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Modular implicits

Leo White Frédéric Bour Jeremy Yallop

We present modular implicits, an extension to the OCaml language for ad-hoc polymorphism inspired
by Scala implicits and modular type classes. Modular implicits are based on type-directed implicit
module parameters, and elaborate straightforwardly into OCaml’s first-class functors. Basing the
design on OCaml’s modules leads to a system that naturally supports many features from other lan-
guages with systematic ad-hoc overloading, including inheritance, instance constraints, constructor
classes and associated types.

1 Introduction

A common criticism of OCaml is its lack of support for ad-hoc polymorphism. The classic example of
this is OCaml’s separate addition operators for integers (+) and floating-point numbers (+.). Another
example is the need for type-specific printing functions (print_int, print_string, etc.) rather than a
single print function which works across multiple types.

In this paper, we propose a system for ad-hoc polymorphism in OCaml based on using modules as
type-directed implicit parameters. We describe the design of this system, and compare it to systems for
ad-hoc polymorphism in other languages.

A prototype implementation of our proposal based on OCaml 4.02.0 has been created and is available
through the OPAM package manager (Section 6).

1.1 Type classes and implicits

Ad-hoc polymorphism allows the dynamic semantics of a program to be affected by the types of values
in that program. A program may have more than one valid typing derivation, and which one is derived
when type-checking a program is an implementation detail of the type-checker. Jones et al. [10] describe
the following important property:

Every different valid typing derivation for a program leads to a resulting program that has
the same dynamic semantics.

This property is called coherence and is a fundamental property that must hold in a system for ad-hoc
polymorphism.

1.1.1 Type classes

Type classes in Haskell [20] have proved an effective mechanism for supporting ad-hoc polymorphism.
Type classes provide a form of constrained polymorphism, allowing constraints to be placed on type
variables. For example, the show function has the following type:

show :: Show a => a -> String

This indicates that the type variable a can only be instantiated with types which obey the constraint
Show a. These constraints are called type classes. The Show type class is defined as1:

1Some methods of Show have been omitted for simplicity.
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class Show a where
show :: a -> String

which specifies a list of methods which must be provided in order for a type to meet the Show constraint.
The method implementations for a particular type are specified by defining an instance of the type class.
For example, the instance of Show for Int is defined as:

instance Show Int where
show = showSignedInt

Constraints on a function’s type can be inferred based on the use of other constrained functions in
the function’s definition. For example, if a show_twice function uses the show function:

show_twice x = show x ++ show x

then Haskell will infer that show_twice has type Show a => a -> String.
Haskell’s coherence in the presence of inferred type constraints relies on type class instances being

canonical – the program contains at most one instance of a type class for each type. For example, a
Haskell program can only contain at most one instance of Show Int, and attempting to define two such
instances will result in a compiler error. Section 4.2 describes why this property cannot hold in OCaml.

Type classes are implemented using a type-directed implicit parameter-passing mechanism. Each
constraint on a type is treated as a parameter containing a dictionary of the methods of the type class. The
corresponding argument is implicitly inserted by the compiler using the appropriate type class instance.

1.1.2 Implicits

Implicits in Scala [16] provide similar capabilities to type classes via direct support for type-directed
implicit parameter passing. Parameters can be marked implicit which then allows them to be omitted
from function calls. For example, a show function could be specified as:

def show[T](x : T)( implicit s : Showable[T]): String

where Showable[T] is a normal Scala type defined as:

trait Showable[T] { def show(x: T): String }

The show function can be called just like any other:

object IntShowable extends Showable[Int] {
def show(x: Int) = x.toString

}

show (7)( IntShowable)

However, the second argument can also be elided, in which case its value is selected from the set of
definitions in scope which have been marked implicit. For example, if the definition of IntShowable
were marked implicit:

implicit object IntShowable extends Showable[Int] {
def show(x: Int) = x.toString

}

then show can be called on integers without specifying the second argument – which will automatically
be inserted as IntShowable because it has the required type Showable[Int]:
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show (7)

Unlike constraints in Haskell, Scala’s implicit parameters must always be added to a function ex-
plicitly. The need for a function to have an implicit parameter cannot be inferred from the function’s
definition. Without such inference, Scala’s coherence can rely on the weaker property of non-ambiguity
instead of canonicity. This means that you can define multiple implicit objects of type Showable[Int]
in your program without causing an error. Instead, Scala issues an error if the resolution of an implicit
parameter is ambiguous. For example, if two implicit objects of type Showable[Int] are in scope when
show is applied to an Int then the compiler will report an ambiguity error.

1.1.3 Modular type classes

Dreyer et al. [5] describe modular type classes, a type class system which uses ML module types as type
classes and ML modules as type class instances.

As with traditional type classes, type class constraints on a function can be inferred from the func-
tion’s definition. Unlike traditional type classes, modular type classes cannot ensure that type class
instances are canonical (see Section 4.2). Maintaining coherence in the presence of constraint inference
without canonicity requires a number of undesirable restrictions, which are discussed in Section 7.5.

1.2 Modular implicits

Taking inspiration from modular type classes and implicits, we propose a system for ad-hoc polymor-
phism in OCaml based on passing implicit module parameters to functions based on their module type.
By basing our system on implicits, where a function’s implicit parameters must be given explicitly, we
are able to avoid the undesirable restrictions of modular type classes. Fig. 1 demonstrates the show
example written using our proposal.

The show function (line 6) has two parameters: an implicit module parameter S of module type
Show, and an ordinary parameter x of type S.t. When show is applied the module parameter S does
not need to be given explicitly. As with Scala implicits, when this parameter is elided the system will
search the modules which have been made available for selection as implicit arguments for a module of
the appropriate type.

For example, on line 24, show is applied to 5. This will cause the system to search for a module
of type Show with type t = int. Since Show_int is marked implicit and has the desired type, it
will be used as the implicit argument of show.

The Show_list module, defined on line 18, is an implicit functor – note the use of the {S : Show}
syntax for its parameter rather than the usual (S : Show) used for functor arguments. This indicates
that Show_list can be applied to create implicit arguments, rather than used directly as an implicit
argument.

For example, on line 26, show is applied to a list of integers. This causes the system to search for an
implicit module of type Show with type t = int list. Such a module can be created by applying
the implicit functor Show_list to the implicit module Show_int, so Show_list(Show_int) will be
used as the implicit argument.

Fig. 2 shows another example, illustrating how a simple library for monads might look in our pro-
posal.

The definitions of map, join and unless demonstrate our proposal’s support for higher-kinded
polymorphism, analogous to constructor classes in Haskell [8]. This is a more succinct form of higher-
kinded polymorphism than is currently available in OCaml’s core language. Currently, higher-kinded
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1 module type Show = sig
2 type t
3 val show : t -> string
4 end
5
6 let show {S : Show} x = S.show x
7
8 implicit module Show_int = struct
9 type t = int

10 let show x = string_of_int x
11 end
12
13 implicit module Show_float = struct
14 type t = float
15 let show x = string_of_float x
16 end
17
18 implicit module Show_list {S : Show} = struct
19 type t = S.t list
20 let show x = string_of_list S.show x
21 end
22
23 let () =
24 print_endline ("Show an int: " ^ show 5);
25 print_endline ("Show a float: " ^ show 1.5);
26 print_endline ("Show a list of ints: " ^ show [1; 2; 3]);

Figure 1: ‘Show‘ using modular implicits
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1 module type Monad = sig
2 type +’a t
3 val return : ’a -> ’a t
4 val bind : ’a t -> (’a -> ’b t) -> ’b t
5 end
6
7 let return {M : Monad} x = M.return x
8
9 let (>>=) {M : Monad} m k = M.bind m k

10
11 let map {M : Monad} (m : ’a M.t) f =
12 m >>= fun x -> return (f x)
13
14 let join {M : Monad} (m : ’a M.t M.t) =
15 m >>= fun x -> x
16
17 let unless {M : Monad} p (m : unit M.t) =
18 if p then return () else m
19
20 implicit module Monad_option = struct
21 type ’a t = ’a option
22 let return x = Some x
23 let bind m k =
24 match m with
25 | None -> None
26 | Some x -> k x
27 end
28
29 implicit module Monad_list = struct
30 type ’a t = ’a list
31 let return x = [x]
32 let bind m k = List.concat (List.map k m)
33 end

Figure 2: ‘Monad‘ using modular implicits
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polymorphism is only supported directly using OCaml’s verbose module language or indirectly through
an encoding based on defunctionalisation [22].

The calls to >>= and return in the definitions of these functions leave the module argument implicit.
These cause the system to search for a module of the appropriate type. In each case, the implicit module
parameter M of the function is selected because it has the appropriate type and implicit module parameters
are automatically made available for selection as implicit arguments.

Like Scala’s implicits, and unlike Haskell’s type classes, our proposal requires all of a function’s
implicit module parameters to be explicitly declared. The map function (line 11) needs to be declared
with the module parameter {M : Monad} – it could not be defined as follows:

let map m f =
m >>= fun x -> return (f x)

because that would cause the system to try to resolve the implicit module arguments to >>= and return
to one of the implicit modules available at the definition of map. In this case, this would result in an
ambiguity error since either Monad_option or Monad_list could be used.

1.3 Contributions

The contributions of this paper are as follows.

• We introduce modular implicits, a design for overloading centred around type-directed instanti-
ation of implicit module arguments, that integrates harmoniously into a language with ML-style
modules (Section 2). We show how to elaborate the extended language into standard OCaml, first
by explicitly instantiating every implicit argument (Section 2.2) and then by translating functions
with implicit arguments into packages (Section 2.3).

