
Modular construction of multi-sorted free extensions
(short paper)

Guillaume Allais
guillaume.allais@ens-lyon.org
University of St. Andrews

St. Andrews, Fife, Scotland, UK

Nathan Corbyn
nathan.corbyn@cs.ox.ac.uk

University of Oxford
Oxford, England, UK

Ohad Kammar
ohad.kammar@ed.ac.uk
University of Edinburgh
Edinburgh, Scotland, UK

Nachiappan Valliappan
nachivpn@gmail.com
Chalmers University
Gothenburg, Sweden

Sam Lindley
Sam.Lindley@ed.ac.uk
University of Edinburgh
Edinburgh, Scotland, UK

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk
University of Cambridge
Cambridge, England, UK

Abstract
The free extension (frex) offers a uniform theoretical foun-
dation for the collection of partial-evaluation techniques
known as partially-static data structures. In the frex method-
ology, proposed by Yallop et al. (2018), to define the partially
static representation of a concrete semantic domain, we: (1)
identify an algebraic signature for expressions in this seman-
tic domain; (2) identify a collection of semantic equations
with respect to which we wish to optimise expressions in
this domain; and (3) design a data-structure, the partially-
static representation, satisfying the specification given by
the universal property of the free extension of the concrete
semantic domain with a set of variables. Since universal prop-
erties are given up-to a unique canonical isomorphism, such
specifications allow us to formulate the way in which differ-
ent partially-static representations compare or differ. This
uniform identification of the partially-static representations
allows Yallop et al. to treat them uniformly in a single library.
We report about ongoing work concerning using existing
free extensions (frexes) for component theories to construct
frexes for combined theories.

We begin with a brief recourse of multi-sorted universal al-
gebra and its application, through frex, to partial evaluation.
Next, we describe a modular construction of an involutive
algebra frex out of the frex of the underlying algebra. This
construction encompasses situations such as: string concate-
nation and reversal; complex number addition/multiplication
and conjugation; matrix addition/multiplication and trans-
pose. The second modular construction concerns the free
multi-sorted extension of a graph of algebras and homomor-
phisms between them, using the single-sorted frex for each
algebra. Examples here cover monoids with (concrete) fold
operators on them, as well as calculations that come up when
mechanising the calculations involved in establishing the
frex universal property (Allais et al. 2023). The key insight
here is using the set of nodes from which we can reach each
node in the graph. For the final construction, we describe
ongoing work on Hyland and Power’s distributive combina-
tion of theories. These can account for the combinations of

non-deterministic choice with probabilistic choice, and we
offer a generalisation that accounts for non-affine theories.
We conclude by outlining prospects and further directions.

Keywords: free extension, algebra, partial evaluation

1 Introduction
Representing code fragments modulo semantic equivalences
is a recurring problem in partial evaluation and code gen-
eration [e.g. Carette and Kiselyov 2011; Carette et al. 2009;
Kiselyov et al. 2004; Rompf et al. 2013; Yallop 2017]. Con-
sider the arithmetic expression 2 + (𝑥 − 2 + 𝑥), where 𝑥 will
take integer values. One common optimisation technique
first calculates a representation of the expression modulo
the semantic equivalences — associativity, commutativity,
etc. — and evaluation of constants. In this case, we can rep-
resent the expression as the pair ⟨0, 2⟩ ∈ Z × N, where the
first component represents the sum of the statically known
summands, and the second component represents the linear
coefficient of the dynamically known summand. From this
representation, we can generate themore efficient expression
2𝑥 . These kind of representations generalize partially-static
data structures [Mogensen 1988] — i.e. values that contain
both static fields and fields whose values are known only
dynamically. As the collection of syntactic constructs and
associated semantic equivalences grows, the partially-static
representation changes, potentially substantially. Here, we
demonstrate modular construction of these data structures,
combining representations for simpler collections of syntac-
tic constructs and associated equations to form a representa-
tion for the combined operations and equations.

More recently, Yallop et al. [2018] proposed a unifying the-
ory for specifying (generalized) partially-static data-structures
by recourse to universal algebra. We specify:
• expressions by algebraic terms over an algebraic sig-
natures of 𝑛-ary operators over a carrier set, e.g. a
binary operator (∗) : carrier2 → carrier and nullary
operator 𝑒 : carrier0 → carrier;
• semantic equations by algebraic axioms between such

terms with free variables, e.g. 𝑥 ∗𝑦 = 𝑦∗𝑥 and 𝑒∗𝑥 = 𝑥 ;

https://orcid.org/0000-0002-2071-0929

Allais et al.

• static values are elements of an algebra for this sig-
nature validating the equations, e.g. the commutative
monoid (Z, (+), 0) interpreting carrier := Z, (∗) := (+)
and 𝑒 := 0; and
• the partially-static data structure represents the free
extension (frex) of this algebra by a set of variables,
e.g. we represent the extension with a single variable
𝑥 by Z × N through the identification:

⟨𝑎, 𝑛⟩ ↔ 𝑎 + 𝑛 · 𝑥

The frex offers a uniform theoretical foundation for these
diverse data structures. Yallop et al. developed libraries for
staging-based optimisations with a nonetheless uniform,
frex-based, interface. We report about ongoing development
where we use frexes for component algebraic theories to
obtain frexes for combined theories.
To keep this manuscript self-contained, we start with a

tutorial on universal algebra and free extensions. To nonethe-
less provide novelty still, we present multi-frex in S2: free
extensions of multi-sorted theories. These results are stan-
dard and the theoretical development is near-identical for
the multi-sorted case, but the current sequence of frex pa-
pers has not yet presented the multi-sorted development,
which we hope strikes a good balance as an introduction in
a research manuscript. In the accompanying talk, we plan to
stay closer to the examples and intuition, and refer interested
readers to this manuscript for details.

Our contributions:
• S3: We re-use a frex for T -algebras to construct a frex
for involutive T -algebras: those with an involution.
E.g.: lists with reversal, matrices with transposition,
complex numbers and quaternions with conjugation.
This reuse ismodular in the following sense.We define
a frex partial evaluator for an involutive T -algebra by
re-using the frex for its underlying T -algebra. Specif-
ically, we define the evaluator for the additional invo-
lution operation solely through recourse to the frex
interface. Therefore, with every implementation of
a frex partial evaluator for a theory T , we can also
generically derive implementations for partial evalua-
tors to its involutive T -algebras.
• S4: We similarly re-use a frex for T -algebras to con-
struct a frex for a family of T -algebras related by a
graph of T -homomorphisms. E.g.: logarithms and ex-
ponentials, map-fusion for lists, map-reduce for lists.
• In ongoing work, we consider the distributive com-
bination of two theories [Hyland and Power 2006],
which we hope to use to construct ring simplifiers out
of monoid simplifiers. Covering this work in detail
is beyond the scope of this manuscript, and we will
mention it briefly in the concluding S5.

We conclude (S5) with other prospects and further direc-
tions. Most importantly, the work to date is theoretical in

nature, and establishes the correctness of the proposed data-
structures and normalisation procedures. We hope to begin
the implementation phase in the near future.

2 Multi-sorted free extensions
To be able to deal with algebras generically, we need generic
descriptions of the syntax and semantics of algebraic struc-
tures, and use multi-sorted universal algebra.

