic simplification 21

units : {a, b : Nat} -> (0 + (a + 0)) + b + 0 = a + b

units = %runElab frexMagic MonoidFrexlet Additive

agdaEx : ∀ {x y}→ (2 + x) + (y + 3) ≡ x + (y + 5)

agdaEx = fragment CSemigroupFrex +-csemigroup

Fig. 13. Goal extraction in (a) Idris2 Frex’s elaborator reflection script; (b) the frex Agda augmentation lib.

the derivation tree into 𝑛 separate unary congruences, pushing them under the reflexive-transitive

and symmetric closure layers, and erasing any congruence steps with the identity context.

5.3 Proof Simplication

Certification also allows us to inspect Frex-generated proofs. Frexlet developers can check whether

data-structures and proofs are suboptimal, spurring code refactoring. Concretely, when developing

Frex, we noticed proofs with loops: multi-step derivations that start and end in the same term.

Such loops come from internal data structures that optimise simplifier-development effort, but

insert semantically irrelevant subterms that can be simplified away. Frex implements a generic

proof simplifier that automatically removes all such loops. This mechanism suggests further work,

developing modules for simplifying these proofs further.

6 Goal Extraction via Reflection

Thus far, our examples have illustrated interaction with Frex using solve. The solve function

provides a similar interface to the simplifiers in (e.g.) Agda’s standard library: it takes the fral

or frex simplifier, the number of free variables and the abstract syntax of a goal. However, these

simplifiers additionally provide ergonomic goal extraction with Agda’s proof reflection mechanism.

Proof reflection is a metaprogramming paradigm, available in proof assistants and dependently

typed programming languages, that supports bi-directional communication between a language and

its implementation. The language provides a representation of its terms, operators that construct,

manipulate and destruct term representations, and primitives quote and unquote that respectively
reify terms into the representation and reflect back encoded terms as ordinary terms.

Given mechanisms for querying unsolved proof obligations, proof reflection enables the imple-

mentation of verified decision procedures for automatically discharging such obligations without

boilerplate [Boutin 1997; Christiansen and Brady 2016]. Coupled with the meta-theoretic properties

that dependently typed implementations of decision procedures can enforce (e.g. relative soundness

and completeness), reflection-driven interfaces yield easy-to-use tactics with strong guarantees. It

is then natural to ask: is it possible to construct an interface to Frex that uses proof reflection to

avoid the need to explicitly supply the equation to discharge?

As the example code in Fig. 13 illustrates, using proof reflection to provide such an interface to

Frex is possible in both Idris2 and Agda. Rather than designing custom reflection-based drivers for

individual simplifiers, we combine proof reflection with Frex’s design philosophy of extensibility

and common core reuse and provide a single generic metaprogram parameterized by a signature

and a model of a presentation. The metaprogram can be instantiated for any algebraic simplifier,

built-in or user-defined. Fig. 13 (a) shows the invocation of the Idris2 elaboration script frexMagic,

and Fig. 13 (b) shows the Agda proof reflection macro fragment. Both implementations aim to

infer the abstract syntax of the goal equation based on the expected type.

The drivers have no information about the structure of the algebraic signature argument ahead

of time. Frex’s inductive Term representation means that relevant abstract operator names can be

extracted from the presentation. However, the process of matching goal fragments against the ab-

stract syntax of the algebraic interpretation is tightly coupled to the language’s reflection primitives.

Implementing Frex in both Idris2 and Agda allows us to compare differences in behaviour.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

22 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

The differences between the Idris2 and Agda implementations can be seen by considering the

normalisation of arithmetic expressions such as (x + 1) + y = x + (1 + y). In Idris2, the reflected

syntax passed to the driver represents the normalized expression (x + 1) + y = x + S y. As far

as the theory of monoids is concerned, S y is an atomic expression and is therefore treated as

another free variable, distinct from y. The Idris2 driver then incorrectly infers the invalid equation

Dyn 0 .+. Sta 1 .+. Dyn 1 =-= Dyn 0 .+. Dyn 2, and fails to discharge the goal. In contrast, Agda does

not normalise quoted expressions before reflection, and so the Agda driver successfully finds the

equation, allowing Frex to solve the example. Agda’s approach is not always superior: it is possible

to construct similar examples where the Agda driver fails. The extent to which the implementation

can avoid such pathologies ultimately depends on the engineering effort available to develop

heuristics.

As these problems indicate, this rather naive approach to automation requires significant devel-

oper resources to deal with edge cases or construct bespoke solutions under simplifying assumptions.

In large, mature ecosystems it may be possible to maintain practical heuristics despite these chal-

lenges. However, we think there might be better mechanisms for specifying algebraic contexts from

which the solver can extract the required information automatically; we touch on some possible

directions in Section 10.

7 Supplementary Evaluation: Usability and Interactive Development

The implementation of Frex is still in its early stages, and offers many opportuntities for further

engineering work to extend its functionality, expressiveness, ergonomics, and efficiency. However,

we have already carried out some small experiments to assess user experience and frexlet developer

experience to establish that the approach is feasible, and to identify further directions.

7.1 Quantitative evaluation.

Idris2 encourages interactive, type-driven development, so it is important that the checker is

responsivewhen the usermodifies the program. FollowingNielsen [1993], our Idris2 implementation

aims for response times under one second, and we treat a response time of over 10 seconds when

type checking a modification to Frex client code as a bug.

For typical small equalities that arise incidentally in dependently typed programs, Frex’s perfor-

mance falls very comfortably within Nielsen’s limits. For example, the checking time
4
is under 0.1s

for terms of size six or below with the commutative solver and terms of size 14 or below with the

non-commutative solver, creating an impression of instantaneous response.

As the term size increases, Frex eventually crosses the one second interactivity threshold. Fig. 14

shows how type-checking times grow with term size and with the number of free variables in

a randomly generated term for the commutative and non-commutative monoid solvers. As the

figure shows, Frex’s type-checking time generally remains below the interactivity threshold up to

terms of around size 30, and only exceeds the 10 second threshold (beyond which users’ attention

is lost) for a few terms of size 45 or above. Our experience with Frex development suggests that the

anomalously high checking times for these terms is likely to arise from a performance bottleneck in

Idris2’s evaluator (Section 8) and that the ongoing development of Idris2 may eventually eliminate

the problem, bringing the type-checking time for most terms up to size 60 down to a few seconds.

7.2 Qualitative evaluation.

To experience using Frex, we have reproduced Brady et al.’s [2007] dependently typed representa-

tion of binary arithmetic. Brady et al. index binary representations by the natural numbers that they

4
We use a dated AMD FX-8320 machine with 16GB memory, running Idris 2 version 0.5.1-1011cc616 on Debian Linux.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

Frex: dependently typed algebraic simplification 23

0 10 20 30 40 50 60

0.1

1

10

instantaneity threshold

interactivity threshold

attention threshold

term size (leaves)

r
u
n
t
i
m
e
(
s
)

commutative solver 1 free var

5 free vars

10 free vars

15 free vars

0 10 20 30 40 50 60

0.1

1

10

instantaneity threshold

interactivity threshold

attention threshold

term size (leaves)

r
u
n
t
i
m
e
(
s
)

non-commutative solver 1 free var

5 free vars

10 free vars

15 free vars

Fig. 14. Frex monoid simplifiers type-checking times

represent, and so the programmer needs to give proofs for the correctness of arithmetic operations.

These proofs typically interleave insightful equational reasoning steps with rote calculational steps

such as the following:

c_s + 2*(val_s + ((2 `power` width)*c0)) = ((c_s + val_s) + val_s) + (2*((2 `power` width)*c0))

which may be discharged by passing the equation to solve. We do not use our reflection capabilities

since these kinds of examples, in which the binding-time analysis is challenging, are beyond their

reach at the moment. With early implementations of Frex the task was arduous due to several

performance bottlenecks in Idris2 that are now eliminated. The only other significant obstacle we

encountered was the usual pain point involved in invoking an algebraic simplifier without a goal

extraction mechanism: the need to repeat the equation and its relevant rewriting-context when

calling Frex.

8 System Design Lessons

Frex uses generic and dependently typed programming techniques extensively, requiring significant

type level computation that taxes the capabilities of the host language implementation. In developing

Frex in Agda and Idris2 we have eliminated some performance bottlenecks in Idris2’s type checker,

and learned valuable lessons about practical dependently typed language implementation. We share

these lessons here, in the hope that developers of other systems will find them useful.

8.1 Idris2

At the heart of the type checker is an implementation of dynamic pattern unification [Gundry 2013;

Miller 1992; Reed 2009], which instantiates implicit arguments, and a conversion checker, which

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

24 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

checks whether two terms evaluate to the same reduct. Each of these components requires an

evaluator. Idris2 uses a form of normalisation by evaluation [Berger and Schwichtenberg 1991] with

a syntactic representation (terms) and a semantic representation (values in weak head normal form).

The static evaluator is call-by-name and produces a weak head normal form from a term, and Idris2

implements a quotation mechanism which reconstructs a term from a semantic representation of a

weak head normal form.