• The design of modular implicits involves only a small number of additions to the host language.
However, the close integration with the existing module language means that modular implicits
naturally support a rich array of features, from constructs present in the original type classes pro-
posal such as instance constraints (Section 3.2) and subclasses (Section 3.3) to extensions to the
original type class proposal such as constructor classes (Section 3.4), multi-parameter type classes
(Section 3.5), associated types (Section 3.6) and backtracking (Section 3.7). Further, modular
implicits support a number of features not available with type classes. For example, giving up
canonicity – without losing the motivating benefit of coherence (Section 4) – makes it possible to
support local instances (Section 3.8), and basing resolution on module type inclusion results in a
system in which a single instance can be used with a variety of different signatures (Section 3.9).

• Both resolution of implicit arguments and type inference involve a number of subtleties related to
the interdependence of resolution and inference (Section 5.1) and compositionality (Section 5.2).
We describe these at a high level here, leaving a more formal treatment to future work.

• We have created a prototype implementation of our proposal based on OCaml 4.02.0. We describe
some of the issues around implementing modular implicits (Section 6).

• Finally, we contextualise the modular implicits design within the wide body of related work, in-
cluding Haskell type classes (Section 7.1), Scala implicits (Section 7.2) canonical structures in
Coq (Section 7.3), concepts in C++ (Section 7.4) and modular type classes in ML (Section 7.5).
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2 The design of modular implicits

We present modular implicits as an extension to the OCaml language. The OCaml module system in-
cludes a number of features, such as first-class modules and functors, which make it straightforward
to elaborate modular implicits into standard OCaml. However, the design of modular implicits is not
strongly tied to OCaml, and could be integrated into similar languages in the ML family.

2.1 New syntax

Like several other designs for overloading based on implicit arguments, modular implicits are based
on three new features. The first feature is a way to call overloaded functions. For example, we might
wish to call an overloaded function show, implicitly passing a suitable value as argument, to convert an
integer or a list of floating-point values to a string. The second feature is a way to abstract overloaded
functions. For example, we might define a function print which calls show to turn a value into a string
in order to send it to standard output, but which defers the choice of the implicit argument to pass to
show to the caller of print. The third feature is a way to define values that can be used as implicit
arguments to overloaded functions. For example, we might define a family of modules for building
string representations for values of many different types, suitable for passing as implicit arguments to
show.

Figure 3 shows the new syntactic forms for modular implicits, which extend the syntax of OCaml
4.02 [13].

There is one new form for types,

{ M : T } -> t

which makes it possible to declare show as a function with an implicit parameter S of module type Show,
a second parameter of type S.t, and the return type string:

val show : {S: Show} -> S.t -> string

or to define + as a function with an implicit parameter N of module type Num, two further parameters of
type N.t, and the return type N.t:

val ( + ) : {N: Num} -> N.t -> N.t -> N.t

There is a new kind of parameter for constructing functions with implicit arguments:

{ M : T }

The following definition of show illustrates the use of implicit parameters:

let show {S : Show} (v : S.t) = S.show v

The braces around the S : Show indicate that S is an implicit module parameter of type Show. The type
Show of S is a standard OCaml module type, which might be defined as in Figure 1.

There is also a new kind of argument for calling functions with implicit arguments:

{ M }

For example, the show function might be called as follows using this argument syntax:

show {Show_int} 3

This is an explicitly-instantiated implicit application. Calls to show can also omit the first argument,
leaving it to be supplied by a resolution procedure (described in Section 2.2):
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show 3

Implicit application requires that the function have non-module parameters after the module parameter
– implicit application is indicated by providing arguments for these later parameters without providing
a module argument for the module parameter. This approach simplifies type-inference and is in keeping
with how OCaml handles optional arguments. It also ensures that all function applications, which may
potentially perform side-effects, are syntactically function applications.

There are two new declaration forms. Here is the first, which introduces an implicit module:

implicit module M ({Mi : Ti})∗ = E

Implicit modules serve as the implicit arguments to overloaded functions like show and +. For example,
here is the definition of an implicit module Show_int with two members: a type alias t and a value
member show which uses the standard OCaml function string_of_int

implicit module Show_int = struct
type t = int
let show = string_of_int

end

Implicit modules can themselves have implicit parameters. For example, here is the definition of an
implicit module Show_list with an implicit parameter which also satisfies the Show signature:

implicit module Show_list {A: Show} = struct
type t = A.t list
let show l = "["^ String.concat ", " (List.map A.show l) ^"]"

end

Implicit modules with implicit parameters are called implicit functors. Section 2.2 outlines how implicit
modules are selected for use as implicit arguments.

The second new declaration form brings implicit modules into scope, making them available for use
in resolution:

open implicit M

For example, the declaration

open implicit List

makes every implicit module bound in the module List available to the resolution procedure in the
current scope.

There are also local versions of both declaration forms, which bind a module or bring implicits into
scope within a single expression:

let implicit module M ({Mi : Ti})∗ = E in e
let open implicit M in e

Implicit module declarations, like other OCaml declarations, bind names within modules, and so the
signature language must be extended to support implicit module descriptions. There are two new forms
for describing implicit modules in a signature:

implicit module M ({Mi : Ti})∗ : T
implicit module M ({Mi : Ti})∗ = M
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Types

typexpr ::= . . . | { module−name : module−type } -> typexpr

Expressions

parameter ::= . . . | { module−name : module−type }

argument ::= . . . | { module−expr }

expr ::= . . .
| let implicit module module−name ({module−name : module−type})∗ = module−expr in expr
| let open implicit module−path in expr

Bindings and declarations

definition ::= . . .
| implicit module module−name ({module−name : module−type})∗ = module−expr
| open implicit module−path

Signature declarations

specification ::= . . .
| implicit module module−name ({module−name : module−type})∗ : module−type
| implicit module module−name ({module−name : module−type})∗ = module−path

Figure 3: Syntax for modular implicits

The first form describes a binding for an implicit module by means of its type. For example, here is a
description for the module Show_list:

implicit module Show_int : Show with type t = int

The second form describes a binding for an implicit module by means of an equation [6]. For example,
here is a description for a module S, which is equal to Show_int

implicit module S = Show_int

2.2 Resolving implicit arguments

As we saw in Section 2.1, a function which accepts an implicit argument may receive that argument
either implicitly or explicitly. The resolution process removes implicit arguments by replacing them
with explicit arguments constructed from the modules in the implicit search space.

Resolving an implicit argument M involves two steps. The first step involves gathering constraints
– that is, equations on types2 within M – based on the context in which the application appears. For
example, the application

show 5

should generate a constraint

2Constraints on module types and module aliases are also possible, but we leave them out of our treatment
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S.t = int

on the implicit module argument S passed to show. The second step involves searching for a mod-
ule which satisfies the constrained argument type. Resolving the implicit argument for the application
show 5 involves searching for a module S with the type

Show

that also satisfies the constraint

S.t = int

The following sections consider these steps in more detail.

2.2.1 Generating argument constraints

Generating implicit argument constraints for an application f x with an implicit argument M of type S
involves building a substitution which equates each type t in S with a fresh type variable ’a, then using
unification to further constrain ’a. For example, show has type:

{S : Show} -> S.t -> string

and the module type Show contains a single type t. The constraint generation procedure generates the
constraint

S.t = ’a

for the implicit parameter, and refines the remainder of the type of show to

’a -> string

Type-checking the application show 5 using this type reveals that ’a should be unified with int, result-
ing in the following constraint for the implicit parameter:

S.t = int

In our treatment we assume that all implicit arguments have structure types. However, functor types
can also be supported by introducing similar constraints on the results of functor applications.

Generating implicit argument constraints for higher-kinded types involves some additional subtleties
compared to generating constraints for basic types. With higher-kinded types, type constructors cannot be
directly replaced by a type variable, since OCaml does not support higher-kinded type variables. Instead,
each application of a parameterised type constructor must be replaced by a separate type variable.

For example, the map function has the following type:

{M : Monad} -> ’a M.t -> (’a -> ’b) -> ’b M.t

After substituting out the module parameter, the type becomes:

’c -> (’a -> ’b) -> ’d

with the following constraints:

’a M.t = ’c
’b M.t = ’d

Type-checking a call to map determines the type variables ’c and ’d. For example, the following call to
map:
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let f x =
map [x; x] (fun y -> (y, y))

refines the constraints to the following:

’a M.t = ’e list
(’a * ’a) M.t = ’d

where ’a, ’d and ’e are all type variables representing unknown types.
We might be tempted to attempt to refine the constraints further, inferring that ’a = ’e and that

s M.t = s list for any type s. However, this inference is not necessarily correct. If, instead of
Monad_list, the following module was in scope:

implicit module Monad_odd = struct
type ’a t = int list
let return x = [1; 2; 3]
let bind m f = [4; 5; 6]

end

then those inferences would be incorrect. Since the definition of the type t in Monad_odd simply discards
its parameter, there is no requirement for ’e to be equal to ’a. Further, for any type s, s Monad_odd.t
would be equal to int list, not to s list.

In fact, inferring additional information from these constraints before performing resolution would
constitute second-order unification, which is undecidable in general. Resolution does not require second-
order unification as it only searches amongst possible solutions rather than finding a most general solu-
tion.

Once the constraints have been used to resolve the module argument M to Monad_list, we can safely
substitute list for M.t which gives us the expected type equalities.