2.1 Syntax
The data we need for the syntax is a multi-sorted signature

Σ =
〈
sortΣ , operatorΣ , arityΣ

〉
consisting of:
• a set sortΣ : we call its elements 𝑠 sorts;
• a set operatorΣ : we call its elements op operators;
• a function arityΣ : operatorΣ → (List sortΣ) × sortΣ :
when arityΣ (op) =

〈
⟨𝑠1, . . . , 𝑠𝑛⟩, 𝑠

〉
, we:

– write ⊢Σ op : 𝑠1 × · · · × 𝑠𝑛 → 𝑠 and call:
– 𝑠 the sort of the operator,
– ⟨𝑠1, . . . , 𝑠𝑛⟩ its arity, and
– say that the operator is 𝑛-ary.

Example 2.1 (multiplicative and additive signatures). We
define the signature multiplicative by:
• a single sort sort := {carrier};
• two operators operator := {(·), 1}
• their arities ⊢ (·) : carrier × carrier → carrier and
⊢ 1 : () → carrier;

We use standard syntactic conventions to present such data
briefly, e.g. we define the similar signature additive with the
same, single, sort carrier and operators:

⊢ (+) : carrier2 → carrier ⊢ 0 : carrier

Example 2.2. The signature FinDim of finite dimensional
transformations, with which we describe linear transforma-
tions / matrix multiplication has as sort Hom(𝑚,𝑛) for each
pair of natural numbers𝑚,𝑛 ∈ N and two operators:
⊢ (◦𝑚,𝑛,𝑘) : Hom(𝑛, 𝑘) × Hom(𝑚,𝑛) → Hom(𝑚,𝑘)
⊢ Id𝑛 : Hom(𝑛, 𝑛).
This example makes essential use of multiple sorts.

Example 2.3 (involution). Given a single-sorted signature
Σ , i.e. sortΣ = {𝑠}, we form its associated involutive signature
invΣ by formally adding a unary operator ⊢ (−) : 𝑠 → 𝑠 . For
FinDim, we define two involutive signatures by adding one
of the following sequences of unary operators:

• ⊢invrevΣ (−)𝑚,𝑛 : Hom(𝑛,𝑚) → Hom(𝑚,𝑛): reversing
• ⊢invidΣ (−)𝑚,𝑛 : Hom(𝑚,𝑛) → Hom(𝑚,𝑛): direct

Given a signature Σ , a Σ-algebra 𝐴 consists of:
• an assignment of a set 𝐴 ⎜𝑠⨆︁sort to every 𝑠 ∈ sortΣ ;

Modular construction of multi-sorted free extensions

• an assignment of a function:

𝐴 ⎜op⨆︁op : (𝐴 ⎜𝑠1⨆︁sort × · · · ×𝐴 ⎜𝑠𝑛⨆︁sort) → 𝐴 ⎜𝑠⨆︁sort
to every operator ⊢Σ op : 𝑠1 × · · · × 𝑠𝑛 → 𝑠 in Σ .

Example 2.4. A multiplicative-algebra 𝐴 then amounts to
a triple

〈
𝐴 ⎜carrier⨆︁sort , 𝐴 ⎜(·)⨆︁op , 𝐴 ⎜1⨆︁op

〉
consisting of:

• a set 𝐴 ⎜carrier⨆︁sort called the carrier ;
• a binary operation 𝐴 ⎜(·)⨆︁op : ⎜carrier⨆︁2 → ⎜carrier⨆︁
called multiplication; and
• an element 𝐴 ⎜⟨⟩⨆︁op ∈ 𝐴 ⎜carrier⨆︁sort called the unit.

An additive-algebra 𝐴 consists of the same data. We thus
have the multiplicative-algebras ⟨N, (·), 1⟩, ⟨Z, (·), 1⟩, and
so on given by arithmetic multiplication over the naturals,
integers, etc., and the corresponding additive-algebras over
the same carriers given by the arithmetic addition. The same
carriers also have other algebraic structures, for example the
additive-algebra given by ⟨N,max, 0⟩.

Example 2.5. LetMR𝑚×𝑛 be the set of𝑚 rows by 𝑛 columns
matrices with real-number entries. We define a FinDim-
algebra by matrix multiplication:

⎜Hom(𝑚,𝑛)⨆︁ B MR𝑚×𝑛
⎜(◦)𝑚,𝑛,𝑘⨆︁ B (·) ⎜Id𝑛⨆︁ B 𝐼𝑛 B

(1 0 · · · 0
0 1 · · · 0
...
...
. . .

...
0 0 · · · 1

)
This example makes essential use of multiple sorts.

Example 2.6. The multiplicative-algebra ⟨S, (++), 𝜀⟩ given
by the set of strings over some alphabet of letters L together
with string concatenation and the empty string extends to an
invmultiplicative-algebra ⟨S, (++), 𝜀, (−)rev⟩ by interpreting
the additional operation using string reversal:

(𝑎1 · · ·𝑎𝑛)rev := 𝑎𝑛 · · ·𝑎1

The FinDim-algebra of matrix multiplication has a reversing
involution, i.e., a invrevFinDim-algebra structure, given by
matrix transposition:

©­«
𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
...

...
. . .

...
𝑎𝑚1 𝑎𝑚2 · · · 𝑎𝑚𝑛

ª®¬
t

B
©­«
𝑎11 𝑎21 · · · 𝑎𝑚1
𝑎12 𝑎22 · · · 𝑎𝑚2
...

...
. . .

...
𝑎1𝑛 𝑎2𝑛 · · · 𝑎𝑚𝑛

ª®¬
The FinDim-algebra of matrices with complex number en-
tries together with multiplication has a direct/non-reversing
involution given by mapping the complex conjugation invo-
lution (𝑎 + 𝑖𝑏) B 𝑎 − 𝑖𝑏 on its entries:

©­«
𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
...

...
. . .

...
𝑎𝑚1 𝑎𝑚2 · · · 𝑎𝑚𝑛

ª®¬
conj

:= ©­«
𝑎11 𝑎12 · · · 𝑎1𝑛
𝑎21 𝑎22 · · · 𝑎2𝑛
...

...
. . .

...
𝑎𝑚1 𝑎𝑚2 · · · 𝑎𝑚𝑛

ª®¬
The last two examples make essential use of multiple sorts.

2.2 Terms
Given a set sort, a sort-indexed family 𝑋 is a sequence of
sets ⟨𝑋 ⎜𝑠⨆︁⟩𝑠∈sort indexed by the elements of sort. Given a
signature Σ and a sortΣ -indexed family𝑋 , we define the sort-
indexed family TermΣ 𝑋 of Σ-terms over 𝑋 by induction:

𝑥 ∈ 𝑋 ⎜𝑠⨆︁
var𝑥 ∈ TermΣ 𝑋 ⎜𝑠⨆︁

𝑠 ∈ sort

𝑡𝑖 ∈ TermΣ 𝑋 ⎜𝑠𝑖⨆︁
op(𝑡1, . . . , 𝑡𝑛) ∈ TermΣ 𝑋 ⎜𝑠⨆︁

op : 𝑠1 × · · · 𝑠𝑛 → 𝑠

This family extends to a Σ-algebra by defining:

TermΣ ⎜op⨆︁op (𝑡1, . . . , 𝑡𝑛) := op(𝑡1, . . . , 𝑡𝑛)

Example 2.7. The following expressions are additive-terms
over 𝑋 ⎜carrier⨆︁ := {1, 2, 3}:

var 2 + ((var 1 + var 3) + var 1) var 1 + var 1

equivalently, by setting 𝑥 B var 1, 𝑦 B var 2, 𝑧 B var 3:

𝑦 + ((𝑥 + 𝑧) + 𝑥) 𝑥 + 𝑥

So TermΣ 𝑋 is an algebra over abstract syntax trees whose
nodes are Σ-operators with variables taken from 𝑋 . The
family of variables 𝑋 embeds into terms by the sort-indexed
family of functions var𝑠 : 𝑋 ⎜𝑠⨆︁→ TermΣ 𝑋 ⎜𝑠⨆︁.