Profiling the Idris2 executable reveals that most performance bottlenecks we have encountered

in developing Frex are caused by the evaluator. We have experimented with alternative implemen-

tations of the evaluator that compile terms using Scheme’s backend and a glued representation of

values [Chapman et al. 2005; Coquand and Dybjer 1997] rather than interpreting terms directly.

We have made modest performance gains this way, but in the end nothing is more effective than

removing the need to evaluate in the first place! We have therefore also experimented with various

ways to avoid evaluating terms, including preserving subterm sharing, choosing appropriate data

representation in unification, and taking advantage of the typical structure of unification and

conversion problems.

Preserving Sharing Instantiating implicit arguments in dependently typed programs often leads to

significant sharing of subterms. For example, [True, False] : Vect 2 Bool elaborates to (::) (S Z) Bool

True ((::) Z Bool False (Nil Bool)), sharing the subexpressions Z and Bool. As the vector gets longer,

sharing increases. Following Kovács [2019], we preserve sharing by introducing a metavariable

for every implicit argument, inlining only when it is guaranteed that the definition cannot break

sharing. Consequently, we inline a metavariable whose definition is itself a metavariable applied to

local variables. Otherwise, we do not substitute metavariable solutions into terms at all until they

are required for unification or display purposes.

Unification Unification operates on values, not terms, but sometimes Idris2 needs to postpone a

unification problem if it is blocked due to an unsolvedmetavariable.When themetavariable is solved,

Idris2 need to re-evaluate the terms being unified. Previously, Idris2 stored postponed problems as

a pair of (syntactic) terms in an environment, re-evaluated once the blocking metavariable is solved.

However, Frex produces some large postponed problems, for which quotation to syntax is expensive.

Now, in addition to the evaluator and quotation, we have introduced a continue operation, which
re-evaluates the metavariable at the head of a blocked value, and avoids unnecessary quotation.

Conversion Checking Types in Frex can be large, and sometimes a unification problem that arises

while type checking Frex is postponed due to an unsolved metavariable which blocks evaluation.

In this case, we might have a unification problem of the form f x1 ... xn =?= f y1 ... yn where

the xi, yi etc may be very large subterms, and the terms unify if they are convertible. If most

corresponding terms are equal after evaluation, but one differs, it may take a long time to find the

differing subterm which blocks unification, especially since checking the convertibility of subterms

involves evaluation. Fortunately, terms in blocked unification problems tend to differ at the heads

rather than at deeply nested subterms. Therefore, we always check the heads of the values of

corresponding xi and yi first, postponing the unification problem if any are unequal. This heuristic

significantly improves performance, preventing a lot of unnecessary evaluation.

Influence on Language Design and Ecosystem The development of Frex has led to the implementation

of a number of desirable language features in Idris2. Many of these have been minor changes to the

treatment of implicit arguments and parameters blocks. More significantly, Frex makes extensive

use of auto implicit arguments, which are solved by a search procedure which uses constructors

and functions marked as search hints. To assist the development of Frex and improve the readability

of its code we have added the ability to mark local functions as search hints, allowing us to restrict

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

Frex: dependently typed algebraic simplification 25

the scope of the hints and so avoid excessive growth of the search space. Frex is now part of the

Idris2 test suite, ensuring that it will remain consistent with any updates to Idris2.

8.2 Agda

Agda is a well-established dependently typed interactive proof environment. Idris2 and Agda and

their communities have different goals, leading to subtle Frex implementation differences.

The key differences between the two languages arise from Agda’s focus on proving versus

Idris2’s focus on programming. Idris2 currently uses a single universe [Palmgren 1998], allowing

Type : Type, and is hence inconsistent by Girard’s paradox. In contrast, Agda’s well-developed

predicative theory of universes avoids Girard’s paradox. Agda also protects users from other logical

paradoxes of its more experimental features with its ‘--safe’ compiler flag. In the spirit of Hu

and Carette [2021] and The Agda Community [2024], we adopt a conservative set of compiler

options (--without-K --safe). All our definitions are universe-polymorphic. This conservativity

broadens the applicability of Frex in the Agda ecosystem by guaranteeing compatibility with

all of Agda’s various configurations, and further assures us about the correctness of Frex itself.

Corbyn [2021] discusses these ideas in greater detail.

9 Related Work

Within the Coq ecosystem, an abundance of tactics enable algebraic simplification. Boutin’s [1997]

ring and field tactics
5
let programmers discharge proof obligations involving (and requiring!)

addition, multiplication, and division operations. Strub’s [2010] CoqMT extends Coq’s Calculus

of Inductive Constructions, allowing users to extend the conversion rule with arbitrary decision

procedures for first order theories (e.g. Presburger arithmetic). To ensure preservation of good

meta-theoretical properties, Strub extends only term level conversion. Implementations of Hilbert’s

Nullstellensatz theorem (Harrison’s [2007] in HOL Light and Pottier’s [2008] in Coq) help users

discharge proof obligations involving polynomial equalities on a commutative integral domain.

Coq’s setoid_rewrite is an advanced tactic library for setoid rewriting.
6
Disregarding the dif-

ference between the direct manipulation of proof-terms in Idris2 and the tactic-based manipulation

in Coq, setoid_rewrite provides abstractions for manipulating parameterised relations (covariant

and contravariant), and users can register setoids of interest and custom ‘morphisms’ — horn-like

equational clauses — with the library. The various tactics in the library apply these user-defined

axioms to the goal. Users may also register tactics, and the library includes an expressive collection

of term-traversal primitives (climbing up and down the syntax tree, repeating sub-tactics, and so

on). While setoid_rewrite does not deal with algebraic simplification directly, it may help in

generalising equality-based simplifiers to setoid-based simplifiers. In comparison, Frex’s setoid

reasoning is minimal, implementing only the necessary features for the library.

In Idris1, Slama and Brady [2017] and Slama [2018] implement a hierarchy of rewriting procedures

for algebraic structures of increasing complexity. Though the procedures’ completeness is not

enforced by type as in Frex, these simplifiers are based on a Knuth-Bendix resolution of critical

pairs, and so are likely to be complete. Frex also investigates a hierarchy of rewriting procedures,

but: (1) frexlets are complete by construction, (2) Frex is based on normalisation-by-evaluation

(like Boutin’s tactic, and unlike Slama and Brady’s), and (3) Frex is extensible, with support for

sufficiently motivated users to extend the library with bespoke solvers.

Normalisation-by-evaluation is an established technique for simplifying terms in a concrete

equational theory, often involving function types. One compelling example is Allais et al.’s [2013]

5
See the Coq documentation: https://coq.inria.fr/distrib/current/refman/addendum/ring.html .

6
See the Coq documentation: https://coq.inria.fr/refman/addendum/generalized-rewriting.html .

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

https://coq.inria.fr/distrib/current/refman/addendum/ring.html
https://coq.inria.fr/refman/addendum/generalized-rewriting.html

26 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

work, which demonstrates by a careful model construction that the equational theory decided by

normalisation-by-evaluation can be enriched with additional rules. They implement a simply typed

language internalising the functorial and fusion laws for list fold, map, and append and prove their
construction sound and complete with respect to the extended equational theory.

In Agda, Cockx’s [2020] and Cockx et al.’s [2021] ‘--rewriting’ flag allows users to enrich

the existing reduction relation with new rules. Their implementation goes beyond Allais et al.’s:

it may restart stuck computations. They leave to future work the soundness of user-provided

reduction rules, i.e. ensuring rules neither introduce nontermination nor break canonicity. Unlike

our approach, neither Allais et al’s nor Cockx et al’s technique currently supports commutativity.

Existing formalisations for specific algebraic structures (monoids, groups, rings, actions, etc.)

abound [Hu and Carette 2021; Mahboubi and Tassi 2022; The Agda Community 2024; The Lean

Community 2025]. Frex is set apart from these by formalising the fragments of universal algebra

needed for its architecture. However, in Frex we do not aspire to formalise universal algebra for its

own sake. Formalising more complete fragments of the theory is an active area of research, with

recent contributions by Gunther et al. [2018] and Abel [2021] in Agda. Carette et al. [2020] generate

Agda code for a comprehensive collection of multi-sorted algebraic theories and their associated

machinery via a pre-processing phase from a much smaller description. Fiore and Szamozvancev

[2022] similarly generate definitions for the significantly more general second-order abstract syntax

in Agda via a preprocessing step, while formalising more of the meta-theory as library code. We

consider it an open problem in this domain to include the concise information as first-class data in

the meta-language while nonetheless enjoy the full ergonomics of hand-written, inlined, definitions.

Agda’s category theory library [Hu and Carette 2021] uses setoids extensively. Each category

includes both its homsets and their dualisation. This choice allows for the operation ‘take the

opposite category’ to be judgementally involutive. In turn, one can define dualisation of a property

purely formally, e.g. coproducts can be defined as products in the opposite category. Unfortunately,

this design makes essential use of 𝜂-equality on records, yet unsupported by Idris2.