2.2.2 Searching for a matching module

Once the module type of the implicit argument has been constrained, the next step is to find a suitable
module. A module is considered suitable for use as the implicit argument if it satisfies three criteria:

1. It is constructed from the modules and functors in the implicit search space.

2. It matches the constrained module type for the implicit argument.

3. It is unique – that is, it is the only module satisfying the first two criteria.

The implicit search space The implicit search space consists of those modules which have been bound
with implicit module or let implicit module, or which are in scope as implicit parameters. For
example, in the following code all of M, P and L are included in the implicit search space at the point of
the expression show v

implicit module M = M1
module N = M2
let f {P : Show} v ->

let implicit module L = M3 in show v
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Furthermore, in order to avoid unnecessary ambiguity, resolution is restricted to those modules which
are accessible using unqualified names. An implicit sub-module M in a module N is not in scope unless N
has been opened. Implicit modules from other modules can be brought into scope using open implicit
or let open implicit.

Module type matching Checking that an implicit module M matches an implicit argument type in-
volves checking that the signature of M matches the signature of the argument and that the constraints
generated by type checking hold for M. As with regular OCaml modules, signature matching allows M
to have more members than the argument signature. For example, the following module matches the
module type Show with type t = int, despite the fact that the module has an extra value member,
read:

implicit module Show_read_int = struct
type t = int
let show = string_of_int
let read = int_of_string

end

Constraint matching is defined in terms of substitution: can the type variables in the generated constraint
set be instantiated such that the equations in the set hold for M? For example, Monad_list meets the
constraint

’a M.t = int list

by replacing ’a with int, giving the valid equation

int Monad_list.t = int list

In simple cases, resolution is simply a matter of trying each implicit module in turn to see whether it
matches the signature and generated constraints.

However, when there are implicit functors in scope the resolution procedure becomes more involved.
For example, the declaration for Show_list from Figure 1 allows modules such as Show_list(Show_int)
to be used as implicit module arguments:

implicit module Show_list {S : Show} = struct
type t = S.t list
let show l = string_of_list S.show l

end

Checking whether an implicit functor can be used to create a module which satisfies an implicit
argument’s constraints involves substituting an application of the functor for the implicit argument and
checking that the equations hold. For example, applying Show_list to create a module M could meet
the constraint:

M.t = int list

as substituting an application of the functor gives:

Show_list(S).t = int list

which expands out to

S.t list = int list
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This generates a constraint on the argument S to Show_list:

S.t = int

Since Show_int satisfies this new constraint, Show_list(Show_int) meets the original constraint.
Matching of candidate implicit arguments against signatures is defined in terms of OCaml’s signature

matching relation, and so it supports the full OCaml signature language, including module types, func-
tors, type definitions, exception specifications, and so on. However, since modular implicits extend the
signature language with new constructs (Figure 3), the matching relation must also be extended. Match-
ing for function types with implicit parameters is straightforward, and corresponds closely to matching
for function types with labeled arguments. In particular, matching for function types does not permit
elision or reordering of implicit parameters.

Uniqueness In order to maintain coherence, modular implicits require the module returned by resolu-
tion to be unique. Without a uniqueness requirement the result of resolution (and hence the behaviour of
the program) might depend on some incidental aspect of type-checking.

To check uniqueness all possible solutions to a resolution must be considered. This requires that the
search for possible resolutions terminate: if the resolution procedure does not terminate then we do not
know whether there may be multiple solutions.

The possibility of non-termination and the interdependence between resolution and type inference
(Section 5.1) mean that checking uniqueness of solutions is incomplete, and can report ambiguity errors
in cases which are not actually ambiguous. As with similar forms of incomplete inference, our proposal
aims to make such cases predictable by using simple specifications of the termination conditions and of
the permitted dependencies between resolution and type inference.

Termination Implicit functors can be used multiple times whilst resolving a single implicit argument.
For example

show [ [1; 2; 3]; [4; 5; 6] ]

will resolve the implicit argument of show to Show_list(Show_list(Show_int)).
This means that care is needed to avoid non-termination in the resolution procedure. For example,

the following functor, which tries to define how to show a type in terms of how to show that type, is
obviously not well-founded:

implicit module Show_it {S : Show} = struct
type t = S.t
let show = S.show

end

Type classes ensure the termination of resolution through a number of restrictions on instance dec-
larations. However, termination of an implicit parameter resolution depends on the scope in which the
resolution is performed. For this reason, the modular implicits system places restrictions on the behaviour
of the resolution directly and reports an error only when a resolution which breaks these restrictions is
actually attempted.

When considering a module expression containing multiple applications of an implicit functor, such
as the following:

Show_list(Show_list( ... ))
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the system checks that the constraints that each application of the functor must meet are strictly smaller
than the previous application of the functor. “Strictly smaller” is defined point-wise: all constraints must
be smaller, and at least one constraint must be strictly smaller.

For example, resolving an implicit module argument S of type Show with the following constraint

S.t = int list list

would involve considering Show_list(Show_list(T)) where T is not yet determined. The first appli-
cation of Show_list would generate a constraint on its argument R:

R.t = int list

Thus the second application of Show_list must meet constraints which are strictly smaller than the
constraints which the first application of Show_list met, and resolution can safely continue.

Whereas, considering Show_it(Show_it(S)) for the same constraint, the first application of Show_it
would generate a constraint on its argument R:

R.t = int list list

Thus the second application of Show_it must meet constraints which are the same as the constraints
which the first application of Show_it met, and resolution would fail with a termination error.

Multiple applications of a functor are not necessarily successive, since there may be other applica-
tions between them. For example, the expression to be checked could be of the form:

Show_this(Show_that(Show_this( ... )))

In this case, the “strictly smaller” condition applies between the outer application of Show_this and the
inner application of Show_this. The application of Show_that will not be compared to the applications
of Show_this.

As termination is required to check uniqueness, failure to meet the termination restrictions must be
treated as an error. The system cannot simply ignore the non-terminating possibilities and continue to
look for an alternative resolution.

2.3 Elaboration

Once all implicit arguments in a program have been instantiated there is a phrase-by-phrase elaboration
which turns each new construct into a straightforward use of existing OCaml constructs. The elaboration
makes use of OCaml’s first-class modules (packages), turning functions with implicit arguments into
first-class functors,

Figure 4 gives the elaboration from a fully-instantiated program into implicit-free OCaml. The types
of functions which accept implicit arguments

{M: S} -> t

become first-class functor types

(module functor (M:S) -> sig val value : t end)

with a functor parameter in place of the implicit parameter M and a signature with a single value member
of type t in place of the return type t. (The syntax used here for the first-class functor type is not
currently accepted by OCaml, which restricts the types of first-class modules to named module types,
but the restriction is for historical reasons only, and so we ignore it in our treatment. The other parts of
the elaboration target entirely standard OCaml.)

An expression which constructs a function that accepts an implicit argument
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Types The type

{M: S} -> t

elaborates to the package type

(module functor (M:S) -> sig val value : t end)

Abstractions The abstraction expression

fun {M: S} -> e

of type

{M: S} -> t

elaborates to the package expression

(module functor (M: S) -> struct
let value = e

end)

of type

(module functor (M: S) -> sig val value : t end))

Applications The application expression

f {M}

elaborates to the expression

let module F = (val f) in
let module R = F(M) in

R.value

Bindings and declarations The implicit module binding

implicit module M { M1 : T1 } { M2 : T2 } . . . { Mn : Tn } = N

elaborates to the expression

module M (M1 : T1) (M2 : T2) . . . (Mn : Tn) = N

(and similarly for local bindings and signatures).
The statement

open implicit M

is removed from the program (and similarly for local open implicit bindings).

Figure 4: Elaboration from a fully-instantiated program into OCaml
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fun {M: S} -> e

becomes an expression which packs a functor

(module functor (M: S) -> struct
let value = e

end)

following the elaboration on types, turning the implicit argument into a functor argument and the body
into a single value binding value.

The applications of a function f to an instantiated implicit arguments M

f {M}

becomes an expression which unpacks f as a functor F, applies F to the module argument M, and projects
the value component from the result:

let module F = (val f) in
let module R = F(M) in

R.value

Care must, of course, be taken to ensure that the name F does not collide with any of the free variables
in the module expression M.

Each implicit module binding

implicit module M { M1 : T1 } { M2 : T2 } . . . { Mn : Tn } = N

becomes under the elaboration a binding for a regular module, turning implicit parameters into functor
parameters:

module M (M1 : T1) (M2 : T2) . . . (Mn : Tn) = N

The implicit module binding for M introduces M both into the implicit search space and the standard
namespace of the program. The implicit search space is not used in the program after elaboration, and so
the elaborated binding introduces M only into the standard namespace. The elaboration for local bindings
and signatures is the same, mutatis mutandis.

The statement

open implicit M

serves no purpose after elaboration, and so the elaboration simply removes it from the program. Simi-
larly, the statement

let open implicit M in e

is elaborated simply to the body:

e

2.4 Why target first-class functors?

The elaboration from an instantiated program into first-class functors is quite simple, but the syntax
of implicit arguments suggests an even simpler translation which turns each function with an implicit
parameter into a function (rather than a functor) with a first-class module parameter. For example, here
is the definition of show once again:
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let show {S : Show} (v : S.t) = S.show v

Under the elaboration in Figure 4 the definition of show becomes the following first-class functor bind-
ing:

let show =
(functor (S: Show) -> struct

let value = fun (v : S.t) -> S.show v
end)

but we could instead elaborate into a function with a first-class module argument

let show (module S: Show) (v : S.t) = S.show v

of type

(module Show with type t = ’a) -> ’a -> string

Similarly, under the elaboration in Figure 4 the application of show to an argument

show {Show_int}

is translated to an expression with two local module bindings, a functor application and a projection:

let module F = (val show) in
let module R = F(Show_int) in

R.value

but under the elaboration into functions with first-class module arguments the result is a simple applica-
tion of show to a packed module:

show (module Show_int)

However, the extra complexity in targeting functors rather than functions pays off in support for
higher-rank and higher-kinded polymorphism.

