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1 Introduction
Normalization by Evaluation (NbE), is a normalization tech-
nique that normalizes terms by evaluating them in a suitable
semantic model. The model identifies all equivalent terms,
and is accompanied by a reification function which recon-
structs normal forms by choosing a canonical representative
for each equivalence class of terms.
NbE provides a unified treatment of the implementation

and verification of normalization algorithms. NbE is remark-
ably versatile and modular. However, constructing an NbE
model for a given calculus and extending it to support new
features requires a certain amount of ingenuity [4, 5, 19]. We
report on our ongoing development of a systematic approach
to NbE for functional programming languages that is robust
to a broad class of modifications and extensions.
Consider, for example, normalization for the following

extension of the simply-typed lambda calculus (STLC) with
natural numbers and multiplication (STLCN∗):
Numbers j k ∈ Nat
Variables x y ∈ X

Types a b ∶∶= a → b ⋃︀ N
Terms t u ∶∶= x ⋃︀ 𝜆𝑥 .t ⋃︀ t u ⋃︀ n ⋃︀ t ∗ u

The lifting operator k ↦ k embeds a natural number 𝑘 as
a literal, whilst the ∗ operator multiplies two terms of type
N. A complete normalization algorithm should simplify ex-
pressions such as 𝜆𝑥.(2 ∗ 3) ∗ x and 𝜆𝑥.(𝜆𝑦.2 ∗ y) (x ∗ 3)
to 𝜆𝑥 .6 ∗ x. Whilst a naive normalizer suffices to reduce
the former expression, the latter requires some care as the
𝛽-reduced expression 𝜆𝑥.2 ∗ (x ∗ 3) must first be reordered
to 𝜆𝑥.(2 ∗ 3) ∗ x before the literals can be multiplied.
Although NbE for STLC is well-established [6, 9], its ex-

tension with an interpretation of natural numbers requires
a careful consideration of the calculus, its equations, and
the desired normal forms. What should the normal forms
of terms of type N be? How do we construct an NbE model
that supports reification of these normal forms? How should
the model be adapted if we also wish to include addition?

Yallop et al. [20] show that normalization algorithms for a
variety of algebraic structures, such as commutativemonoids,
abelian groups, rings, and distributive lattices, can be con-
structed systematically as free extensions (frex) of algebras.
Frex’s algorithm uses the fact that natural numbers with
multiplication form a commutative monoid, and normalizes
first-order terms, e.g., 2 ∗ (x ∗ 3) to 6 ∗ x.

We present our first steps in achieving NbE using the
frex approach. We show how to systematically define a nor-
malization algorithm for a higher-order functional language
extended with an algebraic structure decomposing the nor-
malization algorithm into a standard NbE algorithm for the
higher-order functional language and a frex for the first-
order algebraic structure. We use two concrete examples. In
each case we extend a standard NbE algorithm with a frex
of an arbitrary commutative monoid and show that normal-
ization is retained regardless of the monoid’s instantiation.
First we take the higher-order functional language to be
simply-typed lambda calculus, generalizing STLCN∗. Second
we take the higher-order functional language to be amonadic
information-flow security calculus. The NbE algorithm does
not rely on the theory of commutative monoids, merely on
the defining property of the frex, suggesting a generic NbE
algorithm for arbitrary algebraic structures. We conclude by
outlining ongoing work reformulating NbE via frex.

2 Frex: Free Extensions of Algebras
When normalizing expressions over an algebraic structure,
say the commutative monoid N∗, we can directly evaluate
static terms, those built entirely from elements of the struc-
ture, e.g. 2 ∗ (5 ∗ 3). The challenge is to normalize partially-
static terms, those containing both bound variables and con-
stants, e.g. 2∗(𝑥∗3). Whilst valid identities over static terms,
e.g. 2 ∗ (5 ∗ 3) = 30, hold definitionally through evaluation, a
similar identity of partially-static terms, e.g. 2∗(𝑥∗3) = 𝑥∗6,
may not. This difficulty can be removed by avoiding pure
syntax trees and instead considering terms modulo provable
equivalence in equational logic [3, 11, 20].

Free extensions, originating in universal algebra, capture
this situation abstractly. Free extensions characterize nor-
mal forms of terms of an algebraic theory up to a universal
property, yielding systematic approaches for specifying and
constructing NbE models for equational theories.

