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Locked into stupidity: A smart lock security analysis

Abstract

There are a large number of “smart” devices in users’ homes. Developers are turning
many standard household appliances into Internet of Things devices, often focusing
on innovation. This often leads to a widespread absence of security in smart devices.
This is especially dangerous for systems that need a focus on security, such as smart
locks.

In this dissertation, I perform a security analysis of a pair of smart locks to attempt
to find vulnerabilities in the systems that could be exploited by an attacker and
identify common security problems that likely apply to other smart lock systems.
The first lock connects to a mobile app over Wi-Fi, while the second uses Bluetooth
Low-Energy; both also use passcodes, fingerprints, RFID cards, and a mechanical
backup lock.

I find vulnerabilities in many aspects of both of the smart locks analysed. The
majority of the vulnerabilities found are in the Bluetooth protocol; however, I
have also exploited the Wi-Fi lock’s setup process, both RFID unlock systems, and
the physical security of each lock. These vulnerabilities highlight several broader
issues in smart lock design, including the use of outdated and insecure components,
difficulty implementing setup and cryptography in a secure manner, and failing to
properly address both physical and cybersecurity simultaneously.
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Chapter 1

Introduction

The Internet of Things has been expanding rapidly in recent years, with more and

more household items becoming “smart” as time progresses. Many smart device

creators are focused on innovation, aiming to be the first to connect a new device

to the internet; however, very few IoT developers focus on security. Many do not

consider security at all, leading to an expanse of vulnerabilities in internet-connected

devices. Hackers can use mass-scanning tools such as ZMap1 or Masscan2 or services

such as Shodan3 to identify exposed devices over the internet. An attacker can then

exploit these devices for a variety of malicious purposes.

The creation of smart locks bridges the worlds of cybersecurity and physical security.

Smart locks require both their digital and physical aspects to be secure, however

the creators of these devices often have a similar amount of interest in security to

their fellow IoT developers. Companies that are transitioning to smart locks will

often have experience in either physical security (from designing mechanical locks)

or cybersecurity (from application development) but rarely understand both. This

leads to many smart locks having issues in at least one aspect, which is a critical

problem for smart lock owners. A vulnerability in any part of the device could

potentially allow an attacker to gain access to the lock and everything it guards, or

prevent a legitimate user from being able to operate the lock.

Manufacturers have few incentives to focus on the security of their products. Marketing

most smart devices as secure does not make them sell more, however advertising all

of their functionality will. For security products such as smart locks, vendors can

easily add a “9/10 security rating” to their packaging without actually caring about

1https://zmap.io/
2https://github.com/robertdavidgraham/masscan
3https://www.shodan.io/
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security.

Smart locks have a very large attack surface: many different components which are

potentially vulnerable to attack. Manufacturers often add as many different systems

as possible to make their system more competitive and “state-of-the-art”. Many

smart locks will use a combination of Wi-Fi, Bluetooth, RFID cards, fingerprint

sensors, keypads, and mechanical backup locks. Each of these technologies has

a combination of known attacks, outdated and vulnerable variants, and potential

implementation issues. While security professionals are often knowledgeable on

these problems, developers rarely have the same knowledge. This leads to insecure

components being used in modern systems, as well as poor design choices which can

lead to vulnerabilities in devices.

It is common for white-hat hackers to analyse the security of different devices

to attempt to find methods of attacking the systems. Any exploits found can

then be reported back to the manufacturer alongside advice on how to mitigate

the issues, allowing them to improve the security of their system. This is often

encouraged through bug-bounty programs, which reward researchers for reporting

their findings instead of using their exploits maliciously. Furthermore, these analyses

allow researchers to identify common issues for the creators of these devices, which

is useful both for research purposes and also for advising developers on how to solve

these problems when creating their own systems.

In this dissertation, I will analyse the security of two smart locks to identify common

security problems faced by the IoT industry. I will perform a vulnerability analysis of

the two systems, using both black box and clear box analysis techniques to uncover

software vulnerabilities while also identifying other attacks on the systems. I will

then analyse the set of exploits found to identify any common issues with the systems

which may affect the industry as a whole, and suggest some approaches to solving

these problems.

1.1 Choice of Locks

There are a wide range of locks that are considered “smart”. Some simply provide

one electronic access mechanism such as a fingerprint sensor or RFID unlock and

claim to be smart, while others will provide an app to control the lock or use a

wide range of electronic mechanisms. For my project, I selected modern locks which

provide as much functionality as possible, and which either had not yet been analysed

or had a very limited set of known attacks. I also prioritised popular locks such as
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Amazon best sellers and systems which have been widely recommended.

The first lock selected is the Pineworld smart lock. This system uses passcodes,

fingerprints, RFID smart cards, a mechanical backup lock, and the Tuya mobile app

which controls the lock over Wi-Fi. This is a very popular lock that is recommended

by multiple websites and has only been attacked once before (by PenTestPartners [1]).

It was one of the most popular locks on Amazon at time of purchase (December 2020)

and continues to be a popular product.

The second lock selected is a Ruveno smart lock. This provides passcode, fingerprint,

and smart card credentials, as well as a mechanical backup lock. It uses the TTLock

app to configure and control the lock using Bluetooth Low-Energy. It was the

Amazon best-seller at time of purchase (February 2021) and uses an app that claims

to be used by over 100 companies. The “Ruveno” lock is manufactured by Sciener,

which appear to be the same company as TTLock. This implies that many of these

companies are simply selling re-branded Sciener systems, and therefore it is very

likely that vulnerabilities found in this lock will impact all of their 100+ brands.

1.2 Related Work

Several security researchers have previously analysed various smart locks to find

vulnerabilities in their design. Rose and Ramsey [2] analysed a series of 16 Bluetooth

Low-Energy based smart locks and found 12 of them to be vulnerable to an assortment

of attacks, many of which are simple to perform. Several locks shared passwords in

plaintext, others were vulnerable to replay attacks, and some were unlocked using

bruteforce or fuzzing attacks. They also discussed common features of the locks they

were not able to attack, providing useful starting points for other lock manufacturers.

Higher security systems have also been attacked: at Defcon 24, Jmaxxz [3] presented

a range of attacks on the high-security August smart lock, which preceded separate

analyses by Ye et al. [4] and Fuller et al. [5]. Jmaxxz showed that the debug menu

could be accessed and exploited, the API leaked information, guests could become

admins and avoid other guest restrictions, and encryption keys were being insecurely

transmitted and stored. After these vulnerabilities were patched, Ye et al. presented

four attacks on the August smart lock: accessing the key from the handshake,

revealing the owner’s account information, discovering personal data about the user,

and a denial-of-service attack. All of their attacks assume access to the user’s

previously rooted or jailbroken device, which is a very unlikely threat. Fuller et

al. discuss four main attempted attacks on the lock: a password changing attack
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(a) The Pineworld Smart Lock (b) The Ruveno Smart Lock

Figure 1.1: The two selected smart locks with their smart cards and keys

which could lock the user out of their app; two methods of maintaining credentials

after they have been revoked; an attempt at bypassing timed credentials; and an

attempt at unlocking the lock by recording Bluetooth messages. Few attacks were

successful, suggesting that the security of the lock had significantly improved since

Jmaxxz’s attacks.

Other research groups have created blog posts detailing attacks on smart locks, such

as PenTestPartners’ analysis of the Tapplock [6] and Felch’s analysis of the KeyWe

smart lock [7]. The Tapplock used no encryption, was vulnerable to replay attacks,

used weak key generation for pairing, and has a thin, easy-to-cut shackle. The

KeyWe lock used weak key generation and was also vulnerable to replay attacks.

PenTestPartners have also published a blog post on the Pineworld smart lock [1],

which is one of the two locks that I will be analysing. They detail a drilling attack

on the lock, taking advantage of weak build materials to access the mechanism and
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open the lock. They also briefly discuss other problems with the lock, although none

are proper exploits.