2.4.1 Higher-rank polymorphism

It is convenient to have overloaded functions be first-class citizens in the language. For example, here is
a function which takes an overloaded function sh and applies it both to an integer and to a string:

let show_stuff (sh : {S : Show} -> S.t -> string) =
(sh {Show_int} 3, sh {Show_string} "hello")

This application of the parameter sh at two different types requires sh to be polymorphic in the type
S.t. This form of polymorphism, where function arguments themselves can be polymorphic functions,
is sometimes called higher-rank polymorphism.

The elaboration of overloaded functions into first-class functors naturally supports higher-rank poly-
morphism, since functors themselves can behave like polymorphic functions, with type members in their
arguments. Here is the elaboration of show_stuff:

let show_stuff (sh : (module functor (S : Show) -> sig
val value : S.t -> string

end)) =
let module F1 = (val sh) in



18 Modular implicits

let module R1 = F1(Show_int) in
let module F2 = (val sh) in
let module R2 = F2(Show_string) in

(R1.value 5, R2.value "hello")

The two functor applications F1(Show_int) and F2(Show_string) correspond to two instantiations
of a polymorphic function.

In contrast, if we were to elaborate overloaded functions into ordinary functions with first-class
module parameters then the result of the elaboration would not be valid OCaml. Here is the result of
such an elaboration:

let show_stuff (sh : (module S with type t = ’a)
-> ’a -> string) =

sh (module Show_int) 3 ^ " " ^ sh (module Show_string) "hello"

Since sh is a regular function parameter, OCaml’s type rules assign it a monomorphic type. The function
is then rejected, because sh is applied to modules of different types within the body.

2.4.2 Higher-kinded polymorphism

First-class functors also provide support for higher-kinded polymorphism – that is, polymorphism in
type constructors which have parameters. For example, Figure 2 defines a number of functions that are
polymorphic in the monad on which they operate, such as map, which has the following type:

val map : {M : Monad} -> ’a M.t -> (’a -> ’b) -> ’b M.t

This type is polymorphic in the parameterised type constructor M.t.
Once again, elaborating overloaded functions into first-class functors naturally supports higher-

kinded polymorphism, since functor arguments can be used to abstract over parameterised type con-
structors. Here is the definition of map once again:

let map {M : Monad} (m : ’a M.t) f =
m >>= fun x -> return (f x)

and here its its elaboration:

let map =
(functor (M: Monad) -> struct

let value =
let module F_bind = (val (>>=)) in
let module R_bind = F_bind(M) in
let module F_ret = (val return) in
let module R_ret = F_ret(M) in

R_bind.value m (fun x -> R_ret (f x))
end)

As with higher-rank polymorphism, there is no suitable elaboration of overloaded functions involv-
ing higher-kinded polymorphism into functions with first-class module parameters, since higher-kinded
polymorphism is not supported in OCaml’s core language.
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2.4.3 First-class functors and type inference

Type inference for higher-rank and full higher-kinded polymorphism is undecidable in the general case,
and so type systems which support such polymorphism require type annotations. For instance, annota-
tions are required on all first-class functor parameters, and on recursive definitions of recursive functors.
The same requirements apply to functions with implicit module arguments.

For example, the following function will not type-check if the sh parameter is not annotated with its
type:

let show_three sh =
sh {Show_int} 3

Instead, show_three must be defined as follows:

let show_three (sh : {S : Show} -> S.t -> string) =
sh {Show_int} 3

Requiring type annotations means that type inference is not order independent – if the body of
show_three were type-checked before its parameter list then inference would fail. To maintain pre-
dictability of type inference, some declarative guarantees are made about the order of type-checking;
for example, a variable’s binding will always be checked before its uses. If type inference of a program
only succeeds due to an ordering between operations which is not ensured by these guarantees then the
OCaml compiler will issue a warning.

3 Modular implicits by example

The combination of the implicit resolution mechanism and the integration with the module language
leads to a system which can support a wide range of programming patterns. We demonstrate this with a
selection of example programs.

3.1 Defining overloaded functions

Some overloaded functions, such as show from Figure 1, simply project a member of the implicit mod-
ule argument. However, it is also common to define an overloaded function in terms of an existing
overloaded function. For example, the following print function composes the standard OCaml function
print_string with the overloaded function show to print a value to standard output:

let print {X: Show} (v: X.t) =
print_string (show v)

It is instructive to consider the details of resolution for the call to show in the body of print. As
described in Section 2.2, resolution of the implicit argument S of show involves generating constraints
for the types in S, unifying with the context to refine the constraints, and then searching for a module M
which matches the signature of Show and satisfies the constraints.

Since there is a single type t in the signature Show, resolution begins with the constraint set

S.t = ’a

and gives the variable show the type ’a -> string. Unification with the ascribed type of the parameter
v instantiates ’a, refining the constraint
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S.t = X.t

Since the type X.t is an abstract member of the implicit module parameter X, the search for a matching
module returns X as the unique implicit module which satisfies the constraint.

The ascription on the parameter v plays an essential role in this process. Without the ascription, res-
olution would involve searching for an implicit module of type Show satisfying the constraint S.t = ’a.
Since any implicit module matching the signature Show satisfies this constraint, regardless of the defini-
tion of t, the resolution procedure will fail with an ambiguity error if there are multiple implicit modules
in scope matching Show.

3.2 Instance constraints

Haskell’s instance constraints make it possible to restrict the set of instantiations of type parameters when
defining overloaded functions. For example, here is an instance of the Show class for the pair constructor
(,), which is only available when there are also an instance of Show for the type parameters a and b:

instance (Show a, Show b) => Show (a, b) where
show (x, y) = "(" ++ show x ++ "," ++ show y ++ ")"

With modular implicits, instance constraints become parameters to implicit functor bindings:

implicit module Show_pair {A: Show} {B: Show} = struct
type t = A.t * B.t
let show (x, y) = "(" ^ A.show x ^ "," ^ B.show y ^ ")"

end

It is common for the types of implicit functor parameters to be related to the type of the whole, as in this
example, where the parameters each match Show and the result has type Show with type t = A.t * B.t.
However, neither instance constraints nor implicit module parameters require that the parameter and the
result types are related. Here is the definition of an implicit module Complex_cartesian, which re-
quires only that the parameters have implicit module bindings of type Num, not of type Complex:

implicit module Complex_cartesian {N: Num} = struct
type t = N.t complex_cartesian
let conj { re; im } = { re; im = N.negate im }

end

(We leave the reader to deduce the definitions of the complex_cartesian type and of the Num signature.)

3.3 Inheritance

Type classes in Haskell provide support for inheritance. For example, the Ord type class is defined as
inheriting from the Eq type class:

class Eq a where
(==) :: a -> a -> Bool

class Eq a => Ord a where
compare :: a -> a -> Ordering
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This means that instances of Ord can only be created for types which have an instance of Eq. By
declaring Ord as inheriting from Eq, functions can use both == and compare on a type with a single
constraint that the type have an Ord instance.

3.3.1 The “diamond” problem

It is tempting to try to implement inheritance with modular implicits by using the structural subtyping
provided by OCaml’s modules. For example, one might try to define Ord and Eq as follows:

module type Eq = sig
type t
val equal : t -> t -> bool

end

let equal {E : Eq} x y = E.equal x y

module type Ord = sig
type t
val equal : t -> t -> bool
val compare : t -> t -> int

end

let compare {O : Ord} x y = O.compare x y

which ensures that any module which can be used as an implicit Ord argument can also be used as an
implicit Eq argument. For example, a single module can be created for both equality and comparison of
integers:

implicit module Ord_int = struct
type t = int
let equal = Int.equal
let compare = Int.compare

end

However, an issue arises when trying to implement implicit functors for type constructors using this
scheme. For example, we might want to define the following two implicit functors:

implicit module Eq_list {E : Eq} = struct
type t = E.t list
let equal x y = List.equal E.equal x y

end

implicit module Ord_list {O : Ord} = struct
type t = O.t list
let equal x y = List.equal O.equal x y
let compare x y = List.compare O.compare x y

end

which implement Eq for lists of types which implement Eq, and implement Ord for lists of types which
implement Ord.
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The issue arises when we wish to resolve an Eq instance for a list of a type which implements Ord.
For example, we might wish to apply the equal function to lists of ints:

equal [1; 2; 3] [4; 5; 6]

The implicit argument in this call is ambiguous: we can use either Eq_list(Ord_int) or Ord_list(Ord_int).
This is a kind of “diamond” problem: we can restrict Ord_int to an Eq and then lift it using Eq_list,

or we can lift Ord_int using Ord_list and then restrict the result to an Eq.
In Haskell, the problem is avoided by canonicity – it doesn’t matter which way around the diamond

we go, we know that the result will be the same.

3.3.2 Module aliases

OCaml provides special support for module aliases [6]. A module can be defined as an alias for another
module:

module L = List

This defines a new module whose type is the singleton type “= List”. In other words, the type of L
guarantees that it is equal to List. This equality allows types such as Set(List).t and Set(L).t to
be considered equal.