Free Extensions. The key observation underpinning the
abstract characterization of free extensions is that the be-
haviour of a partially-static term is uniquely determined
by a choice of environment. Explicitly, given an environ-
ment 𝑒 ∶ 𝑋 → N, there is a unique way to structurally evalu-
ate terms under this environment. For example, supposing
𝑒(𝑥) = 5 and 𝑒(𝑦) = 1, evaluate 2 ∗ (𝑥 ∗ 3) ∗ 𝑦 to 30. This
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situation is similar to the existence of a unique homomorphic
extension 𝑒 ∶ Free(𝑋) → N of 𝑒 from the free commutative
monoid over 𝑋 into N, but also accounts for the literals n.
This observation generalizes, yielding an abstract definition,
applicable to an arbitrary equational theory Θ such as com-
mutative monoids, abelian groups, rings, and so on.

Given a model 𝐴 ∈ Alg(Θ), e.g. commutative monoid, and
a set of variables 𝑋 , the free extension of 𝐴 by 𝑋 , denoted
𝐴(︀𝑋 ⌋︀, is a model of Θ equipped with homomorphic inser-
tions 𝑖𝐴 ∶ 𝐴 → 𝐴(︀𝑋 ⌋︀ ← Free(𝑋) ∶ 𝑖𝑋 , with the following
property. For every model 𝑊 ∈ Alg(Θ), homomorphism
ℎ ∶ 𝐴 →𝑊 and environment function 𝑒 ∶ 𝑋 →𝑊 , there is a
unique homomorphism, match, which evaluates elements of
𝐴(︀𝑋 ⌋︀ in𝑊 , and makes the following triangles commute:

𝐴(︀𝑋 ⌋︀ Free(𝑋)

𝐴 𝑊

𝑖𝐴

𝑖𝑋

∃!match
𝑒

ℎ

The abstract property postulates that the frex is the category-
theoretic coproduct of 𝐴 with this free algebra.

There is an abstract way to construct the frex𝐴(︀𝑋 ⌋︀, which
we denote by Frex(𝐴,𝑋), by quotienting the term algebra
over 𝐴 + 𝑋 , which adds a constant representing each lit-
eral in 𝐴. The quotienting equivalence relation is generated
by the equations in Θ, such as associativity and commu-
tativity, and additionally all evaluation equations, such as
n + m = n + m. We cannot use this quotient to directly
compute normal forms. However, every two objects possess-
ing the same universal property are canonically isomorphic.
Thus there is a canonical isomorphism for every frex 𝐴(︀𝑋 ⌋︀:

𝐴(︀𝑋 ⌋︀ ≅ Frex(𝐴,𝑋)
reify

eval

This isomorphism identifies equivalence classes of syntax
with semantic objects representing them. If𝐴(︀𝑋 ⌋︀ is effective,
meaning𝐴(︀𝑋 ⌋︀ has computable equality, algebraic operations
andmatch function, then: both reify and eval are computable
too, are given generically through the frex interface 𝐴(︀𝑋 ⌋︀,
and moreover reify chooses a representative normal form for
each semantic representation. The frex mantra is therefore:
to obtain an NbE model for the first-order term language of
an algebraic structure𝐴, it suffices to focus human ingenuity
on obtaining an effective construction of a frex for 𝐴.

Example: First-order NbE via Frex. Let Tm be STLCN∗’s
first-order fragment: variables, lifting and (∗), e.g. 2 ∗ (x ∗ 3).
First, construct the frex for a commutative monoid 𝑀 =

(⋃︀𝑀 ⋃︀, 𝜖𝑀 ,⊕𝑀), by a set of variables 𝑋 . This frex, 𝑀(︀𝑋 ⌋︀, has
as its carrier the set ⋃︀M ⋃︀ ×MultiSet(X), its multiplication is
(𝑎, 𝑠1)⊕ (𝑏, 𝑠2) = (𝑎 ⊕𝑀 𝑏, 𝑠1 ∪ 𝑠2), and its unit is (𝜖𝑀 ,∅).
The frex interface, which satisfies the frex axioms, is the

following inclusions 𝑖𝑀 , 𝑖𝑋 and homomorphism match:
𝑖𝑀𝑎 ∶= (𝑎,∅)
𝑖𝑋𝑥 ∶= (𝜖𝑀 , {𝑥})

match(ℎ, 𝑒)(𝑎,𝑉 ) ∶=
ℎ(𝑎)⊕𝑊 (⊕𝑥∈𝑉

𝑒(𝑥))

where⊕ iterates over the multiset 𝑉 , reducing in𝑊 .
The associated NbE model for Tm normalizes the equiva-

lence generated by equational logic of commutative monoids
and the evaluation equations, which we denote by ≈. It
comprises the equations for associativity, commutativity
and unitality of ∗, as well as the two evaluation equations
n + m = n + m and 𝜖 = 𝜖 . To exhibit such an NbE model:
● construct a commutative monoid N ;
● define an effective homomorphism eval ∶ Tm⇑≈→ 𝑁 ;
● define an effective homomorphism reify ∶ 𝑁 → Tm⇑≈;
● show that reify retracts eval (i.e., reify ○ eval ≈ 1).