The Meta-F★ language [Martínez et al. 2019] provides normalisation tactics for commutative

monoids and semi-rings through its metaprogramming facilities. Frex’s usage resembles these

tactics’ usage, and we hope a Frex port to F★will make use of F★’s metaprogramming facilities to

reduce some syntactic noise during goal extraction.

10 Conclusions and Further Work

We have presented a novel, mathematically structured, design for algebraic simplification suites

that guarantees sound and complete simplification, even of user-defined simplifiers. Preliminary

evaluation shows that, despite a high level of abstraction, the resulting library is responsive, with

comparable functionality to other libraries, in a combination of features that no single existing

library provides. Frex’s unique design—the frex and the fral—offer new prospects and questions.

Several computational type theories support extensional function types and quotients, such as

observational type theory [Altenkirch et al. 2007; Pujet et al. 2025; Pujet and Tabareau 2022, 2023]

and cubical type theory [Cohen et al. 2018; Vezzosi et al. 2019]. Extensional function types and

quotient types are also typical reasons for using setoids. So it is natural to consider the tradeoffs for

implementing a similar library in a type theory with extensional function types and quotient types.

Even in such rich type theories, we would still want to implement setoid algebras. Setoid algebras

let us implement intensional aspects such as proof printing, certification, and simplification, which

we view as useful functionality of a simplification library. Quotient types cannot replace this

functionality: eliminators of the quotient must respect the quotient.

However, a richer type theory may make other aspects of the library easier. For example, the

commutative monoid fral and frex use the power of an algebra by a setoid. If we worked in a

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

Frex: dependently typed algebraic simplification 27

type theory with function extensionality, we could use the power of an algebra by a set and do

away with some of the setoid machinery involved. A more speculative direction involves using the

improvements in the type theory to implement category theoretic abstractions (presheaf categories,

ends and coends, 2-functors) which may allow us to ‘teach’ Idris not just universal algebra, but

categorical algebra. We expand on this idea further below.

Cubical type theories offer another potential implementation strategy through non-trivial identity

types. Our Agda implementation (Fragment) is compatible with Cubical Agda (it type-checks with

--safe and --without-K pragmas). Identity types in cubical turn types into untruncated setoids, so

our existing machinery applies unchanged. However, cubical identity types cannot replace setoids:

we would still want to implement setoid algebras. So a cubical type theory will not improve the

core design of frex. The considerations concerning extracting intensional aspects persist even when

the type theory is cubical.

However, implementing some of the internal data-structures may be simplified by a more

powerful type theory. For example, we can implement the power of a model by an 𝑛-element set

either as a function or as an 𝑛-vector. It might be possible to use univalence to ease transporting

structure between these two different implementations. However, using cubical abstractions—rather

thanmerely being compatible with a cubical type-theory—is a lot more sophisticated. Such transport

might lead to unexpected challenges, and would require further experimentation.

Yallop et al.’s [2018] partial evaluators include additional frexlets (e.g. abelian groups, semirings,

distributive lattices). We plan to follow suit and port the remaining simplifiers, then conduct

larger evaluation and comparison studies. The main challenge is that, unlike Yallop et al., we must

mechanically prove that these frexlets are complete, which is costly. One elegant motivation for

including more simplifiers is the following. The frex generalises the ‘ring of polynomials over

a ring’ to that of an algebra of polynomials over an algebra. By porting Yallop et al.’s family of

representations, we will fully realise this generalisation.

Our experiment with reflection-based goal extraction as well as the reflection-based interfaces of

existing solvers show that with enough engineering efforts, library designers can extract the goal

equation from the goal type. However, since software engineers for dependently typed languages

are a scarce resource, we plan to explore other principled approaches. In practice, when invoked

inside a chain of equational steps, the goal equation already appears in the source-code, albeit

in a context. Programmers seem willing to type the goal equation once, since it documents the

reasoning steps, but seem unhappy to do so twice. Perhaps generic programming with holes
7
could

use this already-available information.

Another promising direction is bootstrapping of the Frex library using simplifier certification.

Bootstrapping might start with a hierarchy of inefficient simplifiers that are easy to implement.

Next, these simplifiers may then be used to develop a hierarchy of more efficient simplifiers and

proof-simplifiers. Finally, the certification mechanism can extract proofs to complete the bootstrap.

We would also like to extend Frex’s design beyond algebraic structures. More general notions of

theories abound: multisorted, second-order/parameterised, and essentially algebraic. Supporting

these may allow Frex to cover much more complex situations, such as decision procedures for first

order theories (e.g. Presburger arithmetic, cf. Strub’s [2010] CoqMT) normalisation-by-evaluation

for fusion laws [Allais et al. 2013], and equational manipulation of big-operators [Bertot et al. 2008;

Lau 2017; Markert 2015]. Note that Frex can already deal with big-operators such as sum so long

as the argument list is a concrete collection of constants and variables such as sum [2, x]. We only

need the more sophisticated theories when the length of the lists is abstract.

7
See Brad Hardy’s Agda-Holes library: https://github.com/bch29/agda-holes .

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

https://github.com/bch29/agda-holes

28 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

Frex uses many category-theoretic concepts, but the library itself is oblivious to category

theory. We hope that making use of a rich category theory library like Hu and Carette’s [2021]

agda-categories might lead to a sleeker and even more modular Frex implementation. More

specifically, we plan to explore a general treatment of involutive algebras following Jacobs [2021],

and Power’s distributive tensor of equational theories [Hyland and Power 2006; Power 2005] for a

uniform treatment of semi-ring varieties. Instantiating each of the 6 semi-group varieties makes it

possible to cover each instance of the following combinations:(
{ordinary} × {ordinary, involutive, non-reversing involutive}
∪ {commutative} × {ordinary, involutive}

)
×

{
commutative

semigroup,monoid, group

}
and modularly construct (2 + 3) × 3 = 15 semi-ring varieties, including rings and semirings. As this

example shows, this kind of modular treatment can provide a multiplicative development boost.

Acknowledgments

Supported by the Engineering and Physical Sciences Research Council grant EP/T007265/1 and an

Industrial CASE Studentship, a Royal Society University Research Fellowship, a Facebook Research

Award, and an Alan Turing Institute seed-funding grant. An earlier, unpublished, outline of this

work appeared as part of a short-abstract in TyDe’20 [Allais et al. 2020]. We are grateful to Jacques

Carette, Donovan Crichton, Joey Eremondi, Sam Lindley, Conor McBride, James McKinna, Kasia

Marek, Wojciech Nawrocki, and Robert Wright for useful discussions and suggestions, and to the

anonymous referees of the various iterations of this manuscript for their insistence on improving

its presentation.

Note. For the purpose of Open Access the author(s) have applied a CC BY public copyright licence

to any Author Accepted Manuscript version arising from this submission.

References

Andreas Abel. 2021. Birkhoff’s Completeness Theorem for Multi-Sorted Algebras Formalized in Agda. CoRR abs/2111.07936

(2021). arXiv:2111.07936 https://arxiv.org/abs/2111.07936

Andreas Abel, Klaus Aehlig, and Peter Dybjer. 2007a. Normalization by Evaluation for Martin-Löf Type Theory with One

Universe. Electronic Notes in Theoretical Computer Science 173 (2007), 17–39. https://doi.org/10.1016/j.entcs.2007.02.025

Proceedings of the 23rd Conference on the Mathematical Foundations of Programming Semantics (MFPS XXIII).

Andreas Abel, Thierry Coquand, and Peter Dybjer. 2007b. Normalization by Evaluation for Martin-Löf Type Theory

with Typed Equality Judgements. In 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007). 3–12.
https://doi.org/10.1109/LICS.2007.33

Andreas Abel, Andrea Vezzosi, and Théo Winterhalter. 2017. Normalization by evaluation for sized dependent types. Proc.
ACM Program. Lang. 1, ICFP (2017), 33:1–33:30. https://doi.org/10.1145/3110277

Guillaume Allais, Edwin Brady, Ohad Kammar, and Jeremy Yallop. 2020. Frex: indexing modulo equations with free

extensions. (2020). The 5th ACM SIGPLAN International Workshop on Type-Driven Development (TyDe’2020).

Guillaume Allais, Conor McBride, and Pierre Boutillier. 2013. New equations for neutral terms: a sound and complete

decision procedure, formalized. In Proceedings of the 2013 ACM SIGPLAN workshop on Dependently-typed programming,
DTP@ICFP 2013, Boston, Massachusetts, USA, September 24, 2013, Stephanie Weirich (Ed.). ACM, 13–24. https://doi.org/10.

1145/2502409.2502411

Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus, and Fredrik Nordvall Forsberg. 2018. Quotient inductive-

inductive types. In International Conference on Foundations of Software Science and Computation Structures. Springer
International Publishing Cham, 293–310.