2.3 Homomorphisms
A Σ-homomorphism ℎ : 𝐴 → 𝐵 between Σ-algebras is a
sortΣ -indexed family of functions ℎ𝑠 : 𝐴 ⎜𝑠⨆︁ → 𝐵 ⎜𝑠⨆︁ that
moreover satisfy the following equation for every op : 𝑠1 ×
· · · × 𝑠𝑛 → 𝑠 and (𝑎1, . . . , 𝑎𝑛) ∈ 𝐴 ⎜𝑠1⨆︁ × · · · ×𝐴 ⎜𝑠𝑛⨆︁:

ℎ𝑠 (𝐴 ⎜op⨆︁ (𝑎1, . . . , 𝑎𝑛) = 𝐵 ⎜op⨆︁ (ℎ𝑠1𝑎1, . . . , ℎ𝑠𝑛𝑎𝑛)
Example 2.8. For every positive real number 𝑟 > 0, we
have two multiplicative-homomorphisms:

𝑟− : ⟨R, (+), 0⟩ → ⟨(0,∞), (·), 1⟩
log𝑟 : ⟨(0,∞), (·), 1⟩ → ⟨R, (+), 0⟩

since 𝑟𝑎+𝑏 = 𝑟𝑎 · 𝑟𝑏 , 𝑟 0 = 1 and log𝑟 𝑎 · 𝑏 = log𝑟 𝑎 + log𝑟 𝑏,
log𝑟 1 = 0.

Example 2.9. Conjugation is amultiplicative and additive-
homomorphism between the corresponding algebras over
the complex numbers, since: 𝑧1 + 𝑧2 = 𝑧1 + 𝑧2, 0 = 0 and
𝑧1 · 𝑧2 = 𝑧1 · 𝑧2, 1 = 1.

Similarly, component-wise conjugation is a FinDim-homo-
morphism (−)conj : MC → MC, and this example makes
essential use of multiple sorts. However, transposition is
not a homomorphism (−)t : M → M since it is not a sort-
indexed family of functions: the domain and codomain of its
components have different sorts.

Allais et al.

2.4 Equations and axioms
A Σ-equation in context 𝑋 ⊢ 𝑙 ≈ 𝑟 : 𝑠 consists of:
• a sortΣ -family 𝑋 ;
• a sort 𝑠 ∈ sortΣ ; and
• two Σ-terms over 𝑋 : 𝑙, 𝑟 ∈ TermΣ 𝑋 ⎜𝑠⨆︁ called the
left-hand-side (LHS) and the right-hand-side (RHS).

Example 2.10. The multiplicative associativity equation:

𝑥,𝑦, 𝑧 : carrier ⊢ var𝑥 · (var𝑦 · var 𝑧)
≈ (var𝑥 · var𝑦) · var 𝑧 : carrier

For brevity, we’ll omit the injection var and the sort. For
example, the neutrality equations are:

𝑥 : carrier ⊢ 𝑥 · 1 ≈ 𝑥 𝑥 : carrier ⊢ 1 · 𝑥 ≈ 𝑥

A presentation T = ⟨ΣT ,AxT⟩ consists of:
• a signature ΣT ; and
• a set AxT of Σ-equations called axioms.

Example 2.11. The Monoid presentation axioms are asso-
ciativity and neutrality over the multiplicative signature.
The CommutativeMonoid presentation has the additive

signature, and as axioms the analogous associativity and neu-
trality equations, with the following commutativity axiom:

𝑥,𝑦 : carrier ⊢ 𝑥 + 𝑦 ≈ 𝑦 + 𝑥

Example 2.12. The presentation FinTrans of finite dimen-
sional transformations over the signature FinDim has multi-
sorted analogues for associativity and neutrality:

𝑓 : Hom(𝑘, ℓ), 𝑔 : Hom(𝑛, 𝑘), ℎ : Hom(𝑚,𝑛) ⊢
𝑓 ◦ (𝑔 ◦ ℎ) ≈ (𝑓 ◦ 𝑔) ◦ ℎ : Hom(𝑚, ℓ)

𝑓 : Hom(𝑚,𝑛) ⊢ 𝑓 ◦ Id𝑚 ≈ 𝑓 : Hom(𝑚,𝑛)
𝑓 : Hom(𝑚,𝑛) ⊢ Id𝑛 ◦ 𝑓 ≈ 𝑓 : Hom(𝑚,𝑛)

This example makes essential use of multiple sorts.

Example 2.13. The presentation invrevMonoid of reversing
involutive monoids over the multiplicative signature adds
the three involutive axioms:

𝑥 : carrier ⊢ 𝑥 ≈ 𝑥 𝑥,𝑦 : carrier ⊢ 𝑥 · 𝑦 ≈ 𝑦 · 𝑥 ⊢ 1 ≈ 1

The presentation invIdMonoid of non-reversing involutive
monoids changes the middle axiom to:

𝑥,𝑦 : carrier ⊢ 𝑥 · 𝑦 ≈ 𝑥 · 𝑦
By a similar process, define the presentations invrevFinTrans,
and invIdFinTrans, with the following axioms:

𝑓 : Hom(𝑛, 𝑘), 𝑔 : Hom(𝑚,𝑛) ⊢

𝑓 ◦ 𝑔 ≈ 𝑔 ◦ 𝑓 : Hom(𝑘,𝑚) (reversing)

𝑓 ◦ 𝑔 ≈ 𝑓 ◦ 𝑔 : Hom(𝑚,𝑘) (direct)

The last two examples make essential use of multiple sorts.

2.5 Validity
Let 𝐴 be a Σ-algebra, and 𝑋 a sort-indexed family. An 𝑋 -
environment in 𝐴 𝑒 is a sort-indexed function 𝑒 : 𝑋 →
𝐴 ⎜−⨆︁sort assigning to each variable in𝑋 ⎜𝑠⨆︁ an𝐴-value of the
same sort. Every𝑋 -environment 𝑒 in𝐴 induces an homormor-
phic interpretation Σ-homomorphism 𝐴 ⎜−⨆︁ 𝑒 : TermΣ 𝑋 →
𝐴 given inductively by:

𝐴 ⎜var𝑥 : 𝑠⨆︁ 𝑒 B 𝑒𝑠𝑥

𝐴 ⎜op(𝑡1, . . . , 𝑡𝑛)⨆︁ 𝑒 B 𝐴 ⎜op⨆︁ (𝐴 ⎜𝑡1⨆︁ 𝑒, . . . , 𝐴 ⎜𝑡𝑛⨆︁)
A Σ algebra 𝐴 validates a Σ-equation 𝑋 ⊢ 𝑙 ≈ 𝑟 : 𝑠 when,

for every 𝑋 -environment 𝑒 in 𝐴 we have 𝐴 ⎜𝑙⨆︁ 𝑒 = 𝐴 ⎜𝑟⨆︁ 𝑒 .
Given a presentation T , a T -algebra is then a ΣT-algebra
that validates all the axioms in T .

By this point we hope it’s clear that a monoid is aMonoid-
algebra, a commutative monoid is a CommutativeMonoid-
algebra, and so on.

Example 2.14. The algebra of finite-dimensional linear trans-
formations is the FinDim-algebra M, which validates the
axioms of FinTrans. Its extension with transposition vali-
dates the axioms of invrevFinTrans. The analogous algebra
of complex-valued matrices with component-wise conju-
gation validates the axioms of invidFinTrans. All of these
examples make essential use of multiple sorts.

