
67

Exploring C Semantics and Pointer Provenance

KAYVAN MEMARIAN, University of Cambridge

VICTOR B. F. GOMES, University of Cambridge

BROOKS DAVIS, SRI International
STEPHEN KELL, University of Cambridge

ALEXANDER RICHARDSON, University of Cambridge

ROBERT N. M. WATSON, University of Cambridge

PETER SEWELL, University of Cambridge

The semantics of pointers and memory objects in C has been a vexed question for many years. C values cannot

be treated as either purely abstract or purely concrete entities: the language exposes their representations,

but compiler optimisations rely on analyses that reason about provenance and initialisation status, not just

runtime representations. The ISO WG14 standard leaves much of this unclear, and in some respects differs

with de facto standard usage — which itself is difficult to investigate.

In this paper we explore the possible source-language semantics for memory objects and pointers, in ISO C

and in C as it is used and implemented in practice, focussing especially on pointer provenance. We aim to, as

far as possible, reconcile the ISO C standard, mainstream compiler behaviour, and the semantics relied on

by the corpus of existing C code. We present two coherent proposals, tracking provenance via integers and

not; both address many design questions. We highlight some pros and cons and open questions, and illustrate

the discussion with a library of test cases. We make our semantics executable as a test oracle, integrating it

with the Cerberus semantics for much of the rest of C, which we have made substantially more complete

and robust, and equipped with a web-interface GUI. This allows us to experimentally assess our proposals

on those test cases. To assess their viability with respect to larger bodies of C code, we analyse the changes

required and the resulting behaviour for a port of FreeBSD to CHERI, a research architecture supporting

hardware capabilities, which (roughly speaking) traps on the memory safety violations which our proposals

deem undefined behaviour. We also develop a new runtime instrumentation tool to detect possible provenance

violations in normal C code, and apply it to some of the SPEC benchmarks. We compare our proposal with a

source-language variant of the twin-allocation LLVM semantics proposal of Lee et al. Finally, we describe

ongoing interactions with WG14, exploring how our proposals could be incorporated into the ISO standard.

CCS Concepts: • Theory of computation → Operational semantics; • Software and its engineering
→ General programming languages;

Additional Key Words and Phrases: C

ACM Reference Format:
Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander Richardson, Robert N. M.

Watson, and Peter Sewell. 2019. Exploring C Semantics and Pointer Provenance. Proc. ACM Program. Lang. 3,
POPL, Article 67 (January 2019), 32 pages. https://doi.org/10.1145/3290380

1 INTRODUCTION
The semantics of pointers and memory objects in C has been a vexed question for many years.

A priori, one might imagine two language-design extremes: a concrete model that exposes the

memory semantics of the underlying hardware, with memory being simply a finite partial map from

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART67

https://doi.org/10.1145/3290380

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

https://doi.org/10.1145/3290380
https://doi.org/10.1145/3290380

67:2 Memarian, Gomes, Davis, Kell, Richardson, Watson, Sewell

machine-word addresses to bytes, and an abstract model in which the language types enforce hard

distinctions, e.g. between numeric types that support arithmetic and pointer types that support

dereferencing. C is neither of these. Its values are not abstract: the language intentionally permits

manipulation of their underlying representations, via casts between pointer and integer types,

char* pointers to access representation bytes, and so on, to support low-level systems programming.

But C values also cannot be considered to be simple concrete values: at runtime a C pointer will

typically just be a machine word, but compiler analysis reasons about abstract notions of the

provenance of pointers, and compiler optimisations rely on assumptions about these for soundness.

To understand exactly what is and is not allowed, as a C programmer, compiler or analysis

tool writer, or semanticist, one might turn to the ISO language standard produced by WG14 [63].

However, that suffers from three problems, especially for these pointer and memory object issues.

First, while in many respects the ISO standard is clear, in some it is not. Particularly relevant here,

some compiler optimisations rely on alias analysis to deduce that two pointer values do not refer

to the same object, which in turn relies on assumptions that the program only constructs pointer

values in “reasonable” ways (with other programs regarded as having undefined behaviour, UB).

The 2004 WG14 committee response to Defect Report DR260 [62] states that implementations can

track the origins (or “provenance”) of pointer values, but exactly what this means is left undefined,

and it has never been incorporated into the standard text. Even what a memory object is is not

completely clear in the standard, especially for aggregate types and within heap regions.

Second, in some respects there are significant discrepancies between the ISO standard and the

de facto standards, of C as it is implemented and used in practice. Major C codebases typically

rely on particular compiler flags, e.g. -fno-strict-aliasing or -fwrapv, that substantially affect

the semantics but which standard does not attempt to describe, and some idioms are UB in ISO C

but widely relied on in practice. There is also not a unique de facto standard: in reality, one has to

consider the expectations of expert C programmers and compiler writers, the behaviours of specific

compilers, and the assumptions about the language implementations that the global C codebase

relies upon to work correctly (in so far as it does). Our recent surveys [42, 44] of the first revealed

many discrepancies, with widely conflicting responses to specific questions.

Third, the ISO standard is a prose document, as is typical for industry standards. The lack of

mathematical precision, while also typical for industry standards, has surely contributed to the

accumulated confusion about C, but, perhaps more importantly, the prose standard is not executable
as a test oracle. One would like, given small test programs, to be able to automatically compute

the sets of their allowed behaviours (including whether they have UB). Instead, one has to do

painstaking argument with respect to the text and concepts of the standard, a time-consuming

and error-prone task that requires great expertise, and which will sometimes run up against the

areas where the standard is unclear or differs with practice. One also cannot use conventional

implementations to find the sets of all allowed behaviours, as (a) the standard is a loose specification,

while particular compilations will resolve many nondeterministic choices, and (b) conventional

implementations cannot detect all sources of undefined behaviour (that is the main point of UB

in the standard, to let implementations assume that source programs do not exhibit UB, together

with supporting implementation variation beyond the UB boundary). Sanitisers and other tools can

detect some UB cases, but not all, and each tool builds in its own more-or-less ad hoc C semantics.

This is not just an academic problem: disagreements over exactly what is or should be permitted

in C have caused considerable tensions, e.g. between OS kernel and compiler developers, as increas-

ingly aggressive optimisations can break code that worked on earlier compiler implementations.

Our first main contribution (§2–6) is an exploration of the design space and two candidate

semantics for pointers and memory objects in C, taking both ISO and de facto C into account.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

Exploring C Semantics and Pointer Provenance 67:3

Fig. 1. An example C program, its elaboration into Core, and the memory graph during execution

We earlier [7, 42] identified many design questions, supported by semantic test cases. We focus

here on the questions concerning pointer provenance, which we revise and extend. We develop

two main coherent proposals that reconcile many design concerns; both are broadly consistent

with the provenance intuitions of practitioners and ISO DR260, while still reasonably simple. We

highlight their pros and cons and various outstanding open questions. These proposals cover many

of the interactions between abstract and concrete views in C: casts between pointers and integers,

access to the byte representations of values, etc. We compare our proposals with a source-language

analogue of the LLVM twin-allocation semantics proposal of Lee et al [35] (§6).

Our second main contribution (§7–9) comprises substantial improvements to our Cerberus

semantics for a large fragment of C [42]. Cerberus defines semantics by elaborating C source into a

purpose-built Core language; Core is abstracted on a clean memory object model interface that we

instantiate with our memory object models. We thus make the combined semantics executable as

test oracles, and confirm that they do the right thing for our library of semantic test cases (except

for tests using IO, that Cerberus does not support). We make Cerberus more robust and usable with

a new parser; extensive front-end improvements; a type system for Core; concrete, symbolic and

interactive execution modes; and a web-interface GUI, linked to for each test and shown in Fig. 1, to

permit easy experimentation with small examples. Cerberus now also identifies many of the clauses

of the ISO C standard text captured by its definitions of type-checking and elaboration, displaying

these in the GUI. The project page includes data for various compilers and other tools for these tests:

GCC 8.1, Clang 6.0, ICC 19, UBSAN, ASAN, MSAN, CompCert [37, 38], RV-Match [18], CH2O [30],

and CHERI [8, 60, 61, 66]. We include extensive validation of the combination of Cerberus and

our provenance semantics on various existing test suites (§9): the GCC torture tests [14], the ITC

Toyota benchmark [55], the KCC example test suite [19, 25], and a family of Csmith tests [53].

Our third contribution is an empirical investigation of existing C code, examining the extent to

which it is compatible with our proposed provenance semantics (§10). We do so in three ways. For

the first two, we exploit data from the CHERI project [8, 60, 61, 66], which has designed experimental

architectures with hardware support for fine-grained memory protection and secure encapsulation,

using capabilities, and ported software including the FreeBSD kernel and userspace to this. The

CHERI-adapted FreeBSD userspace includes hundreds of libraries, daemons, and command-line

tools, such as zlib, OpenSSL, and OpenSSH; other ported applications include Postgres, nginx, and

WebKit, representing a broad range of code functionality, style, and vintage. CHERI C (when using

capabilities for all pointers) is a stricter model than our provenance semantics, so the changes

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

https://cerberus.cl.cam.ac.uk/cerberus?demo/demo1.c
http://cerberus.cl.cam.ac.uk/
https://www.cl.cam.ac.uk/users/pes20/cerberus

67:4 Memarian, Gomes, Davis, Kell, Richardson, Watson, Sewell

required for this tell us about the semantics relied on by the original code. We analyse the

changes needed, and also run the resulting code in a CHERI emulator adapted to log all capability

arithmetic that involves out-of-bounds pointer constructions. Third, we develop a novel dynamic

instrumentation tool that can be applied to conventional (non-CHERI) code, tracking semantic

provenance information in shadow memory, and present preliminary results from this.

Last but not least, our fourth contribution is an ongoing engagement with the ISOWG14 standards

committee about these issues (§11).

Caveats and non-goals Our combined model covers many features of C, both syntactic and

semantic, but to keep the problem manageable we exclude some important aspects. In this paper

we focus on provenance and pointer semantics. We do not address the memory object model issues

relating to subobject provenance, uninitialised reads, padding, and suchlike, both because of lack of

space, and because it remains unclear what a broadly acceptable proposal for them could be. We

focus on the C commonly used for mainstream systems programming without effective types (with

-fno-strict-aliasing). Our semantics is intended as a source semantics for C. For an intermediate

language, e.g. LLVM, there are related but distinct goals, which we return to in §6.

Cerberus does not cover preprocessor features, C11 character-set features, general use of floating-

point and complex types (beyond simple float constants and arithmetic from the underlying

OCaml implementation), user-defined variadic functions (we do cover printf), bitfields, volatile,

restrict, generic selection, register, flexible array members, some exotic initialisation forms,

signals, longjmp, multiple translation units, most of the standard library, or concurrency.

We make Cerberus executable as a test oracle to explore all the behaviour of small test cases,

which is already challenging. It is not intended as a bug-finding tool for production C code, which

would need considerably higher performance —at the expense of clarity of the semantics— and

would also need additional feature coverage. Finally, while we have done significant testing and

validation, more would always be desirable.

2 BASIC POINTER PROVENANCE
C pointer values are typically represented at runtime as simple concrete numeric values, but

mainstream compilers routinely exploit information about the provenance of pointers to reason

that they cannot alias, and hence to justify optimisations. In this section we develop a provenance

semantics for simple cases of the construction and use of pointers,

// provenance_basic_global_yx.c (and an xy variant)
#include <stdio.h>

#include <string.h>

int y=2, x=1;

int main() {

int *p = &x + 1;

int *q = &y;

printf("Addresses: p=%p q=%p\n",(void*)p,(void*)q);

if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // does this have undefined behaviour?

printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);

}

}

For example, consider the classic

test [7, 27, 30, 42, 62] on the right

(note that this and many of the exam-

ples below are edge-cases, exploring

the boundaries of what different se-

mantic choices allow, and sometimes

what behaviour existing compilers ex-

hibit; they are not all intended as de-

sirable code idioms).

Depending on the implementation,

x and ymight in some executions hap-

pen to be allocated in adjacent mem-

ory, in which case &x+1 and &y will

have bitwise-identical representation values, the memcmp will succeed, and p (derived from a pointer

to x) will have the same representation value as a pointer to a different object, y, at the point of the

update *p=11. This can occur in practice, e.g. with GCC 8.1 -O2 on some platforms. Its output of x=1

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_global_yx.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_global_xy.c

Exploring C Semantics and Pointer Provenance 67:5

y=2 *p=11 *q=2 suggests that the compiler is reasoning that *p does not alias with y or *q, and

hence that the initial value of y=2 can be propagated to the final printf. ICC, e.g. ICC 19 -O2, also

optimises here (for a variant with x and y swapped), producing x=1 y=2 *p=11 *q=11. In contrast,

Clang 6.0 -O2 just outputs the x=1 y=11 *p=11 *q=11 that one might expect from a concrete

semantics. Note that this example does not involve type-based alias analysis, and the outcome is

not affected by GCC or ICC’s -fno-strict-aliasing flag; note also that the mere formation of the

&x+1 one-past pointer is explicitly permitted by the ISO standard.

These GCC and ICC outcomes would not be correct with respect to a concrete semantics, and so

to make the existing compiler behaviour sound it is necessary for this program to be deemed to

have undefined behaviour.

The current ISO standard text does not explicitly speak to this, but the 2004 ISOWG14 C standards

committee response to Defect Report 260 (DR260 CR) [62] hints at a notion of provenance associated

to values that keeps track of their "origins":

“Implementations are permitted to track the origins of a bit-pattern and [...]. They may
also treat pointers based on different origins as distinct even though they are bitwise
identical.”

However, DR260 CR has never been incorporated in the standard text, and it gives no more detail.

This leaves many specific questions unclear: it is ambiguous whether some programming idioms

are allowed or not, and exactly what compiler alias analysis and optimisation are allowed to do.

Basic provenance semantics for pointer values For simple cases of the construction and

use of pointers, capturing the basic intuition suggested by DR260 CR in a precise semantics is

straightforward: we associate a provenance with every pointer value, identifying the original

allocation the pointer is derived from. In more detail:

• We take abstract-machine pointer values to be pairs (π ,a), adding a provenance π , either @i
where i is an allocation ID, or the empty provenance @empty, to their concrete address a.
• On every allocation (of objects with static, thread, automatic, and allocated storage duration),

the abstract machine chooses a fresh allocation ID i (unique across the entire execution), and
the resulting pointer value carries that single allocation ID as its provenance @i .
• Provenance is preserved by pointer arithmetic that adds or subtracts an integer to a pointer.