Since L is statically known to be equal to List, we do not consider an implicit argument to be
ambiguous if L and List are the only possible choices.

In our proposal we extend module aliases to support implicit functors. For example,

implicit module Show_l {S : Show} = Show_list{S}

creates a module alias. This means that Show_l(Show_int) is an alias for Show_list(Show_int),
and its type guarantees that the two modules are equal.

In order to maintain coherence we must require that all implicit functors be pure. If Show_list
performed side-effects then two separate applications of it would not necessarily be equal. We ensure
this using the standard OCaml value restriction. This is a very conservative approximation of purity, but
we do not expect it to be too restrictive in practice.

3.3.3 Inheritance with module aliases

Using module aliases we can implement inheritance using modular implicits. Our Ord example is en-
coded as follow:

module type Eq = sig
type t
val equal : t -> t -> bool

end

let equal {E : Eq} x y = E.equal x y

module type Ord = sig
type t
module Eq : Eq with type t = t
val compare : t -> t -> int
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end

let compare {O : Ord} x y = O.compare x y

implicit module Eq_ord {O : Ord} = O.Eq

implicit module Eq_int = struct
type t = int
let equal = Int.equal

end

implicit module Ord_int = struct
type t = int
module Eq = Eq_int
let compare = Int.compare

end

implicit module Eq_list {E : Eq} = struct
type t = E.t list
let equal x y = List.equal E.equal x y

end

implicit module Ord_list {O : Ord} = struct
type t = O.t list
module Eq = Eq_list{O.Eq}
let compare x y = List.compare O.compare x y

end

The basic idea is to represent inheritance by including a submodule of the inherited type, along with
an implicit functor to extract that submodule. By wrapping the inherited components in a module they
can be aliased.

The two sides of the “diamond” are now Eq_list(Eq_ord(Ord_int)) or Eq_ord(Ord_list(Ord_int)),
both of which are aliases for Eq_list(Eq_int) so there is no ambiguity.

3.4 Constructor classes

Since OCaml’s modules support type members which have type parameters, modular implicits naturally
support constructor classes [8] – i.e. functions whose implicit instances are indexed by parameterised
type constructors. For example, here is a definition of a Functor module type, together with implicit
instances for the parameterised types list and option:

module type Functor = sig
type +’a t
val map : (’a -> ’b) -> ’a t -> ’b t

end

let map {F: Functor} (f : ’a -> ’b) (c : ’a F.t) = F.map f c
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implicit module Functor_list = struct
type ’a t = ’a list
let map = List.map

end

implicit module Functor_option = struct
type ’a t = ’a option
let map f = function

None -> None
| Some x -> Some (F x)

end

The choice to translate implicits into first-class functors makes elaboration for implicit modules with
parameterised types straightforward. Here is the elaborated code for map:

let map =
(module functor (F: Functor) -> struct

let value (f : ’a -> ’b) (c : ’a F.t) = F.map f c
end)

3.5 Multi-parameter type classes

Most of the examples we have seen so far involve resolution of implicit modules with a single type
member. However, nothing in the design of modular implicits restricts resolution to a single type. The
module signature inclusion relation on which resolution is based supports modules with an arbitrary
number of type members (and indeed, with many other components, such as modules and module types).

Here is an example illustrating overloading with multiple types. The Widen signature includes two
type members, slim and wide, and a coercion function widen for converting from the former to the lat-
ter. The two implicit modules, Widen_int_float and Widen_opt, respectively implement conversion
from a ints to floats, and lifting of widening to options. The final line illustrates the instantiation of
a widening function from int option to float option, based on the three implicit modules.

module type Widen = sig
type slim
type wide
val widen : slim -> wide

end

let widen {C:Widen} (v: C.slim) : C.wide = C.widen v

implicit module Widen_int_float = struct
type slim = int
type wide = float
let widen = Pervasives.float

end
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implicit module Widen_opt{A: Widen} = struct
type slim = A.slim option
type wide = A.wide option
let widen = function

None -> None
| Some v -> Some (A.widen v)

end

let v : float option = widen (Some 3)

In order to find a suitable implicit argument C for the call to widen on the last line, the resolution
procedure first generates fresh types variables for C.slim and C.wide

C.slim = ’a
C.wide = ’b

and replaces the corresponding names in the type of the variable widen:

widen : ’a -> ’b

Unifying this last type with the type supplied by the context (i.e. the type of the argument and the ascribed
result type) reveals that ’a should be equal to int option and ’b should be equal to float option.
The search for a suitable argument must therefore find a module of type Widen with the following
constraints:

C.slim = int option
C.wide = float option

The implicit functor Widen_option is suitable if a modules A can be found such that A has type Widen
with the constraints

C.slim = int
C.wide = float

The implicit module Widen_int_float satisfies these constraints, and the search is complete.
The instantiated call shows the implicit module argument constructed by the resolution procedure:

let v : float option =
widen {Widen_option(Widen_int_float )} (Some 3)

3.6 Associated types

Since OCaml modules can contain abstract types, searches can be existentially quantified. For example,
we can ask for a type which can be shown

Show

rather than how to show a specific type

Show with type t = int

The combination of signatures with multiple type members and support for existential searches gives
us similar features to Haskell’s associated types [1]. We can search for a module based on a subset of
the types it contains and the search will fill-in the remaining types for us. For example, here is a module
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type Array for arrays with a type t of arrays and a type elem of array elements, together with a function
create for creating arrays:

module type Array = sig
type t
type elem
[...]

end

val create : {A : Array} -> int -> A.elem -> A.t

The create function can be used without specifying the array type being created:

let x = create 5 true

This will search for an implicit Array with type elem = bool. When one is found x will correctly
be given the associated t type. This allows different array types to be used for different element types.
For example, arrays of bools could be implemented as bit vectors, and arrays of ints implemented using
regular OCaml arrays by placing the following declarations in scope:

implicit module Bool_array = Bit_vector

implicit module Int_array = Array(Int)

3.7 Backtracking

Haskell’s type class system ignores instance constraints when determining whether two instances are
ambiguous. For example, the following two instance constraints are always considered ambiguous:

instance Floating n => Complex (Complex_cartesian n)
instance Integral n => Complex (Complex_cartesian n)

In contrast, our system only considers those implicit functors for which suitable arguments are in
scope as candidates for instantiation. For example, the following two implicit functors are not inherently
ambiguous:

implicit module Complex_cartsian_floating {N: Floating}
: Complex with type t = N.t complex_cartesian

implicit module Complex_cartsian_integral {N: Integral}
: Complex with type t = N.t complex_cartesian

The Complex_cartesian_floating and Complex_cartesian_integral modules only give rise
to ambiguity if constraint generation (Section 2.2.1) determines that the type t of the Complex signa-
ture should be instantiated to s complex_cartesian where there are instances of both Floating and
Integral in scope for s:

implicit module Floating_s : Floating with type t = s
implicit module Integral_s : Integral with type t = s

Taking functor arguments into account during resolution is a form of backtracking. The resolu-
tion procedure considers both Complex_cartesian_integral and Complex_cartesian_floating
as candidates for instantiation and attempts to find suitable arguments for both. The resolution is only
ambiguous if both implicit functors can be applied to give implicit modules of the appropriate type.
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3.8 Local instances

The let implicit construct described in Section 2.1 makes it possible to define implicit modules
whose scope is limited to a particular expression. The following example illustrates how these local
implicit modules can be used to select alternative behaviours when calling overloaded functions.

Here is a signature Ord, for types which support comparison:

module type Ord = sig
type t
val cmp : t -> t -> int

end

The Ord signature makes a suitable type for the implicit argument of a sort function:

val sort : {O: Ord} -> O.t list -> O.t list

Each call to sort constructs a suitable value for Ord from the implicit modules and functors in scope.
Two possible orderings for int are:

module Ord_int = struct
type t = int
let cmp l r = Pervasives.compare l r

end

module Ord_int_rev = struct
type t = int
let cmp l r = Pervasives.compare r l

end

Either ordering can be used with sort by passing the argument explicitly:

sort {Ord_int} items

or

sort {Ord_int_rev} items

Explicitly passing implicit arguments bypasses the resolution mechanism altogether. It is occasion-
ally useful to combine overriding of implicit modules for particular types with automatic resolution for
other types. For example, if the following implicit module definition is in scope then sort can be used
to sort lists of pairs of integers:

implicit module Ord_pair {A: Ord} {B: Ord} = struct
type t = A.t * B.t
let cmp (x1 , x2) (y1 , y2) =

let c = A.cmp x1 y1 in
if c <> 0 then c else B.cmp x2 y2

end

Suppose that we want to use Ord_pair together with both the regular and reversed integer comparisons
to sort a list of pairs. One approach is to construct and pass entire implicit arguments explicitly:

sort {Ord_pair(Int_ord_rev )( Int_ord_rev )} items
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Alternatively (and equivalently), local implicit module bindings for Ord and Ord_int_rev make it pos-
sible to override the behaviour at ints while using the automatic resolution behaviour to locate and use
the Ord_pair functor:

let sort_both_ways (items : (int * int) list) =
let ord =

let implicit module Ord = Ord_int in
sort items

in
let rev =

let implicit module Ord = Ord_int_rev in
sort items

in
ord , rev

In Haskell, which lacks both local instances and a way of explicitly instantiating type class dictionary
arguments, neither option is available, and programmers are advised to define library functions in pairs,
with one function (such as sort) that uses type classes to instantiate arguments automatically, and one
function (such as sortBy) that accepts a regular argument in place of a dictionary:

sort :: Ord a => [a] -> [a]
sortBy :: (a -> a -> Ordering) -> [a] -> [a]

3.9 Structural matching

As Section 2.2.2 explains, picking a suitable implicit argument involves a module which matches a
constrained signature. In contrast to Haskell’s type classes, matching is therefore defined structurally (in
terms of the names and types of module components) rather than nominally (in terms of the name of the
signature). Structural matching allows the caller of an overloaded function to determine which part of a
signature is required rather than requiring the definer of a class to anticipate which overloaded functions
are most suitable for grouping together.