Thorsten. Altenkirch, Peter. Dybjer, Martin Hofmann, and Philip Scott. 2001. Normalization by evaluation for typed

lambda calculus with coproducts. In Proceedings 16th Annual IEEE Symposium on Logic in Computer Science. 303–310.
https://doi.org/10.1109/LICS.2001.932506

Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. 1995. Categorical reconstruction of a reduction free nor-

malization proof. In Category Theory and Computer Science, David Pitt, David E. Rydeheard, and Peter Johnstone (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 182–199.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

https://arxiv.org/abs/2111.07936
https://arxiv.org/abs/2111.07936
https://doi.org/10.1016/j.entcs.2007.02.025
https://doi.org/10.1109/LICS.2007.33
https://doi.org/10.1145/3110277
https://doi.org/10.1145/2502409.2502411
https://doi.org/10.1145/2502409.2502411
https://doi.org/10.1109/LICS.2001.932506

Frex: dependently typed algebraic simplification 29

Thorsten Altenkirch and Ambrus Kaposi. 2016. Type theory in type theory using quotient inductive types. In Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg, FL, USA)
(POPL ’16). Association for Computing Machinery, New York, NY, USA, 18–29. https://doi.org/10.1145/2837614.2837638

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. 2007. Observational equality, now!. In Proceedings of the
2007 Workshop on Programming Languages Meets Program Verification (Freiburg, Germany) (PLPV ’07). Association for

Computing Machinery, New York, NY, USA, 57–68. https://doi.org/10.1145/1292597.1292608

Robert Atkey. 2018. Syntax and Semantics of Quantitative Type Theory. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, Anuj Dawar and Erich Grädel (Eds.).

ACM, 56–65. https://doi.org/10.1145/3209108.3209189

John C. Baez and James Dolan. 1998. Higher-Dimensional Algebra III.𝑛-Categories and the Algebra of Opetopes. Advances
in Mathematics 135, 2 (1998), 145–206. https://doi.org/10.1006/aima.1997.1695

Bruno Barras, Benjamin Grégoire, Assia Mahboubi, Laurent Théry, Patrick Loiseleur, and Samuel Boutin. 2021. The Coq
Proof Assistant: Reference Manual. Ring and field: solvers for polynomial and rational equations. Technical Report. INRIA.
Section 3.2.4..

U. Berger and H. Schwichtenberg. 1991. An inverse of the evaluation functional for typed lambda -calculus. In [1991]
Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science. 203–211. https://doi.org/10.1109/LICS.1991.151645

Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. 2008. Canonical Big Operators. In Theorem Proving in
Higher Order Logics, Otmane Ait Mohamed, César Muñoz, and Sofiène Tahar (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 86–101.

Ilya Beylin and Peter Dybjer. 1996. Extracting a proof of coherence for monoidal categories from a proof of normalization

for monoids. In Types for Proofs and Programs, Stefano Berardi and Mario Coppo (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 47–61.

Errett Bishop. 1967. Foundations of Constructive Analysis. Mcgraw-Hill, New York, NY, USA.

Samuel Boutin. 1997. Using reflection to build efficient and certified decision procedures. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 1281 (1997), 515–529.
https://doi.org/10.1007/BFB0014565

Edwin Brady, James McKinna, and Kevin Hammond. 2007. Constructing Correct Circuits: Verification of Functional Aspects

of Hardware Specifications with Dependent Types. 159–176. 8th Symposium on Trends in Functional Programming

2007, TFP 2007 ; Conference date: 02-04-2007 Through 04-04-2007.

Stanely Burris and H. P. Sankappanavar. 2081. A Course in Universal Algebra. Springer, New York, NY.

Jacques Carette, William M. Farmer, and Yasmine Sharoda. 2020. Leveraging the Information Contained in Theory

Presentations. In Intelligent Computer Mathematics, Christoph Benzmüller and Bruce Miller (Eds.). Springer International

Publishing, Cham, 55–70.

James Chapman, Thorsten Altenkirch, and Conor McBride. 2005. Epigram Reloaded: A Standalone Typechecker for {ETT}.

Trends in Functional Programming (2005).

David Christiansen and Edwin Brady. 2016. Elaborator Reflection: Extending Idris in Idris. Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming (2016). https://doi.org/10.1145/2951913

Jesper Cockx. 2020. Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules. In 25th International
Conference on Types for Proofs and Programs (TYPES 2019) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 175),
Marc Bezem and Assia Mahboubi (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2:1–2:27.

https://doi.org/10.4230/LIPIcs.TYPES.2019.2

Jesper Cockx, Nicolas Tabareau, and Théo Winterhalter. 2021. The Taming of the Rew: A Type Theory with Computational

Assumptions. Proc. ACM Program. Lang. 5, POPL, Article 60 (jan 2021), 29 pages. https://doi.org/10.1145/3434341

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2018. Cubical Type Theory: A Constructive Interpreta-

tion of the Univalence Axiom. In 21st International Conference on Types for Proofs and Programs (TYPES 2015) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 69), Tarmo Uustalu (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, Dagstuhl, Germany, 5:1–5:34. https://doi.org/10.4230/LIPIcs.TYPES.2015.5

Thierry Coquand and Peter Dybjer. 1997. Intuitionistic Model Constructions and Normalization Proofs. Math. Struct.
Comput. Sci. 7, 1 (1997), 75–94. https://doi.org/10.1017/S0960129596002150

Nathan Corbyn. 2021. Proof Synthesis with Free Extensions in Intensional Type Theory. Technical Report. University of

Cambridge. MEng Dissertation.

Djordje Čubrić, Peter Dybjer, and Philip Scott. 1998. Normalization and the Yoneda embedding. Mathematical Structures in
Computer Science 8, 2 (1998), 153–192. https://doi.org/10.1017/S0960129597002508

Marcelo Fiore and Dmitrij Szamozvancev. 2022. Formal metatheory of second-order abstract syntax. Proc. ACM Program.
Lang. 6, POPL (2022), 1–29. https://doi.org/10.1145/3498715

Benjamin Grégoire and Assia Mahboubi. 2005. Proving Equalities in a Commutative Ring Done Right in Coq. In Theorem
Proving in Higher Order Logics, Joe Hurd and Tom Melham (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 98–113.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1006/aima.1997.1695
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1007/BFB0014565
https://doi.org/10.1145/2951913
https://doi.org/10.4230/LIPIcs.TYPES.2019.2
https://doi.org/10.1145/3434341
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.1017/S0960129596002150
https://doi.org/10.1017/S0960129597002508
https://doi.org/10.1145/3498715

30 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

Jason Gross, Adam Chlipala, and David I. Spivak. 2014. Experience Implementing a Performant Category-Theory Library in

Coq. In Interactive Theorem Proving, Gerwin Klein and Ruben Gamboa (Eds.). Springer International Publishing, Cham,

275–291.

Adam Gundry. 2013. Type Inference, Haskell and Dependent Types. Ph. D. Dissertation. https://personal.cis.strath.ac.uk/

adam.gundry/thesis/thesis-2013-07-24.pdf

Emmanuel Gunther, Alejandro Gadea, and Miguel Pagano. 2018. Formalization of Universal Algebra in Agda. Electronic
Notes in Theoretical Computer Science 338 (2018), 147–166. https://doi.org/10.1016/j.entcs.2018.10.010 The 12th Workshop

on Logical and Semantic Frameworks, with Applications (LSFA 2017).

John Harrison. 2007. Automating Elementary Number-Theoretic Proofs Using Gröbner Bases. In Automated Deduction -
CADE-21, 21st International Conference on Automated Deduction, Bremen, Germany, July 17-20, 2007, Proceedings (Lecture
Notes in Computer Science, Vol. 4603), Frank Pfenning (Ed.). Springer, 51–66. https://doi.org/10.1007/978-3-540-73595-3_5

Martin Hofmann. 1995. Extensional concepts in intensional type theory. Ph. D. Dissertation. University of Edinburgh. College

of Science and Engineering. School of Informatics. http://hdl.handle.net/1842/399.

Martin Hofmann. 1997. Extensional constructs in intensional type theory. Springer.
Jason Z. S. Hu and Jacques Carette. 2021. Formalizing Category Theory in Agda. In Proceedings of the 10th ACM SIGPLAN

International Conference on Certified Programs and Proofs (Virtual, Denmark) (CPP 2021). Association for Computing

Machinery, New York, NY, USA, 327–342. https://doi.org/10.1145/3437992.3439922

Jason Z. S. Hu, Junyoung Jang, and Brigitte Pientka. 2023. Normalization by evaluation for modal dependent type theory. J.
Funct. Program. 33 (2023). https://doi.org/10.1017/S0956796823000060

Martin Hyland and John Power. 2006. Discrete Lawvere theories and computational effects. Theoretical Computer Science
366, 1 (2006), 144–162. https://doi.org/10.1016/j.tcs.2006.07.007 Algebra and Coalgebra in Computer Science.

Bart Jacobs. 2021. Involutive Categories and Monoids, with a GNS-Correspondence. Foundations of Physics 42 (2021),

874–895. Issue 7. https://doi.org/10.1007/s10701-011-9595-7

Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. 2019. Constructing quotient inductive-inductive types. Proc.
ACM Program. Lang. 3, POPL, Article 2 (Jan. 2019), 24 pages. https://doi.org/10.1145/3290315

Donnacha Oisín Kidney. 2019. Automatically and Efficiently Illustrating Polynomial Equalities in Agda. Technical Report.
University College Cork. BSc Dissertation.