• At any access via a pointer value, its numeric address must be consistent with its provenance,

with undefined behaviour otherwise. In particular:

– access via a pointer value which has provenance a single allocation ID @i must be within

the memory footprint of the corresponding original allocation, which must still be live.

– all other accesses, including those via a pointer value with empty provenance, are undefined

behaviour.

This undefined behaviour is what justifies optimisation based on provenance alias analysis.

y: signed int [@6, 0x4c]
 2

p: signed int* [@7, 0x50]

@5, 0x4c

q: signed int* [@8, 0x58]

@6, 0x4c

x: signed int [@5, 0x48]
 1

On the right is a provenance-semantics

memory-state snapshot (from the Cerberus

GUI) for provenance_basic_global_xy.c, just

before the invalid access via p, showing how

the provenance mismatch makes it UB.

All this is for the C abstract machine as de-
fined in the standard: compilers might rely on

provenance in their alias analysis and optimi-

sation, but one would not expect normal imple-

mentations to record or manipulate provenance

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_global_xy.c

67:6 Memarian, Gomes, Davis, Kell, Richardson, Watson, Sewell

at runtime (though dynamic or static analysis tools might, as might non-standard implementations

such as CHERI C). Provenances therefore do not have program-accessible runtime representations

in the abstract machine.

Can one construct out-of-bounds (by more than one) pointer values by pointer arith-
metic? Consider the example below, where q is transiently (more than one-past) out of

bounds but brought back into bounds before being used for access. In ISO C, construct-

ing such a pointer value is clearly stated to be undefined behaviour [63, 6.5.6p8]. This can

be captured using the provenance of the pointer value to determine the relevant bounds.

// cheri_03_ii.c
int x[2];

int *p = &x[0];

int *q = p + 11; // defined behaviour?

q = q - 10;

*q = 1;

There are cases where such pointer arithmetic would

go wrong on some platforms (some now exotic),

e.g. where pointer arithmetic subtraction overflows,

or if the transient value is not aligned and only

aligned values are representable at the particular

pointer type, or for hardware that does bounds

checking, or where pointer arithmetic might wrap at values less than the obvious word size

(e.g. “near” or “huge” 8086 pointers). However, transiently out-of-bounds pointer construction

seems to be common in practice, as we see in §10, and in Chisnall et al. [8]. It may be desirable

to make it implementation-defined whether such pointer construction is allowed. That would

continue to permit implementations in which it would go wrong to forbid it, but give a clear way

for other implementations to document that they do not exploit this UB in compiler optimisations

that may be surprising to programmers. Cerberus supports both semantics, with a switch.

Inter-object pointer arithmetic The first example in this section relied on guessing

(and then checking) the offset between two allocations. What if one instead calculates

the offset, with pointer subtraction; should that let one move between objects, as below?

// pointer_offset_from_ptr_subtraction_global_xy.c
#include <stdio.h>

#include <string.h>

#include <stddef.h>

int x=1, y=2;

int main() {

int *p = &x;

int *q = &y;

ptrdiff_t offset = q - p;

int *r = p + offset;

if (memcmp(&r, &q, sizeof(r)) == 0) {

*r = 11; // is this free of UB?

printf("y=%d *q=%d *r=%d\n",y,*q,*r);

}

}

In ISO C11, the q-p is UB (as a pointer

subtraction between pointers to different

objects, which in some abstract-machine

executions are not one-past-related). In

a variant semantics that allows construc-

tion of more-than-one-past pointers, one

would have to to choose whether the *r=11

access is UB or not. The basic provenance

semantics will forbid it, because r will re-

tain the provenance of the x allocation, but

its address is not in bounds for that. This

is probably the most desirable semantics:

we have found very few example idioms

that intentionally use inter-object pointer

arithmetic, and the freedom that forbid-

ding it gives to alias analysis and optimisation seems significant.

Pointer equality comparison and provenance A priori, pointer equality comparison (with

== or !=) might be expected to just compare their numeric addresses, but we observe GCC 8.1 -O2

sometimes regarding two pointers with the same address but different provenance as nonequal

(provenance_equality_global_xy.c). Unsurprisingly, this happens in some circumstances but not

others, e.g. if the test is pulled into a simple separate function, but not if in a separate compilation

unit. To be conservative w.r.t. current compiler behaviour, pointer equality in the semantics should

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/cheri_03_ii.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_offset_from_ptr_subtraction_global_xy.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_equality_global_xy.c

Exploring C Semantics and Pointer Provenance 67:7

give false if the addresses are not equal, but nondeterministically (at each runtime occurrence)

either take provenance into account or not if the addresses are equal – this specification looseness

accommodating implementation variation. Alternatively, one could require numeric comparisons,

which would be a simpler semantics for programmers but force that GCC behaviour to be regarded

as a bug. Cerberus supports both options. One might also imagine making it UB to compare pointers

that are not strictly within their original allocation, but that would break loops that test against

a one-past pointer, or requiring equality to always take provenance into account, but that would

require implementations to track provenance at runtime.

The current ISO C11 standard text is too strong here unless numeric comparison is required:

6.5.9p6 says “Two pointers compare equal if and only if both are [...] or one is a pointer to one past
the end of one array object and the other is a pointer to the start of a different array object that happens
to immediately follow the first array object in the address space”, which requires such pointers to

compare equal – reasonable pre-DR260CR, but debatable after it.

3 POINTER CONSTRUCTION VIA CASTS, REPRESENTATION ACCESSES, ETC.
To support low-level systems programming, C provides many other ways to construct and manipu-

late pointer values:

• casts of pointers to integer types and back, possibly with integer arithmetic, e.g. to force

alignment, or to store information in unused bits of pointers;

• copying pointer values with memcpy;

• manipulation of the representation bytes of pointers, e.g. via user code that copies them via

char* or unsigned char* accesses;

• type punning between pointer and integer values;

• I/O, using either fprintf/fscanf and the %p format, fwrite/fread on the pointer representation

bytes, or pointer/integer casts and integer I/O;

• copying pointer values with realloc;

• constructing pointer values that embody knowledge established from linking, and from

constants that represent the addresses of memory-mapped devices.

A satisfactory semantics has to address all these, together with the implications on optimisation.

We define and explore two main alternatives:

• PVI: a semantics that tracks provenance via integer computation, associating a provenance

with all integer values (not just pointer values), preserving provenance through integer/

pointer casts, and making some particular choices for the provenance results of integer and

pointer +/- integer operations; or

• PNVI: a semantics that does not track provenance via integers, but instead, at integer-to-

pointer cast points, checks whether the given address points within a live object and, if so,

recreates the corresponding provenance. We explain in the next section why this is not as

damaging to optimisation as it may sound.

For the latter, we also mention three variants:

• PNVI-address-taken: a variant that restricts the above to objects whose address has been

taken;

• PNVI-escaped: potential variants that additionally restrict to objects whose address has

been taken and (in some sense) escaped; and

• PNVI-wildcard: a variant that gives a “wildcard” provenance to the results of integer-to-

pointer casts, delaying checks to access time.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

67:8 Memarian, Gomes, Davis, Kell, Richardson, Watson, Sewell

The provenance-via-integers (PVI) semantics, which we developed informally in ISOWG14 working

papers [41, 43], was motivated in part by the GCC documentation [15]:

“When casting from pointer to integer and back again, the resulting pointer must reference
the same object as the original pointer, otherwise the behavior is undefined. That is, one
may not use integer arithmetic to avoid the undefined behavior of pointer arithmetic as
proscribed in C99 and C11 6.5.6/8.”

which presumes there is an “original” pointer, and by experimental data for uintptr_t analogues of

the first test of §2, which suggested that GCC and ICC sometimes track provenance via integers

(see xy and yx variants). However, discussions at the 2018 GNU Tools Cauldron suggest instead that

at least some key developers regard the result of casts from integer types as potentially broadly

aliasing, at least in their GIMPLE IR, and such test results as long-standing bugs in the RTL backend.

Shifting to a provenance semantics that does not track provenance via integers would be a sub-

stantial simplification, in the definition of the semantics, in how easy it is for people to understand,

and in the consequences for existing code (which might otherwise need additional annotations

for exotic idioms). That leads us to articulate and explore the various options above, to see which

could be broadly acceptable.

Pointer/integer casts The ISO standard (6.3.2.3) leaves conversions between pointer and integer

types almost entirely implementation-defined, except for conversion of integer constant 0 and

null pointers, and for the optional intptr_t and uintptr_t types, for which it guarantees that any

“valid pointer to void” can be converted and back, and that “the result will compare equal to the
original pointer”. As we have seen, in a post-DR260CR provenance-aware semantics, “compare
equal” is not enough to guarantee the two are interchangeable, which was clearly the intent of that

phrasing. Both PVI and PNVI support this, by preserving or reconstructing the original provenance

respectively (provenance_roundtrip_via_intptr_t.c).

Inter-object integer arithmetic Below is a uintptr_t analogue of the last test of §2, at-

tempting to move between objects with uintptr_t arithmetic. In PVI, this remains UB. First,

// pointer_offset_from_int_subtraction_global_xy.c
#include <stdio.h>

#include <string.h>

#include <stdint.h>

#include <inttypes.h>

int x=1, y=2;

int main() {

uintptr_t ux = (uintptr_t)&x;

uintptr_t uy = (uintptr_t)&y;

uintptr_t offset = uy - ux;

printf("Addresses: &x=%"PRIuPTR" &y=%"PRIuPTR\

" offset=%"PRIuPTR" \n",ux,uy,offset);

int *p = (int *)(ux + offset);

int *q = &y;

if (memcmp(&p, &q, sizeof(p)) == 0) {

*p = 11; // is this free of UB?

printf("x=%d y=%d *p=%d *q=%d\n",x,y,*p,*q);

}

}

the integer values of ux and uy have the

provenances of the allocations of x and

y respectively. Then offset is a subtrac-

tion of two integer values with non-equal

single provenances; we define the result

of such to have the empty provenance.

Adding that empty-provenance result to ux

preserves the original x-allocation prove-

nance of the latter, as does the cast to int*.

Then the final *p=11 access is via a pointer

value whose address is not consistent with

its provenance.

In PNVI, on the other hand, this has de-

fined behaviour. The integer values are

pure integers, and at the int* cast the

value of ux+offset matches the address of

y (live and of the right type), so the result-

ing pointer value takes on the provenance

of the y allocation. Similarly, PVI forbids while PNVI allows (here contrary to current GCC/ICC

O2) uintptr_t analogues of the first test of §2 (provenance_basic_using_uintptr_t_global_xy.c).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_using_uintptr_t_global_xy.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_using_uintptr_t_global_yx.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_roundtrip_via_intptr_t.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_offset_from_int_subtraction_global_xy.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_using_uintptr_t_global_xy.c

Exploring C Semantics and Pointer Provenance 67:9

Both choices are defensible here: PVI will permit more aggressive alias analysis for pointers

computed via integers (though those may be relatively uncommon), while PNVI will allow not

just this test, which as written is probably not idiomatic desirable C, but also the essentially

identical XOR doubly linked list idiom, using only one pointer per node by storing the XOR of two

(pointer_offset_xor_global.c). Opinions differ as to whether that idiom matters for modern code.

There are other real-world but rare cases of inter-object arithmetic, e.g. in the implementations

of Linux and FreeBSD per-CPU variables, in fixing up pointers after a realloc, and in dynamic

linking (though arguably some of these are not between C abstract-machine objects). These are rare

enough that it seems reasonable to require additional source annotation, or some other mechanism,

to prevent compilers implicitly assuming that uses of such pointers as undefined.

Pointer provenance for pointer bit manipulations It is a standard idiom in systems code

to use otherwise unused bits of pointers: low-order bits for pointers known to be aligned,

// provenance_tag_bits_via_uintptr_t_1.c
#include <stdio.h>

#include <stdint.h>

int x=1;

int main() {

int *p = &x;

// cast &x to an integer

uintptr_t i = (uintptr_t) p;

// set low-order bit

i = i | 1u;

// cast back to a pointer

int *q = (int *) i; // does this have UB?

// cast to integer and mask out low-order bits

uintptr_t j = ((uintptr_t)q) & ~((uintptr_t)3u);

// cast back to a pointer

int *r = (int *) j;

// are r and p now equivalent?

*r = 11; // does this have UB?
_Bool b = (r==p); // is this true?

printf("x=%i *r=%i (r==p)=%s\n",x,*r,b?"t":"f");

}

and/or high-order bits beyond

the addressable range. The exam-

ple on the right (which assumes

_Alignof(int) >= 4) does this: casting

a pointer to uintptr_t and back, using

bitwise logical operations on the integer

value to store some tag bits.

To allow this, we suggest that the

set of unused bits for pointer types

of each alignment should be made

implementation-defined. In PVI we

make the binary operations used here,

combining an integer value that has

some provenance ID with a pure inte-

ger, preserve that provenance. In PNVI

the intermediate value of q will have

empty provenance, but the value of r

used for the access will re-acquire the

correct provenance at cast time.

Algebraic properties of integer operations The PVI definitions of the provenance results

of integer operations, chosen to make the previous two examples respectively forbidden and

allowed, has an unfortunate consequence: it makes those operations no longer associative (compare

this and this; the latter is UB in PVI). It is unclear whether this would be acceptable in practice,

either for C programmers or for compiler optimisation. One could conceivably switch to a PVI-

multiple variant, allowing provenances to be finite sets of allocation IDs. That would allow the

pointer_offset_from_int_subtraction_global_xy.c example above, but perhaps too much else

besides. PNVI does not suffer from this problem.