2.6 Free extensions
We now have the vocabulary to talk generically about al-
gebraic expressions over a concrete domain of discourse,
extended with a collection of free variables modulo some
behavioural equivalences and evaluation. We represent the
semantic equivalences by considering a presentation T , e.g.,
CommutativeMonoid. The domain of discourse is a T -al-
gebra 𝐴, e.g., (Z, (·), 1). The collection of free variables we
wish to adjoin is given by a sortΣT -indexed family 𝑋 , e.g.,
{𝑥1, . . . , 𝑥𝑘 : carrier}. Since our extended domain should sup-
port the operations in the signature ΣT and satisfy the be-
havioural equivalences of interest, we are looking for another
T -algebra, 𝐴[𝑋]. For, e.g., CommutativeMonoid it means
𝐴[𝑋] supports a commutative associative binary operation
and a neutral element. Since variables (= placeholders for
dynamic values) ought to embed into the extended algebra,
we want a sort-indexed function dyn : 𝑋 → 𝐴[𝑋] ⎜−⨆︁sort .
It allows us to express fully dynamic expressions such as
dyn𝑥 · dyn𝑦. Since we want the algebra 𝐴 (of static val-
ues) to embed into the extended algebra and preserve its
behaviour, we want a Σ-homomorphism sta : 𝐴 → 𝐴[𝑋].
It allows us to express partially-static expressiong such as
sta 2 · dyn𝑥 · sta(−3) which, together with the axioms in the
theory and the homomorphism condition must be equivalent
to sta(−6) · dyn𝑥 . Summarising these properties, we want
to single out a triple ⟨𝐴[𝑋], sta, dyn⟩ out of the collection of
triples ⟨𝐵,ℎ, 𝑒⟩ consisting of:
• a T -algebra 𝐵;

Modular construction of multi-sorted free extensions

ax ∈ AxT
ax

(axiom) 𝑋 ⊢ 𝑡 ≈ 𝑡 : 𝑠 (reflexivity)

𝑋 ⊢ 𝑙 ≈ 𝑟 : 𝑠
𝑋 ⊢ 𝑟 ≈ 𝑙 : 𝑠

(symmetry)

𝑋 ⊢ 𝑙 ≈𝑚 : 𝑠 𝑋 ⊢ 𝑚 ≈ 𝑟 : 𝑠
𝑋 ⊢ 𝑟 ≈ 𝑙 : 𝑠

(transitivity)

𝑋 ⊢ 𝑙 ≈ 𝑟 : 𝑠 𝜃 : 𝑋 → TermΣT 𝑌

𝑌 ⊢ 𝑙 [𝜃] ≈ 𝑟 [𝜃] : 𝑠
(substitution)

for 𝑖 = 1, . . . , 𝑛: 𝑋 ⊢ 𝑙𝑖 ≈ 𝑟𝑖 : 𝑠𝑖
𝑋 ⊢ op(𝑙1, . . . , 𝑙𝑛) ≈ op(𝑟1, . . . , 𝑟𝑛) : 𝑠

(congruence)

Figure 1. Provability

• a Σ-homomorphism ℎ : 𝐴→ 𝐵; and
• a sort-indexed function 𝑒 : 𝑋 → 𝐵 ⎜−⨆︁sort .

Let’s call such a triple an extension of 𝐴 by 𝑋 . One canon-
ical way to single out such a triple is to define structure-
preserving maps between extensions, and use a universal
property to single out freely. Formally an extension morphism
𝜑 : ⟨𝐵1, ℎ1, 𝑒1⟩ → ⟨𝐵2, ℎ2, 𝑒2⟩ consists of a Σ-homomorphism
𝜑 : 𝐵1 → 𝐵2 such that:

𝜑𝑠 (ℎ1,𝑠𝑎) = ℎ2,𝑠𝑎 (𝑎 ∈ 𝐴 ⎜𝑠⨆︁)
𝜑𝑠 (𝑒1,𝑠𝑥) = 𝑒2,𝑠𝑥 (𝑥 ∈ 𝑋 ⎜𝑠⨆︁)

An extension ⟨𝐴[𝑋], sta, dyn⟩ is then free when, for every
extension ⟨𝐴[𝑋], sta, dyn⟩ → ⟨𝐵,ℎ, 𝑒⟩, there is a unique ex-
tension morphism [𝐵;ℎ; 𝑒] : ⟨𝐴[𝑋], sta, dyn⟩ → ⟨𝐵,ℎ, 𝑒⟩.

To justify why free extensions are what we look for, here
is a more concrete characterisation of the free extension as a
quotient. Every presentation T induces an equivalence rela-
tion between terms using the deduction rules of multi-sorted
equational logic. Explicitly, we define the provability relation
𝑙 ⊢T 𝑟 ≈ 𝑠 : inductively as in Fig 1. It is the smallest relation
containing the axioms that is closed under the rules for an
equivalence (reflexivity, symmetry, and transitivity), substi-
tuting the same terms into equivalent terms (substitution),
and substitution by equals into the same term (congruence).

Now given any presentation T , let T𝐴 be the presentation:
• whose signature consists of:

– the same set of sorts; and
– the operations in ΣT together with newly adjoined

constants 𝑎
𝑠
: 𝑠 for every 𝑎 ∈ 𝐴 ⎜𝑠⨆︁; and

• whose axioms include the axioms in T , and in addi-
tion, for every op : 𝑠1 × · · · × 𝑠𝑛 → 𝑠 and (𝑎1, · · ·𝑎𝑛) ∈
𝐴 ⎜𝑠1⨆︁ × · · · ×𝐴 ⎜𝑠𝑛⨆︁, the axiom:

⊢ op(𝑎1, . . . , 𝑎𝑛) ≈ 𝐴 ⎜op⨆︁ (𝑎1, . . . , 𝑎𝑛) : 𝑠 (evaluation)

Then for every frex ⟨𝐴[𝑋], sta, dyn⟩ there is an isomor-
phism, i.e. a bijective homomorphism whose inverse is a ho-
momorphism,𝐴[𝑋] � (TermΣT𝐴

𝑋)/(𝑋 ⊢T𝐴). I.e., the carrier

sets are equivalence classes of terms modulo the evaluation
axioms and T ’s axioms. This quotient 𝑄 is an extension via:
• the homomorphism sta′ : 𝐴→ 𝑄 by sta′𝑎 B [𝑎]; and
• the functions dyn′ : 𝑋 → 𝑄 ⎜−⨆︁ by dyn′𝑠𝑥 B [var𝑥]

mapping𝐴-elements and variables to their equivalence class.
The isomorphism𝐴[𝑋] � 𝑄 is an isomorphism of extensions
⟨𝐴[𝑋], sta, dyn⟩ � ⟨𝑄, sta′, dyn′⟩. In this sense the free ex-
tension 𝐴[𝑋] represents terms-modulo-semantics.