András Kovács. 2019. Fast Elaboration for Dependent Type Theories. Talk at EU Types WG meeting, 2019.

Stella Lau. 2017. Theory and implementation of a general framework for big operators in Agda. Bachelor’s thesis, University

of Cambridge.

Saunders Mac Lane. 2010. Categories for the working mathematician (2nd. ed., softcover version of original hardcover edition

1998 ed.). Number 5. Springer, New York, NY.

Assia Mahboubi and Enrico Tassi. 2022. Mathematical Components. Zenodo. https://doi.org/10.5281/zenodo.7118596

Leonhard Markert. 2015. Big operators in Agda. Master’s thesis. MSc thesis, University of Cambridge.

Per Martin-Löf. 1975. An Intuitionistic Theory of Types: Predicative Part. In Logic Colloquium ’73, H.E. Rose and J.C.

Shepherdson (Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 80. Elsevier, 73–118. https://doi.org/10.

1016/S0049-237X(08)71945-1

Guido Martínez, Danel Ahman, Victor Dumitrescu, Nick Giannarakis, Chris Hawblitzel, Catalin Hritcu, Monal

Narasimhamurthy, Zoe Paraskevopoulou, Clément Pit-Claudel, Jonathan Protzenko, Tahina Ramananandro, Aseem

Rastogi, and Nikhil Swamy. 2019. Meta-F*: Proof Automation with SMT, Tactics, and Metaprograms. In 28th European
Symposium on Programming (ESOP). Springer, 30–59. https://doi.org/10.1007/978-3-030-17184-1_2

Conor McBride. 2016. I Got Plenty o’ Nuttin’. Springer International Publishing, Cham, 207–233. https://doi.org/10.1007/978-

3-319-30936-1_12

Dale Miller. 1992. Unification under a mixed prefix. Journal of Symbolic Computation (1992). http://www.sciencedirect.

com/science/article/pii/074771719290011R

Jakob Nielsen. 1993. Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Erik Palmgren. 1998. On Universes in Type Theory. In Twenty-Five Years of Constructive Type Theory, Giovanni Sambin and

Jan M. Smith (Eds.). Oxford University Press, Oxford, United Kingdom, Chapter 12, 191–204. https://doi.org/10.1093/oso/

9780198501275.003.0012

Loic Pottier. 2008. Connecting Gröbner Bases Programs with Coq to do Proofs in Algebra, Geometry and Arithmetics.

In Proceedings of the LPAR 2008 Workshops, Knowledge Exchange: Automated Provers and Proof Assistants, and the 7th
International Workshop on the Implementation of Logics, Doha, Qatar, November 22, 2008 (CEUR Workshop Proceedings,
Vol. 418), Piotr Rudnicki, Geoff Sutcliffe, Boris Konev, Renate A. Schmidt, and Stephan Schulz (Eds.). CEUR-WS.org.

http://ceur-ws.org/Vol-418/paper5.pdf

John Power. 2005. Discrete Lawvere Theories. In Algebra and Coalgebra in Computer Science, José Luiz Fiadeiro, Neil Harman,

Markus Roggenbach, and Jan Rutten (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 348–363.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

https://personal.cis.strath.ac.uk/adam.gundry/thesis/thesis-2013-07-24.pdf
https://personal.cis.strath.ac.uk/adam.gundry/thesis/thesis-2013-07-24.pdf
https://doi.org/10.1016/j.entcs.2018.10.010
https://doi.org/10.1007/978-3-540-73595-3_5
http://hdl.handle.net/1842/399
https://doi.org/10.1145/3437992.3439922
https://doi.org/10.1017/S0956796823000060
https://doi.org/10.1016/j.tcs.2006.07.007
https://doi.org/10.1007/s10701-011-9595-7
https://doi.org/10.1145/3290315
https://doi.org/10.5281/zenodo.7118596
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1007/978-3-030-17184-1_2
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
http://www.sciencedirect.com/science/article/pii/074771719290011R
http://www.sciencedirect.com/science/article/pii/074771719290011R
https://doi.org/10.1093/oso/9780198501275.003.0012
https://doi.org/10.1093/oso/9780198501275.003.0012
http://ceur-ws.org/Vol-418/paper5.pdf

Frex: dependently typed algebraic simplification 31

Loïc Pujet, Yann Leray, and Nicolas Tabareau. 2025. Observational Equality Meets CIC. ACM Trans. Program. Lang. Syst. 47,
2, Article 6 (April 2025), 35 pages. https://doi.org/10.1145/3719342

Loïc Pujet and Nicolas Tabareau. 2022. Observational equality: now for good. Proc. ACM Program. Lang. 6, POPL, Article 32
(Jan. 2022), 27 pages. https://doi.org/10.1145/3498693

Loïc Pujet and Nicolas Tabareau. 2023. Impredicative Observational Equality. Proc. ACM Program. Lang. 7, POPL, Article 74
(Jan. 2023), 26 pages. https://doi.org/10.1145/3571739

Jason Reed. 2009. Higher-order constraint simplification in dependent type theory. ACM International Conference Proceeding
Series (2009), 49–56. https://doi.org/10.1145/1577824.1577832

Franck Slama. 2018. Automatic generation of proof terms in dependently typed programming languages. Ph. D. Dissertation.
http://hdl.handle.net/10023/16451

Franck Slama and Edwin Brady. 2017. Automatically Proving Equivalence by Type-Safe Reflection. In Intelligent Computer
Mathematics, Herman Geuvers, Matthew England, Osman Hasan, Florian Rabe, and Olaf Teschke (Eds.). Springer

International Publishing, Cham, 40–55.

Jonathan Sterling and Carlo Angiuli. 2021. Normalization for Cubical Type Theory. In 2021 36th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS). 1–15. https://doi.org/10.1109/LICS52264.2021.9470719

Pierre-Yves Strub. 2010. Coq Modulo Theory. In Computer Science Logic, 24th International Workshop, CSL 2010, 19th
Annual Conference of the EACSL, Brno, Czech Republic, August 23-27, 2010. Proceedings (Lecture Notes in Computer Science,
Vol. 6247), Anuj Dawar and Helmut Veith (Eds.). Springer, 529–543. https://doi.org/10.1007/978-3-642-15205-4_40

The Agda Community. 2024. Agda Standard Library. https://github.com/agda/agda-stdlib

The Lean Community. 2025. Lean mathlib4. https://github.com/leanprover-community/mathlib4

Atze van der Ploeg and Oleg Kiselyov. 2014. Reflection without remorse: revealing a hidden sequence to speed up monadic

reflection. In Proceedings of the 2014 ACM SIGPLAN symposium on Haskell, Gothenburg, Sweden, September 4-5, 2014,
Wouter Swierstra (Ed.). ACM, 133–144. https://doi.org/10.1145/2633357.2633360

Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. 2019. Cubical agda: a dependently typed programming language

with univalence and higher inductive types. Proc. ACM Program. Lang. 3, ICFP, Article 87 (July 2019), 29 pages.

https://doi.org/10.1145/3341691

Jeremy Yallop, Tamara von Glehn, and Ohad Kammar. 2018. Partially-Static Data as Free Extension of Algebras. Proc. ACM
Program. Lang. 2, ICFP, Article 100 (July 2018), 30 pages. https://doi.org/10.1145/3236795

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

https://doi.org/10.1145/3719342
https://doi.org/10.1145/3498693
https://doi.org/10.1145/3571739
https://doi.org/10.1145/1577824.1577832
http://hdl.handle.net/10023/16451
https://doi.org/10.1109/LICS52264.2021.9470719
https://doi.org/10.1007/978-3-642-15205-4_40
https://github.com/agda/agda-stdlib
https://github.com/leanprover-community/mathlib4
https://doi.org/10.1145/2633357.2633360
https://doi.org/10.1145/3341691
https://doi.org/10.1145/3236795

