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Chapter 1

Intuitions

1.1 Why intuitions, not introductions

In this first chapter, usually we should call it introduction. However I think a better word should
be intuitions. To understand a topic like an expert, we need to gain intuitions so even for the
newcomers they can understand complicated stuff very easily.

Together with basic concepts, we should explain them with simple intuitions so after ten years
we may forget the concepts but we remember the feelings. Mathematicians like to write things
formally, but we want to explain them intuitively without losing formality.

We should not waste too much time on presenting rigorous proofs most of the time (if we
have time we can type them in to complete the book). Instead, we should read the original
books/references and then present the intuitions/understandings here, for those are the most im-
portant things.

The main references for this book are [2], [3] and also Part 1B/3 courses at University of
Cambridge.

1.2 Necessary concepts

Basic concepts explain why we are interested in such a topic.

1.2.1 Markov chains

We have a countable set of states. It is possible to stay at any of them and in each step we have
a certain probability to jump from one state to another. Hence we need a set Ω and a transition
matrix P to define a Markov chain.

1.2.2 Irreducibility

This concept means if we can always transit from one state to another state in the state space. If
we can then the chain is irreducible, otherwise it is reducible. Intuitively if some states are not
reachable from a state, then we can group those states and maybe compress them into one state.
This is where the name comes from.
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8 CHAPTER 1. INTUITIONS

1.2.3 Periodicity

Remember the odd-even chain. That is why we are interested in the periodicity and also if a chain
is periodic then we cannot talk about its mixing time easily.

1.2.4 Stationary/equilibrium distribution/in variant measure

Formally it is a probability measure on the state space Ω. Usually we call it π. This is the
most important property of a Markov chain. It means that whenever you look at the state, the
probability that it is on a certain state remains unchanged.

Reversibility This a property of π. It means π(x)P (x, y) = π(y)P (y, x). Intuitively, this means
that the edge cost you go from x to y is the same as the other way around.

1.2.5 Distances

To measure how far a probability distribution is from a stationary distribution, we use different
measures.

Total variance/l1 This is a state-wise distance. For each state, there is a difference between µ
and ν. We sum them up.

1.3 Mixing times

Each time we do a transition it is equivalent to multiply a P to the current distribution. So in the
end we are checking all rows in P t. If the chain mixes, then all rows are the same.

It is essentially a cutoff phenomenon, which says that convergence to the equilibrium/stationary
distribution usually happens abruptly asymptotically as n → ∞. The time this convergence hap-
pens is called mixing times.

In other words, the distance between your distribution and the stationary distribution reduces
to a very small value which is close to zero.

1.3.1 Methods to stuty mixing times

Probabilistic techniques: coupling, martingales, evolving sets. Spectral methods: eigenvalues and
eigenfunctions, functional and geometric inequalities like Cheeger’s inequality, Poincare and Nash
inequalities. Representation theory. Statistical methods: Glauber dynamics for the Ising model.



Chapter 2

Formal Definitions and Basic
Theorems

Mathematicians like formal things. So we need a chapter to present formal definitions of everything
in this topic. In the previous chapter, we have seen the intuitions of them. Now we want to formally
define them.

There is some “common knowledge” in every topic, which every expert should be familiar with
but is not sufficient to form an entire chapter. We collect them all here to make a decent chapter.

(For now I do not have time to type all those things because I do not learn much from doing
so. Let’s assume one day in the future I can finish those things to make this book complete.)

Definition 2.1.
T (x) = {t : P t(x, x) > 0}

This is the set of return times. If the greatest common divisor of them is 1, then the chain is
aperiodic.

Definition 2.2. The total variation distance between µ and ν is

‖µ− ν‖TV =
∑
A⊆Ω

|µ(A)− ν(A)|

Also

‖µ− ν‖TV =
1

2

∑
s∈Ω

|µ(s)− ν(s)|

Definition 2.3. Let P be an irreducible, aperiodic transition matrix on a finite state space Ω, and
let π denote its stationary distribution. Define the distance function for all t = 0, 1, ... by:

d(t) = max
x∈Ω

∥∥P t(x, ·)− π(·)
∥∥
TV

(2.1)

d(t) is the total variation distance between the distribution of the Markov chain at time t and
its equilibrium, started from the worst possible starting point x, so that if d(t) is small we know
that the chain is close to equilibrium no matter what was its starting point. The ergodic theorem
implies that d(t)→ 0 as t→∞. In fact, elementary linear algebra tells us that, asymptotically as
t→∞ (this can be found in [2]), the distance d(t) decays exponentially fast, with a rate of decay
control by the spectral gap of the chain.
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10 CHAPTER 2. FORMAL DEFINITIONS AND BASIC THEOREMS

Proposition 2.4. d(t) is non-increasing with time.