Example 2.15. Let 𝐴 be a commutative monoid. Its frex by
a finite set of variables can be represented by:

𝐴[𝑥1, . . . , 𝑥𝑛] B 𝐴 ⎜carrier⨆︁ × N𝑛
this frex represents the term quotient via:〈

𝑎, ⟨𝑘1, . . . , 𝑘𝑛⟩
〉
↔ [𝑎 + 𝑘1 · 𝑥1 + · · · + 𝑘𝑛 · 𝑥𝑛]

When 𝑋 is an infinite set, use finite bags of variables:

𝐴[𝑋] B 𝐴 ⎜carrier⨆︁ × Bag(𝑋 ⎜carrier⨆︁)
⟨𝑎, N𝑥1 : 𝑘1, . . . , 𝑥𝑛 : 𝑘𝑛O⟩ ↔ [𝑎 + 𝑘1 · 𝑥1 + · · · + 𝑘𝑛 · 𝑥𝑛]

The remaining structure is given by:

⟨𝑎,𝑈 ⟩ + ⟨𝑏,𝑉 ⟩ := ⟨𝑎 + 𝑏,𝑈 ∪𝑉 ⟩ 0 B ⟨0, ∅⟩
sta𝑎 B ⟨𝑎, ∅⟩ dyn𝑥 B ⟨0, N𝑥 O⟩

[𝐵;ℎ; 𝑒] ⟨𝑎, N𝑥1 : 𝑘1, . . . , 𝑥𝑛 : 𝑘𝑛O⟩ B
ℎ 𝑎 + 𝑘1 · 𝑒 𝑥1 + · · · + 𝑘𝑛 · 𝑒 𝑥𝑛

Example 2.16. Let 𝐴 be a monoid. We define one possible
frex 𝐴[𝑋] as follows. Given a set 𝑈 and a relation (∼) over
𝑈 , we define the set List≁𝑈 of ∼-alternating lists over𝑈 by:

List≁𝑈 B
{
⟨𝑢1, . . . , 𝑢𝑛⟩ ∈ List𝑈

��∀𝑖 = 1, . . . , 𝑛.𝑢𝑖 ≁ 𝑢𝑖+1
}

Let 𝐴≠1 B {𝑎 ∈ 𝐴 ⎜carrier⨆︁|𝑎 ≠ 1} denote the non-neutral
elements. Take 𝐴[𝑋] to be the ∼-alternating lists over the
disjoint union 𝐴≠1 + (N+ × 𝑋) of the non-neutral elements
in the carrier 𝐴 and variables tagged with a positive natural.
We define the alternation relation by 𝑎 ∼ 𝑏 for all 𝑎, 𝑏 ∈ 𝐴
and (𝑛, 𝑥) ∼ (𝑚, 𝑥) for all 𝑥 ∈ 𝑋 . The alternation condition
means that consecutive variables are different, and every two
non-neutral 𝐴-elements are separated by at some variables.
The positive natural tagging each variable represents the
multiplicity in which it occurs.
To multiply frex elements, we concatenate them while

multiplying adjacent concrete elements, taking care to re-
move them if they cancel to 1. In that case, we also check
whether two adjacent variables are the same, and if so merge
them while adding their multiplicity.

Example 2.17. Let 𝐴 be any FinTrans-algebra, such asM,
and 𝑋 a set of variables. Take 𝐴[𝑋] ⎜Hom(𝑠, 𝑡)⨆︁ to be the ∼-
alternating lists over non-neutral elements of the dependent
sum

∑
𝑚,𝑛 (𝐴 ⎜Hom(𝑚,𝑛)⨆︁+𝑋 ⎜Hom(𝑚,𝑛)⨆︁) wherewe allow

the alternations ⟨𝑚,𝑛;𝑢⟩ ≁ ⟨𝑛, 𝑘 ; 𝑣⟩ of composable elements
and prohibit alternations of 𝐴-elements, and moreover only
include the empty list when 𝑠 = 𝑡 , and require that the source

Allais et al.

of the last-element and the target of the first element are 𝑠
and 𝑡 respectively.

Like themonoid frex, we compose composable elements by
concatenation, taking care to compose adjacent 𝐴-elements,
and deleting any resulting identity 𝐴 ⎜Id𝑛⨆︁. This example
makes essential use of multiple sorts.

Compact representations of the frex can be nuanced, or
maintain subtle semantic invariants. In the remainder of this
manuscript we explore ways in which we can modularly
combine these representations without compromising the
nuanced invariants, by maintaining the frex interface.

3 Involutive algebras
Consider a reversing involutive monoid 𝐴 (Ex. 2.9), and let
𝐴′ be the underlying monoid (i.e. we forget the involutive
operation). The basic observation in our first construction is
that we can represent𝐴[𝑋] using𝐴′[Bool×𝑋]. The boolean
tag marks whether a variable appears as involved. To involve
an element in this frex, which we represented as a list in
Ex. 2.16, we reverse the list, involve the concrete elements
(which maintains their non-neutrality thanks to the axiom
1 = 1), and negate the boolean tags on each variable while
maintaining its multiplicity. This operation may seem in-
volved at first sight, but we can access it generically — for
any frex of any presentation through the frex interface.
To do so, we use Jacobs’s [2021] axiomatisation of in-

volution, specialised to our concrete setting. An involutive
structure (−) for a presentation T consists of:

• an involutive permutation (−)sort : sort � sort on the
set of sorts, i.e. 𝑠 = 𝑠; and
• for each T -algebra 𝐴, a T -algebra 𝐴 such that:

– 𝐴 ⎜𝑠⨆︁ = 𝐴 ⎜𝑠⨆︁ for every 𝑠 ∈ sort; and
– 𝐴 = 𝐴.

Example 3.1. Monoids have the involutive structure (−)rev:
• carrierrev := carrier;
• 𝐴rev ⎜carrier⨆︁ B 𝐴 ⎜carrier⨆︁ and 𝐴rev ⎜1⨆︁ B 𝐴 ⎜1⨆︁;
and
• 𝐴rev ⎜(·)⨆︁ ⟨𝑥,𝑦⟩ B 𝑦 · 𝑥

The resulting multiplicative-algebra is a monoid since the
monoid axioms are symmetric under reversal, and it’s straight-
forward to check that (𝐴rev)rev = 𝐴.

Example 3.2. The presentation FinTrans has the following
involutive structure (−)rev:
• 𝐴 ⎜Hom(𝑚,𝑛)⨆︁ := Hom(𝑛,𝑚);
• 𝐴 ⎜Id𝑛⨆︁ := 𝐴 ⎜Id𝑛⨆︁, and 𝐴 ⎜(◦)⨆︁ ⟨𝑓 , 𝑔⟩ := 𝑔 ◦ 𝑓 .

This example makes essential use of multiple sorts.

Example 3.3. Given an “empty” sorted-signature, i.e. a set
sort of sorts, each involutive permutation (−) : sort � sort
induces an involutive structure on the sort-indexed sets.

Every presentation T has an identity involutive structure
that keeps the sorts and the algebras the same.

The ‘hidden’ structure behind the notion of an involutive
structure is that it extends to a functor on the T -algebras
that preserves an underlying involutive functor on the sort-
indexed families. While we do not make this structure more
explicit here, it powers our proofs.

Lemma 3.4. Let (−) be an involutive structure for T . Then
the components of every T -homomorphism ℎ : 𝐴→ 𝐵 form a
T -homomorphism ℎ : 𝐴→ 𝐵.

The purpose of involutive structures is to allow us to define
involutions in general. Let (−) be an involutive structure on
T . An (−)-involutive T -algebra

〈
𝐴, (−)

〉
consists of:

• a T -algebra 𝐴; and
• a T -homomorphism (−) : 𝐴→ 𝐴;

such that 𝑎 = 𝑎 for every 𝑎 ∈ 𝐴 ⎜𝑠⨆︁.
Example 3.5. In Ex. 2.9, we saw that a reversing involution
(−) over a monoid𝐴 is not amultiplicative-homomorphism.
The reversing involutive structure on monoids allows us to
see it as a homomorphism (−) : 𝐴→ 𝐴. We then have that
involutive monoids amount to involutive Monoid-algebras.

Example 3.6. Matrix transposition is a reversing involution
over the algebra of finite dimensional linear transformations.
Component-wise conjugation is a non-reversing involution
over the finite dimensional complex linear transformations.
These two examples make essential use of multiple sorts.