32 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

• Frex (§3–§4.4): core definitions
• Signature (§3): operations & arities

• Algebra (§3,§4.1): algebraic structures
and terms, homomorphisms

• Presentation (§3): axioms, equational

theories

• Axiom (§3): common axiom schemes

• Model (§3): axiom-validating algebras

• Powers (§4.3): parameterised algebras

• Free (§3): simplification in all algebras

• Definition (§4.1): universal property

• Construction (§5): a non-effective

quotient construction used for extrac-

tion, printing, and certification

• ByFrex (§4.5): reuse a frex simplifier

to define a fral simplifier

• Linear (§5.2–§5.3): generic proof

simplification and printing

• Idris (§5): generic certification
• Coproduct (§4.4): universal property
• Frex (§4.1–§4.4): universal property,

reuse coproduct and fral simplifier to

define a frex simplifier

• Construction (§5): non-effective quo-

tient construction used for extrac-

tion, printing, and certification

• Lemma (§5): auxiliary representation

for auxiliary lemmata discharged by

fral simplifiers, printed, or certified

• Magic (§6): generic reflection code for

ergonomic invocation

• Frexlet.Monoid: modules concerning varieties of

monoids and their simplifiers

• Theory (§3): signature, axioms, pretty printing

for the theory of ordinary monoids

• Notation (§3): shared infix notation (additive

and multiplicative) for monoid varieties

• Frex (Fig. 1): frex simplifier for monoids

• Free (§4.5): fral simplifier, reuses frex simplifier

• Nat (§3): additive and multiplicative monoid

structure of the natural numbers

• Pair: typeswith the cartesian product as a proof-
relevant monoid structure

• List: monoid structure of lists with catenation

• Commutative: commutative monoids modules

• Theory: commutativity axiom

• Free (§4.1:) fral simplifier

• NatSemiLinear (§4.1): auxiliary definitions for
fral simplifier

• Frex (§4.4): simplifier, reuses fral via coprod-

ucts

• Coproduct (§4.4): coproduct of commutative

monoids

• Nat: addition and multiplication of naturals

• Involutive: modules concerning monoids

equipped with an involution

• Theory (§3): signature and axioms

• Free: simplifier, reuses frex simplifier

• Frex (§4.6): simplifier, reuses monoid frex

• List (§3): involutive monoid structure of list

reversal

Fig. 15. Overview of the core Frex code-base and its relationship to this manuscript

A Module Structure of Frex

Fig. 15 summarises the core modules in this codebase and their relationship to this manuscript.

B Extensional Function andQuotient Setoids

Figure 16a defines the quotient of a type by a function q, taking two elements to be equal when

their images under the function q are equal, and the setoid of homomorphisms between two setoids

together with extensional equality. This example also demonstrates Idris2’s local definitions (lines

4–6, e.g.), possibly with quantities, named-argument function calls (lines 8–15, e.g.), application

operator $, and anonymous functions (lines 9–10, e.g.). Idris2, like Haskell, implicitly quantifies

(with quantity () over unbound variables in type-declarations such as the type a in Quotient. These

underscores mean elaboration must fill-in the blanks uniquely using unification.

Figure 16b presents a setoid over n-length vectors over a given setoid. The vector functorial action

VectMap has a setoid homomorphism structure between the two setoids of homomorphisms: (1)

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

Frex: dependently typed algebraic simplification 33

1 Quotient : (b : Setoid) -> (a -> U b)

2 -> Setoid

3 Quotient b q = MkSetoid a $

4 let 0 relation : a -> a -> Type

5 relation x y =

6 b.equivalence.relation (q x) (q y)

7 in MkEquivalence

8 { relation = relation

9 , reflexive = \x =>

10 b.equivalence.reflexive (q x)

11 , symmetric = \x,y =>

12 b.equivalence.symmetric (q x) (q y)

13 , transitive = \x,y,z =>

14 b.equivalence.transitive

15 (q x) (q y) (q z)

16 }

17 (~~>) : (a,b : Setoid) -> Setoid

18 (~~>) a b = MkSetoid (a ~> b) $

19 let 0 relation : (f, g : a ~> b) -> Type

20 relation f g = (x : U a) ->

21 b.equivalence.relation (f.H x) (g.H x)

22 in MkEquivalence

23 { relation

24 , reflexive = \f,v =>

25 b.equivalence.reflexive (f.H v)

26 , symmetric = \f,g,prf,w =>

27 b.equivalence.symmetric _ _ (prf w)

28 , transitive = \f,g,h,f_eq_g, g_eq_h, q =>

29 b.equivalence.transitive _ _ _

30 (f_eq_g q) (g_eq_h q)

31 }

0 (.VectEquality) : (a : Setoid) -> Rel (Vect n (U a)) 1

a.VectEquality xs ys = (i : Fin n) -> 2

a.equivalence.relation (index i xs) (index i ys) 3

VectSetoid : (n : Nat) -> (a : Setoid) -> Setoid 3

VectSetoid n a = MkSetoid (Vect n (U a)) 4

$ MkEquivalence 5

{ relation = (.VectEquality) a 6

, reflexive = \xs , i => 7

a.equivalence.reflexive _ 8

, symmetric = \xs,ys, prf , i => 9

a.equivalence.symmetric _ _ (prf i) 10

, transitive = \xs, ys, zs, prf1, prf2, i => 11

a.equivalence.transitive _ _ _ (prf1 i) (prf2 i) 12

} 13

VectMap : {a, b : Setoid} -> (a ~~> b) ~> 14

(VectSetoid n a ~~> VectSetoid n b) 15

VectMap = MkSetoidHomomorphism 16

(\f => MkSetoidHomomorphism 17

(\xs => map f.H xs) 18

$ \xs, ys, prf, i => CalcWith b $ 19

|~ index i (map f.H xs) 20

~~ f.H (index i xs) 21

.=.(indexNaturality _ _ _) 22

~~ f.H (index i ys) ...(f.homomorphic _ _ $ prf i) 23

~~ index i (map f.H ys) 24

.=<(indexNaturality _ _ _)) 25

$ \f,g,prf,xs,i => CalcWith b $ 26

|~ index i (map f.H xs) 27

~~ f.H (index i xs) .=.(indexNaturality _ _ _) 28

~~ g.H (index i xs) ...(prf _) 29

~~ index i (map g.H xs) .=<(indexNaturality _ _ _) 30

Fig. 16. (a) Quotient, function-space, and (b) vector setoids (top) and a higher-order homomorphism (bottom)

map f.H is a homomorphism (lines 19–25), and that (2) it maps extensionally equal homomorphisms

to extensionally equal homomorphisms (26–30). These proofs use Idris2’s equational reasoning

notation for setoids (lines 20–25 and 27–30), a deeply embedded chain of equational steps. Each

step) appeals to transitivity, and requires a justification. The last two dots in the thought bubble

operator (...) modify the reason: plain usage (line 23) appeals to a setoid equivalence; an equals in

the middle dot, e.g. (.=.), appeals to reflexivity via propositional equality (lines 22, 25, 28, 30); and

a comparison symbol in the end, e.g. (.=<), appeals to symmetry (lines 25, 30).

C Proof Printing and Certification

Figure 17 presents the layered representation of linear derivations.

Fig. 18 shows an automatically extracted proof for the equation (𝑥 • 3) • 2 = 5 • 𝑥 in the additive

monoid structure (Nat, 0, (+)). The extracted proof has 24 steps — far from the shortest proof possible.

Extraction removes reflexivity and transitivity steps, and the pointed bracket tells whether the step

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

34 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

data RTList : Rel a -> Rel a where

Nil : RTList r x x

(::) : {0 r : Rel a} -> {y : a}

-> r x y -> RTList r y z

-> RTList r x z

(a) reflexive-transitive closure

data Symmetrise : Rel a -> Rel a where

Fwd : {0 r : Rel a} -> r x y

-> Symmetrise r x y

Bwd : {0 r : Rel a} -> r x y

-> Symmetrise r y x

(b) symmetric closure

Derivation : (p : Presentation)

-> (a : PresetoidAlgebra

p.signature)

-> Rel (U a)

Derivation p a

= RTList -- Reflexive, Transitive

$ Symmetrise -- Symmetric

-- Congruence

$ Locate p.signature a.algebra

$ Step p a -- Axiomatic steps

(e) linear derivations

data Locate : (sig : Signature) -> (a : Algebra sig) ->

Rel (U a) -> Rel (U a) where

||| We prove the equality by invoking a rule at the

||| toplevel

Here : {0 r : Rel (U a)} -> r x y

-> Locate sig a r x y

||| We focus on a subterm `lhs` that may appear in

||| multiple locations and rewrite it to `rhs` using a

||| specific rule.

Cong : {0 r : Rel (U a)} ->

(t : Term sig (Maybe (U a))) ->

{lhs, rhs : U a} -> r lhs rhs ->

Locate sig a r (plug a t lhs) (plug a t rhs)

(c) unary congruence closure

data Step : (pres : Presentation)

-> (a : PresetoidAlgebra pres.signature)

-> Rel (U a) where

Include : {x, y : U a} -> a.relation x y

-> Step pres a x y

ByAxiom : {0 a : PresetoidAlgebra pres.signature}

-> (eq : Axiom pres)

-> (env : Fin (pres.axiom eq).support -> U a)

-> Step pres a

(a .bindTerm (pres.axiom eq).lhs env)

(a .bindTerm (pres.axiom eq).rhs env)

(d) axiomatic steps

Fig. 17. Layered (a–d) representation of linear derivations (e)

uses the axiom directly (angle points right) or using symmetry (angle points left). Square brackets

mean appealing to congruence, where the context is the congruence’s context, and the term in the

hole is the equation’s LHS. Fig. 19 shows an automatically extracted certificate for the equation

0 + (𝑥 + 0) + 0 = 𝑥 in a generic monoid m = (U m, O1, (.+.)). The certificate is generated inside a

module that parameterises over the generic monoid m and introduces the various notations and

reasoning functions.