Smart locks often use RFID cards, Bluetooth, and Wi-Fi as part of their system.

Each of these technologies has its own history of vulnerabilities and current known

exploits, discussed in detail in Section 2.1.

The most popular RFID standard is Mifare. The original Mifare Classic was reverse

engineered by Nohl et al. [8] and then attacked by Garcia et al. [9], Gans et al. [10]

and Garcia et al. [11]. The hardened version of Mifare Classic was later attacked

by Meijer and Verdult [12]. Several versions of the more secure Mifare DESFire

cards are also vulnerable: Oswald and Paar [13] found side-channel attacks on the

original DESFire, and Hurley-Smith and Hernandez-Castro [14] and Flynn [15] found

separate vulnerabilities in DESFire EV1.

Bluetooth has many versions with poor security, analysed in detail by Padgette et

al. [16]. The pairing protocol has been attacked by Jakobsson and Wetzel [17], Wong

and Stajano [18] and Antonioli et al. [19]. There is no encryption in Bluetooth

versions before 4.0, and there are various known attacks on the protocol such as

Bluesmacking, Bluejacking, and Bluesnarfing. Bluetooth Low-Energy (BLE) also

has known issues, such as providing no user-level authentication or end-to-end

security. Both Bluetooth and BLE provide various security levels and modes, several

of which are vulnerable.

Wi-Fi has multiple encryption schemes, many of which have been attacked. Wired

equivalent privacy has been attacked by Stubblefield et al. [20], Tews [21], and

Tews and Beck [22], and is no longer used due to these vulnerabilities. There are

several known attacks on WPA such as de-auth attacks, explored by Kraft and

Holston [23], and the evil twin attack. Vanhoef and Piessens [24] discovered the

KRACK attack on WPA2, and Vanhoef and Ronen [25] found a set of vulnerabilities

dubbed “Dragonblood” in the proposed version of WPA3.
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Chapter 2

Background

In this chapter, I explore the known exploits against technologies used by smart

locks. I then design a threat model for smart locks, informed by the known exploits

on the technologies in use. I also discuss the relevant laws and ethical concerns

for security analyses, including computer misuse laws, the laws concerning reverse

engineering and decompilation, and the ethics of vulnerability disclosure.

2.1 Technologies in use

Smart locks use multiple technologies as methods of controlling or opening the lock.

Each of these components has multiple versions which may be insecure and several

known vulnerabilities that impact the thread model. The main technologies used

by the smart locks selected are RFID cards, Wi-Fi, and Bluetooth Low-Energy. In

this section, I explore the different versions of each of these components, as well as

known security problems with them.

2.1.1 RFID Access Control

Many smart locks use RFID tags or smart cards as a method to operate the lock.

A majority of these systems are vulnerable to attacks, making RFID credentials a

target for hackers. RFID access control can be broadly grouped into two systems:

low-frequency (LF) tags and high-frequency (HF) cards. LF tags usually function

by sending a constant string from the tag’s memory to the reader, which can be

cloned onto an attacker’s card or replayed to the reader at a later time. While some

HF protocols such as PROX use a similar system to the LF tags, there are more

complex and secure HF systems available such as the Mifare family of RFID cards.
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These split memory into sectors, each of which is protected by two keys that should

only be known to card readers and writers. More complex access control can then

be used with these cards.

The most common attack on HF smart card systems is card cloning. Assuming that

the attacker knows the keys for each sector of the card (or can learn them through

vulnerabilities in the system), they can read all data from the card and make a

perfect copy. Mifare attempts to prevent this attack by making sector 0 read-only,

preventing a legitimate card’s UID from being overwritten. Attackers can use cards

with a “Chinese magic backdoor” to allow them to write to sector 0, or use devices

such as the Proxmark1 or the Chameleon2 to emulate an arbitrary HF-RFID card.

The design of Mifare Classic was kept secret by NXP to provide increased security by

obscurity. Nohl et al. [8] reverse-engineered the protocol and found several attacks

against it. Garcia et al. [9] found further attacks on the protocol before de Koning

Gans et al. [10] published a more practical attack on the protocol. Garcia et al. [11]

demonstrated a series of further attacks, the most impactful of which is the “nested”

attack which is now used by devices such as the Proxmark1 to crack any unknown

access keys on Mifare Classic cards in mere seconds. A “hardened” version of the

cards was later released, however Meijer and Verdult [12] found attacks against

the Crypto-1 cipher in 2015 that compromise all versions of Mifare Classic. The

“hardnested” attack was added to the Proxmark to allow easy exploitation, although

it takes significantly longer than the nested attack.

Other variants of Mifare have also been found vulnerable to attacks. DESfire cards

were found to be vulnerable to side-channel attacks by Oswald and Paar [13], and

research by Hurley-Smith and Hernandez-Castro [14] and Flynn [15] shows that

DESFire EV1 is also vulnerable. Several standards are still considered secure:

DESfire EV2 and EV3 have no known attacks and Mifare Plus is considered secure

when operating at the highest security level.

These smart cards must be configured such that an attacker cannot obtain the data

required to clone the card. For example, if a reader only inspects the world-readable

UID from the card, then anyone can read and copy this UID to gain access. Similarly,

only using default keys could allow an attacker to clone the card by using a dictionary

attack.

1https://proxmark.com/
2https://github.com/emsec/ChameleonMini
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2.1.2 Bluetooth

Bluetooth is a protocol that allows pairs of devices to communicate with each other

over short distances. Bluetooth Low-Energy (BLE) is a variant that uses less power

and is ideal for devices that do not send large quantities of data. The Bluetooth

protocol has a poor history of security: there was no encryption in the protocol

until version 4.0; attacks on the pairing protocol have been found by Jakobsson and

Wetzel [17], Wong and Stajano [18], and Antonioli et al. [19]; and there are multiple

known attacks which are possible on modern versions of both protocols.

Bluetooth has a variety of known attacks. Bluesmacking is a denial-of-service

attack on Bluetooth which sends an oversized ping packet to the device, causing

it to crash. Bluejacking allows any user in range to send unsolicited messages to

a device, and Bluesnarfing allows attackers to read information such as a user’s

contacts. Bluetooth devices operate at a specified security mode and level; low

security levels and modes are vulnerable to an assortment of attacks. Padgette et

al. [16] published a survey of all known Bluetooth attacks in all versions in 2017,

providing comprehensive coverage of attacks and best practices for Bluetooth.

BLE also has multiple known security issues. The protocol provides no user-level

authentication, enabling impersonation and man-in-the-middle attacks. There is no

end-to-end encryption, which enables traffic eavesdropping and modification. These

mean that application developers must implement encryption, message authentication,

and user authentication to prevent these attacks. BLE also has configurable security

modes and levels, several of which are insecure.

2.1.3 Wi-Fi

There exist a range of Wi-Fi encryption schemes, most of which are vulnerable to

attack. Wired equivalent privacy (WEP) was introduced in 1997 and replaced by

Wi-Fi protected access (WPA) in 2003. WPA2 was ratified in 2004 and is now

the most widely used Wi-Fi security mechanism. WPA3 was announced in 2018,

however it was only certified in 2020 after vulnerabilities were found in the original

proposal. As WPA3 was only recently certified, the majority of systems currently

use WPA2.

WPA2 has several well-known attacks. The de-auth attack [23] sends a packet to

devices connected to a Wi-Fi network which forces them to disconnect from the

network. Evil twin attacks involve duplicating an existing network to perform a

man-in-the-middle attack. Vanhoef and Piessens [24] discovered the KRACK attack
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on WPA2 which forced the encryption key to be re-used, allowing messages to be

decrypted, replayed, or forged.

WPA and WPA2 are both vulnerable to password cracking attacks. When a device

connects, it uses a four-way handshake to exchange setup information. This includes

a hash of the network password, which can be cracked with offline brute force and

dictionary attacks. De-auth attacks can be used to disconnect devices from the

network, allowing handshakes to be captured when the device immediately attempts

to reconnect.