An involutive algebra homomorphism between two given
involutive algebras ℎ : ⟨𝐴, (−)⟩ → ⟨𝐵, (−)⟩ is a homomor-
phism ℎ : 𝐴 → 𝐵 that preserves the involution: ℎ 𝑎 = ℎ 𝑎.
We will now show that if the algebras for a presentation T
are involutive algebras for some presentation T then we can
construct frexes for T from frexes for T . More precisely: A
presentation of (−)-involutive T -algebras consists of:
• A presentation T with the same sorts: sortT = sortT .
• An equivalence 𝐸 : AlgT ≃ InvAlg(T , (−)) that pre-
serves the underlying indexed sets.

All of our examples for involutive algebras have associated
presentations in this sense.

Theorem 3.7 (modular frex construction for involutive alge-
bras). Let ⟨T , 𝐸⟩ be a presentation of (−)-involutive algebras,
and 𝐴 a T -algebra. Then:

𝐴[𝑋] := 𝐸−1
〈
𝐸𝐴[Bool × 𝑋], (−)

〉
sta is inherited as is, dyn𝑥 is given by dyn(false, 𝑥), and the
involution is given by ℎ : 𝐸𝐴[Bool × 𝑋] → 𝐸𝐴[Bool × 𝑋],
where ℎ is the unique T -homomorphism satisfying:

ℎ ◦ sta = sta ◦ −𝐸𝐴 ℎ ◦ dyn𝑠 = dyn𝑠 ◦ (¬) × (−)

Modular construction of multi-sorted free extensions

Example 3.8. In Ex. 3.5 we saw that involutive monoids
amount to involutiveMonoid-algebras. Thus, strings with
string reversal (Ex. 2.6) are a reversing involutive monoid,
and we can apply the theorem to the frex we constructed in
Ex. 2.16. For example, we can evaluate the following expres-
sion inside the frex with two adjoined variables 𝑋 B {𝑥,𝑦}:

(𝑥 ++ “ olleH”)rev ++ “, world” ++ 𝑦2

It evaluates to this alternating sequence:

(“Hello ”, (1, (true, 𝑥)), “, world”, (2, (false, 𝑦)))
which represents the normalised partially-static expression:

“Hello ” ++ 𝑥 rev ++ “, world” ++ 𝑦2

The homomorphism [sta;
(
𝑥 ↦→“ereht”
𝑦 ↦→“!!”

)
] maps the sequence to:

“Hello there, world!!!!”

Example 3.9. Similarly, we can use this theorem to partially
evaluate finite dimensional matrices with transposition. For
example, extending with a single 2-dimensional vector 𝑋 B
{𝑥 : Hom(2, 1)}, we can partially evaluate the expression:(2 0

0 1
) (
𝑥 t

(0 −1
1 0

)) t
𝑥 t

It evaluates to this alternating sequence:((0 2
−1 0

)
, (1, (false, 𝑥)), (1, (true, 𝑥))

)
which represents the normalised partially-static expression:(0 2

−1 0
)
𝑥𝑥 t

Each homomorphism [sta; (𝑥 ↦→ (𝑎 𝑏)t)] sends it to:(
2𝑏𝑎 𝑏2

−𝑎2 −𝑎𝑏

)
This example makes essential use of multiple sorts.

4 Homomorphism graphs
Consider the additive commutative monoid over the integers
⟨Z, (+), 0⟩ and the multiplicative commutative monoid over
the rationals ⟨Q, (·), 1⟩. For every integer 𝑎 ∈ Z we have a
homomorphism 𝑎 · (−) : ⟨Z, (+), 0⟩ → ⟨Z, (+), 0⟩, and, for
every positive rational 0 < 𝑞 ∈ Q, we have a homomorphism
𝑞− : ⟨Z, (+), 0⟩ → ⟨Q, (·), 1⟩:

𝑎 · (−) ⟨Z, (+), 0⟩ ⟨Q, (·), 1⟩𝑞−

We can write expressions involving exponents of rational
numbers, multiplication by integer constants, addition of
integer variables and multiplication of rational expressions,
for example 𝑥,𝑦 : Z, 𝑢 : Q ⊢ 52· (3·𝑥+𝑦) ·33·𝑦+2·𝑥 ·𝑢2 ·58·𝑦 . We’ll
show how to modularly construct frexes for such compound
terms, involving a graph of algebras of the same theory,
connected by homomorphisms. The whole section makes
essential use of multiple sorts: even if the starting theory is

single-sorted, whenever the ambient graph has more than 1
vertex, the resulting theory will have multiple sorts.

A quiver 𝑄 is a directed graph that allows loops and mul-
tiple edges between the same vertices (multidigraph), i.e., a
tuple

〈
V𝑄 , E𝑄 , src𝑄 , tgt𝑄

〉
consisting of:

• sets V𝑄 , vertices, and E𝑄 , edges; and
• functions src𝑄 , tgt𝑄 : E𝑄 → V𝑄 assigning to each
edge its source and target vertices.

When 𝑒 ∈ E𝑄 , src 𝑒 = 𝑢, tgt 𝑒 = 𝑣 , we write 𝑒 : 𝑢 → 𝑣 in 𝑄 .
Each quiver has an associated category of paths Path𝑄 : it has
the quiver’s vertices as objects, and a morphism 𝑝 : 𝑢 ⇝ 𝑣 is
a sequence, potentially empty, 𝑝 = ⟨𝑒1, . . . , 𝑒𝑛⟩ of composable
arrows, i.e.:
• src 𝑒1 = 𝑢, tgt 𝑒𝑛 = 𝑣 (when 𝑛 ≥ 1); and
• for all 1 ≤ 𝑖 < 𝑛, we have tgt 𝑒𝑖 = src 𝑒𝑖+1.

Example 4.1. We have a quiver with two vertices, say
integer and rational, and arrowsmult𝑎 : integer→ integer
for every integer 𝑎 ∈ Z and exp𝑞 : integer → rational for
every positive rational 0 < 𝑞 ∈ Q:

mult𝑎 integer rational
exp𝑞

It has the paths:
• ⟨mult 3,mult 2⟩ : integer⇝ integer
• ⟨⟩ : rational⇝ rational
• ⟨mult 3,mult 2, exp 5⟩ : integer⇝ rational

Let T be a presentation. A T -homomorphism graph 𝐺 is
a quiver

〈
V𝐺 , E𝐺 , src𝐺 , tgt𝐺

〉
together with a T -labelling

𝐺 ⎜−⨆︁, consisting of:
• for every vertex 𝑢 ∈ V𝐺 , a T -algebra 𝐺 ⎜𝑢⨆︁; and
• for every edge 𝑒 : 𝑢 → 𝑣 ∈ E𝐺 , a T -homomorphism
𝐺 ⎜𝑒⨆︁ : 𝐺 ⎜𝑢⨆︁→ 𝐺 ⎜𝑣⨆︁.

Such a labelling induces, via composition, the homomor-

phism 𝐺 ⎜𝑒1, . . . , 𝑒𝑛⨆︁ := 𝑢
⎜𝑒1⨆︁−−−→ · · ·

⎜𝑒𝑛⨆︁−−−→ 𝑣 for every path
⟨𝑒1, . . . , 𝑒𝑛⟩ : 𝑢 ⇝ 𝑣 .