Copying pointer values with memcpy() This clearly has to be allowed (pointer_copy_memcpy.c),

and so, to make the results usable for accessing memory without UB, memcpy() and similar functions

have to preserve the original provenance. The ISO C11 text does not explicitly address this (in a

pre-provenance semantics, before DR260, it did not need to). One could do so by special-casing

memcpy() and similar functions to preserve provenance, but the following questions suggest less ad

hoc approaches.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_offset_xor_global.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_tag_bits_via_uintptr_t_1.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_arith_algebraic_properties_2_global.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_arith_algebraic_properties_3_global.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_offset_from_int_subtraction_global_xy.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_copy_memcpy.c

67:10 Memarian, Gomes, Davis, Kell, Richardson, Watson, Sewell

Copying pointer values bytewise, with user-memcpy One of the key aspects of C is that it

supports manipulation of object representations, e.g. as in the following naive user implemen-

tation of a memcpy-like function, which constructs a pointer value from copied bytes. This too

should be allowed. PVI makes it legal by regarding each byte (as an integer value) as having

the provenance of the original pointer, and the result pointer, being composed of representa-

tion bytes of which at least one has that provenance and none have a conflicting provenance, as

having the same. PNVI makes it legal in a different way: there, the representation bytes have no

// pointer_copy_user_dataflow_direct_bytewise.c
#include <stdio.h>

#include <string.h>

int x=1;

void user_memcpy(unsigned char* dest,

unsigned char *src, size_t n) {

while (n > 0) {

*dest = *src;

src += 1; dest += 1; n -= 1;

}

}

int main() {

int *p = &x;

int *q;

user_memcpy((unsigned char*)&q,

(unsigned char*)&p, sizeof(int *));

*q = 11; // is this free of undefined behaviour?

printf("*p=%d *q=%d\n",*p,*q);

}

provenance, but when reading a pointer

value from the copied memory, the read

will be from multiple representation-

byte writes. We use essentially the same

semantics for such reads as for integer-

to-pointer casts: checking at read-time

that the address is within a live object,

and giving the result the corresponding

provenance. One could instead require,

more restrictively, that the result has

all the original bytes of some legitimate

pointer. There may not be much rea-

sonable code that would be sensitive to

the distinctions between these, but there

is some, e.g. manipulations of pointers

where one knows the high-order bytes

are the same. This is important in some

language runtimes, using 32- or 48-bit

values for pointers in a 64-bit architec-

ture.

As Lee observes [private communication], to make it legal for compilers to replace user-memcpy

by the library version, one might want the two to have exactly the same semantics.

Real memcpy() implementations are more complex. The glibc memcpy()[56] involves copying byte-

by-byte, as above, and also word-by-word and, using virtual memory manipulation, page-by-page.

Word-by-word copying is not permitted by the ISO standard, as it violates the effective type rules,

but we believe C2x should support it for suitably annotated code. Virtual memory manipulation is

outside our scope at present.

Copying pointer values via encryption To more clearly delimit what idioms our proposals

do and do not allow, consider copying pointers via code that encrypts or compresses a block of

multiple pointers together, decrypting or uncompressing later. In PVI, this involves exactly the same

combination of distinct-provenance values that (to prohibit inter-object arithmetic, and thereby

enable alias analysis) we above regard as having empty-provenance results. As copying pointers

in this way is a very rare idiom, we believe it reasonable to require such code to have additional

annotations. In PNVI, it would just work, in the same way as user_memcpy().

It has been argued that pointer construction via intptr_t and back via any value-dependent

identity function should be required to work. That would admit the above, but defining that notion

of “value-dependent” is exactly the thing that is hard in the concurrency thin-air problem [1], and

we do not believe that it is practical to make compilers respect dependencies in general.

Copying pointer values via control flow We also have to ask whether a usable pointer can be

constructed via non-dataflow control-flow paths, e.g. if testing equality of an unprovenanced integer

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_copy_user_dataflow_direct_bytewise.c

Exploring C Semantics and Pointer Provenance 67:11

value against a valid pointer permits the integer to be used as if it had the same provenance as the

pointer. We do not believe that this is relied on in practice, and our proposed PVI semantics does

not permit it; it tracks provenance only through dataflow. For example, consider exotic versions

of memcpy that make a control-flow choice on the value of each bit or each byte, reconstructing

each with constants in each control-flow branch (pointer_copy_user_ctrlflow_bytewise.c and

pointer_copy_user_ctrlflow_bitwise.c). These are value-dependent identity functions, and in

PNVI would work, while PVI they would give empty-provenance pointer values and hence UB.

Integer comparison and provenance If integer values have associated provenance, as in PVI,

one has to ask whether the result of an integer comparison should also be allowed to be provenance

dependent (provenance_equality_uintptr_t_global_xy.c). GCC did do so at one point, but it was

regarded as a bug and fixed (from 4.7.1 to 4.8). We propose that the numeric results of all operations

on integers should be unaffected by the provenances of their arguments. .

Pointer provenance and union type punning Pointer values can also be constructed in C

by type punning, e.g. writing a uintptr_t union member and then reading it as a pointer-type

member (provenance_union_punning_2_global_xy.c). The ISO standard says “the appropriate part
of the object representation of the value is reinterpreted as an object representation in the new type”,
but says little about that reinterpretation. We propose that these reinterpretations be required to be

implementation-defined, (in PVI) that it be implementation-defined whether the result preserves the

original provenance (e.g. where they are the identity), and (in PNVI) that the same integer-to-pointer

cast semantics be used at such reads (the latter does not match current ICC O2 behaviour).

Pointer provenance via IO Consider now pointer provenance flowing via IO, e.g. writing

the address of an object to a pipe or file and reading it back in. We have three versions: one

using fprintf/fscanf and the %p format, one using fwrite/fread on the pointer representation

bytes, and one converting the pointer to and from uintptr_t and using fprintf/fscanf

on that value with the PRIuPTR/SCNuPTR formats (provenance_via_io_percentp_global.c,

provenance_via_io_bytewise_global.c, and provenance_via_io_uintptr_t_global.c) The first

gives a syntactic indication of a potentially escaping pointer value, while the others (after

preprocessing) do not. Somewhat exotic though they are, these idioms are used in practice: in

graphics code for serialisation/deserialisation (using %p), in xlib (using SCNuPTR), and in debuggers.

In the ISO standard, the text for fprintf and scanf for %p says that this should work: “If the
input item is a value converted earlier during the same program execution, the pointer that results
shall compare equal to that value; otherwise the behavior of the %p conversion is undefined” (again
construing the pre-DR260 “compare equal” as implying the result should be usable for access), and

the text for uintptr_t and the presence of SCNuPTR in inttypes.h weakly implies the same there.

But then what can compiler alias analyses assume about such a pointer read? In PNVI, this is

simple: at scanf-time, for the %p version, or when a pointer is read from memory written by the

other two, we can do a runtime check and potential acquisition of provenance exactly like an

integer-to-pointer cast. For PVI, however, there are several options, none of which seem ideal: we

could use a PNVI-like semantics, but that would be stylistically inconsistent with the rest of PVI; or

(only for the first) we could restrict that to provenances that have been output via %p), or we could

require new programmer annotation, at output and/or input points, to constrain alias analysis.

Pointers from device memory and linking In practice, concrete memory addresses or

relationships between them sometimes are determined and relied on by programmers, in

implementation-specific ways. Sometimes these are simply concrete absolute addresses which will

never alias C stack, heap, or program memory, e.g. those of particular memory-mapped devices in

an embedded system. Others are absolute addresses and relative layout of program code and data,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_copy_user_ctrlflow_bytewise.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_copy_user_ctrlflow_bitwise.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_equality_uintptr_t_global_xy.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_union_punning_2_global_xy.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_via_io_percentp_global.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_via_io_bytewise_global.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_via_io_uintptr_t_global.c

67:12 Memarian, Gomes, Davis, Kell, Richardson, Watson, Sewell

usually involving one or more linking steps. For example, platforms may lay out certain regions of

memory so as to obey particular relationships, e.g. in a commodity operating system where high

addresses are used for kernel mappings, initial stack lives immediately below the arguments passed

from the operating system, and so on. The details of linking and of platform memory maps are

outside the scope of ISO C, but real C code may embody knowledge of them. Such code might be

as simple as casting a platform-specified address, represented as an integer literal, to a pointer. It

might be more subtle, such as assuming that one object directly follows another in memory—the

programmer having established this property at link time (perhaps by a custom linker script). It is

necessary to preserve the legitimacy of such C code, so that compilers may not view such memory

accesses as undefined behaviour, even with increasing link-time optimisation.

We leave the design of exactly what escape-hatch mechanisms are needed here as an open

problem. For memory-mapped devices, one could simply posit implementation-defined ranges

of such memory which are guaranteed not to alias C objects. The more general linkage case is

more interesting, but well outside current ISO C. The tracking of provenance through embedded

assembly is similar.

4 IMPLICATIONS OF PROVENANCE SEMANTICS FOR OPTIMISATIONS
In an ideal world, a memory object semantics for C would be consistent with all existing mainstream

code usage and compiler behaviour. In practice, we suspect that (absent a precise standard) these

have diverged too much for that, making some compromise required. As we have already seen, the

PNVI semantics would make some currently observed GCC and ICC behaviour unsound, though

at least some key GCC developers already regard that behaviour as a longstanding unfixed bug,

due to the lack of integer/pointer type distinctions in RTL. We now consider some other important

cases, by example.

Optimisation based on equality tests Both provenance semantics let p==q hold in some cases

where p and q are not interchangeable. As Lee et al. [35] observe in the LLVM IR context, that may

limit optimisations such as GVN (global value numbering) based on pointer equality tests. PVI

suffers from the same problem also for integer comparisons, wherever the integers might have

been cast from pointers and eventually be cast back. This may be more serious.

Can a function argument alias local variables of the function? In general one would like

this to be forbidden, to let optimisation assume its absence. Consider first the example below, where

// pointer_from_integer_1pg.c
#include <stdio.h>

#include <stdint.h>

#include "charon_address_guesses.h"

void f(int *p) {

int j=5;

if (p==&j)

*p=7;

printf("j=%d &j=%p\n",j,(void*)&j);

}

int main() {

uintptr_t i = ADDRESS_PFI_1PG;

int *p = (int*)i;

f(p);

}

main() guesses the address of f()’s local variable, passing

it in as a pointer, and f() checks it before using it for an

access. Here we see, for example, GCC -O0 optimising

away the if and the write *p=7, even in executions where

the ADDRESS_PFI_1PG constant is the same as the printf’d

address of j. We believe that compiler behaviour should

be permitted, and hence that this program should be

deemed to have UB — or, in other words, that code should

not normally be allowed to rely on implementation facts

about the allocation addresses of C variables. The PVI

semantics flags UB for the simple reason that j is created

with the empty provenance, and hence p inherits that.

The PNVI semantics also deems this to be UB, because at

the point of the (int*)i cast the j allocation does not yet

exist, so the cast gives a pointer with empty provenance;

any execution that goes into the if would thus flag UB.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1pg.c

Exploring C Semantics and Pointer Provenance 67:13

Varying to do the cast to int* in f() instead of main(), passing in an integer i instead of a pointer

(pointer_from_integer_1ig.c), this remains UB in PVI, but in PNVI becomes defined, as j exists at

the point when the abstract machine does the (int*)i cast. At present we do not see any strong

reason why making this defined would not be acceptable — it amounts to requiring compilers to

be conservative for the results of integer-to-pointer casts where they cannot see the source of the

integer, which we imagine to be a rare case — but this does not match current O2 or O3 compilation

for GCC, Clang, or ICC.

Allocation-address nondeterminism Note that both of the previous examples take the address

of j to guard their *p=7 accesses. Removing the conditional guards gives tests that one would surely

like to forbid (tests pointer_from_integer_1p.c and pointer_from_integer_1i.c). Both are forbidden

in PVI for the same reason as before, and the first is forbidden in PNVI again because j does not

exist at the cast point.

But the second forces us to think about how much allocation-address nondeterminism should be

quantified over in the basic definition of undefined behaviour. For evaluation-order and concurrency

nondeterminism, one would normally say that if there exists any execution that flags UB, then the

program as a whole has UB (for the moment ignoring UB that occurs only on some paths following

I/O input, which is another important question that the current ISO text does not address).

This view of UB seems to be unfortunate but inescapable. If one looks just at a single execution,

then (at least between input points) we cannot temporally bound the effects of an UB, because

compilers can and do re-order code w.r.t. the C abstract machine’s sequencing of computation.

In other words, UB may be flagged at some specific point in an abstract-machine trace, but its

consequences on the observed implementation behaviour might happen much earlier (in practice,

perhaps not very much earlier, but we do not have any good way of bounding how much). But then

if one execution might have UB, and hence exhibit (in an implementation) arbitrary observable

behaviour, then anything the standard might say about any other execution is irrelevant, because

it can always be masked by that arbitrary observable behaviour.

Accordingly, our semantics nondeterministically chooses an arbitrary address for each allocation,

subject only to alignment and no-overlap constraints (ultimately one would also need to build

in constraints from programmer linking commands). Then in PNVI, the ..._1i.c example is UB

because, even though there is one execution in which the guess is correct, there is another (in fact

many others) in which it is not. In those, the cast to int* gives a pointer with empty provenance,

so the access flags UB — hence the whole program is UB, as desired.

Can a function access local variables of its parent? This too should be forbidden in

general. The example on the right is forbidden by PVI, again for the simple reason that

// pointer_from_integer_2.c
#include <stdio.h>

#include <stdint.h>

#include "charon_address_guesses.h"

void f() {

uintptr_t i=ADDRESS_PFI_2;

int *p = (int*)i;

*p=7;

}

int main() {

int j=5;

f();

printf("j=%d\n",j);

}

p has the empty provenance, and by PNVI by

allocation-address nondeterminism, as there

exist abstract-machine executions in which the

guessed address is wrong. One cannot guard

the access within f(), as the address of j is

not available there. Guarding the call to f()

with if ((uintptr_t)&j == ADDRESS_PFI_2)

(pointer_from_integer_2g.c) again makes the

example well-defined in PNVI, as the address

is correct and j exists at the int* cast point,

but notice again that the guard necessarily

involves &j. This does not match current Clang

at O2 or O3, which print j=5.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1ig.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1p.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1i.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_2.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_2g.c

67:14 Memarian, Gomes, Davis, Kell, Richardson, Watson, Sewell

The PNVI-address-taken, PNVI-escaped, and PNVI-wildcard alternatives An obvious re-

finement to PNVI is to restrict integer-to-pointer casts to recover the provenance only of objects

that have had their address taken, recording that in the memory state. Perhaps surprisingly, that

seems not to make much difference to the allowed tests, because the tests one might write tend to

already be UB due to allocation-address nondeterminism, or to already take the address of an object

to use it in a guard. PNVI-address-taken has the conceptual advantage of identifying these UBs

without requiring examination of multiple executions, but the disadvantage that whether an address

has been taken is a fragile syntactic property, e.g. not preserved by dead code elimination. One can

also restrict further, to addresses that have in some sense escaped, but precisely defining a particular

such sense is complex and somewhat arbitrary. A rather different model is to make the results of

integer-to-pointer casts have a “wildcard” provenance, deferring the check that the address matches

a live object from cast-time to access-time. This would make pointer_from_integer_1pg.c defined,

which is surely not desirable.