It is not difficult to find situations where structural matching is useful. The following signature
describes types which support basic arithmetic, with members for zero and one, and for addition and
subtraction:

module type Num = sig
type t
val zero : t
val one : t
val ( + ) : t -> t -> t
val ( * ) : t -> t -> t

end

The following implicit modules implement Num for the types int and float, using functions from
OCaml’s standard library:

implicit module Num_int = struct
type t = int
let zero = 0
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let one = 1
let ( + ) = Pervasives .( + )
let ( * ) = Pervasives .( * )

end

implicit module Num_float = struct
type t = float
let zero = 0.0
let one = 1.0
let ( + ) = Pervasives .( +. )
let ( * ) = Pervasives .( *. )

end

The Num signature makes it possible to define a variety of arithmetic functions. However, in some cases
Num offers more than necessary. For example, defining an overloaded function sum to compute the sum
of a list of values requires only zero and +, not one and *. Using Num as the implicit signature for sum
would make unnecessarily exclude types (such as strings) which have a notion of addition but which do
not support multiplication.

Defining more constrained signatures makes it possible to define more general functions. Here is a
signature Add which includes only those elements of Num involved in addition:

module type Add = sig
type t
val zero : t
val ( + ) : t -> t -> t

end

Using Add we can define a sum which works for any type that has an implicit module with definitions of
zero and plus:

let sum {A: Add} (l : A.t list) =
List.fold_left A.( + ) A.zero l

The existing implicit modules Num_int and Num_float can be used with sum, since they both match
Add. The following module, Add_string, also matches Add, making it possible to use sum either for
summing a list of numbers or for concatenating a list of strings:

implicit module Add_string = struct
type t = string
let zero = ""
let ( + ) = Pervasives .( ^ ) (* concatenation *)

end

In other cases it may be necessary to use some other part of the Num interface. The following function
computes an inner product for any type with an implicit module that matches Num:

let dot {N: Num} (l1 : N.t list) (l2 : N.t list) =
sum (List.map2 N.( * ) l1 l2)

This time it would not be sufficient to use Add for the type of the implicit argument, since dot uses both
multiplication and addition. However, Add still has a role to play: the implicit argument of sum uses the
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implicit argument N with type Add. Since the Num signature is a subtype of Add according to the rules of
OCaml’s module system, the argument can be passed through directly to sum. Here is the elaboration of
dot, showing how the sum functor being unpacked, bound to F, then applied to the implicit argument N:

let dot =
(module functor (N: Num) -> struct

let value (l1 : N.t list) (l2 : N.t list) =
let module F = (val sum) in
let module R = F(N) in

R.value (List.map2 N.( * ) l1 l2)
end)

An optimising compiler might lift the unpacking and application of sum outside the body of the function,
in order to avoid repeating the work each time the list arguments are supplied.

Section 3.3 illustrated that structural matching is not an ideal encoding for full class inheritance
hierarchies due to the diamond problem. However, it can provide a more lightweight encoding for simple
forms of inheritance.

4 Canonicity

In Haskell, a type class has at most one instance per type within a program. For example, defining two
instances of Show for the type Int or for the type constructor Maybe is not permitted. We call this
property canonicity.

Haskell relies on canonicity to maintain coherence, whereas canonicity cannot be preserved by our
system due to OCaml’s support for modular abstraction.

4.1 Inference, coherence and canonicity

A key distinction between type classes and implicits is that, with type classes, constraints on a function’s
type can be inferred based on the use of other constrained functions in the function’s definitions. For
example, if a show_twice function uses the show function:

show_twice x = show x ++ show x

then Haskell will infer that show_twice has type Show a => a -> String.
This inference raises issues for coherence in languages with type classes. For example, suppose we

have the following instance:

instance Show a => Show [a] where
show l = show_list l

and consider the function:

show_as_list x = show [x]

There are two valid types which could be inferred for this function:

show_as_list :: Show [a] => a -> String

or

show_as_list :: Show a => a -> String
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In the second case, the Show [a] instance has been used to reduce the constraint to Show a.
The choice between these two types changes where the Show [a] constraint is resolved. In the first

case it will be resolved at calls to show_as_list. In the second case it has been resolved at the definition
of show_as_list.

If type class instances are canonical then it does not matter where a constraint is resolved, as
there is only a single instance to which it could be resolved. Thus, with canonicity, the inference of
show_as_list’s type cannot affect the dynamic semantics of the program, and coherence is preserved.

However, if type class instances are not canonical then where a constraint is resolved can affect
which instance is chosen, which in turn changes the dynamic semantics of the program. Thus, without
canonicity, the inference of show_as_list’s type can affect the dynamic semantics of the program,
breaking coherence.

4.2 Canonicity and abstraction

It would not be possible to preserve canonicity in OCaml because type aliases can be made abstract.
Consider the following example:

module F (X : Show) = struct
implicit module S = X

end

implicit module Show_int = struct
type t = int
let show = string_of_int

end

module M = struct
type t = int
let show _ = "An int"

end

module N = F(M)

The functor F defines an implicit Show module for the abstract type X.t, whilst the implicit module
Show_int is for the type int. However, F is later applied to a module where t is an alias for int. This
violates canonicity but this violation is hidden by abstraction.

Whilst it may seem that such cases can be detected by peering through abstractions, this is not
possible in general and defeats the entire purpose of abstraction. Fundamentally, canonicity is not a
modular property and cannot be respected by a language with full support for modular abstraction.

4.3 Canonicity as a feature

Besides maintaining coherence, canonicity is sometimes a useful feature in itself. The canonical example
for the usefulness of canonicity is the union function for sets in Haskell. The Ord type class defines an
ordering for a type3:

3Some details of Ord are omitted for simplicity
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class Ord a where
(<=) :: a -> a -> Bool

This ordering is used to create sets implemented as binary trees:

data Set a
empty :: Set a
insert :: Ord a => a -> Set a -> Set a
delete :: Ord a => a -> Set a -> Set a

The union function computes the union of two sets:

union :: Ord a => Set a -> Set a -> Set a

Efficiently implementing this union requires both sets to have been created using the same ordering. This
property is ensured by canonicity, since there is only one instance of Ord a for each a, and all sets of
type Set a must have been created using it.

4.4 An alternative to canonicity as a feature

In terms of modular implicits, Haskell’s union function would have type:

val union: {O : Ord} -> O.t set -> O.t set -> O.t set

but without canonicity it is not safe to give union this type since there is no guarantee that all sets of a
given type were created using the same ordering.

The issue is that the set type is only parametrised by the type of its elements, when it should really
be also parametrised by the ordering used to create it. Traditionally, this problem is solved in OCaml by
using applicative functors:

module Set (O : Ord) : sig
type elt
type t
val empty : t
val add : elt -> t -> t
val remove : elt -> t -> t
val union : t -> t -> t
[...]

end

When applied to an Ord argument O, the Set functor produces a module containing the following func-
tions:

val empty : Set(O).t
val add : elt -> Set(O).t -> Set(O).t
val remove : elt -> Set(O).t -> Set(O).t
val union : Set(O).t -> Set(O).t -> Set(O).t

The same approach transfers to modular implicits, giving our polymorphic set operations the follow-
ing types:

val empty : {O : Ord} -> Set(O).t
val add : {O : Ord} -> O.t -> Set(O).t -> Set(O).t
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val remove : {O : Ord} -> O.t -> Set(O).t -> Set(O).t
val union : {O : Ord} -> Set(O).t ->

Set(O).t -> Set(O).t

The type for sets is now Set(O).t which is parametrised by the ordering module O, ensuring that union
is only applied to sets created using the same ordering.

5 Order independence and compositionality

Two properties enjoyed by traditional ML type systems are order independence and compositionality.
This section describes how modular implicits affect these properties.

5.1 Order independence

Type inference is order independent when the order in which expressions are type-checked does not
affect whether type inference succeeds. Traditional ML type inference is order independent, however
some of OCaml’s advanced features, including first-class functors, cause order dependence.

As described in Section 2.2, type checking implicit applications has two aspects:

1. Inferring the types which constrain the implicit argument

2. Resolving the implicit argument using the modules and functors in the implicit scope.

These two aspects are interdependent: the order in which they are performed affects whether type infer-
ence succeeds.

5.1.1 Resolution depends on types

Consider the implicit application from line 24 of our Show example (Figure 1):

show 5

Resolving the implicit argument S requires first generating the constraint S.t = int. Without this con-
straint the argument would be ambiguous – it could be Show_int, Show_float, Show_list(Show_float),
etc. This constraint can only come from type-checking the non-implicit argument 5.

This demonstrates that resolution depends on type inference, and so some type inference must be
done before implicit arguments are resolved.

5.1.2 Types depend on resolution

Given that resolution depends on type inference, we might be tempted to perform resolution in a second
pass of the program, after all type inference has finished. However, although it is not immediately
obvious, types also depend on resolution.