Example 4.2. Our introductory example is a commutative
monoid homomorphism graph, labelling the quiver from
Ex. 4.1 by:
• ⎜integer⨆︁ B ⟨integer, (+), 0⟩;
• ⎜rational⨆︁ B ⟨Q, (·), 1⟩;
• ⎜mult𝑎⨆︁𝑥 := 𝑎 · 𝑥 ; and ⎜exp𝑞⨆︁𝑥 := 𝑞𝑥

For open terms, a T -homomorphism graph𝐺 over a quiver
𝑄𝐺 is an algebra for the following presentation 𝑄T :
• sorts are pairs ⟨𝑢, 𝑠⟩ ∈ V𝑄 × sortT , written as 𝑢𝑠 ;
• for each operation (𝑓 : 𝑠1 × · · · × 𝑠𝑛 → 𝑠) ∈ T and
vertex 𝑢 ∈ V𝑄 , an operation 𝑓𝑢 : 𝑢𝑠1 × · · · × 𝑢𝑠𝑛 → 𝑢𝑠 ;

Allais et al.

• for every edge 𝑒 : 𝑢 → 𝑣 in 𝑄 and sort 𝑠 ∈ sortT , an
operation 𝑒𝑠 : 𝑢𝑠 → 𝑣𝑠 ;
• for every axiom ax ∈ T and vertex 𝑢 ∈ V𝑄 , a “copy”

of ax in which we label each sort and operation by 𝑢;
these state that each ⟨𝑢𝑠⟩𝑠 will form a T -algebra 𝑢;
• for every operation 𝑓 : 𝑠1 × · · · × 𝑠𝑛 → 𝑠 and edge
𝑒 : 𝑢 → 𝑣 , the axiom:

𝑥1 : 𝑢𝑠1 , . . . , 𝑥𝑛 : 𝑢𝑠𝑛 ⊢
𝑒𝑠 (𝑓𝑢 (𝑥1, . . . , 𝑥𝑛)) = 𝑓𝑣 (𝑒𝑠1𝑥1, . . . , 𝑒𝑠𝑛𝑥𝑛)

i.e., each ⟨𝑒𝑠⟩𝑠 is a T -homomorphism 𝑒 : 𝑢 → 𝑣 .
Thus a T -homomorphism graph over𝑄 is a𝑄T-algebra, and
we may talk about the frex of a T -homomorphism graph.

Example 4.3 (map fusion). We use homomorphism graphs
to partially-evaluate map-fusion operations on lists.
Let I be a collection of sets and F a collection of func-

tions 𝑓 : 𝑎 → 𝑏, 𝑓 ∈ F between sets 𝑎, 𝑏 ∈ I in I. Consider
computations involving map 𝑓 , for any 𝑓 ∈ F , and list con-
catenation (++) : List 𝑎 → List 𝑎 → List 𝑎, 𝑎 ∈ I and the
empty list []. The associated homomorphism graph𝐺 (I, F)
over the theory of monoids has I as vertices, interpreting
each vertex 𝑎 ∈ I as the (free) monoids ⟨List𝑎, (++), []⟩. The
edges are F interpreting each edge (𝑓 : 𝑎 → 𝑏) ∈ F as the
homomorphism map 𝑓 : ⟨List𝑎, (++), []⟩ → ⟨List𝑏, (++), []⟩.
The terms in 𝑄 (I, F)T express map operations:

map 𝑓 (𝑥1 ++map𝑔 𝑥2 ++map𝑔 𝑥3)

Example 4.4 (map-reduce). Generalising the previous ex-
ample, let J be further a collection of monoids, and H
a collection of homomorphisms between the monoids in
List[I] ∪ J . The homomorphism graph𝐺 (I,J , F ,H) has
as vertices the union ⟨List [I], (++), []⟩ ∪ J , with each each
monoid denoting itself. The edges are the homomorphisms
map [F] ∪ H denoting themselves.
The terms in 𝐺 (I,J , F ,H)T express homomorphisms

between the monoids, including map, and reduce operations:
⟨𝑏, (∗), 𝑒⟩ ∈ V 𝑣 : 𝑎 → 𝑏, (⌄= 𝑣 : List𝑎 → ⟨𝑏, (∗), 𝑒⟩) ∈ E

reduce (∗) 𝑒 𝑣 : List 𝑎 → 𝑏

Turning to the frex, given a homomorphism graph, its
extending set 𝑋 is a V𝐺 × sort-indexed set 𝑋 of variables,
extending each sort of the algebra at each vertex. Central is
this V𝐺 × sort-indexed set and the action of paths on it:

(P𝐺𝑋)𝑢,𝑠 B
∑︁
𝑣∈V

𝑝∈Path (𝑣,𝑢)

𝑋 ⎜(𝑣, 𝑠)⨆︁

(⊙) : Path (𝑢1, 𝑢2) × (P𝐺𝑋)𝑢1,𝑠 → (P𝐺𝑋)𝑢2,𝑠〈
𝑝, ⟨𝑣, 𝑞, 𝑥⟩

〉
↦→ ⟨𝑣, 𝑝 ◦ 𝑞, 𝑥⟩

They are crucial because the variables extending sort 𝑠 of
vertex 𝑣 contribute terms to expressions of the same sort
but at vertex 𝑢 when we promote them along a sequence
of homomorphism edges, i.e., a path, 𝑝 : 𝑣 ⇝ 𝑢. Thus

we’ll be interpreting the vertex 𝑢 in the frex 𝐺 [𝑋] by the
frex of its underlying algebra 𝐺 ⎜𝑢⨆︁ [(P𝑋)𝑢]. The action
(⊙) lets us equip the frex 𝐺 ⎜𝑢⨆︁ [(P𝑋)𝑢,−] with the struc-
ture of an extension of 𝐺 ⎜𝑢 ′⨆︁ by (P𝑋)𝑢′,− for any edge
𝑒 : 𝑢 ′→ 𝑢 in 𝐺 , which we’ll use to interpret the homomor-
phism 𝐺 [𝑋] ⎜𝑒⨆︁ : 𝐺 ⎜𝑢 ′⨆︁ [(P𝑋)𝑢′] → 𝐺 ⎜𝑢⨆︁ [(P𝑋)𝑢]. These
data form a homomorphism graph, and in fact form the frex.
Indeed, given any extension 𝐺

ℎ−→ 𝐵
𝑒←− 𝑋 , we thus obtain a

family of vertex-wise extensions 𝐺 ⎜𝑢⨆︁ ℎ𝑢−−→ 𝐵 ⎜𝑢⨆︁ 𝑒𝑢←−− 𝑋 ⎜𝑢⨆︁,
from which we may construct a vertex-wise family of homo-

morphisms 𝐺 ⎜𝑢⨆︁ [(P𝑋)𝑢] ℎ𝑢−−→ 𝐵 ⎜𝑢⨆︁. In summary:

Theorem 4.5. Given a homomorphism graph 𝐺 and a V𝐺 ×
sort-indexed set 𝑋 of variables, the frex 𝐺 [𝑋] is given by
𝐺 [𝑋] ⎜𝑢⨆︁ := 𝐺 ⎜𝑢⨆︁ [(P𝑋)𝑢] on vertices and𝐺 [𝑋] ⎜𝑒⨆︁ on edges.
The homomorphism sta : 𝐺 → 𝐺 [𝑋] is given by the homomor-
phism sta𝑢𝑠 : 𝑎 ↦→ sta𝑠 of the vertex-wise frex, and the func-
tion dyn𝑢𝑠 : 𝑋 ⎜(𝑢, 𝑠)⨆︁→ 𝐺 [𝑋] ⎜𝑢𝑠⨆︁ sends each 𝑥 ∈ 𝑋 ⎜𝑠⨆︁ to
dyn𝑠 (𝑢, id, 𝑠, 𝑥). We get the unique extension homomorphism
[ℎ; 𝑒] : 𝐺 [𝑋] → 𝐴 vertex-wise.