Vanhoef and Ronen [25] found a set of five “Dragonblood” vulnerabilities in the

proposed WPA3 standard. These include a downgrade attack that enables WPA2

attacks to be used, a security group downgrade attack, two side-channel attacks

which leak the network password, and a denial-of-service attack. Although these

were patched before release, the same researchers later found a pair of vulnerabilities

stemming from the imperfect handling of the Dragonblood vulnerabilities. These are

present in the first deployed versions of WPA3 but are patched in modern versions.

2.2 Threat Model

A threat model identifies the important threats to a system, allowing security

analysis to focus on the most relevant issues. This includes the threat actors that

may attack the system, the attack scenario and any assumptions that can be made,

and the possible attacks that are relevant to the system.

2.2.1 Threat Actors

The first threat actors are skilled technical attackers (“hackers”). They are assumed

to understand all components of a system; by Kerckhoff’s principle, the system

should be secure even if the attacker knows everything about it except for the

private keys. Furthermore, skilled attackers can create their own exploits and are

not constrained to widely-available tools. While this is the threat with the highest

potential, they are also the least common, and may not be a priority.

The second threat actors are non-skilled technical attackers (“script kiddies”). This

attacker is unlikely to understand how the system works or to have the capability

to write their own exploits, instead of relying on widely available tools such as those

in Kali Linux3. Script kiddies are more common than hackers, but not nearly as

3https://www.kali.org/
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competent.

The third type of attacker has physical access to the lock. They will attempt attacks

on the lock mechanism and may attempt to access credentials such as fingerprints or

passcodes to open the lock. This attacker is unlikely to possess any technical skills

and will focus their attacks on the physical aspects of the lock.

The final threat actors are guests. This attacker is given legitimate access to

the system for a limited time using mechanisms such as remote entry requests or

temporary credentials, and will attempt to attack the lock at a later date. The

primary threat is privilege escalation: using their access to either get access to

another user’s credentials or extending their access past the assigned access period.

Their skills may overlap with any of the prior attacker models.

2.2.2 Attack Scenario

Multiple assumptions can be made about the attack scenario based on the known

attacks on different technologies. These include the times when the attacker has

access to the lock, their ability to perform certain attacks and the ease of the user

detecting an attack in progress.

The attackers will have access to the lock at different times which impacts the attacks

they can perform. Attackers may be near to the lock when it is first being set up,

or at a later point in time when the lock is in use. An attacker can return to the

lock at a later time to attack it; this will allow them to perform attacks undetected

if they would otherwise have been noticed by the user. A guest user can more easily

get access to the lock due to their legitimate temporary access.

Man-in-the-middle (MITM) attacks are possible on both Wi-Fi and Bluetooth. The

Bluetooth MITM attack can be performed without the user noticing, however the

Wi-Fi MITM attack will interrupt their current connection and relies on the user

attempting to connect to the malicious network manually. Passive MITM attacks

can be performed by either technical attacker, however active MITM attacks that

modify traffic are not possible for non-skilled attackers.

2.2.3 Potential Attacks

Opening the lock An attacker may attempt to open the lock through various

methods. They could learn a passcode for the lock, copy a fingerprint, clone an

RFID card, or register new credentials to gain access. They may also attempt to

unlock the system over Bluetooth or Wi-Fi, either by directly connecting to the
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device or by using the man-in-the-middle attacks possible with either technology.

Furthermore, an attacker could attempt to reset the system and control it with their

own devices. Finally, an attacker could attack the mechanical backup lock.

Privilege Escalation An attacker who is given some level of access to a system

may attempt to increase their privileges beyond their intended access. Many smart

locks provide guest access to a system, which may include time-constrained access to

the lock. The guest could attempt to extend their access or increase the operations

they can perform on the lock. They may also attempt to escalate from a guest to a

normal user or an administrator if the lock has separate access levels for users.

Denial-of-Service (DoS) An attacker may attempt to modify or remove existing

credentials for the system to prevent the user from opening the lock. Both skilled

and non-skilled attackers can use known DoS attacks on wireless technologies, such

as the de-auth attacks on Wi-Fi or Bluesmacking on Bluetooth. An attacker may be

able to reset the lock, removing the existing configuration, and take control of the

system themselves. Finally, an attacker may be able to damage or remove exposed

components from the lock to prevent their use.

Information Leakage It is unlikely for there to be many attack vectors under

which an attacker can leak information from a smart lock, however information

leakage must still be prevented. One possibility is for an attacker to obtain credentials

used by the lock if they are improperly stored, shared, or generated. This concerns

Wi-Fi passwords, API keys, account credentials, dynamic passcodes for the lock,

and guest access tokens, which the lock must process carefully.

2.3 Law and Ethics

Vulnerability analysis is a legal and ethical grey area for a variety of reasons. Hacking

into systems without authorisation is illegal around the world; in the UK, the

Computer Misuse Act 1990 [26] prohibits this. Some methods used during analysis

are also subject to laws: decompilation and reverse engineering potentially infringe

on copyright and must be used in a restricted manner. Some companies will run

bug bounty programs for researchers to report vulnerabilities, however others do not

and vulnerability disclosure in these cases requires caution.
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2.3.1 The Computer Misuse Act

In the United Kingdom, the Computer Misuse Act 1990 [26] is the primary law for

computer security offences, containing five sections on computer misuse offences.

This project must avoid violating sections 1, 2, 3, and 3A. Section 3ZA concerns

“unauthorised acts causing, or creating risk of, serious damage”, which does not

apply to this project.

Section 1 prohibits unauthorised access to computer material. Article 1 states:

A person is guilty of an offence if -

(a) he causes a computer to perform any function with intent to secure

access to any program or data held in any computer or to enable

any such access to be secured;

(b) the access he intends to secure, or to enable to be secured, is

unauthorised; and

(c) he knows at the time when he causes the computer to perform the

function that that is the case.

My dissertation will attempt to find vulnerabilities in a series of smart locks. These

vulnerabilities may be exploited in a manner that provides (or enables) access to data

on the locks, which satisfies section 1 article 1a. To keep my project compliant with

the Computer Misuse Act 1990, I must ensure that the access I gain is authorised

— for information about myself or a lock that I own, access is authorised by myself.

For any computer that is not my own, such as cloud servers or web servers, I do not

have authorised access and will not attempt to attack these systems.

Section 2 concerns unauthorised access with intent to commit or facilitate commission

of further offences. The exploits created through this project could theoretically

be used to open a lock and enable trespass, theft, or other crimes. If no offence is

committed under section 1 of the act, or if there is no intent to commit or facilitation

other offences, then this section does not apply. Through my compliance with section

1 of the act and my intent being to identify and report any vulnerabilities found,

this project will not violate section 2 of the act.

Section 3 covers denial-of-service attacks and damage to systems that prevents them

from functioning as intended. Denial-of-service attacks are part of the threat model

for this project, and must only be performed with authorisation. As with other

sections of the act, this means I must only attack my own system, and avoid

interfering with any system I do not have permission to test on.
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Section 3A concerns “making, supplying or obtaining articles for use in offence

under section 1, 3 or 3ZA”. During this project, I will create tools that are capable

of exploiting the vulnerabilities found, as “proof-of-concept” exploits. These tools

will be used solely to prove the presence and impact of vulnerabilities. They may

be shared with the system manufacturers to demonstrate my findings, but will not

be shared with any other third party.

2.3.2 Decompilation and Reverse Engineering

Reverse engineering of software allows vulnerability researchers to understand how

a system has been implemented and to identify vulnerabilities in the code. Reverse

engineering is an ethical grey area: although it is beneficial to researchers, it can

be used to learn about protected intellectual property or to infringe on copyright.