The problem with lost address-takens and escapes Our PVI proposal allows computations

that erase the numeric value (and hence a concrete view of the “semantic dependencies”) of a

pointer, but retain provenance. This makes examples like that below [Richard Smith, personal

communication], in which the code correctly guesses an allocation address (which has the empty

provenance) and adds that to a zero-valued quantity (with the correct provenance), allowed in

PVI. We emphasise that we do not think it especially desirable to allow such examples; this is just

a consequence of choosing a straightforward provenance-via-integer semantics that allows the

bytewise copying and the bitwise manipulation of pointers above. In other words, it is not clear

how it could be forbidden simply in PVI.

// provenance_lost_escape_1.c
#include <stdio.h>

#include <string.h>

#include <stdint.h>

#include "charon_address_guesses.h"

int x=1; // assume allocation ID @1, at ADDR_PLE_1

int main() {

int *p = &x;

uintptr_t i1 = (intptr_t)p; // (@1,ADDR_PLE_1)

uintptr_t i2 = i1 & 0x00000000FFFFFFFF;//

uintptr_t i3 = i2 & 0xFFFFFFFF00000000;// (@1,0x0)

uintptr_t i4 = i3 + ADDR_PLE_1; // (@1,ADDR_PLE_1)

int *q = (int *)i4;

printf("Addresses: p=%p\n",(void*)p);

if (memcmp(&i1, &i4, sizeof(i1)) == 0) {

*q = 11; // does this have defined behaviour?

printf("x=%d *p=%d *q=%d\n",x,*p,*q);

}

}

However, in implementa-

tions some algebraic optimi-

sations may be done before

alias analysis, and those op-

timisations might erase the

&x, replacing it and all the

calculation of i3 by 0x0 (a

similar example would have

i3 = i1-i1). But then alias

analysis would be unable to

see that *q could access x, and

so report that it could not, and

hence enable subsequent op-

timisations that are unsound

w.r.t. PVI for this case. The ba-

sic point is that whether a vari-

able has its address taken or es-

caped in the source language

is not preserved by optimisation. A possible solution, which would need some implementation

work for implementations that do track provenance through integers, but perhaps acceptably so,

would be to require those initial optimisation passes to record the address-takens involved in

computations they erase, so that that could be passed in explicitly to alias analysis. In contrast

to the difficulties of preserving dependencies to avoid thin-air concurrency, this does not forbid

optimisations that remove dependencies; it merely requires them to describe what they do.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1pg.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_lost_escape_1.c

Exploring C Semantics and Pointer Provenance 67:15

In PNVI, the example is also allowed, but for a simpler reason that is not affected by such integer

optimisation: the object exists at the int* cast. Implementations that take a conservative view of

all pointers formed from integers would automatically be sound w.r.t. this. At present ICC is not, at

O2 or O3.

Should PNVI allow one-past integer-to-pointer casts? For PNVI, one has to choose whether

an integer that is one-past a live object (and not strictly within another) can be cast to a pointer with

valid provenance, or whether this should give an empty-provenance pointer value. Lee observes

that the latter may be necessary to make some optimisation sound [personal communication], and

we imagine that this is not a normal idiom in practice, so we follow the stricter semantics here.

Summary of pros and cons Both semantics handle many cases as one would desire. Both suffer

from the non-interchangeability of pointers that have compared equal (with ==) and PVI also from

the same problem for integers. PVI suffers from the loss of algebraic properties of integer arithmetic

operations, the difficulty of accommodating pointer I/O, and the problem with lost address-takens

and escapes. PNVI makes some currently observable compiler behaviours unsound, though at least

for GCC some of these are viewed by some developers as buggy in any case. PNVI is considerably

simpler to define and explain than PVI, and on balance we think PNVI is preferable.

5 PROPOSED PVI AND PNVI SEMANTICS FOR PROVENANCE, IN DETAIL
We now give our proposed PVI and PNVI memory object semantics in more detail, as manually

typeset mathematics simplified from the Cerberus mechanised Lem [45] source. We have removed

most subobject details, function pointers, and some options. Neither the typeset models or the Lem

source consider linking, or pointers constructed via I/O.

In Cerberus, the memory object model is factored out from Core with a clean interface, roughly as

in [42, Fig. 2]. This provides functions allocate_object (for objects with automatic or static storage

duration, i.e. global and local variables), allocate_region (for the results of malloc, calloc, and

realloc, i.e. heap-allocated regions), kill (for allocation lifetime end), load, and store, and the

various operations on pointer and integer values, including casts, comparisons, shifting pointers by

struct-member offsets, etc. The interface involves types pointer_value (p), integer_value (x),
floating_value, and mem_value (v), which are abstract as far as Core is concerned. Distinguishing
pointer and integer values gives more precise internal types, making the memory model code

clearer. A pointer value can either be null or a pair (π ,a) of a provenance π and address a. In PNVI,

an integer value is simply a mathematical integer (within the appropriate range for the relevant C

type), while in PVI, an integer value is a pair (π ,n) of a provenance π and a mathematical integer

n. Memory values are the storable entities, either a pointer, integer, floating-point, array, struct, or

union value, or unspec for unspecified values, each together with their C type.

In both PVI and PNVI, a memory state is a pair (A,M), where A is a partial map from allocation

IDs to either killed or allocation metadata (size n, optional C type τ (or none for allocated regions),
base address a, permission flag f ∈{readWrite, readOnly}, and kind k∈{object, region}), andM
is a partial map from addresses to abstract bytes, which are triples of a provenance π , either a byte
b or unspec, and an optional integer pointer-byte index j (or none). The last is used in PNVI to

distinguish between loads of pointer values that were written as whole pointer writes vs those that

were written byte-wise or in some other way.

Figures 2–5 give the main memory object semantics, as labelled transition relations from a

memory state to either a memory state, UB, or OOM (out of memory), with labels for each operation

(and their return value) in the Cerberus memory model interface.

For simplicity, we present the model without the ISO semantics that makes all pointers to an

object or region indeterminate at the end of its lifetime, assume two’s complement representations,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

67:16 Memarian, Gomes, Davis, Kell, Richardson, Watson, Sewell

assume NULL pointers have address 0, and allow NULL pointers to be constructed from any

empty-provenance integer zero, not just integer constant expressions.

TheM models the memory state in terms of low-level abstract bytes, but store and load take

and return the higher-level memory values. We relate the two with functions repr(v), mapping

a memory value to a list of abstract bytes, and abst(τ ,bs), mapping a list of abstract bytes to its

interpretation as a memory value with C type τ .
The repr(v) function is defined by induction over the structure of its memory value parameter

and returns a list of sizeof (τ) abstract bytes, where τ is the C type of the parameter. The base

cases are values with scalar types (integer, floating and pointers) and unspecified values. For an

unspecified value of type τ , it returns a list with abstract bytes of the form (@empty, unspec, none).
Non-null pointer values are represented with lists of abstract bytes that each have the provenance

of the pointer value, the appropriate part of the two’s complement encoding of the address, and the

0.. sizeof (τ) − 1 index of each byte. Null pointers are represented with lists of abstract bytes of the

form (@empty, 0, none). In PVI, integer values are represented similarly to pointer values except

that the third component of each abstract byte is none. In PNVI, integer values are represented by

lists of abstract bytes whose first component is always the empty provenance and the third is again

none. Floating-point values are similar, in both models, except that the provenance of the abstract

bytes is always empty. For array and struct/union values the function is inductively applied to

each subvalue and the resulting byte-lists concatenated. The layout of structs and unions follow an

implementation-defined ABI, with padding bytes like those of unspecified values.

The abst(τ ,bs) function is defined by induction over τ . The base cases are again the scalar types.

For these, sizeof (τ) abstract bytes are consumed from bs and a scalar memory value is constructed

from their second components: if any abstract byte has an unspec value, an unspecified value is

constructed; otherwise, depending on τ , a pointer, integer or floating-point value is constructed
using the two’s complement or floating-point encoding. For pointers with address 0, the provenance

is empty. For non-0 pointer values and integer values, in PVI the provenance is constructed as

follows: if at least one abstract byte has non-empty provenance and all others have either the

same or empty provenance, that provenance is taken, otherwise the empty provenance is taken.

In PNVI, when constructing a pointer value, if the third components of the bytes all carry the

appropriate index, the provenance of the result is the provenance of the bytes (which will all have

the same provenance). Otherwise, the A part of the memory state is examined to find whether a

live allocation exists with a footprint containing the pointer value that is being constructed. If so,

its allocation ID is used for the provenance of the pointer value, otherwise the empty provenance

is used. For array/struct types, abst () recurses on the progressively shrinking list of abstract bytes.

In addition to the figures, some operations are desugared/elaborated to simpler expressions by

the Cerberus pipeline (§7). Their PVI results have provenance as follows; their PNVI results are the

same except that there integers have no provenance:

• the result of address-of (&) has the provenance of the object associated with the lvalue.

• prefix increment and decrement operators follow the corresponding pointer or integer

arithmetic rules.

• the conditional operator has the provenance of the second or third operand; simple assignment

has the provenance of the expression; compound assignment follows the pointer or integer

arithmetic rules; the comma operator has the provenance of the second operand.

• integer unary +, unary -, and ~ operators preserve the original provenance; logical negation

! has a value with empty provenance.

• sizeof and _Alignof operators give values with empty provenance.

• bitwise shifts has the provenance of their first operand.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

Exploring C Semantics and Pointer Provenance 67:17

[label: allocate_region(al ,n) = p]

i < dom(A) a ∈ newAlloc(A,al ,n)
p = (@i,a)

A,M → A[i 7→ (n, none,a, readWrite, region)],M

[label: load(τ ,p) = v]

p = (@i,a) A(i) = (n, _,a′, f ,k)
[a..a + sizeof (τ) − 1] ⊆ [a′..a′ + n − 1]
v = abst(τ ,M[a..a + sizeof (τ) − 1])

A,M → A,M

[label: allocate_object(al ,τ , readWrite) = p]

i < dom(A) a ∈ newAlloc(A,al ,n)
n = sizeof (τ) p = (@i,a)

A,M → A(i 7→ (n,τ ,a, readWrite, object)),M

[label: store(τ ,p,v)]

p = (@i,a) A(i) = (n, _,a′, readWrite,k)
[a..a + sizeof (τ) − 1] ⊆ [a′..a′ + n − 1]

A,M → A,M ([a..a + sizeof (τ) − 1] 7→ repr(v))

[label: allocate_object(al ,τ , readOnly(v)) = p]

i < dom(A) a ∈ newAlloc(A,al ,n)
n = sizeof (τ) p = (@i,a)

A,M → A(i 7→ (n,τ ,a, readOnly, object)),M ([a..a + n − 1] 7→ repr(v))

[label: kill(p,k)]

p = (@i,a) k = k ′

A(i) = (n, _,a, f ,k ′)

A,M → A(i 7→ killed),M

[label: diff_ptrval(τ ,p,p′) = x]

p = (@i,a) p′ = (@i ′,a′) i = i ′ A(i) = (n, _, â, f ,k)
x = (@empty, (a − a′)/ sizeof (dearray(τ))) a ∈ [â..â + n] a′ ∈ [â..â + n]

A,M → A,M

[label: rel_op_ptrval(p,p′, op) = b]
p = (@i,a) p′ = (@i ′,a′) i = i ′

b = op(a,a′) op ∈ {≤, <, >, ≥}
A,M → A,M

[label: eq_op_ptrval(p,p′) = b]




b = true if p = p′

b ∈ {(a = a′), false} if p = (π ,a), p′ = (π ′,a′), and π , π ′

b = false otherwise

A,M → A,M

iso_array_shift_ptrval(A,p,τ ,x) =




(@i,a′)

if p = (@i,a) and x = (π ′,n) and

a′ = a + n ∗ sizeof (τ) and

A(i) = (n′′, _,a′′, _, _) and

a′ ∈ [a′′..a′′ + n′′]

UB: out of bounds if all except the last conjunct above hold

UB: empty prov if p = (@empty,a)

UB: killed prov if p = (@i,a) and A(i) = killed

UB: null pointer if p = null

member_shift_ptrval(p, t ,m) =



(π ,a + offsetof_ival(τ ,m)), if p = (π ,a);

offsetof_ival(τ ,m), if p = null.

Fig. 2. Provenance semantics: common rules. These rules are the same for PVI and PNVI, except that in the
latter diff_ptrval constructs a pure integerv , instead of an integer value with@empty provenance. dearray(τ)
returns τ if it is not an array type, and otherwise returns its element type. newAlloc(A,al ,n) returns the set
of addresses of blocks of size n aligned by al that do not overlap with 0 or any other allocation in A.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

67:18 Memarian, Gomes, Davis, Kell, Richardson, Watson, Sewell

allocate_region(al ,n) / allocate_object(al ,τ , readwrite) / allocate_object(al ,τ , readOnly(v)):
OOM out of memory if newAlloc(A,al ,n) = {} or newAlloc(A,al , sizeof (τ)) = {}

load(τ ,p) / store(τ ,p,v) / kill(p):
UB null pointer if p = null
UB empty provenance if p = (@empty,a)
UB killed provenance if p = (@i,a) and A(i) = killed

load(τ ,p) / store(τ ,p,v):
UB out of bounds if p = (@i,a), A(i) = (n, _,a′, f ,k), and [a..a + sizeof (τ) − 1] ⊈ [a′..a′ + n − 1]

store(τ ,p,v):
UB read-only if p = (@i,a) and A(i) = (n, _,a′, readOnly,k)

kill(p):
UB non-alloc-address if p = (@i,a), A(i) = (n, _,a′, f ,k), and a , a′

(rules for diff_ptrval, rel_op_ptrval, and eq_op_ptrval omitted)

Fig. 3. Provenance semantics: error rules, for memory operations in state A,M , for both PVI and PNVI

cast_ival_to_ptrval(τ ,x) =



null, if x = (@empty, 0)

(π ,n), otherwise, where x = (π ,n)

cast_ptrval_to_ival(τ ,p) =




(@empty, 0), if p = null;

(π ,a), if p = (π ,a) and a ∈ value_range(τ)

UB, otherwise

π ⊕ π ′ =




π , if π = π ′ or π ′ = @empty;

π ′, if π = @empty;

@empty, otherwise.

op_ival(op, (π ,n), (π ′,m)) = (π ⊕ π ′,op (n,m)), where op ∈ {+, ∗, /,%,&, |,∧}

op_ival(−, (π ,n), (π ′,m)) =




(@empty,n −m), if π = @i and π ′ = @i ′, whether i = i ′ or not;

(@i,n −m), if π = @i and π ′ = @empty;

(@empty,n −m), if π = @empty.

eq_ival((π ,n), (π ′,m)) = (n =m)
lt_ival((π ,n), (π ′,m)) = (n < m)
le_ival((π ,n), (π ′,m)) = (n ≤ m)

Fig. 4. PVI semantics

cast_ival_to_ptrval(τ ,x) =




null, if x = 0

(@i,x), if A(i) = (n, _,a, f ,k) and [x ..x + sizeo f (τ) − 1] ⊆ [a..a + n − 1]

(@empty,x), if there is no such i

cast_ptrval_to_ival(τ ,p) =




0, if p = null;

a, if p = (π ,a) and a ∈ value_range(τ)

UB, otherwise

Fig. 5. PNVI semantics

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

Exploring C Semantics and Pointer Provenance 67:19

6 COMPARISONWITH THE TWIN-ALLOCATION SEMANTICS
Lee et al [35] address a closely related but subtly different problem, of the memory object model

design for the LLVM IR. As an intermediate language, that is subject to different constraints to the

C source-language semantics that is our focus here. It has to make standard compiler optimisations

sound as IR-to-IR transformations: optimisations should not add observable behaviour w.r.t. the IR

semantics. In contrast, a C source-language semantics need only make the end-to-end behaviour

of standard compiler implementations sound, e.g. by being refinable to such IR semantics. An

intermediate semantics can also be more liberal than a C source semantics, allowing more programs

to be well-defined, and an LLVM IR semantics in particular can take advantage of facts about the

analyses and optimisations done by that specific compiler. Then a source-language semantics for

C should involve as little change to the ISO text and concepts as possible, and should be widely

accessible, consistent with the intuitions of the standards committee, compiler writers, and C

programmers.