The normalization homomorphism, norm ∶ Tm⇑≈→ Tm⇑≈ is
the composite reify ○ eval, congruence means ≈-equivalent
terms have equal normal forms, and the retraction ensures
normalization reflects ≈, that is: norm(𝑡) = norm(𝑢)⇒ 𝑡 ≈ 𝑢.

Taking N to be the frex N∗(︀X⌋︀, we obtain all of the above
data immediately from the fact that N is a frex. By construc-
tion, Tm⇑≈ is the abstract frex Frex(N∗, 𝑋), and therefore
the induced canonical isomorphism yields the required maps
eval and reify, noting that each isomorphism is a retraction.

3 Normalization by Evaluation with Frex
We extend NbE for a higher-order language with a first-order
algebraic structure’s frex. To illustrate this, we generalize
our running example from N∗ to an arbitrary commutative
monoid M , called STLC𝑀 . We replace the type N byM, and
the set of literals Nat by the carrier set ⋃︀M ⋃︀. We characterize
the normal forms of STLC𝑀 by extending the usual mutually
inductive definitions of normal and neutral forms with a new
normal form. This normal form, k ∗ 𝑛1 ∗ . . . ∗ 𝑛 𝑗 , repre-
sents a multiplication that begins with a literal followed by a
sequence of neutrals of typeM ordered by an arbitrary fixed
total order on terms.
Neutrals n ∶∶= x ⋃︀ n m
Normal forms m ∶∶= 𝜆x .m ⋃︀ k ∗ 𝑛1 ∗ . . . ∗ 𝑛 𝑗 (𝑛𝑖 ≤ 𝑛𝑖+1)

An NbE model is a suitable model (here, a cartesian-closed
category) with eval and reify such that reify retracts eval.
We extend the standard interpretation of function types in
an NbE model for STLC with an interpretation ofM.

JMK ∶= M(︀Ne(M)⌋︀ Ja → bK ∶= JaK ⇒ JbK

Specifically, we interpret M by the free extension of M
with the set Ne(M) of neutral terms of typeM. Taking the
free extension with the set of neutrals, as opposed to vari-
ables, is the key insight that enables NbE for STLC𝑀 using
frex. Under this type interpretation, we evaluate STLC terms
as usual, and lifting and ∗ using the frex interface.

eval x 𝛾 ∶= lookup x 𝛾
eval (𝜆𝑥.t) 𝛾 ∶= 𝜆v.eval t (𝛾 (︀x ↦ v⌋︀)
eval (app t u) 𝛾 ∶= (eval t 𝛾) (eval u 𝛾)
eval n 𝛾 ∶= 𝑖M(︀Ne(M)⌋︀ n
eval (t ∗ u) 𝛾 ∶= (eval t 𝛾) ⊕M(︀Ne(M)⌋︀ (eval u 𝛾)
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We reify as usual, by mutual type-induction with a reflect
operation coercing neutral terms into their semantic values:
reifya → b f ∶= 𝜆𝑥.reifyb (f (reflecta x))
reifyM v ∶= match ( , ne) v
reflecta → b n ∶= 𝜆v. reflectb (n (reifya v))
reflectM n ∶= 𝑖Ne(M) n
For normal forms of typeM, we reify using the frex’s match,
the lifting operator k ↦ k that embeds an element k as a
literal in normal form, and a function ne that embeds neutrals.
We define reflect using the frex’s insertion function 𝑖Ne(M).

To show that reify retracts eval, however, we are forced
into the standard logical relations based argument that is
typical in NbE literature [1]. The reason: this frex is unaware
of the higher-order constructs, a point revisited in §5.

4 Example: Information-Flow Control
We now extend the NbE algorithm to an information-flow
control (IFC) calculus that uses a commutative monoid M
of security levels. The unit 𝜖𝑀 denotes the least security
(or public) level and the operation ⊕𝑀 joins two levels by
computing their least-upper bound. This calculus extends
STLC𝑀 with a type constructor T , and the type M is to
be read as the type of security levels. A term of type T a
represents a computation that associates (or labels) a value of
type a with a security level and is reminiscent of the monads
used for dynamic and staged IFC [16, 18].