Additionally, decompilation is often used to convert compiled software into a higher-level

language for analysis, which presents its own legal and ethical challenges.

The main legislation concerning reverse engineering in the United Kingdom is the

Copyright, Designs and Patents Act 1988 [27] following an amendment by The

Copyright and Related Rights Regulations 2003 [28]. Section 50B article 1 of the

act states:

It is not an infringement of copyright for a lawful user of a copy of a

computer program expressed in a low level language—

(a) to convert it into a version expressed in a higher level language, or

(b) incidentally in the course of so converting the program, to copy

it,(that is, to “decompile” it), provided that the conditions in subsection

(2) are met.

Section 50BA article 1 states:

Observing, studying and testing of computer programs

(1) It is not an infringement of copyright for a lawful user of a copy

of a computer program to observe, study or test the functioning of

the program in order to determine the ideas and principles which

underlie any element of the program if he does so while performing

any of the acts of loading, displaying, running, transmitting or

storing the program which he is entitled to do.

This means that it is permitted to decompile and reverse engineer the program for

the purpose of testing its security, which I will do during this project.
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2.3.3 Bug Bounties and Vulnerability Disclosure

After vulnerabilities have been identified in a system, they should be reported to

the manufacturer so that they can be patched. A common approach to encourage

hackers to report these exploits is to operate a bug bounty program. This allows

issues identified to be reported to the company privately, providing a reasonable

amount of time to mitigate the vulnerability, while also rewarding those who report

these issues.

Bug bounties define a specific scope for hackers. This sets out which parts of the

system can be attacked, and which must be left alone. It is important that white-hat

hackers learn about and carefully follow the scope provided by the company to

prevent any violation of the Computer Misuse Act 1990 [26].

Not all companies offer a bug bounty program or other vulnerability disclosure

scheme. In these cases, attacking their systems is not authorised, and must be

avoided. Any vulnerabilities identified in their systems should still be reported to

prevent their malicious exploitation, however great care must be taken to research

these issues in a legal manner.

The vulnerabilities identified in this project will be reported to the manufacturers

after the project is completed. It is unlikely that the vulnerabilities will be reported

during the dissertation due to time constraints. The reports will include details on

the underlying issues, how they can be exploited, and how the vulnerabilities can be

prevented. I will continue communicating with the manufacturers after my report

to resolve any queries if required.
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Chapter 3

Methods

Vulnerability analysis methods can be split into black box and clear box analysis.

Black box analysis consists of methods where the system is treated as a black

box that receives some input, processes it in a way that cannot be observed, and

provides some output. The inputs can be either observed or manipulated by the

researcher, and the corresponding outputs can be used to infer potential attacks.

There is also a variety of useful information that can be observed by scanning the

system, and several attacks that can be performed without any understanding of

the underlying implementations. Clear box analysis involves reverse engineering the

system to gain an understanding of how the system functions, uncovering issues in

its implementation. This uses reverse engineering techniques, often requiring the

use of decompilers and related tools.

3.1 Black Box Analysis Methods

Black box testing allows some vulnerabilities in the system to be identified without

needing to understand the system. These attacks primarily consist of observing

the system and its behaviour through traffic monitoring and fuzzing, as well as

attempting to find exposed attack surfaces through enumeration. The exposed

services may be able to be attacked at this stage.

3.1.1 Network Analysis

A large amount of information can potentially be gained by analysing network traffic

over both Bluetooth and Wi-Fi. Analysing the traffic can reveal issues in the system

which can then be exploited.
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Monitoring Traffic

Network traffic can be captured using tools such as Wireshark or tcpdump on a

device capable of running them. To intercept traffic on other devices, the researcher

can either run a man-in-the-middle to observe device traffic or they can use features

of the device itself. For example, Android phones can record Bluetooth traffic

through the “HCI snoop log” available in developer mode, and record Wi-Fi traffic

by using an app which acts as a VPN for the phone.

The data captured are then analysed to identify the clients communicating, the

types of packets, and to eavesdrop on data in transit. This data may be encrypted,

however any unencrypted or improperly encrypted data can be monitored. This

gives insight into possible attacks such as replay attacks or traffic manipulation

with man-in-the-middle attacks.

Replay Attacks

In a replay attack, a message or sequence of messages is recorded and later replayed

to the device in an attempt to repeat the operation. For smart locks, this might

be a message to unlock, add a new credential, or change configuration settings.

Replay attacks are possible when there is no token of “freshness” in a message,

which would prevent the message from being reused later. If there are messages in

the recorded traffic that are identical to other messages, this indicates that a replay

attack is possible. Replay attacks may also be possible when this is not the case —

for example, if a packet is AES-CBC encrypted with a random IV each time, then

the encrypted message will change every time; however, if there is no check for a

repeated IV and the plaintext messages are identical, then messages can be reused

even though they never repeat in the monitored traffic.

Man-in-the-middle Attacks

A man-in-the-middle (MITM) attack puts an attacker between two devices that are

communicating, sending messages to each device while pretending to be the other.

The attacker can then observe all traffic and modify messages, inject new packets,

or prevent data from being delivered.

MITM attacks can be passive or active. In a passive MITM attack, the attacker

receives messages from each device and forwards them without interference. The

attacker can then eavesdrop on all messages between the devices for analysis. An

active MITM attack will interfere with the traffic being sent between the devices.
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This may be used to prevent some messages from being delivered, send a new

message while impersonating a device, or modify the data in transit.

MITM attacks are possible on both Wi-Fi and Bluetooth. An attacker can set up

an “evil twin” network for Wi-Fi that impersonates an existing network. If WPA

or WPA2 are being used, then a de-auth attack can be used to disconnect devices

from the legitimate network, potentially connecting to the malicious network when

they attempt to reconnect. This attack can be performed with the Aircrack-ng1

suite of tools or automated with scripts such as Airgeddon2. Bluetooth provides

little MITM protection and is known to be vulnerable to the attack. Tools such as

BTProxy3 can be used to MITM a Bluetooth connection, and Gattacker4 can be

used to attack BLE devices.

3.1.2 Fuzzing

One method of testing the system is to provide large amounts of modified data to the

system and observing the result, known as fuzzing. By procedurally modifying each

part of a command and then sending the packet, a researcher can identify which parts

of the packet cause the system to change its behaviour and which have no effect.

Fuzzers may cause errors when certain data is malformed, which may produce useful

behaviour or demonstrate the presence of another vulnerability which can then be

exploited further.

In the case of smart locks, a common safety mechanism is for a lock to unlock as

soon as it enters an error state (preventing anyone from being locked into a burning

building, for example). This benefits an attacker who wishes to open the lock, as

errors bypass the security mechanisms of the system. Malformed data may also

cause the lock to crash entirely, leading to a denial-of-service attack.

Although fuzzing is intended as a black box technique, a fuzzer can benefit from

clear box analysis. For example, clear box analysis can reveal the structure of

custom packets, which provides information about the intended purpose of fields

and their expected values. Furthermore, if clear box analysis reveals data such as

encryption keys, then the results from each fuzzed packet can be decrypted to reveal

further information about the system’s behaviour in response to the modifications.

1https://www.aircrack-ng.org/
2https://github.com/v1s1t0r1sh3r3/airgeddon
3https://github.com/conorpp/btproxy
4https://github.com/securing/gattacker
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3.1.3 Service Enumeration

Enumeration over the Internet

Internet-connected devices expose services on specified ports to allow other devices

to communicate with them. Network scanning tools such as Nmap5 can be used

to identify open ports using a wide range of scanning methods, often identifying

the services on each port and potentially discovering the version of the service.

These scans indicate services that are running vulnerable versions or which may be

exploitable by an attacker.

Enumeration over BLE

BLE devices advertise services using Generic ATTribute (GATT) profiles. These

services can have multiple characteristics, each accessed at a specified handle with a

public UID. Some of these characteristics are static values such as the manufacturer

name and model number which can give some insight into the device. There are also

a range of standardised services that can be identified, and which may have known

vulnerabilities that an attacker can exploit. There are a range of BLE enumeration

tools, including Bettercap6 and GATTTool (from the BlueZ7 suite).