Their logical pointers, obtained from allocations (or pointer arithmetic on logical pointers), are

similar to our pointers with a single @i provenance. Their physical pointers, obtained from pointer-

to-integer casts of logical pointers, are roughly analogous to pointers with a wildcard provenance.

By itself, that would be much too liberal, so they add two additional mechanisms:

(1) to make it impossible to use such a pointer (when supplied as a function parameter) to access

local variables, each physical pointer includes a timestamp, a call ID that maps (in their

memory state) to the time stamp when the pointer was passed as argument to a function,

or None if the pointer did not originate from an argument (or if that function has returned).

This extra data lets them do an access-time check that rules out examples such as our

pointer_from_integer_1pg.c of §4. In contrast, our PNVI’s cast-time check can simply check

whether an appropriate object exists when the integer-to-pointer cast is done.

(2) they defer pointer-construction bounds checking to access time: each physical pointer in-

cludes an inbounds set of physical addresses, of the previous pointer values that it has been
constructed from, and at access-time it is checked that all of these are in-bounds. This deferred

checking makes code-motion optimisations sound as IR-to-IR transformations, but it would

not be appropriate for an ISO C source-language semantics, where such construction is UB

irrespective of whether the pointer value is used for access.

They also rely heavily on allocation-address nondeterminism, as PNVI does, but take it further.

They observe that for programs that almost or completely exhaust the allocatable address space, it

is possible for code to indirectly learn facts about allocation addresses without explicitly casting

them to integers, and that this can make some desirable optimisations unsound in general. To rule

out such programs, they introduce twin allocation: their semantics makes one (or more) shadow

allocations for each actual allocation, making it easy to reason that, for any example that guesses a

concrete address, that there is another similar execution in which the guess is wrong. We conjecture

that much the same could be achieved by restricting attention to programs that never “almost” run

out of address space, i.e. that, in each execution, always leave at least space (suitably aligned) for

one additional copy of the largest allocation they make in that execution.

Subject to that restriction, it seems plausible that one could establish a refinement from the PNVI

C source-language semantics we describe here to their LLVM IR semantics. They demonstrate that

the latter can be implemented (by adapting LLVM) with reasonable performance, so this would

give a coherent and implementable end-to-end story.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1pg.c

67:20 Memarian, Gomes, Davis, Kell, Richardson, Watson, Sewell

7 RECALLING THE CERBERUS PIPELINE (BACKGROUND)

C source

parsing��
Cabs (C abstract syntax)

desugaring��
Ail (C abstract syntax, desugared)

C type inference/checking��
Typed Ail (C-type-annotated C abstract syntax)

elaboration��
Core

Core-to-Core transformations��
Core

Core operational semantics

andmemory object model��
executions

Cerberus defines a semantics by elaboration:

after front-end parsing and typechecking, it ap-

plies a compositional translation from C into

a Core language. This translation makes many

subtle aspects of C explicit: the loose specifi-

cation of evaluation order, arithmetic conver-

sions, undefined behaviour arising from over-

flow, and suchlike. Core is essentially a typed

first-order call-by-value lambda calculus, ex-

tended with various features to model the be-

haviour of those things. It has an executable

small-step operational semantics, invoking the

memory semantics for operations on memory

and pointers. Cerberus is expressed largely as a pure functional definition in Lem [45] (approx. 20 000

lines), together with some OCaml (11 000), and TypeScript (3 000) code. The main pipeline is above.

Fig. 1 shows a tiny example C program and its elaboration into Core, making explicit:

• the lifetime of x, with the Core create and kill (lines 2 and 15);

• its alignment constraint, computed from its C type with the Core Ivalignof (line 2);

• the fact that the arguments of the C + are unsequenced, with the Core unseq (line 6);

• other aspects of C’s loose evaluation order with Core let strong and let weak;

• the fact that (in one variant of the semantics) a C signed + gives undefined behaviour if either

argument is an unspecified value, with the Core case pattern match and undef (7–13);

• C arithmetic conversions, with invocations of the Core conv_int and conv_loaded_int

library functions (lines 10 and 14), which are also passed Core representations of the C types

of the required results; and

• the default 0 return of main (line 16).

Core arithmetic (e.g. the + at line 10) is all simply over the mathematical integers (paired with

provenances in PVI), with conversions, wrapping, overflow checks, etc. all made explicit by the

elaboration. Core distinguishes between values known to be Specified and a distinguished un-

specified value at each type (a loaded integer can be either), and between effectful and pure

Core expressions.

The semantics of the C store to x, on the other hand, is just a primitive store (line 14) in Core,

with its behaviour left to the memory object model.

8 RE-ENGINEERING CERBERUS
From a programming-language semantics perspective, real C is a fantastically complex language, far

more so than one might imagine from working with idealised C-like languages or from occasional C

programming. Many aspects of this are well-defined by ISO, with sufficiently careful and informed

reading thereof, but they are subtle and intricate. The previous Cerberus [42] handled some of this

in a principled way, but it was far from complete enough to handle the memory model tests we

discuss here (it was validated chiefly with small Csmith-generated tests). To make it executable

as a test oracle for memory-model tests, and to bring it closer to a generally usable tool, we have

done substantial extension and re-engineering of the semantics. These are things that are handled

by any full-fledged C front-end implementation, and by CIL [47], but Cerberus aims to have a

clear relationship to the standard, to capture exactly what it says (where that is well-defined), and

to report all undefined behaviours, and so we do not want to rely on (say) the Clang front-end.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

Exploring C Semantics and Pointer Provenance 67:21

Moreover, the front-end also involves evaluation and a specification of C implementation-defined

choices, for both of which we want to use the Cerberus definitions rather than some potentially

incompatible semantics from another front-end.

Parser. We have implemented a new C parser, closely following the ISO standard grammar,

incorporating the elegant lexer hack of Jourdan and Pottier [23].

Core typechecker. We have implemented a type-checker for Core, in a bidirectional style [52].

This detected many elaboration bugs.

// init.c
struct T {

int x;

struct T2 {

int y[2];

char z;

} st;

char c[3];

};

struct T arr1[3] =

{ 1, {{2,3,40,50}, 6,

"foo"}, [2].st.z= 7};

Desugaring of struct/union/array initialisers. ISO C defines an

intricate syntax for initialisers, allowing an aggregate type to be

initialised either with a flat list or with a more structured syntax,

and with arbitrary switching between the two styles. There is

implicit completion (with 0 or NULL) if insufficient values are given,

and extra values are ignored. One can also use explicit designators:

array indices, or struct/union member identifiers. Designators need

not be contiguous or even in-order (though Cerberus currently

requires the latter). Arrays of character type can be initialised with

the bytes of string literals. Scalar initialisers can also have optional

braces. Outer arrays can have unknown ([]) size, leaving this to

be determined by the initialiser. Various violations give UB, but

examples such as that on the right are well-defined.

Constant expressions. C constant expressions can involve implementation-defined choices and

undefined behaviour, initialisation of pointers can include l-value expressions to statically allocated

objects, and so on. This means the Cerberus desugaring phase sometimes needs to use the entire

rest of the pipeline, including typechecking and evaluation (with an initially empty memory).

Qualifiers. C includes various qualifiers, const, volatile, restrict, and _Atomic. Cerberus

supports const; the others are covered in the front-end but not in our dynamic semantics.

Additional features. We have also defined support for single-compilation-unit aspects of linkage,

e.g. to detect the UB arising if something is declared with both internal and external linkage;

proper treatment of enum desugaring; decay of array-typed expressions to pointers to their first

elements; decay of function-typed expressions to function pointers; l-value conversion; switch;

limited support for floats (but using OCaml floats rather than specifying their behaviour formally);

and the C library functions that have arisen in tests (a few dozen).

Handling specification looseness ISO C is intentionally a very loose specification, to admit a

wide variety of implementations. Mathematically, this can be handled straightforwardly with a

nondeterministic semantics, but making Cerberus executable as a test oracle, able to enumerate the

sets of all allowed behaviours of small test programs, needs careful design and some compromises.

In some ways we are intentionally more specific than ISO, to capture facts about the de facto

standard that much modern code depends on. We assume two’s complement arithmetic, that integer

types contain no padding bits, and that the character set is fixed to be a minor extension of ASCII.

The numeric ranges, memory sizes, and alignment restrictions of integer types are

implementation-defined in C. Cerberus is abstracted on a Core module defining these for C integer

and floating types. For testing we use those of LP64, as commonly used on Macs and Linux.

Cerberus supports the full evaluation-order looseness of C [42, §5.6], but (without additional

optimisation) this quickly leads to a combinatorial explosion of possible executions and is orthogonal

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

https://cerberus.cl.cam.ac.uk/cerberus?defacto/init.c

67:22 Memarian, Gomes, Davis, Kell, Richardson, Watson, Sewell

to pointer provenance issues, so for the testing in this paper (for which evaluation order looseness

is largely irrelevant) we use a “sequentialise” option to disable it.

Most seriously, the concrete addresses of allocations in C are visible to the program, via pointer

comparisons, casts to integer types, access to representation bytes, etc. Our proposed mathemati-

cal semantics makes nondeterministic choices of allocation addresses, subject to alignment and

disjointness constraints. In the tool (for both PVI and PNVI), we have two options:

A concrete-allocation-address mode, which uses a specific deterministic naive allocation strategy

(resolving the newAlloc nondeterminism in the mathematical model). This performs well, and is

what we use for most of the testing in this paper, but it cannot exhibit all allowed executions for

code that observably depends on allocation addresses.

A symbolic-allocation-address mode, in which each allocation generates a fresh symbolic variable

for its concrete address, together with constraints expressing that that is suitably aligned and

disjoint. We use Z3 [12] to resolve such constraints as needed. At some points Cerberus still has to

make a nondeterministic choice, e.g. for conditional tests involving pointers:

int x,y; if (&x < &y) { if (&y < &x) { return 10; }}

where for each if Cerberus explores two branches, with a new constraint in each for the conditional

expression being true or false. Here in the true/true cases Z3 will detect unsatisfiability and Cerberus

will throw away those executions. There is much more going on in even a simple C program than

one might expect. For example, printf("hello\n"); involves the allocation and initialisation of

an object for the string constant, then allocation and initialisation of a temporary object for the

argument to printf, then (as the argument of printf is a char *) seven loads of the individual

bytes. This makes it hard to use the symbolic mode for larger examples, and so here we focus

largely on the concrete-allocation-address mode; the other is less well-developed at present.

Web interface: Cerberus C explorer We have equipped Cerberus with a web interface for

interactive exploration of the static and dynamic semantics of C programs (at http://cerberus.cl.

cam.ac.uk/cerberus). It allows the user to navigate throughout the Cerberus pipeline shown in §7.

Figure 1 is in fact a screen dump from this, with an example C program in the (editable) left-hand

pane and the elaborated Core. The user can identify the elaboration of every subexpression in the

code, by mousing over or selecting either the source or the Core.

Understanding what parts of the standard are relevant for particular snippets of C code is often

hard, requiring great familiarity with the standard. Our semantics inserts ISOC standard annotations

in the Ail and Core ASTs during type-checking and elaboration, indicating in many cases (but not

all) which paragraphs of the standard are being captured by each clause. Web interface tooltips

allow the user to immediately read the relevant paragraphs of N1570 [64], a publicly available

committee draft essentially identical to the C11 standard. This annotation also opens the door to

future automated coverage checking with respect to the standard, e.g. for test suites.

The interface allows the user to either interactively or pseudorandomly explore single execution

paths, or (for small tests) perform an exhaustive search for all allowed executions, in either PVI

or PNVI, and in either concrete-allocation-address or symbolic-allocation-address modes. It also

integrates Godbolt’s Compiler Explorer API [16], to show the assembly output for various compilers

and platforms. It provides a library of interesting test cases, including those of this paper.

9 EXPERIMENTAL VALIDATION
Ideally, an executable-as-test-oracle C semantics would be accurate, robust, and clear enough to

provide a definitive reference, e.g. so that it reports an UB if and only if there is one in a shared

consensus interpretation of ISO. To the best of our knowledge, no semantics is yet at that point,

and Cerberus is certainly not bug-free, but it is already a useful tool.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

http://cerberus.cl.cam.ac.uk/cerberus
http://cerberus.cl.cam.ac.uk/cerberus

Exploring C Semantics and Pointer Provenance 67:23

We validate our combined semantics (our memory object model linked with the rest of Cerberus)

for our provenance tests and various other test suites; we detail this on the project web page and

summarise here. We also report basic assessments of its performance. This testing uses Cerberus in

concrete-allocation-address mode, with evaluation order sequentialisation.

Pointer Semantics First, for pointer provenance, we use our basic provenance semantics test

suite, comprising the examples in the paper and variants thereof — currently 54 tests in 27 families.