The terms and their normal forms are defined as follows.
Types a b ∶∶= . . . ⋃︀ T a
Terms t u 𝑡𝑙 𝑡𝑙 ′ ∶∶= . . . ⋃︀ return t ⋃︀ t ⌄= 𝜆x .u ⋃︀ raise 𝑡𝑙 u
Normal forms m𝑚𝑙 ∶∶= . . . ⋃︀ label𝑚𝑙 m ⋃︀ n ⌄= 𝜆x .m
(the definition of neutral forms is unchanged.) The operation
return labels a value with public level 𝜖𝑀 , and raise raises
the level of a computation u with level (term) 𝑡𝑙 . A term t of
type a can be labeled with level l as raise l (return t). The
term t ⌄= 𝜆x .u joins the level of u and t. The monadic normal
forms are as usual 𝑛1 ⌄= 𝜆𝑥1 .𝑛2 ⌄= . . . ⌄= 𝜆𝑥 𝑗 .(label 𝑚𝑙 m)
where label 𝑚𝑙 m is a combination of return and raise as
raise𝑚𝑙 (return m). This shape forces raise to be propagated
down to the end of the ⌄=-chain, where it is fused with other
applications of raise—as justified by the following equations.
(raise l t) ⌄= 𝜆𝑥 .u ≈ t ⌄= 𝜆𝑥.(raise l u)
raise 𝑡𝑙 (raise 𝑡𝑙 ′ u) ≈ raise (𝑡𝑙 ∗ 𝑡𝑙 ′) u u ≈ raise 𝜖𝑀 u
These equations are imposed in addition to the equations of
STLC𝑀 and the standard monadic equations for T .
We inductively define an indexed set T ′ A, using the set

𝑋a of variables of type a in the current context:
p ∶ JMK q ∶ A
label′ p q ∶ T ′ A

n ∶ Ne(T a) f ∶ 𝑋a → T ′ A

bind′ n f ∶ T ′ A
The family T ′ forms a monad, and is akin to the ones used
by Ahman and Staton [2] and Tomé Cortiñas and Valliap-
pan [17] to normalize monadic computations. We extend the

interpretation of types in STLC𝑀 by JT aK ∶= T ′ JaK. Evalua-
tion and reification then extend to the monadic fragment in
a straightforward manner [17].
Remarkably, we have extended the NbE algorithm for

STLC𝑀 seamlessly to the inclusion of a monad (that interacts
with security levels in a meaningful way) using the standard
treatment of NbE for monads.

5 Normalization by Evaluation via Frex
Thus NbE can leverage frex productively (§3-4), but for first-
order languages, NbE can itself be achieved via frex (§2). We
are extending this to higher-order languages in two ways.
First, programmatically, we implemented an OCaml frex

interface for STLC with sums and products. It exposes the
model structure (𝜆-abstraction; application; case-splitting;
etc.) and the insertions and match function, combining both
NbE [8, 12, 14] and term representation [7, 15] techniques.

Second, semantically, we go beyond equational logic and
ordinary algebraic structures, and use generalized algebraic
theories (GATs) [10]. Ordinarily, terms have simple contexts —
sets of variables, partitioned into sorts — while GAT contexts
are dependent. GATmodels possess a rich semantic structure,
including the existence of free models.

For example, the GAT of categories has a simple sort Obj
for objects, and a dependent sort a, b ∶ Obj ⊢ Hom (a, b).
Its algebraic operations include identities and composition:
𝑎 ∶ Obj ⊢ 𝑖𝑑 𝑎 ∶ Hom(𝑎,𝑎)
𝑎,𝑏, 𝑐 ∶ Obj, 𝑔 ∶ Hom(𝑏, 𝑐), 𝑓 ∶ Hom(𝑎,𝑏) ⊢ 𝑔 ○ 𝑓 ∶ Hom(𝑎, 𝑐)
and further equations for associativity of composition and
neutrality of identities. Its models are the (small) categories.

The key is to parameterise the frex by a model and a con-
text, instead of a set of variables. As an example, we extend
the category FinSet of hereditarily finite sets and functions
with an object S ∶ Obj and two morphisms ⊺,� ∶ Hom(11,S).
In GAT language, take the context Γ ∶= 𝑜𝑛𝑒 ∶ Obj; the environ-
ment 𝜃 ∶ Free(Γ)→ FinSet mapping one to the singleton set
11; and Δ the context extension of Γ with ⊺,� ∶ Hom(𝑜𝑛𝑒,S).
We define the frex A(︀ Γ, Δ ⌋︀ 𝜃 as the push-out:

Free(Γ) Free(Γ, Δ)

𝐴 A(︀ Γ, Δ ⌋︀ 𝜃
𝜃

Free(weaken)

⧹︃

The idea comes from considering frex as a two-argument
functor, compatible with the operations on the extending
structure. We have constructed the free extension of a cate-
gory as alternating composable sequences of freely added
and injectedmorphisms, and proved it satisfies this definition
of the generalised frex.We also proved that this frex is not the
coproduct of the original category with any other category,
and so the GAT frex is a strict generalisation of its equational
specialisation.We plan to extend this account to more sophis-
ticated theories: monoidal, cartesian, and cartesian-closed
categories, thus expressing NbE via frex [13].
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