3.1.4 RFID Hacking

RFID smart cards can be attacked without any reverse engineering of the system. I

will be using the Iceman fork of the Proxmark38 to attack the smart cards, and the

Chameleon Mini9 to clone the cards.

RFID cards can be attacked in four stages. First, the type of card is identified, as

well as additional information such as the type of PRNG to indicate the attacks

possible on the card. Then, any default keys can be identified using a dictionary

attack. Known attacks such as the nested attack are then used to crack any unknown

keys. Finally, the data on the card is dumped and used to clone the smart card.

An alternative approach is to use the “autopwn” command to automate the entire

process. This makes RFID hacking accessible to script kiddies as well as experienced

hackers.

5https://nmap.org/
6https://www.bettercap.org/
7http://www.bluez.org/
8https://github.com/RfidResearchGroup/proxmark3
9https://github.com/RfidResearchGroup/ChameleonMini
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3.2 Clear box analysis methods

Clear box (or “white box”) analysis involves reverse engineering a system to understand

how it functions. By understanding the protocols involved, vulnerabilities in the

design and implementation can be identified and used to attack the system. While

binary code or other compiled representations of programs can be reverse engineered

directly, it is beneficial to “decompile” the program into a higher level language. The

result is much closer to the source code — in the best case scenario, everything except

variable names can be reconstructed. This allows for the high level functionality of

the system to be understood, and some potential low level vulnerabilities to be

identified. Both decompilation and reverse engineering are a legal and ethical grey

area, which is discussed in detail in Section 2.3.2.

3.2.1 Decompilation

The objective of decompilation is to take code that has been compiled into a

low-level representation (such as binary, Java bytecode, or an Android APK) and

convert it back into a higher level representation. Binary files can be disassembled

to obtain assembly code, which can then be analysed to reconstruct high-level

functionality. Bytecode and APKs can be similarly analysed, however they will

be reconstructed into object-oriented code containing classes, modules, and libraries

in a large collection of files. The resulting high-level code is far easier to reverse

engineer than the low-level representation.

Tools

For binary decompilation, there are two main tools: Ghidra10 and IDA Pro11. Ghidra

is a free, open-source tool created by the NSA which was released to the public in

2019. IDA Pro is a paid decompiler created by Hex Rays that advertises itself for

malware analysis and security research, which also provides an evaluation version

with limited functionality. Both of these decompilers provide a full suite of reverse

engineering tools in addition to a decompiler, however Ghidra is free while IDA Pro

requires a license for the full version. I therefore used Ghidra for this project.

There are also multiple tools for decompiling Android APKs. Decompilers such

as dex2jar12 and APKTool13 can be used from the command line, while websites

10https://ghidra-sre.org/
11https://www.hex-rays.com/ida-pro/
12https://github.com/pxb1988/dex2jar
13https://ibotpeaches.github.io/Apktool/
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such as APK decompilers14 automate the process for the user. These compilers

have varying decompilation quality, with some systems failing to decompile certain

functions completely. I combined the output of multiple decompilers to get a

complete decompilation of the applications I reverse engineered.

Improving Decompilation Quality

Decompilation is an imperfect process — while class and function names may be

persevered if debugging symbols are included, it is more common for the decompilation

to result in source code with no useful names. Furthermore, data types are unlikely

to be reconstructed correctly, as there are many cases where a compiled struct, array,

or list of variables cannot be distinguished from other types. The code may also

have been obfuscated in an attempt to prevent reverse engineering, which will make

the resulting code much harder to interpret.

Some decompilers and IDEs will contain additional reverse engineering tools to

improve the quality of the decompilation manually. These tools allow automatic

refactoring, including changing variable names or types and creating custom data

types. Additionally, there are tools and plugins which can be used to help identify

known parts of binaries automatically. For example, the FindCrypt15 plugin for

Ghidra will scan a compiled binary and automatically identify cryptographic constants,

allowing rapid identification of cryptographic functions in the decompiled binary.

Furthermore, de-obfuscation tools such as DeGuard16 and Deoptfuscator17 can attempt

to undo certain obfuscation techniques for Android applications, making their source

code easier to interpret.

3.2.2 Reverse Engineering

Reverse engineering is not a well-defined process; instead, it is largely up to the

researcher to identify how the system functions from the reconstructed source code.

It is useful to begin by identifying core functionality that needs to be implemented

securely, which will largely depend on the threat model. It is also useful to explore

libraries and their usage, especially if there are custom libraries in use for security

features such as cryptography.

The threat model in this project indicates the parts of the source code that could lead

14https://www.apkdecompilers.com/
15https://github.com/d3v1l401/FindCrypt-Ghidra
16http://apk-deguard.com/
17https://github.com/Gyoonus/deoptfuscator
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to exploits, and are therefore important functions to reverse engineer. An attacker

may be able to unlock the lock if the unlock function is poorly designed, or if the

credential management is not secure. Privilege escalation prevention also depends

on credential management, in addition to the handling of different user levels such

as guests and administrators. Poor error handling could lead to denial-of-service

attacks, as well as anything which can block other devices that attempt to interact

with the lock. Finally, any functionality which stores, shares, or generates secret

information can be reverse-engineered to identify potential information leaks.

While there may be multiple types of library that are interesting to reverse engineer,

one of the most likely places to find implementation errors are cryptography libraries

and their usage. Although many companies advertise “state-of-the-art military-grade

encryption”, this does not imply their system is secure — it ignores many parts of

their security and there are many ways that their military-grade encryption can

be misused. Important things to identify and examine include key exchange, the

encryption function used and its parameters, generation of initialisation vectors and

nonces, message authentication and signing algorithms, and their (pseudo) random

number generators.
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Chapter 4

Vulnerabilities, Exploits, and

Countermeasures

In this chapter, I will discuss the vulnerabilities in each component of both systems

analysed, methods for exploiting these design flaws, and the countermeasures that

the lock designers can implement to mitigate the vulnerabilities. Section 4.1 explores

the RFID smart card systems used, Section 4.2 discusses physical security components

including the backup locks and fingerprint sensors, Section 4.3 covers an attack on

the Pineworld lock’s Wi-Fi setup, and Section 4.4 details multiple attacks on the

Ruveno/Sciener lock’s Bluetooth Low-Energy (BLE) protocol using the TTLock

app.

4.1 RFID

RFID security depends on two factors: the technology in use and the card configuration

for the system. I have attacked both smart locks through their choice of the

vulnerable Mifare Classic standard, and one has a configuration that is vulnerable

to a separate attack.

4.1.1 Pineworld

The Pineworld smart cards are configured to use the access key 0xFFFFFFFFFFFF

for all sectors except sector 15, which uses 0x000000000000 as the B key and a

random unknown value from the lock as the A key. Sector 15 can be read with

the all-0 key, which contains a copy of the 4 byte UID and 12 more unknown bytes.

Experimenting with the data on the card shows that the lock ignores these unknown
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bytes and instead only reads the copy of the UID to check that it is the same as the

card’s UID. The lock reads this sector with the secret key, preventing an attacker

from cloning the card based on the UID alone.

The smart lock uses Mifare Classic with a weak PRNG. This means that it is

vulnerable to the nested attack, and the unknown access key (sector 15’s A key)

can be cracked rapidly with access to the smart card. The card can then be cloned

and used to open the lock.

4.1.2 Ruveno

The Ruveno lock’s smart cards are also using Mifare Classic with a weak PRNG.

While this would make it vulnerable to the nested attack, this is not necessary: the

card is blank apart from sector 0, which implies that the lock is only testing for a

known UID. Further testing confirms that the 4-byte UID is the only part of the

card which needs to be cloned to open the lock, which is advertised by the smart

card. This configuration allows the card to be cloned after having only instantaneous

access to the card.