Cerberus produces the desired PVI and PNVI output for all except the 3 tests which involve file

IO (Cerberus does not currently support a filesystem or scanf). Our testing found unintentional

undefined behaviour in a few of the tests of [42], e.g. involving signed integer overflow from

unspecified values; we rewrote those tests accordingly.

We have also tried various other tools on these tests, though one needs care in interpret-

ing the results, as some tests are only meaningful in executions with an address coincidence,

and none are designed to aggressively exercise compiler optimisations. We exclude three tests

that rely on address coincidences with non-address-taken variables. Leaving those aside, GCC

8.1, Clang 6.0, and ICC 19 all give output compatible with both PVI and PNVI, when compiled

with or without optimisations and with or without strict aliasing, except that GCC and ICC

are not currently sound at O2/O3 w.r.t. PNVI for provenance_basic_using_uintptr_t_global_yx.c

and provenance_union_punning_2_global_yx.c (or variants thereof); none of GCC, Clang, and

ICC are sound for PNVI at O2/O3 for pointer_from_integer_1ig.c; Clang is not sound for

PNVI at O2/O3 for pointer_from_integer_2g.c; and ICC is not sound for PNVI at O2/O3 for

provenance_lost_escape_1.c.

The CompCert 3.4 compiler gives results consistent with both PVI and PNVI for all tests, except

at -O w.r.t. PNVI for pointer_from_integer_1ig and pointer_from_integer_2g. Many of our tests

are outside of the scope of the CompCert interpreter and CH2O [30], since they use standard library

functions that these do not support.

RV-Match reports similar results to Cerberus, except that for four tests that Cerberus regards

as UB it warns about an implementation-defined behaviour and then segfaults, without reporting

any UB. It also appears to regard the subtraction of two integers derived from pointers to different

objects as UB.

Other Test Suites The GCC torture test suite [14] has 1429 tests. Many of these tests were

written pre-C89 in K&R style, which is not supported by Cerberus. We have pre-processed all

the files with the cproto tool [20], which converts from K&R to ANSI syntax, and included a

header file cerberus.h, which removes GNU attributes and replaces built-in types and functions

(__builtin_memset() etc.) with standard library analogues. We additionally modified 103 files to

make functions void or add a return. GCC is permissive w.r.t. that, but ISO and Cerberus forbid

inconsistencies. We identified 237 tests that rely on GNU extensions and compiler flags (special

GCC builtins, zero-length arrays, nested functions, -fwrapv, etc.), and 210 more use ISO features

not supported by Cerberus (bitfields, _Complex, etc.). 8 tests simply call abort(), which fails the test.

Of the remaining 974, Cerberus currently passes 948 (97.3%). Many of the failed tests are due to a

bug in fancy struct/union initialisation (5 tests), or take too long to execute (11 tests).

The ITC Toyota benchmark [55] aims to support quantitative comparison of static analysis tools.

It is a publicly-available benchmark consisting of 1276 tests, half with defects and the other half

without any defects (meant to detect false positives), in 51 files. We exclude 13 files which use

features Cerberus does not support (mainly pthreads and floats), for a total of 526 non-defect tests,

of which Cerberus runs 100% of them without errors, and 526 defect tests. Of the latter, we identify

160 that actually have defined behaviour w.r.t. ISO C. These “defects” include unused variables,

integer sign lost because of unsigned cast, redundant conjunctions in if and while statements, and

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

https://www.cl.cam.ac.uk/users/pes20/cerberus
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_using_uintptr_t_global_yx.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_union_punning_2_global_yx.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1ig.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_2g.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_lost_escape_1.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1ig
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_2g

67:24 Memarian, Gomes, Davis, Kell, Richardson, Watson, Sewell

Defect Type Cerberus RV-Match

UB-defect non-UB defect non-defect defect non-defect

Static memory 66/67 (99%) 0 67/67 (100%) 100% 100%

Dynamic memory 81/82 (99%) 5 87/87 (100%) 94% 100%

Numerical 55/56 (98%) 46 102/102 (100%) 96% 100%

Resource management 54/61 (89%) 34 95/95 (100%) 93% 100%

Pointer-related 72/72 (100%) 10 82/82 (100%) 98% 100%

Inappropriate code 0/0 – 64 64/64 (100%) 0% 100%

Misc 16/28 (57%) 1 29/29 (100%) 63% 100%

Fig. 6. ITC Toyota benchmark results for Cerberus and RV-Match. For Cerberus, tests that use unsupported
features were removed. The UB-defect column shows the number of “defect” tests that have UB, and the
fraction that Cerberus detects. The non-UB-defect column shows the number of “defect” tests that are
non-UB defects, for which Cerberus should not (and does not) report an error. The non-defect column are
tests for which a tool should not report false positives. Technical difficulties prevented us running RV-Match
on these tests, and so we just report the overall data from [18] rather than giving a similar breakdown.

suchlike, and so are not things that Cerberus should detect. Cerberus currently detects 344 out of

the remaining 363 (95%). Fig. 6 summarises these results. As measured with these tests, Cerberus

and RV-Match have broadly comparable detection rates for undefined behaviour.

The KCC Example test suite [19, 25] is, similarly to ITC Toyota, split between good tests and bad

tests (UB, constraint violation and implementation defined), 409 in total, of which we support 293.

Cerberus currently gets 94% of the latter correct. Of the 18 failures, 13 are various minor front-end

bugs.

We have also tried 1191 Csmith [53] tests, including those from [42], and excluding tests that

time out on Clang after 5s. They range from -max-expr-complexity 1 to 4 and are 40-800 lines

long. Cerberus currently gives the same results as Clang for 1190 tests; one times out after ten

minutes.

Performance To give a very crude measure of performance, for tests that do not involve the

memory layout model in interesting ways, we ran a small loop with varying numbers of iterations

(on an i5-4670 CPU at 3.40GHz). This takes 0.15s for 1000 iterations, 1.27s for 10 000, and 12.7s for

100 000, apparently scaling linearly. Guth et al. [18] report a compile-and-run time of 13s (on an 2.4

GHz Intel Xeon) for 10 000 iterations.

int ret = 0; for (int i = 0; i <= [...]; i++) { ret++; }

More importantly, the time needed to run most of the above test suites is quite reasonable: 22.5s

to run our pointer provenance tests and many others (all 189); 3 minutes to run the GCC Torture

tests; and 25 minutes for those Csmith tests. The Toyota tests are combined into two large files (for

the defect and non-defect tests); running all the non-defect tests takes 20s.

Compilation to OCaml The Cerberus architecture, factoring its C semantics via a relatively

straightforward Core language and with a clean memory object model interface, can be exploited

to implement other execution or analysis engines. As an experiment, we have also implemented a

transcompiler from C to OCaml. It uses the Cerberus frontend, elaboration, and type-checking of

Core, and its memory model, but compiles Core to OCaml rather than executing the Cerberus Core

operational semantics as an interpreter. Initial testing suggests that this approach is around two

orders of magnitude faster (it takes 10s to run 1 million iterations of the above program). However,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

Exploring C Semantics and Pointer Provenance 67:25

this approach does not support all Cerberus’s features: it cannot run in exhaustive mode and it

detects fewer undefined behaviours.

10 EXPLORING EXISTING C CODE
The corpus of existing C code is the most important aspect of the de facto standard, and the hardest

to change. It is also the hardest to investigate. Previous surveys [42, 44] have explored what expert

programmers believe about it, but ideally we would have solid data about the code itself, either via

some static analysis (necessarily approximate) or a dynamic exploration (necessarily only covering

the paths executed). Focussing on the latter, we cannot use existing mainstream C implementations,

as they build in the assumption that the source does not exhibit UB. In principle we could use

something like Cerberus, but, being aimed at a clear semantics rather than performance, that is not

currently practical for large bodies of C; it also lacks features. Accordingly, we gather data from

running C code in settings that approximate our provenance semantics, in several ways as below.

There is also useful data to be gained from the developers of bug-finding tools such as the address,

memory, and undefined-behaviour sanitisers. These do not track pointer provenance or detect all

UBs, but they do detect many cases that conventional implementations do not. To be usable, they

have to avoid reporting what their clients would regard as false positives, irrespective of ISO. For

example, they report that in real code they see many legitimate uses of pointers (for printing or

comparison, not for access) after their object lifetimes, and that they believe it would not be viable

to prohibit that [Kostya Serebryany, personal communication].

There is a delicate balance to be struck here: much C code contains bugs and poor practices, and

a semantics and the standard should not generally be trying to legitimise those, but on the other

hand there are non-ISO or ISO-unclear idioms that are used in essential and widespread ways in

systems code, and these should not be regarded as unqualified undefined behaviour.

FreeBSD CHERI port annotation data CHERI [8, 60, 61, 66] is an experimental architecture

providing hardware support for fine-grained pointer-based memory protection and secure en-

capsulation. It has been developed as an extension of the 64-bit MIPS architecture, but similar

features could be added elsewhere. CHERI-MIPS provides hardware capabilities, intended to support
more secure pointer implementations, which consist of compressed 128-bit values including a

base virtual address, an offset, a bound, and permissions. Additional tag memory, cleared by any

non-capability writes, records whether each such unit of memory holds a valid capability. These

and other features makes capabilities unforgeable by software: each capability must be derived

from one of equal or larger rights. One can use capabilities instead of integers either to implement

all pointers (“pure-capability” code) or selectively (“hybrid”). Pointer provenance is an essential

element of CHERI’s protections: pointers must be validly derived, and cannot be (for example)

injected over the network, or improperly leaked between processes. Bounds set by the memory

allocator prevent an improperly manipulated pointer from being used to access the wrong object.

This is a broadly similar model to ISO C extended with our provenance semantics, except that

where the latter has undefined behaviour for accesses without the right (ghost-state) provenance,

CHERI guarantees to trap for accesses that are not via a valid (concrete-state) capability. CHERI C

is stricter than our proposals in some ways: capabilities have to be suitably aligned, and cannot be

copied bytewise.

In other work, we and others have ported a large body of C code to CHERI-MIPS, including

the FreeBSD kernel (hybrid) and userspace (pure-capability), annotating per-file the kinds of

changes needed. This allows us to understand the potential impact of adopting a provenance

model (motivated here by pointer-aliasing concerns, but enforced in CHERI for security reasons)

on a large and diverse C corpus. We have analysed the original plain-C idioms identified by this

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

67:26 Memarian, Gomes, Davis, Kell, Richardson, Watson, Sewell

with respect to our provenance semantics. The main conclusion is that the port has been possible

with significant effort but modest code change, with relatively few occurrences of idioms that are

challenging w.r.t. provenance. The userspace part of the FreeBSD tree includes 824 UNIX programs

and 198 libraries and 23000 .c and .h files (not all of which are compiled), of which 295 have been

changed and annotated. We now consider some classes of changes:

In CHERI, pointers cannot be derived from integer values. 39 source files (tagged

pointer_as_integer) fabricated pointers from integers, but almost all are just storing distin-

guished values to compare against. The only cases in which the result was actually used as a pointer

are mmap() calls with MAP_FIXED for things like thread stacks.

Preserving pointers across stores and reloads from memory require use of tag-preserving types –

pointers, or intptr_t – without which pointers will become non-dereferenceable. Memory copies

may arise through explicit requests by the programmer – e.g. memcpy – but may also be implied

in other operations, such as qsort, which is expected to preserve the dereferenceability of point-

ers stored in memory whose contents are being sorted. One memcpy implementation and three

sort implementations were altered. Additionally, 9 files were altered to use an alternative hash

implementation in place of Berkeley DB, which does not preserve alignment.

In a CHERI-aware OS, tags may be intentionally stripped during certain memory copies – for

example, in the implementation of Inter-Process Communication (IPC) and loopback network com-

munication, or when storing pointers into memory-mapped files. There seem to be no substantive

uses of %p pointer IO, but pointers are sent over a socket between a parent and its fork’d child, a

case beyond the scope of ISO C. 6 files were altered to handle two cases of this.

Similarly, pointer casts through integer types – often for pointer arithmetic – will discard

capability metadata if not made through pointers or intptr_t. Using otherwise-unused bits of

pointers (pointer_bit_flags) is indeed standard and common, with 11 occurrences. In 25 places,

code uses integer arithmetic to check or adjust pointer alignment. And there is much code that

expects intptr_t arithmetic to mirror pointer arithmetic.

Another example of provenance behavior in CHERI C is in pointer equality testing, which

compares not just a capability’s virtual address, but also bounds, permissions, and tag bit. This is a

pragmatic choice arising from the desire that realloc can return a pointer with modified bounds

yet an identical virtual address, and have the caller code use the newer rather than older pointer

value. Using the incorrectly derived pointer will prevent access to newly available space beyond

the bounds of the original pointer, as it will lead to a trap. However, this pointer equality semantics

has a practical impact on other programmer-visible aspects of pointer comparison, in which the

derivation of a pointer affects that comparison: a pointer one location past the end of a memory

allocation will not compare as equal to a pointer to the next memory allocation, even though their

virtual addresses are equal, due to differing bounds. There are many occurrences of realloc() (2104)

and reallocf() (86), but most seem to be simple extensions of strings. Only 6 required adaption for

CHERI, such as not deriving updated pointers to new allocations from old ones. Intraobject pointer

arithmetic w.r.t. pointers to no-longer-live objects has to be supported (contrary to ISO) to handle

some idioms for updating pointers post-realloc(). Apart from this, there seems to be basically no

inter-object pointer arithmetic.

FreeBSD CHERI execution data Looking specifically at the construction of transiently out-of-

bounds pointers, we instrumented the CHERI QEMU emulator to log every creation andmodification

of such a pointer at a capability type. This is possible without false positives on CHERI since

capability manipulation must be performed using special instructions instead of integer instructions.

Substantially out-of-bounds pointers are a particular concern in CHERI due to the use of bounds

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

Exploring C Semantics and Pointer Provenance 67:27

compressed relative to a pointer’s virtual address: a pointer that goes too far out of bounds will no

longer be representable, causing the tag bit to be cleared making the pointer un-dereferenceable.