Proof. ∥∥P t+1(x, ·)− π(·)
∥∥
TV

=
1

2

∑
i∈Ω

∣∣P t+1(x, i)− π(i)
∣∣

=
1

2

∑
i∈Ω

∣∣∣∣∣∣
∑
j∈Ω

(
P t(x, j)P (j, i)− π(j)P (j, i)

)∣∣∣∣∣∣
=

1

2

∑
i∈Ω

∣∣∣∣∣∣
∑
j∈Ω

(
P t(x, j)− π(j)

)
P (j, i)

∣∣∣∣∣∣
=

1

2

∣∣∣∣∣∣
∑
i∈Ω

∑
j∈Ω

(
P t(x, j)− π(j)

)
P (j, i)

∣∣∣∣∣∣
=

1

2

∣∣∣∣∣∣
∑
j∈Ω

∑
i∈Ω

(
P t(x, j)− π(j)

)
P (j, i)

∣∣∣∣∣∣
=

1

2

∣∣∣∣∣∣
∑
j∈Ω

(
P t(x, j)− π(j)

)∣∣∣∣∣∣
≤ 1

2

∑
j∈Ω

∣∣P t(x, j)− π(j)
∣∣

=
∥∥P t(x, ·)− π(·)

∥∥
TV

The inequality comes from |a+ b| ≤ |a|+ |b|. To see this, our a or b is any P t(x, j)− π(j) since
they might be positive or negative.

Proposition 2.5. Let ρ be defined by:

ρ(t) = max
x,y∈Ω

∥∥P t(x, ·)− P t(y, ·)∥∥
TV

Then
d(t) ≤ ρ(t) ≤ 2d(t)

Proof. Triangle inequality.

d(t) is the distance between P t and π. ρ(t) is the distance between P t(x, ·) and P t(y, ·).
Essentially they are different measures of the distances.

Theorem 2.6 (The Convergence Theorem). P is irreducible and aperiodic, with stationary distri-
bution π. There exists a constant α ∈ (0, 1) and C > 0 such that

max
x∈Ω

∥∥P t(x, ·)− π∥∥
TV
≤ Cαt

Proof. It is irreducible and aperiodic. This guarantees that there exists r such that P r has strictly
positive entries.

A state is said to be recurrent if Px [τ+
x <∞] = 1 and transient if it is less than 1. If

Ex [τ+
x <∞], it is said to be positive recurrent. If Ex [τ+

x =∞] then it is null recurrent.
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Theorem 2.7 (The ergodic theorem). If P is irreducible, aperiodic and positive recurrent, then for
all starting distribution µ on S, then the Markov chain X started from µ converges to the unique
stationary distribution π in the long run.

Remark 2.8. The stationary probability can be not unique, the ergodic theorem states when it is
unique.

Definition 2.9 (Expectation and Variance). Let f : Ω → R be any real-valued function. Define
the expectation

Eπ [f ] =
∑
x

π(x)f(x)

and the variance

Varπ[f ] =
∑
x

π(x)(f(x)− Eπ [f ])2

=
∑
x

π(x)f(x)2 − (Eπ [f ])2

=
∑
x

π(x)f(x)2
∑
y

π(y)−
∑
x

π(x)f(x)
∑
y

π(y)f(y)

=
1

2

∑
x,y

π(x)π(y)(f(x)− f(y))2

and the entropy

Entπ[f ] = Eπ
[
f log

f

Eπ [f ]

]
= Eπ [f log f − f logEπ [f ]]

2.1 Examples

2.1.1 Example: Simple random walk on a graph

Consider a simple random walk on a graph G = (V,E). For any vertex y ∈ V∑
x∈V

deg(x)P (x, y) =
∑
x∼y

deg(x)

deg(x)
= deg(y)

This satisfies the definition of the stationary distribution.
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Chapter 3

Coupling Methods

The technique of coupling is one of the most powerful probabilistic tools to obtain quantitative
estimates about mixing times.