4.1.3 Countermeasures

Both smart card systems need to be updated to a more secure version of Mifare

such as DESFire EV2 or EV3. Additionally, they should be using a more secure

configuration, such as having a shared secret between the lock and smart cards

stored in a sector that is protected by two secret access keys, rather than having an

easily guessable key for users to read the data from the card.

4.2 Physical Security

There are several physical elements to the locks that need to be secured. In this

section, I discuss the security of the mechanical backup locks employed by both

systems, as well as attacks on the fingerprint sensors, including a design flaw in the

Pineworld lock.

There already exists one known physical security flaw in the Pineworld lock, identified

by PenTestPartners [1]. In their attack, they note that the weak material choice

allows an attacker to drill into the side of the lock and manually engage the unlocking

mechanism. This can be fixed by using a stronger material for the lock body.
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(a) Equipment for a foiling attack
(b) My impressioned foil key compared to
the provided key

Figure 4.1: Foil impressioning attack demonstration

4.2.1 Backup Locks

The Pineworld smart lock’s mechanical lock is relatively secure. It is a slider lock

with 18 sliders, which is far more than normal — the most common use of slider

locks is for cars, which usually have between 6 and 10 sliders. Although these sliders

have few possible positions each, it is still a difficult lock to open.

The Ruveno smart lock has several questionable choices with its backup lock. It

uses a dimple lock which can be picked or raked open, and it is also vulnerable to

the “foiling” attack — a form of impressioning which allows an attacker to make a

key from a piece of tinfoil and a cheap foiling kit using only the lock, as shown in

figure 4.1. The key appears to be for a 6-pin dimple lock, however disassembling

the lock reveals that it is only a 4-pin lock (shown in figure 4.2), which makes it far

easier to attack. The small lock is forced due to the restrictive choice to have the

mechanical lock on the front of the lock, limiting the depth of the lock. A better

design would use a higher security lock with more pins in a position that allows for

a larger core, such as on the bottom of the lock. Alternatively, using a cross lock

would allow for more pins to be added without moving the lock.

Figure 4.2: My disassembly of the Ruveno mechanical lock
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4.2.2 Fingerprint readers

A known attack on fingerprint readers is the ability to clone a fingerprint and to use

the clone to unlock the lock. Researchers at Talos [29] achieved an 80% success rate

with fake fingerprints, although the process is described as “difficult and tedious

work”. Fingerprint cloning is possible if there are any “latent” fingerprints on the

lock, which can be more easily pulled off of certain surfaces such as glass. For both

locks, I have successfully obtained a fingerprint from both the fingerprint sensor

itself and from the passcode entry which could be used to clone the fingerprint, as

shown in figure 4.3.

(a) From Ruveno
fingerprint sensor

(b) From Pineworld
fingerprint sensor

(c) From Ruveno
passcode entry

(d) From Pineworld
passcode entry

Figure 4.3: Fingerprints obtained from the sensor and passcode entry of each lock

An additional security issue specific to the Pineworld smart lock is the ability to

access the fingerprint sensor hardware. The sensor is placed inside of the lock handle

which can be disassembled from the outside using two screws on the back of the

handle with a right-angled screwdriver, shown in figure 4.4a. Accessing the sensor

allows for a variety of denial-of-service attacks on the sensor, including cutting the

ribbon cable (figure 4.4c) and removing the circuit board or the sensor (figure 4.4d).

While it is convenient to have the sensor on the handle for usability, it would be

more secure to place it on the lock body so that it cannot be attacked once the lock

is installed.

4.3 Wi-Fi Attacks (Pineworld / Tuya Smart)

The Pineworld lock, which uses the Tuya Smart app, is controlled over Wi-Fi.

Connecting the lock to a Wi-Fi network requires a method of passing the Wi-Fi

credentials to the lock. In this scenario, the primary concern is information leakage,

as the Wi-Fi password should remain secret. Once the lock is connected to Wi-Fi,

all communications are between the app and a set of cloud servers which in turn

connect back to the lock, all protected by TLS. This means that the only part of
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(a) Disassembling the handle while the lock
is installed

(b) The exposed sensor

(c) Attacking the sensor with scissors (d) Removing the fingerprint module

Figure 4.4: Attacking the exposed fingerprint sensor

their Wi-Fi system that I can attack is the setup process, as servers are out of scope.

4.3.1 Wi-Fi Setup Information Leak

The Wi-Fi setup has four steps:

• input the Wi-Fi credentials to the app

• put the lock into Wi-Fi connection mode

• start the app connection process

• the lock connects itself to the Wi-Fi network and communicates with a cloud

server

During the third stage, the phone will broadcast two series of packets repeatedly:

the first series of packets are empty UDP packets sent to IP addresses of the form

216.N.b2.b1, where N is a sequence number and b1b2 are two bytes of data; the
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second series are UDP packets broadcast to 255.255.255.255 which have a varying

number of null bytes as data. The intention appears to be for the phone to set up

a temporary direct Wi-Fi connection with the lock, which these packets can then

be broadcast over and decoded, however the packets are transmitted on whichever

network the phone is currently connected to.

As discussed in Section 2.1.3, it is possible to perform an “evil twin” attack to force

a device to connect to an impersonated network. By performing an evil twin on a

device that is setting up a smart lock, these two streams of data can be intercepted.

Decoding the data from the first stream from the format above reveals descriptive

information about the network, including the SSID (human-readable network name)

and the BSSID (MAC address). To decode the second stream, take a list of the

lengths of the null bytes, and remove any numbers under 256. Subtracting 256 from

each remaining length and then converting to ASCII reveals the network password.

To prevent this information leakage, the information should not be broadcast until

a direct connection between the two devices has been made. Alternatively, a more

secure setup mechanism such as the temporary hotspot method supported by the

app for other devices could be used.

4.4 Bluetooth Attacks (Ruveno / TTLock / Sciener)

Bluetooth is vulnerable to application-level man-in-the-middle attacks, and application

developers need to implement appropriate protections against this threat. The

TTLock app used by the Ruveno lock have used encryption for some of the data

transmitted, however this has been done improperly at several levels. The key

exchange between the lock and the app is not secure, there are a chain of design

choices leading to a replay attack, and there are several other design choices that

are not exploitable by themselves but could lead to attacks in the future.

All Bluetooth attacks found depend on a MITM attack.

4.4.1 Improper AES Key Exchange

When the lock is first connected to the lock, an AES key is generated by the lock

and shared with the application after receiving the GET AES KEY message, which

is used to encrypt all further communications. Both the get message and the reply

encrypt data using the hardcoded AES key

0 x987623e8a923a1bb3d9e7d0378124588
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which is found as a byte array in the ble.Command class of the Android app. An

attacker that uses a MITM attack during the setup process will record these two

messages (as well as the rest of the setup process, which includes other sensitive

information) and can decrypt the messages using the default key found.

After decrypting the AES key, all future communications can be decrypted. An

attacker can immediately use this to decrypt the setup process, which includes

information such as the admin key and unlock key used for the challenge-response

protocol and the admin passcode (a backup keypad passcode which is hidden from

the user unless they extensively explore the lock settings menu). Future messages

can also be decrypted, revealing new passcodes added, the UID of new smart cards

(which is sufficient to clone the card for this lock; see Section 4.1.2) and all other

messages sent. An attacker can also encrypt their own messages, allowing them to

interact with the lock as desired after sufficient reverse-engineering of the protocol.

As a proof-of-concept, I created a script for an attacker to unlock the lock when

desired.

To prevent this attack, a secure key exchange protocol should be used; ideally, this

would be a standard variant of Diffie-Hellman key exchange which is known to be

secure; elliptic curve Diffie-Hellman would be ideal as it uses much smaller values

than regular Diffie-Hellman. A NIST standard curve should be used to prevent

attacks on weak elliptic curves.