We collected statistics for out-of-bounds pointer creation during a full run of the FreeBSD

testsuite. We encountered 155214 pointers that were out-of-bounds by more that one byte. Of

these, only 1205 pointed past the end. This indicates that despite construction of one-past-the-end

pointers being legal, having pointers to before the object is more common in real-world code. We

also found that 81% of these pointers are at most sizeof(void*) outsize of the bounds. While this

is a surprising number of out-of-bounds pointers, there were at most 6 unique program counters

generating these per process. One typical use of an out-of-bounds pointer is an idiom in which an

array pointer is incremented prior to use within a loop, leading programmers to decrement the

pointer below the lower bound prior to the loop. This idiom can be found in the zlib compression

library, affecting dependent software such as gzip, OpenSSH, and libpng. The small number of

locations creating out-of-bounds pointers suggests that the ISO C restrictions could probably be

adhered to with only modest changes to the actual programs.

Shadow memory tool To test larger codebases against the semantics, we created a dynamic

analysis tool using shadow memory to track the provenance of all pointers and integers. It is

broadly similar to other dynamic analyses such as the SoftBound pointer bounds checker [46] or

Memcheck [48], but it is implemented by source-to-source translation using CIL [47] (giving access

to C source features). Pointers and integers carry metadata, as a provenance token analogous to

the model’s allocation ID, but only one byte in size. This allows integer types down to char to

carry provenance information, while keeping shadow memory 1:1 with program memory size. The

runtime is an extension of liballocs [26], using its ability to query for static, stack or heap objects

at a given address. Provenance is propagated as in PVI, with a few small simplifying deviations.

The C library is not instrumented, but calls are wrapped to simulate propagation.

At every pointer dereference, the identity of the pointed-to allocation (queried from liballocs)

is checked against the pointer’s provenance (carried with it), which must match. False negatives,

though unlikely, are possible because provenance tokens sometimes match coincidentally: because

only 254 distinct tokens exist, and because each allocation’s token is a deterministic function of its

base address rather than being chosen at random (owing to limitations of metadata in liballocs).

False positives arise from limitations dealing with C library functions (wrappers exist only for

commonly used functions), and assembly code (for which the right semantics remain unclear). The

tool’s output has been manually validated against the relevant de-facto tests.

We tried the tool on ten C-language SPEC CPU2006 benchmarks, i.e. all those in pure C except

libquantum (as CIL does not support C99 complex numbers). As expected, the majority (6) execute

without provenance errors. In mcf the tool correctly aborts when offsetting is used to fix up pointers

after a realloc(); these pointers retain the previous allocation’s provenance. In gcc and perlbench

custom allocators are used, which are not currently instrumented. In h264ref currently a callback

from the C library (in qsort()) defeats current C library wrapping.

These benchmarks are a friendly case, since they are selected for portability and do little I/O.

Most larger and more I/O-heavy workloads are beyond the tool’s current robustness (especially

its C library wrappers, and its slowdown factors). We have successfully run the Tiny C compiler

tcc under the tool, and are currently improving it via testing on testing several other well-known

codebases.

11 INTERACTINGWITH ISOWG14 AND OTHER BODIES
The ISO C standard is maintained by its JTC1/SC22 WG14 committee [65], with C++ maintained by

WG21. It has produced several major versions: C90 (essentially identical to ANSI C/C89), C99, C11,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

67:28 Memarian, Gomes, Davis, Kell, Richardson, Watson, Sewell

and C18, with various Technical Corrigenda in between. C18 is a mild revision of C11, and a future

more substantial C2x revision is envisaged.WG14meets twice per year, with attendees that typically

include several members of major compiler groups, analysis tool vendors, and conformance suite

vendors, around 15–25 people. C is relatively stable compared with many languages, with WG14

taking a largely conservative approach to changes. The standard is a prose document, and there

seems little near-term prospect of replacing it as a whole with a normative mathematically rigorous

definition: even if a complete such definition existed, it would not be accessible to many of the

target readership. Even a prose rendering of such would likely be too radical a change. (Boehm and

Adve [6], Batty et al. [2], and the C++ concurrency subgroup did introduce what is essentially a

mathematical definition for ISO C++/C11 concurrency, transcribed into prose, but that affected

only a small part of the standard.) If one wants to improve the standard’s memory object model,

therefore, one has to convince WG14 that there is a real problem, work with them to develop a

solution that will be broadly acceptable, and show that it can be expressed in the style of the current

standard. Towards this end, we have attended several WG14 meetings, and intend to continue doing

so. This is a lengthy ongoing process and the outcome is hard to predict, but at recent meetings

it appears that many members of the committee agree that there are serious questions about the

memory object model and that a provenance-based semantics of some kind could capture the right

intent. WG14 has instituted a C memory object model Study Group to address the question.

We have also had informal discussions with members of the LLVM and GCC communities

and the ISO WG21 C++ committee. There too there seem to be grounds for cautious optimism:

the provenance semantics, in one or other form, appears to be broadly consistent with people’s

intuition.

12 RELATEDWORK
There is a long history of work to formalise aspects of the ISO C standards and to build memory

object models for particular C-like languages. We discuss much of this in detail in [7, §10, p66–83],

and Krebbers [30, Ch.10] gives a useful survey. Work to formalise aspects of the standards includes

Gurevich and Higgens [17], Cook and Subramanian [10], Norrish [49, 50], Papaspyrou [51], Batty et

al. [2], Ellison et al. [13, 18, 19], and Krebbers et al. [27–30, 32, 33]. Memory object models include

those for CompCert by Leroy et al. [39, 40], and Besson et al. [3, 4], for CompCertTSO by Ševčík et

al. [59], the model used for seL4 verification by Tuch et al. [58], and the model used for VCC by

Cohen et al. [9]. Most of this work adopts either a completely concrete model (e.g. those of Tuch et

al. and Ellison et al. [13, 58]) or a very abstract model (e.g. the initial CompCert model [40] and the

fine-grained effective types model of Krebbers et al. [32]. Later work for CompCert adds support

for some low-level idioms, but not the full gamut thereof in de facto C [3–5, 31, 39]. Analysis tools

such as tis-interpreter [11, 57] and CBMC [34] also have to deal with much of the semantics of

C, although with implicit rather than explicit semantic models, as did CIL [47]. Jones describes a

Model Implementation C Checker [21, 22] for static and dynamic conformance checking w.r.t. C90.

This was a commercial product and exactly what it checked w.r.t. the issues described in this paper

is not completely clear. It consisted of “over 100 000 lines of C”, rather than a precise mathematical

semantics.

The most closely related work to Cerberus as a whole is the KCC work of Ellison et al. and

Hathhorn et al. This has been developed into a commercial product, RV-Match [18, 54], which

claims to be a “complete formal ISO C11 semantics”. RV-Match aims to be “an automatic debugger
for subtle bugs other tools can’t find, with no false positives”. It covers some C features that Cerberus

does not, but puts less emphasis on a clear semantics that (where possible) is tightly coupled to ISO,

and the choices it makes for memory object semantics are not clear to us. KCC had a very different

structure to Cerberus: a rewrite system over a very large state, rather than Cerberus’s compositional

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

Exploring C Semantics and Pointer Provenance 67:29

elaboration to Core. §9 includes more detailed comparison with RV-Match on various test suites.

The CH2O work of Krebbers and Wiedijk, cited above, includes a Coq semantics for a moderately

large subset of C, together with impressive development of metatheory for reasoning within the

semantics. This semantics takes a stricter view of some aspects than ISO, to ease reasoning. The

CH2O code extracted from Coq can run some tests, but that semantics is not feature-complete

enough to run the pointer semantics tests we develop here.

The most closely related work on the memory object model side is that of Kang et al. [24], Lee et

al. [36], and Lee et al. [35]. These study the complementary problem of the semantics for the LLVM

intermediate language, focussed on the semantics implicitly assumed by compiler optimisations.

We discuss the relationship to the last of these in §6. Preliminary investigation suggests that the

C source semantics outlined in this paper and the intermediate-language semantics they propose

could be made compatible (up to refinement), which would give a coherent top-to-bottom story for

the C language and its implementation.

13 CONCLUSION
We have provided an in-depth discussion of the design space and two candidate semantics for

pointers and memory objects in C, taking both ISO C and de facto usage into account; re-engineered

and extended the Cerberus semantics to cover many of the other aspects of C; and integrated the

two to provide a semantics that is executable as a test oracle in various ways. We intend to make

Cerberus available in an open-source form in due course. The conflicting requirements imposed

by different implementations and usages of C may mean that there cannot be a single universally

acceptable semantics, but this provides a solid basis for discussion, clarifies what C is, and has a

realistic prospect of incorporation into future versions of the ISO standard. It should help clarify

exactly what envelope of behaviour it is desirable to permit compilers (and their alias analysis) to

do.

This also creates many possibilities for future work, e.g. using Cerberus as a basis for precisely

defining other dialects of C (such as CHERI C), as a test oracle for compiler alias analysis, to support

test coverage measurement w.r.t. the standard, and as a basis for static and dynamic analysis tools

grounded on an explicit and well-validated semantics of C.

ACKNOWLEDGMENTS
We thank all those with which we have discussed C semantics, especially Frédéric Besson, Richard

Biener, Chandler Carruth, David Chisnall, Pascal Cuoq, Hal Finkel, Jens Gustedt, Chung-Kil Hur,

Ralf Jung, Robbert Krebbers, Chris Lattner, Juneyoung Lee, Xavier Leroy, Nuno Lopes, Justus

Matthiesen, Paul McKenney, Santosh Nagarakatte, John Regehr, Martin Sebor, Kostya Serebryany,

Richard Smith, Hubert Tong, Martin Uecker, Freek Wiedijk, Steve Zdancewic, the other members of

the WG14 C standard committee, and other attendees at EuroLLVM and the GNU Tools Cauldron.

Any errors remain our own, of course.

This work was partially supported by EPSRC grant EP/K008528/1 (REMS), an ARM iCASE award,

and ERC Advanced Grant ELVER 789108. This work is part of the CTSRD and ECATS projects

sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research

Laboratory (AFRL), under contracts FA8750-10-C-0237 and HR0011-18-C-0016. The views, opinions,

and/or findings contained in this paper are those of the authors and should not be interpreted

as representing the official views or policies, either expressed or implied, of the Department of

Defense or the U.S. Government.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

67:30 Memarian, Gomes, Davis, Kell, Richardson, Watson, Sewell

REFERENCES
[1] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter Sewell. 2015. The Problem of

Programming Language Concurrency Semantics. In Programming Languages and Systems - 24th European Symposium
on Programming, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London,
UK, April 11-18, 2015. 283–307. https://doi.org/10.1007/978-3-662-46669-8_12

[2] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ concurrency. In

Proc. POPL.
[3] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2014. A Precise and Abstract Memory Model for C Using Symbolic

Values. In Proc. Programming Languages and Systems - 12th Asian Symposium, APLAS 2014, Singapore, November 17-19,
2014, Proceedings. 449–468. https://doi.org/10.1007/978-3-319-12736-1_24

[4] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2015. A Concrete Memory Model for CompCert. In Interactive
Theorem Proving - 6th International Conference, ITP 2015, Nanjing, China, August 24-27, 2015, Proceedings. 67–83.
https://doi.org/10.1007/978-3-319-22102-1_5

[5] Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2017. CompCertS: A Memory-Aware Verified C Compiler Using

Pointer as Integer Semantics. In Interactive Theorem Proving - 8th International Conference, ITP 2017, Brasília, Brazil,
September 26-29, 2017, Proceedings. 81–97. https://doi.org/10.1007/978-3-319-66107-0_6

[6] Hans-J. Boehm and Sarita V. Adve. 2008. Foundations of the C++ concurrency memory model. In Proc. PLDI. ACM,

New York, NY, USA, 68–78. https://doi.org/10.1145/1375581.1375591

[7] David Chisnall, Justus Matthiesen, Kayvan Memarian, Kyndylan Nienhuis, Peter Sewell, and Robert N. M. Watson.

2016. C memory object and value semantics: the space of de facto and ISO standards. http://www.cl.cam.ac.uk/~pes20/

cerberus/notes30.pdf (a revison of ISO SC22 WG14 N2013).

[8] David Chisnall, Colin Rothwell, Robert N. M. Watson, Jonathan Woodruff, Munraj Vadera, Simon W. Moore, Michael

Roe, Brooks Davis, and Peter G. Neumann. 2015. Beyond the PDP-11: Architectural Support for a Memory-Safe C

Abstract Machine. In Proc. ASPLOS: the Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, New York, NY, USA, 117–130. https://doi.org/10.1145/2694344.2694367

[9] Ernie Cohen, Michał Moskal, Stephan Tobies, and Wolfram Schulte. 2009. A Precise Yet Efficient Memory Model For C.

Electron. Notes Theor. Comput. Sci. (SSV 2009) 254 (Oct. 2009), 85–103. https://doi.org/10.1016/j.entcs.2009.09.061

[10] Jeffrey V. Cook and Sakthi Subramanian. 1994. A Formal Semantics for C in Nqthm. Technical Report 517D. Trusted

Information Systems, Oct. http://web.archive.org/web/19970801000000*/http://www.tis.com/docs/research/assurance/

ps/nqsem.ps.

[11] Pascal Cuoq, Loïc Runarvot, and Alexander Cherepanov. 2017. Detecting Strict Aliasing Violations in the Wild. In

Verification, Model Checking, and Abstract Interpretation - 18th International Conference, VMCAI 2017, Paris, France,
January 15-17, 2017, Proceedings. 14–33. https://doi.org/10.1007/978-3-319-52234-0_2

[12] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the
Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings.
337–340. https://doi.org/10.1007/978-3-540-78800-3_24

[13] Chucky Ellison and Grigore Roşu. 2012. An executable formal semantics of C with applications. In Proc. POPL.
[14] Free Software Foundation, Inc. 2018. GNU Compiler Collection, Torture Test Suite. https://github.com/gcc-mirror/

gcc/tree/master/gcc/testsuite/gcc.c-torture/execute.

[15] Free Software Foundation, Inc. 2018. Using the GNU Compiler Collection (GCC) / 4.7 Arrays and pointers. https:

//gcc.gnu.org/onlinedocs/gcc/Arrays-and-pointers-implementation.html. Accessed 2018-10-22.

[16] Matt Godbolt. 2017. Compiler Explorer. https://godbolt.org/.

[17] Yuri Gurevich and James K. Huggins. 1993. The Semantics of the C Programming Language. In Selected Papers from the
Workshop on Computer Science Logic (CSL ’92). Springer-Verlag, London, UK, UK, 274–308. http://dl.acm.org/citation.

cfm?id=647842.736414

[18] Dwight Guth, Chris Hathhorn, Manasvi Saxena, and Grigore Rosu. 2016. RV-Match: Practical Semantics-Based Program

Analysis. In Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23,
2016, Proceedings, Part I. 447–453. https://doi.org/10.1007/978-3-319-41528-4_24

[19] Chris Hathhorn, Chucky Ellison, and Grigore Rosu. 2015. Defining the undefinedness of C. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015.
336–345. https://doi.org/10.1145/2737924.2737979

[20] Chin Huang and Thomas E. Dickey. 2018. cproto. https://invisible-island.net/cproto/cproto.html.