Consider the following code:

module type Sqrtable = sig
type t
val sqrt : t -> t

end
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let sqrt {S : Sqrtable} x = S.sqrt x

implicit module Sqrt_float = struct
type t = float
let sqrt x = sqrt_float x

end

let sqrt_twice x = sqrt (sqrt x)

The sqrt_twice function contains two calls to sqrt, which has an implicit argument of module type
Sqrtable. There are no constraints on these implicit parameters as x has an unknown type; however,
there is only one Sqrtable module in scope so the resolution is still unambiguous. By resolving S to
Sqrt_float we learn that x in fact has type float.

This demonstrates that types depend on resolution, and so resolution must be done before some type
inference. In particular, it is important that resolution is performed before generalisation is attempted
on any types which depend on resolution because type variables cannot be unified after they have been
generalised.

5.1.3 Resolution depends on resolution

Since resolution depends on types, and types can depend on resolution, it follows that one argument’s
resolution can depend on another argument’s resolution.

Following on from the previous example, consider the following code:

module type Summable = sig
type t
val sum : t -> t -> t

end

let double {S : Summable} x = S.sum x x

implicit module Sum_int = struct
type t = int
let sum x y = x + y

end

implicit module Sum_float = struct
type t = float
let sum x y = x +. y

end

let sqrt_double x = sqrt (double x)

Here there are two implicit applications: one of sqrt and one of double. As before, the arguments of
these functions have no constraints since x’s type is unknown. If the resolution of double’s implicit
argument is attempted without constraint it will fail as ambiguous, since either Sum_int or Sum_float
could be used. However, if sqrt’s implicit argument is first resolved to Sqrt_float then we learn that
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the return type of the call to double is float. This allows double’s implicit argument to unambiguously
be resolved as Sum_float.

This demonstrates that resolutions can depend on other resolutions, and so the order in which reso-
lutions are attempted will affect which programs will type-check successfully.

5.1.4 Predictable inference

In the presence of order dependence, inference can be kept predictable by providing some declarative
guarantees about the order of type-checking, and disallowing programs whose type inference would only
succeed due to an ordering between operations which is not ensured by these guarantees. This is the
approach OCaml takes with its other order-dependent features4.

Taking the same approach with modular implicits involves two choices about the design:

1. When should implicit resolution happen relative to type inference?

2. In what order should implicit arguments be resolved?

The dependence of resolution on type inference is much stronger than the dependence of type infer-
ence on resolution: delaying type inference until after resolution would lead to most argument resolutions
being ambiguous.

In order to perform as much inference as possible before attempting resolution, resolution is delayed
until the point of generalisation. Technically, resolution could be delayed until a generalisation is reached
which directly depends on a type involved in that resolution. However, we take a more predictable
approach and resolve all the implicit arguments in an expression whenever the result of that expression
is generalised.

In practice, this means that implicit arguments are resolved at the nearest enclosing let binding. For
example, in this code:

let f g x =
let z = [g (show 5) (show 4.5); x] in

g x :: z

the implicit arguments of both calls to show will be resolved after the entire expression

[g (show 5) (show 4.5); x]

has been type-checked, but before the expression

g x :: z

has been type-checked.
Our implementation of modular implicits makes very few guarantees about the order of resolution

of implicit arguments within a given expression. It is guaranteed that implicit arguments of the same
function will be resolved left-to-right, and that implicit arguments to a function will be resolved before
any implicit arguments within other arguments to that function.

These guarantees mean that the example of dependent resolutions:

let sqrt_double x = sqrt (double x)

will resolve without ambiguity, but that the similar expression:

let double_sqrt x = double (sqrt x)

4OCaml emits a warning rather than out-right disallowing programs which depend on an unspecified ordering
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will result in an ambiguous resolution error. This can be remedied either by adding a type annotation:

let double_sqrt x : float = double (sqrt x)

or by lifting the argument into its own let expression to force its resolution:

let double_sqrt x =
let s = sqrt x in

double s

Another possibility would be to try each implicit argument being resolved in turn until an unam-
biguous one is found. Resolving that argument might produce more typing information allowing further
arguments to be resolved unambiguously. This approach is analogous to using a breadth-first resolution
strategy in logic programming, rather than a depth-first strategy: it improves the completeness of the
search – and so improves the predictability of inference – but is potentially less efficient in practice.
Comparing this approach with the one used in our existing implementation is left for future work.

5.2 Compositionality

Compositionality refers to the ability to combine two independent well-typed program fragments to
produce a program fragment that is also well typed. In OCaml, this property holds of top-level definitions
up to renaming of identifiers.

Requiring that implicit arguments be unambiguous means that renaming of identifiers is no longer
sufficient to guarantee two sets of top-level definitions can be composed. For example,

implicit module Show_int1 = struct
type t = int
let show x = "Show_int1: " ^ (int_of_string x)

end

let x = show 5

and

implicit module Show_int2 = struct
type t = int
let show x = "Show_int2: " ^ (int_of_string x)

end

let y = show 6

cannot be safely combined because the call to show in the definition of y would become ambiguous. In
order to ensure that two sets of definitions can safely compose they must not contain overlapping implicit
module declarations.

However, whilst compositionality of top-level definitions is lost, compositionality of modules is
maintained. Any two well-typed module definitions can be combined to produce a well-typed program.
This is an important property, as it allows support for separate compilation without the possibility of
errors at link time.
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6 Implementation

We have created a prototype implementation of our proposal based on OCaml 4.02.0, which can be
installed through the OPAM package manager:

opam switch 4.02.0+ modular -implicits

Although it is not yet in a production ready state, the prototype has allowed us to experiment with the
design and to construct examples like those in Section 3. We have also used the prototype to build a port
of Haskell’s Scrap Your Boilerplate [12] library, which involves aroud 600 lines of code, and exercises
many of the features and programming patterns described in this paper, including inheritance, higher-
order polymorphism, implicit functors and constructor classes. As the prototype becomes more stable
we hope to use it to explore the viability of modular implicits at greater scale.

One key concern when implementing modular implicits is the efficiency of the resolution procedure.
Whilst the changes to OCaml’s type inference required for modular implicits are small and should not
affect its efficiency, the addition of a resolution for every use of functions with implicit parameters could
potentially have a dramatic effect on performance.

Our prototype implementation takes a very naive approach to resolution, keeping a list of the implicit
modules and functors in scope, and checking each of them as a potential solution using OCaml’s existing
procedure for checking module inclusion.

The performance of resolution could be improved in the following ways:

Memoization Resolutions can be memoized so that repeated uses of the same functions with implicit
arguments do not cause repeated full resolutions. Even if new implicit modules are added to
the environment it is possible to partially reuse the results of previous resolutions since module
expressions which do not involve the new modules do not need to be reconsidered.

Indexing A mapping can be maintained between module types and the implicit modules which could be
used to resolve them to avoid searching over the whole list of implicit modules in scope. In partic-
ular, indexing based on the names of the members of the module type is simple to implement and
should quickly reduce the number of implicit modules that need to be considered for a particular
resolution.

Fail-fast module inclusion Checking module inclusion in OCaml is an expensive operation. However,
during resolution most inclusion checks are expected to fail. Using an implementation of mod-
ule inclusion checking which is optimised for the failing case would make it possible to quickly
eliminate most potential solutions to a resolution.

These techniques aim to reduce the majority of resolutions to a few table lookups, which should
allow modular implicits to scale effectively to large code bases with many implicit declarations and
implicit arguments. However, we leave the implementation and full evaluation of these techniques to
future work.

7 Related work

There is a large literature on systematic approaches to ad-hoc polymorphism, Kaes [11] being perhaps
the earliest example. We restrict our attention here to a representative sample.
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7.1 Type classes

Haskell type classes [20] are the classic formalised method for ad-hoc polymorphism. They have been
replicated in a number of other programming languages (e.g. Agda’s instance arguments [3], Rust’s
traits [15]).

The key difference between approaches based on type class and approaches based on implicits is
that type class constraints can be inferred, whilst implicit parameters must be defined explicitly. Haskell
maintains coherence, in the presence of such inference, by ensuring that type class instances are canoni-
cal.

Canonicity is not possible in a language which supports modular abstraction (such as OCaml), and
so type classes are not always a viable choice. Canonicity is also not always desirable: the restriction
to a single instance per type is not compositional and can force users to create additional types to work
around it. Consequently, some proposals for extensions to type classes involve relinquishing canonicity
in order to support desirable features such as local instances [4].

The decision to infer constraints also influences other design choices. For example, whereas modular
implicits instantiate implicit arguments only at function application sites, the designers of type classes
take the dual approach of only generalizing constrained type variables at function abstraction sites [9,
Section 4.5.5]. Both restrictions have the motivation of avoiding unexpected work – in Haskell, adding
constraints to non-function bindings can cause a loss of sharing, whereas in OCaml, inserting implicit
arguments at sites other than function calls could cause side effects to take place in the evaluation of
apparently effect-free code.

Modular implicits offer a number of other advantages over type classes, including support for back-
tracking during parameter resolution, allowing for more precise detection of ambiguity, and resolution
based on any type defined within the module rather than on a single specific type. However, there are
also some features of type classes that our proposal does not support, such as the ability to instantiate an
instance variable with an open type expression; in Haskell one can define the following instance, which
makes it possible to show values of type T a for any a:

instance Show (T a)

7.2 Implicits

Scala implicits [16] are a major inspiration for this work. They provide implicit parameters on functions,
which are selected from the scope of the call site based on their type. In Scala these parameters have
ordinary Scala types, whilst we propose using module types. Scala’s object system has many properties
in common with a module system, so advanced features such as associated types are still possible despite
Scala’s implicits being based on ordinary types.