D Modularity with Involutive Algebras

We recount Jacobs’s account, albeit in a more advanced categorical jargon, and use it to prove

a generic representation theorem for involutive frals and frexes. We don’t use this development

elsewhere in this manuscript.

XX

𝜈
𝑋

𝜈𝑋

=

Jacobs appeals to the Baez-Dolan microcosm principle [Baez and Dolan

1998] — an algebraic structure on an object requires a compatible structure

on its category of context—and defines the following concepts. An involutive
structure on a category C is a pair ((−), 𝜈) consisting of a functor (−) : C →
C, called the involution, and a natural isomorphism 𝜈 : (−) → −, called the involution law, satisfying

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

Frex: dependently typed algebraic simplification 35

(𝑥 •3) • [2] =
↑

⟨ Right neutrality]

(𝑥 •3) •2• [𝜀]
⟨ Left neutrality]

↓
= (𝑥 • [3]) •2•𝜀 •𝜀 =

↑
⟨ Right neutrality]

(𝑥 •3• [𝜀]) •2•𝜀 •𝜀
⟨ Left neutrality]

↓
= ([𝑥] •3•𝜀 •𝜀) •2•𝜀 •𝜀 =

↑
⟨ Right neutrality]

([𝑥 •𝜀] •3•𝜀 •𝜀) •2•𝜀 •𝜀
⟨ Right neutrality]

↓
= ([(𝑥 •𝜀) •𝜀] •3•𝜀 •𝜀) •2•𝜀 •𝜀 =

↑
⟨ Left neutrality]

(([𝜀] • (𝑥 •𝜀) •𝜀) •3•𝜀 •𝜀) •2•𝜀 •𝜀
[Evaluate ⟩

↓
=

[(0•(𝑥•𝜀)•𝜀)•3•𝜀•𝜀]•2•𝜀•𝜀 =
↑

⟨ Associativity]

(0•[((𝑥•𝜀)•𝜀)•3•𝜀•𝜀])•2•𝜀•𝜀
[Associativity ⟩

↓
= (0•[((𝑥•𝜀)•𝜀)•3]•𝜀•𝜀)•2•𝜀•𝜀 =

↑
[Commutativity ⟩

(0•[(3•(𝑥•𝜀)•𝜀)•𝜀•𝜀])•2•𝜀•𝜀
⟨ Associativity]

↓
= [0•3•((𝑥•𝜀)•𝜀)•𝜀•𝜀]•2•𝜀•𝜀 =

↑
[Associativity ⟩

((0•3)•((𝑥•𝜀)•𝜀)•[𝜀•𝜀])•2•𝜀•𝜀
[Left neutrality ⟩

↓
=

((0•3) • [(𝑥 •𝜀) •𝜀] •𝜀) •2•𝜀 •𝜀 =
↑

⟨ Associativity]

((0•3) • (𝑥 • [𝜀 •𝜀]) •𝜀) •2•𝜀 •𝜀
[Left neutrality ⟩

↓
= ([0•3] • (𝑥 •𝜀) •𝜀) •2•𝜀 •𝜀 =

↑
[Evaluate ⟩

(3 • (𝑥 • 𝜀) • 𝜀) • 2 • 𝜀 • 𝜀
⟨ Associativity]

↓
= 3 • [((𝑥 • 𝜀) • 𝜀) • 2 • 𝜀 • 𝜀] =

↑
[Associativity ⟩

3 • [((𝑥 • 𝜀) • 𝜀) • 2] • 𝜀 • 𝜀
[Commutativity ⟩

↓
=

3 • [(2 • (𝑥 • 𝜀) • 𝜀) • 𝜀 • 𝜀] =
↑

⟨ Associativity]

3 • 2 • ((𝑥 • 𝜀) • 𝜀) • 𝜀 • 𝜀
[Associativity ⟩

↓
= (3 • 2) • ((𝑥 • 𝜀) • 𝜀) • [𝜀 • 𝜀] =

↑
[Left neutrality ⟩

(3•2) • [(𝑥 •𝜀) •𝜀] •𝜀
⟨ Associativity]

↓
= (3•2) • (𝑥 • [𝜀•𝜀]) •𝜀 =

↑
[Left neutrality ⟩

[3•2] • (𝑥 •𝜀) •𝜀
[Evaluate ⟩

↓
= 5• [(𝑥 •𝜀) •𝜀] =

↑
[Right neutrality ⟩

5• [𝑥 •𝜀]
[Right neutrality ⟩

↓
= 5•𝑥

Fig. 18. Frex-extracted proof of (𝑥 • 3) • 2 = 5 • 𝑥 in the additive monoid over Nat

the condition on the right. This definition is equivalent to Jacbos’s, but reverses the direction of the

involution law.

For example, each category has an involutive structure given by the identity functor as involution

and the identity natural transformation as the involutive law. This structure, which we call the

trivial involutive structure, may seem degenerate, but it plays an important role in our development.

The motivating example is Monoid, the category of monoids. It has the following non-trivial

involutive structure. Given a monoid a, construct another monoid a with the operation reversed:

a ⎜·⨆︁ (𝑥,𝑦) := a ⎜·⨆︁ (𝑦, 𝑥). If h : a → b is a monoid homomorphism, then the same underlying

function provides a monoid homomorphism h : a→ b. These maps define an involution functor

(−) : Monoid→ Monoid. The identity function is then a monoid isomorphism 𝜈 := (λ𝑥 .𝑥) : a→ a,

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

36 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

units : (x : U m) -> O1 .+. (x .+. O1) .+. O1 =~= x

units x = CalcWith (cast m) $

|~ O1 .+. (x .+. O1) .+. O1

~~ O1 .+. (O1 .+. x .+. O1) .+. O1

..<(Cong (\ focus => O2 :+: (focus :+: O2) :+: O2) $ lftNeutrality x)

~~ O1 .+. (O1 .+. (x .+. O1)) .+. O1

..<(Cong (\ focus => O2 :+: focus :+: O2) $ associativity O1 x O1)

~~ O1 .+. O1 .+. (x .+. O1) .+. O1

...(Cong (\ focus => focus :+: O2) $ associativity O1 O1 (x .+. O1))

~~ O1 .+. O1 .+. x .+. O1 .+. O1

...(Cong (\ focus => focus :+: O2) $ associativity (O1 .+. O1) x O1)

~~ O1 .+. x .+. O1 .+. O1

...(Cong (\ focus => focus :+: Val x :+: O2 :+: O2) $ lftNeutrality O1)

~~ O1 .+. x .+. (O1 .+. O1)

..<(associativity (O1 .+. x) O1 O1)

~~ O1 .+. x .+. O1

...(Cong (\ focus => O2 :+: Val x :+: focus) $ lftNeutrality O1)

~~ O1 .+. x

...(rgtNeutrality (O1 .+. x))

~~ x

...(lftNeutrality x)

Fig. 19. Frex-certificate for the of 0 + (𝑥 + 0) + 0 = 𝑥 in a generic monoid m

the required involution law. We have similar involutive structures on other categories, given by

ordinary or commutative: semi-groups, monoids, groups, semirings and rings, and so on.

aa

a

h

h

𝜈 :=

λ𝑥 .𝑥

=

To see the microcosm principle in action, note that a function h : U a→ U a makes

a monoid a into an involutive monoid if and only if (1) it is a monoid homomorphism

h : a→ a, so h(x · y) = h y · h x, and (2) the diagram on the right commutes, so h(h x) = x.

These two conditions categorify the notion of an involutive monoid, so we can define

it in any involutive category, not just Monoid. Jacobs calls these self-conjugate objects, and we will

study them in more detail soon.

𝐹 X 𝐹 X 𝐹 X

𝐹𝑋 𝐹𝑋

𝐹𝜈 𝜈𝐹

𝜉
X 𝜉X=

Packaging this structure, an involutive category C = (Co, (−), 𝜈) is an
ordinary category Co equipped with an involutive structure ((−), 𝜈). An
involutive functor 𝐹 : B → C between involutive categories is a pair (𝐹o, 𝜉𝐹)
consisting of an ordinary functor 𝐹o : Bo → Co and a natural transformation

𝜉𝐹 : 𝐹o (−) → 𝐹o (−) called its distributive law, satisfying the compatibility condition on the right.

Such distributive laws are natural isomorphisms.

The canonical example is the forgetful functor U : ModelT → Set from the category of models of

some presentation T to the category of sets and functions. This functor has an involutive functor

structure w.r.t. an involutive structure on ModelT , when the involution of an algebra only changes

the operations of the algebra, but not its carrier. Note the role that the trivial involutive structure

on Set plays. All the examples above of monoid varieties and the semi-ring varieties w.r.t. the

operation-reversal and trivial involutive structures have such involutive forgetful functors.

𝐹X 𝐺X

𝐺X𝐹X

𝛼X

𝛼X

𝜉𝐹 𝜉𝐺=

An involutive natural transformation 𝛼 : 𝐹 → 𝐺 between two involutive

functors is an ordinary natural transformation 𝛼 : 𝐹o → 𝐺o between their

underlying ordinary functors that moreover satisfies the condition on the right.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

Frex: dependently typed algebraic simplification 37

As Jacobs comments, we therefore have a 2-category ICat consisting of involutive
categories, functors, and natural transformations, and we may derive involutive adjunctions as two

involutive functors and two involutive natural transformations satisfying the triangle laws.