Example 4.6. This theorem applies to our first example,
namely extending exponentiation with the indexed-set of
variables𝑋 B {𝑥,𝑦 : integer, 𝑢 : rational} and partially eval-
uating the partially-static expression of sort rational:

52· (3·𝑥+𝑦) · 33·𝑦+2·𝑥 · 𝑢2 · 58·𝑦

It evaluates to the bag:< (1, ((3−, (2·)), 𝑥)) , (1, ((5−, (2·), (3·)), 𝑥)) ,
(1, ((3−, (3·)), 𝑦)), (1, ((5−, (2·)), 𝑦)), (1, ((5−, (8·)), 𝑦)),
(2, ((), 𝑢))

=

representing the normalised expression:

32·𝑥 · 52· (3·𝑥) · 33·𝑦 · 52·𝑦 · 58·𝑦 · 𝑢2

As we can see, the combined frex takes into account the
homomorphism equations. But it is also oblivious to the
higher-order structure of the homomorphisms, and does not
simplify the sequences of composed homomorphisms. The
map-fusion and map-reduce examples are similarly limited.

5 Conclusion and prospects
We have shown how to reuse free extensions of component
theories to construct free extensions of combined theories.
In ongoing work, we investigate similarly modular construc-
tions for varieties of semirings, i.e. algebras with multiplica-
tion that distributes over addition. In this work-in-progress,
we decompose the construction of polynomial semirings into
a construction that combines universal constructions for vari-
eties of monoids. It is substantially more technically involved
than the constructions we have presented so far, utilising
the more abstract notions of operads and multi-categories.

Modular construction of multi-sorted free extensions

Implicit in this presentation is our use of 2-dimensional
category theory, which we have omitted to improve the ac-
cessibility of this manuscript. All 3 modular constructions
involve certain 2-functors between (strict) 2-categories. In
our first construction (S3), we use a 2-functor from Jacobs
[2021] that sends the category of algebras together with an
involutive structure over it to its category of involutive al-
gebras. In our second construction (S4), we use a 2-functor
that sends a category of algebras to its category of homomor-
phism graphs. For semiring varieties, we use a 2-functor that
sends a multi-category to a category of operadic algebras in
this multi-category. The 2-dimensional structures provide
a high-level interface for transporting uniform universal
properties qua adjunctions, yielding conceptual proofs.
The development so far is theoretical, establishing the

universal properties behind the intended data-structures and
normalisation procedures. We will implement these proce-
dures and their applications to partial evaluation [Yallop et al.
2018] and proof synthesis [Allais et al. 2022].
Another modularity axis we are exploring concerns the

combination of first-order free-extensions with higher-order
functions [Corbyn et al. 2022]. Concretely, we develop a
generic normalisation-by-evaluation algorithm for a higher-
order language with a base-type obeying equational laws.
The algorithm uses only the frex interface, and allows us
to leverage frex evaluators for first-order structures to par-
tial evaluators for higher-order structures. We expect such a
development to mesh well with the current work, and pro-
vide better partial evaluators for inherently higher-order
use-cases such as our map-reduce examples.

Acknowledgments
We thank Edwin Brady, Jacques Carette, Marcelo Fiore, James
McKinna, and the anonymous reviewers for useful comments
and discussions. Supported by the Engineering and Physical
Sciences Research Council grant EP/T007265/1 and an Indus-
trial CASE Studentship, a Royal Society University Research
Fellowship, a Facebook Research Award, an Alan Turing In-
stitute seed-funding grant, a UKRI Future Leaders Fellowship
MR/T043830/1 (EHOP), a travel grant by the Ericsson Re-
search Foundation, and the Swedish Foundation for Strategic
Research (SSF) under the project Octopi (Ref. RIT17-0023).

References
Guillaume Allais, Edwin Brady, Nathan Corbyn, Ohad Kammar, and Jeremy

Yallop. 2022. Frex: dependently-typed algebraic simplification. (2022).
Jacques Carette and Oleg Kiselyov. 2011. Multi-stage programming with

functors and monads: Eliminating abstraction overhead from generic
code. Sci. Comput. Program. 76, 5 (2011), 349–375. https://doi.org/10.
1016/j.scico.2008.09.008

Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally tag-
less, partially evaluated: Tagless staged interpreters for simpler typed
languages. J. Funct. Program. 19, 5 (2009), 509–543. https://doi.org/10.
1017/S0956796809007205

Nathan Corbyn, Ohad Kammar, Sam Lindley, Nachiappan Valliappan, and
Jeremy Yallop. 2022. Normalization by Evaluation with Free Extensions.
(2022). The 7th ACM SIGPLAN International Workshop on Type-Driven
Development (TyDe’2022).

Martin Hyland and John Power. 2006. Discrete Lawvere theories and com-
putational effects. Theoretical Computer Science 366, 1 (2006), 144–162.
https://doi.org/10.1016/j.tcs.2006.07.007 Algebra and Coalgebra in Com-
puter Science.

Bart Jacobs. 2021. Involutive Categories and Monoids, with a GNS-
Correspondence. Foundations of Physics 42 (2021), 874–895. Issue 7.
https://doi.org/10.1007/s10701-011-9595-7

Oleg Kiselyov, Kedar N. Swadi, and Walid Taha. 2004. A methodology for
generating verified combinatorial circuits. In EMSOFT 2004, September
27-29, 2004, Pisa, Italy, Fourth ACM International Conference On Embedded
Software, Proceedings, Giorgio C. Buttazzo (Ed.). ACM, 249–258. https:
//doi.org/10.1145/1017753.1017794

Torben Ægidius Mogensen. 1988. Partially Static Structures in a Self-
Applicable Partial Evaluator. In Partial Evaluation and Mixed Computa-
tion, D. Bjørner, A.P. Ershov, and N.D. Jones (Eds.).

Tiark Rompf, Arvind K. Sujeeth, Nada Amin, Kevin J. Brown, Vojin Jo-
vanovic, HyoukJoong Lee, Manohar Jonnalagedda, Kunle Olukotun,
and Martin Odersky. 2013. Optimizing data structures in high-level
programs: new directions for extensible compilers based on staging.
In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25,
2013, Roberto Giacobazzi and Radhia Cousot (Eds.). ACM, 497–510.
https://doi.org/10.1145/2429069.2429128

Jeremy Yallop. 2017. Staged generic programming. Proc. ACM Program.
Lang. 1, ICFP (2017), 29:1–29:29. https://doi.org/10.1145/3110273

Jeremy Yallop, Tamara von Glehn, and Ohad Kammar. 2018. Partially-Static
Data as Free Extension of Algebras. Proc. ACM Program. Lang. 2, ICFP,
Article 100 (July 2018), 30 pages. https://doi.org/10.1145/3236795

https://doi.org/10.1016/j.scico.2008.09.008
https://doi.org/10.1016/j.scico.2008.09.008
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1016/j.tcs.2006.07.007
https://doi.org/10.1007/s10701-011-9595-7
https://doi.org/10.1145/1017753.1017794
https://doi.org/10.1145/1017753.1017794
https://doi.org/10.1145/2429069.2429128
https://doi.org/10.1145/3110273
https://doi.org/10.1145/3236795

	Abstract
	1 Introduction
	2 Multi-sorted free extensions
	2.1 Syntax
	2.2 Terms
	2.3 Homomorphisms
	2.4 Equations and axioms
	2.5 Validity
	2.6 Free extensions

	3 Involutive algebras
	4 Homomorphism graphs
	5 Conclusion and prospects
	Acknowledgments
	References