Scala’s implicits have a more complicated notion of scope than our proposal. This seems to be aimed
at fitting implicits into Scala’s object-oriented approach: for example allowing implicits to be searched
for in companion objects of the class of the implicit parameter. This makes it more difficult to answer
the question “Where is the implicit parameter coming from?”, in turn making it more difficult to reason
about code. Our proposal simply uses lexical scope when searching for an implicit parameter.

Scala supports overlapping implicit instances. If an implicit parameter is resolved to more than one
definition, rather than give an ambiguity error, a complex set of rules gives an ordering between def-
initions, and a most specific definition will be selected. An ambiguity error is only given if multiple
definitions are considered equally specific. This can be useful, but makes reasoning about implicit pa-
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rameters more difficult: to know which definition is selected you must know all the definitions in the
current scope. Our proposal always gives an ambiguity error if multiple implicit modules are available.

In addition to implicit parameters, Scala also supports implicit conversions. If a method is not avail-
able on an object’s type the implicit scope is searched for a function to convert the object to a type
on which the method is available. This feature greatly increases the complexity of finding a method’s
definition, and is not supported in our proposal.

Chambart et al. have proposed [2] adding support for implicits to OCaml using core OCaml types
for implicit parameters. Our proposal instead uses module types for implicit parameters. This allows
our system to support more advanced features including associated types and higher kinds. The module
system also seems a more natural fit for ad-hoc polymorphism due to its direct support for signatures.

The implicit calculus [17] provides a minimal and general calculus of implicits which could serve as
a basis for formalising many aspects of our proposal.

Coq’s type classes [18] are similar to implicits. They provide implicit dependent record parameters
selected based on their type.

7.3 Canonical structures

In addition to type classes, Coq also supports a mechanism for ad-hoc polymorphism called canoni-
cal structures [14]. Type classes and implicits provide a mechanism to resolve a value based on type
information. Coq, being dependently typed, already uses unification to resolve values from type infor-
mation, so canonical structures support ad-hoc polymorphism by providing additional ad-hoc rules that
are applied during unification.

Like implicits, canonical structures do not require canonicity, and do not operate on a single specific
type: ad-hoc unification rules are created for every type or term defined in the structure. Canonical
structures also support backtracking of their search due to the backtracking built into Coq’s unification.

7.4 Concepts

Gregor et al. [7] describe concepts, a system for ad-hoc polymorphism in C++5.
C++ has traditionally used simple overloading to support ad-hoc polymorphism restricted to monomor-

phic uses. C++ also supports parametric polymorphism through templates. However, overloading within
templates is re-resolved after template instantiation. This means that the combination of overloading and
templates provides full ad-hoc polymorphism. Delaying a significant part of type checking until template
instantiation increases compilation times and makes error message more difficult to understand.

Concepts provide a disciplined mechanism for full ad-hoc polymorphism through an approach sim-
ilar to type classes and implicits. Like type classes, a new kind of type is used to constrain parametric
type variables. New concepts are defined using a concept construct. Classes with the required members
of a concept automatically have an instance for that concept, and further instances can be defined using
the concept_map construct. Like implicits, concepts cannot be inferred and are not canonical.

Concepts allow overlapping instances, using C++’s complex overloading rules to resolve ambiguities.
Concept maps can override the default instance for a type. These features can be useful, but make
reasoning about implicit parameters more difficult. Our proposal requires all implicit modules to be
explicit and always gives an ambiguity error if multiple matching implicit modules are available.

F#’s static constraints [19] are similar to concepts without support for concept maps.

5This should not be confused with more recent “concepts lite” proposal, due for inclusion in the next C++ standard
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7.5 Modular type classes

Dreyer et al. [5] describe modular type classes, a type class system which uses ML module types as
type classes and ML modules as type class instances. This system sticks closely to the design of Haskell
type classes. In particular it infers type class constraints, and gives ambiguity errors at the point when
modules are made implicit.

In order to maintain coherence in the presence of inferred constraints and without canonicity, the
system includes a number of undesirable restrictions:

• Modules may only be made implicit at the top-level; they cannot be introduced within a module or
a value definition.

• Only module definitions are permitted at the top-level; all value definitions must be contained
within a sub-module.

• All top-level module definitions must have an explicit signature.

These restrictions essentially split the language into an outer layer that consists only of module defini-
tions and an inner layer within each module definition. Within the inner layer instances are canonical
and constraints are inferred. In the outer layer instances are not canonical and all types must be given
explicitly; there is no type inference.

In order to give ambiguity errors at the point where modules are made implicit, one further restriction
is required: all implicit modules must define a type named t and resolution is always done based on this
type.

By basing our design on implicits rather than type classes we avoid such restrictions. Our proposal
also includes higher-rank implicit parameters, higher-kinded implicit parameters and resolution based on
multiple types. These are not included in the design of modular type classes.

Wehr et al. [21] give a comparison and translation between modules and type classes. This translation
does not consider the implicit aspect of type classes, but does illustrate the relationship between type class
features (e.g. associated types) and module features (e.g. abstract types).

8 Future work

This paper gives only an informal description of the type system and resolution procedure. Giving a
formal description is left as future work.

The implementation of our proposal described in Section 6 is only a prototype. Further work is
needed to bring this prototype up to production quality.

The two aspects of our proposal related to completeness of type inference:

1. The interdependence of type inference and resolution

2. The restrictions on resolution to avoid non-termination

are inevitably compromises between maximising inference and maximising predictability. How to strike
the best balance between these two goals is an open question. More work is needed to evaluate how
predictable users find the various possible approaches in practice.

The syntax used for implicit functors is suggestive of an extension to our proposal: functors with
implicit arguments. In our proposal, arguments to functors are only resolved implicitly during resolution
for other implicit arguments. Supporting such resolution more generally would be an interesting direction
to explore as it would introduce ad-hoc polymorphism into the module language.
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Further work is also needed to answer more practical questions: How well do modular implicits scale
to large code bases? How best to design libraries using implicits? How efficient is implicit resolution on
real world code bases?
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Muñoz & Sofiène Tahar, editors: Theorem Proving in Higher Order Logics, 21st International Conference,
TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings, Lecture Notes in Computer Science
5170, Springer, pp. 278–293, doi:10.1007/978-3-540-71067-7 23.

[19] Don Syme, Luke Hoban, Tao Liu, Dmitry Lomov, James Margetson, Brian McNamara, Joe Pamer, Penny
Orwick, Daniel Quirk, Chris Smith et al. (2005): The F# 3.0 Language Specification.

[20] Philip Wadler & Stephen Blott (1989): How to Make ad-hoc Polymorphism Less ad-hoc. In: Conference
Record of the Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin, Texas,
USA, January 11-13, 1989, ACM Press, pp. 60–76, doi:10.1145/75277.75283. Available at http://dl.
acm.org/citation.cfm?id=75277.

[21] Stefan Wehr & Manuel M. T. Chakravarty (2008): ML Modules and Haskell Type Classes: A Constructive
Comparison. In G. Ramalingam, editor: Programming Languages and Systems, 6th Asian Symposium,
APLAS 2008, Bangalore, India, December 9-11, 2008. Proceedings, Lecture Notes in Computer Science
5356, Springer, pp. 188–204, doi:10.1007/978-3-540-89330-1 14.

[22] Jeremy Yallop & Leo White (2014): Lightweight Higher-Kinded Polymorphism. In Michael Codish &
Eijiro Sumii, editors: Functional and Logic Programming - 12th International Symposium, FLOPS 2014,
Kanazawa, Japan, June 4-6, 2014. Proceedings, Lecture Notes in Computer Science 8475, Springer, pp.
119–135, doi:10.1007/978-3-319-07151-0 8.

https://hal.inria.fr/hal-00930213
https://hal.inria.fr/hal-00930213
http://dx.doi.org/10.1007/978-3-642-39634-2_5
http://www.rust-lang.org
http://dx.doi.org/10.1145/1869459.1869489
http://dx.doi.org/10.1145/2254064.2254070
http://dl.acm.org/citation.cfm?id=2254064
http://dl.acm.org/citation.cfm?id=2254064
http://dx.doi.org/10.1007/978-3-540-71067-7_23
http://dx.doi.org/10.1145/75277.75283
http://dl.acm.org/citation.cfm?id=75277
http://dl.acm.org/citation.cfm?id=75277
http://dx.doi.org/10.1007/978-3-540-89330-1_14
http://dx.doi.org/10.1007/978-3-319-07151-0_8

	Introduction
	Type classes and implicits
	Type classes
	Implicits
	Modular type classes

	Modular implicits
	Contributions

	The design of modular implicits
	New syntax
	Resolving implicit arguments
	Generating argument constraints
	Searching for a matching module

	Elaboration
	Why target first-class functors?
	Higher-rank polymorphism
	Higher-kinded polymorphism
	First-class functors and type inference


	Modular implicits by example
	Defining overloaded functions
	Instance constraints
	Inheritance
	The ``diamond'' problem
	Module aliases
	Inheritance with module aliases

	Constructor classes
	Multi-parameter type classes
	Associated types
	Backtracking
	Local instances
	Structural matching

	Canonicity
	Inference, coherence and canonicity
	Canonicity and abstraction
	Canonicity as a feature
	An alternative to canonicity as a feature

	Order independence and compositionality
	Order independence
	Resolution depends on types
	Types depend on resolution
	Resolution depends on resolution
	Predictable inference

	Compositionality

	Implementation
	Related work
	Type classes
	Implicits
	Canonical structures
	Concepts
	Modular type classes

	Future work