We can turn an ordinary adjunction into an involutive one when one of the functors is involutive:

Proposition D.1. Let 𝐺 : A → C be an involutive functor, and 𝐹o ⊣ 𝐺o be a left-adjoint to
the ordinary functor underlying 𝐺 with unit 𝜂 and counit 𝜀. Set 𝜉𝐹X : 𝐹oX → 𝐹oX to be the mate of

the composite X
𝜂
−→ 𝐺o𝐹oX

(𝜉𝐺)−1
−−−−−→ 𝐺o𝐹oX. Then (1) 𝜉𝐹 equips 𝐹o with an involutive functor structure

𝐹 : C → A; and (2) 𝐹 ⊣ 𝐺 is an involutive adjunction with unit 𝜂 and counit 𝜀.

As a consequence, the free model functors for models in which the forgetful functor is involutive

are all involutive adjunctions. This consequence covers our monoid and semi-ring varieties of

interest, namely ordinary and commutative semi-groups, monoids, groups, semi-rings and rings

with or without a unit. The distributive laws in these examples are given by the mate of the function:

λ𝑥 .𝜂𝑥 : X = X
𝜂=𝜂
−−−→ 𝑈𝐹 X

𝜉𝑈 =λ𝑡 .𝑡
−−−−−−→ 𝑈𝐹X. One might be tempted to think that the resulting distributive

law is the identity homomorphism, because the mate of the unit of an adjunction is the identity

function. It is not the case. When we take the mate, we take into account the algebra structure of

𝐹 X, which may change the interpretation of the operations, and consequently changes the resulting

mate homomorphism. For the non-trivial involutive structures over monoid and semi-ring varieties,

the distributive law will reverse the relevant binary operation.

aa

a

𝑗
𝑗

𝜈
=

A self-conjugate object a in an involutive category A is a pair (aobj, 𝑗a) consist-
ing of an object aobj in A, and an A-morphism 𝑗𝐴 : aobj → aobj, satisfying the

triangle on the right. As we saw on p. 36, self-conjugate monoids are involutive

monoids, and more generally, self-conjugate semi-groups, groups, semi-rings, rings,

etc. are the involutive ones. A homomorphism h : a→ b of self-conjugate objects is a homomorphism

a b

ba

h

h

𝑗 𝑗=

h : aobj → bobj between their underlying objects that moreover satisfies the condition

on the left. This condition generalises the usual condition of involutive monoid

homomorphisms and so on. Since homomorphisms of self-conjugate objects compose

and contain the identities, they form a category which we denote by SCA. Jacobs

shows that the forgetful functor U : SC Set → Set has a left adjoint FSC : Set → SC Set sending
each set X to the coproduct of two copies of itself, i.e. by tagging each element with a boolean, and

the self-conjugation structure flips this boolean FSCX := ((Bool,X), λ(b, x).(¬b, x)).
It will pay-off immediately to include one more level of abstraction. Jacobs (Lemma 6) shows that

the SC -construction extends to a 2-functor SC : ICat→ ICat. We recall the remaining structure.

The action on objects of ICat equips the category SCA with an involutive structure, sending each

self-conjugate object a to the self-conjugate object a := (aobj, 𝑗a : aobj → aobj). The action on the

SCA

SCC

A

C

U

U

𝐹SC 𝐹 =

morphisms of ICat, sends an involutive functor 𝐹 : B → C to the involutive

functor SC 𝐹 : SCB → SCC mapping each self-conjugate object a to the self-

conjugate object (𝐹oaobj, 𝑗SC 𝐹a : 𝐹oaobj
(𝜉𝐹)−1
−−−−−→ 𝐹oaobj

𝐹o 𝑗a−−−−→), and acting as 𝐹o
on self-conjugate homomorphisms. The action on 2-cells sends each involutive

natural transformations to itself, i.e. a natural transformation between involutive functors also

preserves the resulting self-conjugated structure. The forgetful functor U : SCA → A is then

natural as on the left.

SCA

SCC A

C

U

UF
C
SC

𝐺

SC𝐺SC 𝐹

nat.

=

⊣

⊣
We profit off of this obscene level of abstraction immediately: 2-functors

preserve all 2-adjunctions, since they transport the triangle equalities to

the appropriate triangle equalities. Therefore, if we have an involutive

adjunction 𝐹 ⊣ 𝐺 : A → C where C has a free self-conjugate object

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

38 G. Allais, E. Brady, N. Corbyn, O. Kammar, and J. Yallop

adjunction FCSC ⊣ U : SCC → C, we get the free self-conjugateA-object on

X as the composite 𝐹 (FCSCX) completely structurally, as on the right. Applying

this result to frals, we get the following generalisation of Prop. 4.1(fral):

Proposition D.2. Let T be a presentation equipped with an involutive structure over ModelT and
an involutive forgetful functor structure. Let (A, Env) be any free T model over the product (Bool,X).
Then the following structure exhibits A as the free self-conjugate T -model over X:

𝑗A : A
𝜉−1

−−→ A
≫=(¬×id)
−−−−−−−−→ A

Env′ : X
λx.(False,x)
−−−−−−−−−−−→ (Bool,X) (≫=′ f) : A

≫=λ(b,x) .

𝑏 = True : 𝑗a (f x)
𝑏 = False : f x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ a

Having dealt with the fral, we turn to the frex. Jacobs proves that if (a1+a2, 𝜄1, 𝜄2) is a coproduct of a1
and a2 in an involutive category, then (a1 + a2, 𝜄1, 𝜄2) is a coproduct of a1 and a2. The unique cotupling

morphism in the universal property, for each h𝑖 : a𝑖 → b, is [h1, h2] : a1 + a2
[h1◦𝜈−1,h2◦𝜈−1]−−−−−−−−−−−−→ b

𝜈−→ b. If

each a𝑖 has a self-conjugate structure 𝑗𝑖 : a𝑖 → a𝑖 , then the coproduct a1 + a2 has a self-conjugate

structure given by 𝑗1 + 𝑗2 := [𝜄1 ◦ 𝑗1, 𝜄2 ◦ 𝑗2] : a1 + a2 → a1 + a2. Since the frex a[X] can be construct

as the coproduct of the model a with the fral on X, we generalise Prop. 4.1(frex):

Proposition D.3. Let T be a presentation equipped with an involutive structure over ModelT
and an involutive forgetful functor structure, and a be a self-conjugate T -model. Let (A, Var, Embed) be
any T -frex of aobj by the product (Bool,X). Then the following structure exhibits A as the frex of the
self-conjugate T -model a by X, for h : a→ c involutive monoid homomorphism and function e : X→ c:

𝑗 : A

[
aobj

𝜈−1−−→ aobj
𝑗a−−→ a

Embed−−−−−→ A, (Bool,X)
¬×id−−−−→ (Bool,X)

Var−−−→ U A
𝜉−1

−−→ U A

]
−−→ A

𝜈−→ A

Var
′
: X

λx.(False,x)
−−−−−−−−−−−→ (Bool,X)

Var−−−→ A Embed : aobj
Embed−−−−−→ A

[h, e] : A

ℎ, λ(b,𝑥).
{
b = True : 𝑗c (e x)
b = False : (e x)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ c

Frex does not yet implement this proposition in its full generality, since it would require a

substantial amount of additional infrastructure, either inside Frex or as part of a category-theory

library for Idris2. For example, the type of the construction requires a categorical equivalence

between some ModelT ′ for the presentation T ′ of involutive T -models and the self-conjugate

T -models. Frex currently only implements the special case of Prop. 4.1, with its specialised proof.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article . Publication date: October 2025.

	Abstract
	1 Introduction
	1.1 Representation Theorems
	1.2 Paper Outline and Contributions

	2 Mathematical Overview
	2.1 Presentations of Algebraic Structures
	2.2 Homomorphisms, Free Models/Algebras, and Free Extensions
	2.3 Setoids

	3 Universal Algebra in Frex
	4 Free Extensions and Free Models/Algebras
	4.1 Universal Properties
	4.2 Solver interface
	4.3 Powers
	4.4 Frex via Coproducts with Fral
	4.5 Fral via a Frex
	4.6 Reusing Frexlets

	5 Completeness and Certification
	5.1 Completeness
	5.2 Representing certificates
	5.3 Proof Simplication

	6 Goal Extraction via Reflection
	7 Supplementary Evaluation: Usability and Interactive Development
	7.1 Quantitative evaluation.
	7.2 Qualitative evaluation.

	8 System Design Lessons
	8.1 Idris2
	8.2 Agda

	9 Related Work
	10 Conclusions and Further Work
	Acknowledgments
	References
	A Module Structure of Frex
	B Extensional Function and Quotient Setoids
	C Proof Printing and Certification
	D Modularity with Involutive Algebras