4.4.2 Replay Attack

The second discovered attack on the TTLock BLE protocol is a variant of a replay

attack. This depends on a MITM attack which records at least one challenge-response

exchange before an authenticated command; this is sent before every function except

LOCK, UNLOCK, TIME CALIBRATE, and GET LOCK TIME. A series of design

choices allow the response to be replayed and an authenticated command to be

performed, explored in turn below.

Static IV for AES-CBC

The encrypted part of the packets is encrypted under AES-128-CBC. CBC mode

requires an initialisation vector (IV), which should never be reused. However, in

this protocol the IV is the same as the encryption key, and therefore it is static.

Re-using an IV means that the same plaintext will always encrypt to the same

ciphertext, which reveals when a message uses the same value. In the protocol
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discussed below, this allows an eavesdropper to identify that the CHECK ADMIN

messages are always the same and therefore can be replayed.

Absence of replay protections

To prevent replay attacks, messages should include some data which makes the

message invalid in the future. One possible approach is the use of a “nonce”, or

number only used once, which can be recorded by the lock. Any message which

reuses a nonce can then be ignored, preventing the replay attack.

Alternatively, a timestamp can be included in the message so that it cannot be reused

in the future. This approach is used for LOCK and UNLOCK, which prevents this

attack — however, no other message includes this data.

A third possible approach is to use a challenge-response protocol which cannot be

replayed due to constantly changing challenges. TTLock also implements this, but

in an insecure manner which I attack below.

Weak Challenge-Response Protocol

The TTLock challenge-response protocol consists of four messages before a command

can be sent:

App → Lock: CHECK ADMIN (admin key)

Lock → App: RESPONSE to CHECK ADMIN (success, 2 byte challenge)

App → Lock: CHECK RANDOM (sum(challenge, 4 byte unlock key))

Lock → App: RESPONSE to CHECK RANDOM (success)

App → Lock: COMMAND (data)

The first message contains the admin key exchange during setup, which is a constant

value that can be replayed. The lock then replies with a challenge, which is only

2 bytes long. This means there are 216 = 65536 possible challenges, which is far

too small to be secure. This means that an attacker can mass-replay the CHECK

ADMIN message until a challenge is reused which the attacker already knows the

response for.

The Attack

An attacker must run a passive MITM attack to record at least one full challenge-response

exchange between the application and the smart lock. At a later time, the attacker

can begin mass-replaying the recorded CHECK ADMIN message, waiting for a

response that they have recorded. The corresponding CHECK RANDOM message
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is then replayed, completing the challenge-response exchange. The attacker can then

send one command which I have successfully used to add a new fingerprint or to

reset the lock.

An attacker can try to get a repeated response from the lock 10 times per second,

and on average will achieve 9 attempts per second (due to periodically having

to re-connect to the lock) giving 32 400 attempts per hour. This attack can be

performed with just one recorded exchange, however if an attacker records a series

of exchanges they can shorten the expected time to perform this attack.

Figure 4.5 shows the probability of successfully executing this attack after a given

period of time for varying numbers of recorded exchanges, computed as

1−
(

65536− n

65536

)9t

where n is the number of recorded exchanges and t is elapsed time in seconds.

Figure 4.6 shows the amount of time required for test runs of this attack. Using

a single recorded exchange is significantly slower than multiple exchanges, however

having as few as 3 recorded exchanges provide relatively rapid successes. The attack

can succeed rapidly without extended recording: the fastest observed success was 7

seconds, after requesting just 36 challenges.

Figure 4.5: Probability of succeeding with the replay attack over time for different
quantities of recorded challenge-response exchanges
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Figure 4.6: Times taken to run the replay attack for different quantities of
challenge-response exchanges

Payloads

Many commands can be replayed after successfully performing this attack, provided

they have been previously recorded. For example, the FP MANAGE and IC MANAGE

messages for adding, modifying, or clearing stored fingerprints and RFID (“IC”)

cards can be replayed to repeat the operation, without the app knowing the new

credentials. This allows an attacker to add a backdoor to the lock as credentials

added in this manner do not show in the app until they are used to open the lock.

One important exception to this is the RESET command. RESET requires no data

to be encrypted and sent with the message, and therefore an attacker can forge

the RESET message without recording it using a MITM attack. A MITM is still

required to perform the replay attack preceding the RESET message. Resetting

the lock prevents the original user from being able to use the lock through the

app, and a dedicated attacker can escalate this denial-of-service into a complete

system lockout. The application provides a setting to disable the hard reset button

(intended to prevent hotel guests from breaking the locks), and by disassembling

the lock an attacker can unscrew the component which engages the backup lock,

completely preventing usage by the owner and giving full control to the attacker.

Potential Solutions

This attack can be prevented by implementing proper replay protections against

an attacker. The most appropriate method would be to add a timestamp to every
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message: this mechanism is already in place for unlock messages and prevents this

attack. Furthermore, the challenge-response protocol should be improved to avoid

challenge re-use. A simple extension to the existing system is to make the challenges

4 bytes long instead of 2; the response already returns four bytes and the lock appears

to use a secure random number generator, so this should be a simple change to make.

This would multiple the expected number of challenges before a collision by a factor

of 65536, making this attack infeasible without extended access to the lock.

4.4.3 Command Replacement Attack

The third discovered attack allows an attacker to replace a user command with their

own. If an attacker is running an active BLE MITM attack, they can wait for a

challenge-response exchange and then replace the user’s command with a different

payload, as discussed in Section 4.4.2. This is possible because the challenge-response

exchange is separate from the command it authenticates, with a few exceptions.

One possible mitigation for this exploit would be to include the response to the

lock’s challenge in the command data, rather than sending a separate message. This

is already used for the UNLOCK command, although not for any other command.

Combined with the suggested replay preventions for the previous attack, an improved

challenge-response protocol would be:

App → Lock: CHECK ADMIN (admin key, timestamp)

Lock → App: RESPONSE to CHECK ADMIN (success, timestamp, challenge)

App → Lock: COMMAND (sum(challenge, unlock key), timestamp, data)

4.4.4 Additional Design Weaknesses

There are several other weaknesses in the TTLock BLE protocol that have not lead

to full exploits, however they are still potential security issues. I will briefly discuss

each of them and their potential impact in turn.

Partial Encryption

The packets sent between the application and the lock contain many fields, however

only the data section is encrypted. This means that the other information is public

and can be modified by an attacker if desired. For example, the protocol version

is sent unencrypted, which reveals out-of-date lock firmware, and could lead to

downgrade attacks if modified by an attacker. Furthermore, the command sent is
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exposed, allowing attackers to observe the operations being performed. Finally, the

length of the encrypted data can be modified, which may be used to exploit buffer

overflow vulnerabilities on some devices.

This can be fixed by encrypting the entire packet before transmission, instead of

only encrypting one section. This will have a negligible impact on the performance

of the system but provide increased security.

Absence of Message Authentication/Integrity Checking

The messages exchanged do not include a message authentication check. This means

that an attacker can modify messages in transit, or forge their own messages, without

any way for devices to know these messages are not legitimate. This can be improved

by changing to an authenticated encryption mode such as GCM, or by adding a MAC

to each message.
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Chapter 5

Discussion

There are a variety of insights that can be made about smart lock security and

lock design from the issues identified in this project. Both smart locks use outdated

and vulnerable technologies as components of their system, despite the availability of

more secure alternatives. Choosing technologies with different amounts of underlying

security impacts the attack surface and the number of vulnerabilities found, illustrated

by the difference in Wi-Fi and Bluetooth exploitation. There are several areas that

appear to be difficult for developers to implement securely: exploits were found in

the setup processes of both systems, and the BLE lock’s attempt at using proper

cryptography led to many different issues in the system. Furthermore, there is a

lot of inconsistency in how different commands are secured, despite being part of

the same protocol. Finally, developers appear to have difficulty implementing both

the physical and cybersecurity elements properly, instead creating systems that are

more secure in one element than the other.