[21] Derek Jones. 1992. Applications POSIX.1 conformance testing. http://www.knosof.co.uk/poschk.html. Presented at the

EurOpen & USENIX Spring 1992 Workshop/Conference.

[22] Derek M. Jones. 2009. The New C Standard: An Economic and Cultural Commentary. http://www.knosof.co.uk/cbook/.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1007/978-3-319-12736-1_24
https://doi.org/10.1007/978-3-319-22102-1_5
https://doi.org/10.1007/978-3-319-66107-0_6
https://doi.org/10.1145/1375581.1375591
http://www.cl.cam.ac.uk/~pes20/cerberus/notes30.pdf
http://www.cl.cam.ac.uk/~pes20/cerberus/notes30.pdf
https://doi.org/10.1145/2694344.2694367
https://doi.org/10.1016/j.entcs.2009.09.061
http://web.archive.org/web/19970801000000*/http://www.tis.com/docs/research/assurance/ps/nqsem.ps
http://web.archive.org/web/19970801000000*/http://www.tis.com/docs/research/assurance/ps/nqsem.ps
https://doi.org/10.1007/978-3-319-52234-0_2
https://doi.org/10.1007/978-3-540-78800-3_24
https://github.com/gcc-mirror/gcc/tree/master/gcc/testsuite/gcc.c-torture/execute
https://github.com/gcc-mirror/gcc/tree/master/gcc/testsuite/gcc.c-torture/execute
https://gcc.gnu.org/onlinedocs/gcc/Arrays-and-pointers-implementation.html
https://gcc.gnu.org/onlinedocs/gcc/Arrays-and-pointers-implementation.html
https://godbolt.org/
http://dl.acm.org/citation.cfm?id=647842.736414
http://dl.acm.org/citation.cfm?id=647842.736414
https://doi.org/10.1007/978-3-319-41528-4_24
https://doi.org/10.1145/2737924.2737979
https://invisible-island.net/cproto/cproto.html
http://www.knosof.co.uk/poschk.html
http://www.knosof.co.uk/cbook/

Exploring C Semantics and Pointer Provenance 67:31

[23] Jacques-Henri Jourdan and François Pottier. 2017. A Simple, Possibly Correct LR Parser for C11. ACM Trans. Program.
Lang. Syst. 39, 4 (2017), 14:1–14:36. https://doi.org/10.1145/3064848

[24] Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov, Steve Zdancewic, and Viktor Vafeiadis. 2015. A

formal C memory model supporting integer-pointer casts. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015. 326–335. https://doi.org/10.

1145/2737924.2738005

[25] KCC. 2018. Example Test Suite. https://github.com/kframework/c-semantics/tree/master/examples/c.

[26] Stephen Kell. 2015. Towards a Dynamic Object Model Within Unix Processes. In 2015 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Software (Onward!) (Onward! 2015). ACM, New

York, NY, USA, 224–239. https://doi.org/10.1145/2814228.2814238

[27] Krebbers and Wiedijk. 2012. N1637: Subtleties of the ANSI/ISO C standard. http://www.open-std.org/jtc1/sc22/wg14/

www/docs/n1637.pdf.

[28] Robbert Krebbers. 2013. Aliasing Restrictions of C11 Formalized in Coq. In Certified Programs and Proofs - Third
International Conference, CPP 2013, Melbourne, VIC, Australia, December 11-13, 2013, Proceedings, LNCS 8307. 50–65.
https://doi.org/10.1007/978-3-319-03545-1_4

[29] Robbert Krebbers. 2014. An operational and axiomatic semantics for non-determinism and sequence points in C. In

Proc. POPL.
[30] Robbert Krebbers. 2015. The C standard formalized in Coq. Ph.D. Dissertation. Radboud University Nijmegen.

[31] Robbert Krebbers, Xavier Leroy, and Freek Wiedijk. 2014. Formal C Semantics: CompCert and the C Standard. In

Interactive Theorem Proving - 5th International Conference, ITP 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 14-17, 2014. Proceedings. 543–548. https://doi.org/10.1007/978-3-319-08970-6_36

[32] Robbert Krebbers and Freek Wiedijk. 2013. Separation Logic for Non-local Control Flow and Block Scope Variables. In

Proc. FoSSaCS.
[33] Robbert Krebbers and Freek Wiedijk. 2015. A Typed C11 Semantics for Interactive Theorem Proving. In Proceedings of

the 2015 Conference on Certified Programs and Proofs (CPP ’15). ACM, New York, NY, USA, 15–27. https://doi.org/10.

1145/2676724.2693571

[34] Daniel Kroening and Michael Tautschnig. 2014. CBMC - C Bounded Model Checker - (Competition Contribution). In

Tools and Algorithms for the Construction and Analysis of Systems - 20th International Conference, TACAS 2014, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014.
Proceedings. 389–391. https://doi.org/10.1007/978-3-642-54862-8_26

[35] Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr, and Nuno P. Lopes. 2018. Reconciling

High-level Optimizations and Low-level Code with Twin Memory Allocation. In Proceedings of the 2018 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA 2018, part of
SPLASH 2018, Boston, MA, USA, November 4-9, 2018. ACM.

[36] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David Majnemer, John Regehr, and

Nuno P. Lopes. 2017. Taming undefined behavior in LLVM. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017. 633–647. https:

//doi.org/10.1145/3062341.3062343

[37] Xavier Leroy. 2009. A formally verified compiler back-end. J. Automated Reasoning 43, 4 (2009), 363–446. https:

//doi.org/10.1007/s10817-009-9155-4

[38] Xavier Leroy et al. 2018. CompCert 3.4. http://compcert.inria.fr/.

[39] Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart. 2012. The CompCert Memory Model, Version 2.
Research report RR-7987. INRIA. http://hal.inria.fr/hal-00703441

[40] Xavier Leroy and Sandrine Blazy. 2008. Formal verification of a C-like memory model and its uses for verifying

program transformations. Journal of Automated Reasoning 41, 1 (2008), 1–31. http://gallium.inria.fr/~xleroy/publi/

memory-model-journal.pdf

[41] Kayvan Memarian, Victor Gomes, and Peter Sewell. 2018. n2263: Clarifying Pointer Provenance v4. ISO WG14

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2263.htm.

[42] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David Chisnall, Robert N.M. Watson, and

Peter Sewell. 2016. Into the depths of C: elaborating the de facto standards. In PLDI 2016: 37th annual ACM SIGPLAN
conference on Programming Language Design and Implementation (Santa Barbara). http://www.cl.cam.ac.uk/users/

pes20/cerberus/pldi16.pdf PLDI 2016 Distinguished Paper award.

[43] Kayvan Memarian and Peter Sewell. 2016. N2090: Clarifying Pointer Provenance (Draft Defect Report or Proposal for

C2x). ISO WG14 http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2090.htm.

[44] Kayvan Memarian and Peter Sewell. 2016. What is C in practice? (Cerberus survey v2): Analysis of Responses – with

Comments. ISO SC22 WG14 N2015, http://www.cl.cam.ac.uk/~pes20/cerberus/analysis-2016-02-05-anon.txt.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

https://doi.org/10.1145/3064848
https://doi.org/10.1145/2737924.2738005
https://doi.org/10.1145/2737924.2738005
https://github.com/kframework/c-semantics/tree/master/examples/c
https://doi.org/10.1145/2814228.2814238
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1637.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1637.pdf
https://doi.org/10.1007/978-3-319-03545-1_4
https://doi.org/10.1007/978-3-319-08970-6_36
https://doi.org/10.1145/2676724.2693571
https://doi.org/10.1145/2676724.2693571
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1145/3062341.3062343
https://doi.org/10.1145/3062341.3062343
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1007/s10817-009-9155-4
http://compcert.inria.fr/
http://hal.inria.fr/hal-00703441
http://gallium.inria.fr/~xleroy/publi/memory-model-journal.pdf
http://gallium.inria.fr/~xleroy/publi/memory-model-journal.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2263.htm
http://www.cl.cam.ac.uk/users/pes20/cerberus/pldi16.pdf
http://www.cl.cam.ac.uk/users/pes20/cerberus/pldi16.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2090.htm
http://www.cl.cam.ac.uk/~pes20/cerberus/analysis-2016-02-05-anon.txt

67:32 Memarian, Gomes, Davis, Kell, Richardson, Watson, Sewell

[45] Dominic P. Mulligan, Scott Owens, Kathryn E. Gray, Tom Ridge, and Peter Sewell. 2014. Lem: reusable engineering

of real-world semantics. In Proceedings of ICFP 2014: the 19th ACM SIGPLAN International Conference on Functional
Programming. 175–188. https://doi.org/10.1145/2628136.2628143

[46] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. 2009. SoftBound: highly compatible and

complete spatial memory safety for C. In Proc. PLDI.
[47] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. 2002. CIL: Intermediate Language and

Tools for Analysis and Transformation of C Programs. In Proc. CC.
[48] Nicholas Nethercote and Julian Seward. 2007. How to Shadow Every Byte of Memory Used by a Program. In Proceedings

of the 3rd International Conference on Virtual Execution Environments (VEE ’07). ACM, New York, NY, USA, 65–74.

https://doi.org/10.1145/1254810.1254820

[49] Michael Norrish. 1998. C formalised in HOL. Technical Report UCAM-CL-TR-453. University of Cambridge, Computer

Laboratory. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-453.pdf

[50] Michael Norrish. 1999. Deterministic expressions in C. In Proc. ESOP, 8th European Symposium on Programming, LNCS
1576. Springer-Verlag, 147–161.

[51] Nikolaos S. Papaspyrou. 1998. A formal semantics for the C programming language. Ph.D. Dissertation. National

Technical University of Athens.

[52] Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference. ACM Trans. Program. Lang. Syst. 22, 1 (Jan. 2000),
1–44. https://doi.org/10.1145/345099.345100

[53] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. 2012. Test-case Reduction for C

Compiler Bugs. In Proc. PLDI.
[54] Runtime Verification Inc. 2017. RV-Match. https://runtimeverification.com/match/.

[55] Shinichi Shiraishi, Veena Mohan, and Hemalatha Marimuthu. 2015. Test suites for benchmarks of static analysis tools.

In 2015 IEEE International Symposium on Software Reliability Engineering Workshops, ISSRE Workshops, Gaithersburg,
MD, USA, November 2-5, 2015. IEEE Computer Society, 12–15. https://doi.org/10.1109/ISSREW.2015.7392027

[56] glibc. [n. d.]. memcpy. https://sourceware.org/git/?p=glibc.git;a=blob;f=string/memcpy.c;hb=HEAD.

[57] TrustInSoft. 2017. tis-interpreter. http://trust-in-soft.com/tis-interpreter/. Accessed 2017-11-11.

[58] Harvey Tuch, Gerwin Klein, and Michael Norrish. 2007. Types, bytes, and separation logic. In Proceedings of the 34th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2007, Nice, France, January 17-19,
2007. 97–108. https://doi.org/10.1145/1190216.1190234

[59] Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2013. CompCertTSO:

A Verified Compiler for Relaxed-Memory Concurrency. J. ACM 60, 3 (June 2013).

[60] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Hesham Almatary, Jonathan Anderson,

John Baldwin, David Chisnall, Brooks Davis, Nathaniel Wesley Filardo, Alexandre Joannou, Ben Laurie, Simon W.

Moore, Steven J. Murdoch, Kyndylan Nienhuis, Robert Norton, Alex Richardson, Peter Sewell, Stacey Son, and Hongyan

Xia. 2018. Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 7). Technical
Report UCAM-CL-TR-927. University of Cambridge, Computer Laboratory, 15 JJ Thomson Avenue, Cambridge CB3

0FD, United Kingdom, phone +44 1223 763500. https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.html

[61] Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore, Jonathan Anderson, David Chisnall,

Nirav H. Dave, Brooks Davis, Khilan Gudka, Ben Laurie, Steven J. Murdoch, Robert Norton, Michael Roe, Stacey Son, and

Munraj Vadera. 2015. CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization.

In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015. 20–37. https://doi.org/10.

1109/SP.2015.9

[62] WG14. 2004. Defect Report 260. http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm.

[63] WG14. 2011. ISO/IEC 9899:2011.

[64] WG14. 2011. Programming Languages — C. ISO/IEC 9899:201x. Committee draft, http://www.open-std.org/jtc1/sc22/

wg14/www/docs/n1570.pdf.

[65] WG14. 2017. JTC1/SC22/WG14 – C. http://www.open-std.org/jtc1/sc22/wg14/.

[66] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W. Moore, Jonathan Anderson, Brooks Davis, Ben

Laurie, Peter G. Neumann, Robert Norton, and Michael Roe. 2014. The CHERI capability model: revisiting RISC in an

age of risk. In ISCA ’14: Proceeding of the 41st International Symposium on Computer Architecture. IEEE Press, Piscataway,

NJ, USA, 457–468. https://doi.org/10.1145/2678373.2665740

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 67. Publication date: January 2019.

https://doi.org/10.1145/2628136.2628143
https://doi.org/10.1145/1254810.1254820
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-453.pdf
https://doi.org/10.1145/345099.345100
https://runtimeverification.com/match/
https://doi.org/10.1109/ISSREW.2015.7392027
https://sourceware.org/git/?p=glibc.git;a=blob;f=string/memcpy.c;hb=HEAD
http://trust-in-soft.com/tis-interpreter/
https://doi.org/10.1145/1190216.1190234
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-927.html
https://doi.org/10.1109/SP.2015.9
https://doi.org/10.1109/SP.2015.9
http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/
https://doi.org/10.1145/2678373.2665740

	Abstract
	1 Introduction
	2 Basic Pointer Provenance
	3 Pointer Construction via Casts, Representation Accesses, etc.
	4 Implications of Provenance Semantics for Optimisations
	5 Proposed PVI and PNVI Semantics for Provenance, in Detail
	6 Comparison with the Twin-allocation Semantics
	7 Recalling the Cerberus Pipeline (background)
	8 Re-engineering Cerberus
	9 Experimental Validation
	10 Exploring Existing C Code
	11 Interacting with ISO WG14 and Other Bodies
	12 Related Work
	13 Conclusion
	Acknowledgments
	References