5.1 Outdated Standards

System developers continue to use some outdated standards for components of their

system which are known to have vulnerabilities. In this project, this primarily

concerns the choice of both smart lock manufacturers to use Mifare Classic smart

cards, despite the system being exploitable since 2008. The use of vulnerable

standards is a major security issue as one simple choice can allow an attacker to

bypass the rest of the security mechanisms implemented in the product.

From a security economics perspective, the use of outdated standards is easier to

understand. The old version of the system has been around for longer, and therefore
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benefits from network effects: there are many existing users, and a large amount of

both required hardware for the systems and software for developers to integrate the

technologies into their own systems. This makes the system far more likely to be

chosen by developers, which in turn leads to a larger user base and the continued

widespread use of the system. Furthermore, if a company is already using a certain

standard, it is much easier for them to continue with that standard by re-using

software they have written than to switch their product over to the new version.

Given the range of incentives to use vulnerable standards, there need to be economic

drives for system designers to use more secure standards. For example, replacing

the smart cards with transition standards such as Mifare Plus allows users and

developers to continue using their existing software while implementing the more

secure system, and once it is ready they can easily upgrade their software and

transition the smart cards to the higher security level.

5.2 Underlying Security

It is much harder for attackers to find vulnerabilities in systems when the underlying

technologies are secure. The higher level of protection in Wi-Fi — due to both

link layer WPA encryption and transport layer security — lead to only a single

Wi-Fi exploit in this project, which is only usable in a niche scenario and does

not compromise the system. Technologies with less underlying security such as

Bluetooth, which provides no end-to-end security and is vulnerable to man-in-the-middle

attacks, are inherently easier to attack. This lead to a wide range of issues being

discovered in the Bluetooth lock tested in this project. This implies that developers

should attempt to rely on more secure technologies to improve the security of their

system as a whole.

5.3 Setup

One common problem in both systems is the setup process. The Pineworld lock’s

Wi-Fi setup process leaks the network password to an attacker with an evil twin

network, and the Ruveno lock’s key exchange during the application’s setup is trivial

for a man-in-the-middle to attack. This first-time setup appears to consistently be

a difficult process to perform securely, and therefore greater care should be given

when designing the protocol.

There are various reasons for setup being a difficult problem. There are some
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processes for which there is no existing standard (secure) method: for example,

sharing credentials with a device that is not on the same network is difficult to

achieve, but required for the setup of all Wi-Fi-based IoT devices.

5.4 Cryptography

Cryptography is a broad, complex subject that is difficult to learn in its entirety. It is

unreasonable to expect all developers to have a full understanding of cryptography,

and therefore it is widely recommended for developers to avoid creating their own

cryptographic functions. For this reason, there are well-defined standards for various

cryptographic primitives and their parameters, as well as dedicated cryptography

libraries to ensure that developers do not introduce additional vulnerabilities in their

own implementations.

Even when using standard algorithms and existing implementations, there are still

issues that can arise from the misuse of cryptographic primitives. For example, many

IoT developers will use AES so that they can claim “military-grade encryption”,

however developers must also select a block cipher mode and generate any required

parameters such as initialisation vectors and nonces. Many block cipher modes have

known vulnerabilities if improperly used, and other issues may arise from incorrect

generation of IVs and nonces.

We see developers attempting to implement their own cryptographic solutions or

shortcutting the standards which are known to be secure. In this project, this

is most prominent with the TTLock BLE protocol: they have poorly re-invented

key exchange, introduced vulnerabilities through improper use of AES, created an

insecure challenge-response protocol which is exploited in two different attacks,

and abandoned message authentication checks. While several of their misuses of

cryptography can be explained as reducing the amount of data sent and the complexity

of their code, the vulnerabilities that arise from these design choices are problematic

and arguably not worth the benefits.

5.5 Consistency

In the TTLock BLE protocol, there is a lot of inconsistency in the security measures

used for different commands. Notably, there appears to have been a larger focus on

securing the UNLOCK function — it includes the response to CHECK ADMIN in

the message data rather than using a separate message, preventing the command
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replacement attack; it also includes the current timestamp in each message, preventing

replay attacks. Despite the better security for the UNLOCK command, the same

preventions are seen in very few other commands, making them vulnerable to the

attacks presented in Section 4.4.

This disparity reflects the priorities of the developers: the most obvious attack on

the lock is the possibility of someone unlocking it, so that command needs to be as

secure as they can make it. They do not see the need for other commands to receive

the same level of security even though they can also lead to the same compromise,

which then leaves the commands vulnerable.

5.6 Balancing Physical and Cyber Security

Smart locks need to implement effective physical security as well as cyber security.

Traditionally, companies tend to perform better with one area than the other:

companies either understand physical security from their existing products and try

to make their products “smart”, or IoT developers want to add smart locks to their

suite of existing smart devices. In the two systems analysed, there are both physical

and cyber security issues with both systems, and in each case the vulnerabilities are

mostly with one of these two areas: the Pineworld lock has several physical security

issues and few technical exploits, while the Ruveno lock has very few physical issues

but bountiful cyber security problems. This implies that the trend continues, even

with “state-of-the-art” systems.
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Chapter 6

Summary and Conclusions

In this project I have analysed a pair of smart locks, with one communicating over

Wi-Fi and the other using Bluetooth. I have found attacks against multiple attack

surfaces on both locks, including smart card cloning, weak backup locks, multiple

fingerprint sensor attacks, an information leak based on Wi-Fi setup, and a wide

range of protocol vulnerabilities in the TTLock BLE communications. Many of

the technical vulnerabilities found are more complex, less powerful, and harder to

exploit than the abundance of simple attacks found by previous smart lock security

analyses; however, there are still some very powerful attacks on the smart locks, and

several attacks which are trivial to exploit.

The majority of the technical exploits found are in the TTLock BLE communications;

specifically, their use of cryptography. Standard key exchange algorithms have been

replaced with their own method, which is trivial to attack. Their challenge-response

protocol is also vulnerable to two separate attacks, which make use of a wide variety

of design issues to create separate attacks. There are other design issues present

that cannot be exploited by themselves, however they are indicative of possible

vulnerabilities that I have not been able to exploit in this dissertation.

There are several areas that are hotspots for vulnerabilities. Initial setup procedures

in both systems have been attacked, suggesting that this is a difficult process to

perform securely. Both locks used insecure technologies as components of their

system, allowing attackers to bypass the other more secure areas of the system. On

the Bluetooth lock, there are a large number of issues in their cryptography which

lead to a variety of attacks.

There are several broader issues exposed by this project. The technologies used

for the smart locks provide varying levels of security, which prevent certain attack
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surfaces being exposed to hackers. The lack of security provided by BLE allows

attackers to break the insecure application-level protocol between devices, whereas

the majority of traffic on the Wi-Fi lock uses TLS and cannot be attacked in a

similar way. Consistency throughout an application is also an issue, with some

commands on the BLE lock already implementing suggested defences against the

attacks presented in Section 4.4 while others are vulnerable to them.

One continuing problem is the balance between physical security and cybersecurity.

System designers tend to understand and implement one of the two areas far better

than the other, and this trend continues with the two locks analysed. One system has

three physical design flaws and two technical while the other only has two physical

weaknesses and a wide range of technical vulnerabilities.

In summary, I have shown that even state-of-the-art smart lock systems are not

perfectly secure. There are a wide range of problems that attackers can take

advantage of for assorted malicious purposes, extending beyond simply unlocking

the lock to gain access. Furthermore, there are several underlying issues that

make the problem of implementing a secure system more difficult, ranging from

the inherent security of the technologies in use to the difficulty of implementing

certain subsystems securely. Although these systems are more secure than their

predecessors, there is still work to be done in multiple aspects to make these systems

more secure.
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