The very intuition about coupling is that, we have an arbitrary starting distribution X and a
nice distribution that we expect Y . We apply the same source of the randomness on them, and
then prove that at some point t, they become equal with high probability.

Definition 3.1. A coupling of µ and ν is the realisation of a pair of random variables (X,Y ) on
the same probability space such that X ∼ µ and Y ∼ ν.

So to construct a coupling we seek two random variables which have the correct distributions
µ and ν respectively, but there is complete freedom over how they are correlated.

Coupling itself is not mysterious. X and Y can be correlated or not. As long as they have the
correct distributions we are good. An important theorem here is:

Theorem 3.2. For all couplings (X,Y ) of µ and ν, we have:

‖µ− ν‖TV ≤ P [X 6= Y ] (3.1)

Furthermore, there always is a coupling (X,Y ) which achieves equality.

Proof. We can have intuitive proof if we draw a picture:

What does this tell us? Whether or not X = Y will occur with a high probability depends
on the total variation distance. Intuitively, if the total variantion is large, it means that on some
states, the probabilities of X and Y are much different. So they are unlikely to be the same. In
other words, how far these two distributions are is upper bounded by the probability that they are
different.

Proposition 3.3. ρ is submultiplicative: for all s, t ≥ 0:

ρ(t+ s) ≤ ρ(t)ρ(s)

Proof. The proof uses the Markov property. Note that here it does not mean Markov’s inequality.
It means the memoryless property.

15



16 CHAPTER 3. COUPLING METHODS

3.1 Example: Random to top shuffling

This shuffle means we take the card at the position i and put it on the top of the deck.

Theorem 3.4. The random-to-top chain exhibits cutoff at time tmix = n log n.

Proof. The most important idea in this proof is that we need to prove two bounds: an upper bound
which shows d((1 + ε)n log n)→ 0 and an lower bound which shows d((1− ε)n log n)→ 1.

Upper bound. We should learn the idea here: we prove that with high probability Xt, which is
the state of the deck after t moves, can be coupled with a uniform deck. In this way we can have
the conclusion that t steps can make it converge.

We apply the coupling trick here. Each time we randomly pick a card number, then find them
in the two decks, move them to the top. Note that the same card number may appear in different
positions in these two decks. The intuition/trick here is to realize that once a card i has been
chosen, their positions in the deck would become the same. The randomness is caused by selecting
the number instead of the card, but the probability a card/number is chosen is the same.

Hence the time when the two decks are the same would be the time when all the cards have
been chosen for at least once. This is a classical coupon collector problem. In the proof of the
lecture notes at Cambridge, they use second moment method to prove the concentration.

Lower bound. The idea is that if we do not have enough time, then a lot of cards would remain
in their original relative order.

This relies on the fact that we need all cards to be touched to make it uniform. Let Aj be the
event that the j bottom cards are in their original relative order, meaning they remain untouched
(if they are touched, they would have been moved to the top). For a uniform permutation, the
probability of this event should be:

π(Aj) =
1

j!

To see this, we know that there are n! permutations. Then we fix j of them of the relative order,
this gives us

(
n
j

)
(n− j)! = n!/j!. The quotient of them is just 1/j!. Let

τj = inf{t ≥ 0 : j cards have been selected at least once}

We check the expected time when nε cards have not been touched. It is

E [τj ] =
n−nε∑
j=1

1

pj
=
n

n
+ ...+

n

nε
∼ n(log n− log nε) = (1− ε)n log n

We use a similar proof, if we pick t = (1− 2ε)n log n, then by concentration

P [τj ≤ (1− 2ε)n log n] ≤ Var(τj)

ε2E [τj ]
2 → 0

Note that we pick j = n− nε. Let A be the event that nε cards have not been touched by time t.
According to the above calculation, if we pick t ≤ (1 − 2ε)n log n, then we know with probability
1 − o(1) we cannot touch all n − nε cards. Hence it means with high probability at least nε have
not been touched.
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3.2 Example: random walk on a hypercube

A n-dimensional hypercube is Hn = {0, 1}n.
One special thing about this chain is that it is irreducible but not aperiodic. To solve it we

consider lazy chain or continuous chain. We wait an exponential random variable with mean
1. The idea is we couple the walk with a uniform distribution.

Theorem 3.5. dL(t) and dC(t) are the distances of the lazy chain and continuous time chain
respectively. For any ε > 0, dL((1 + ε)n log n)→ 0 and dC((1/2)(1 + ε)n log n)→ 0.

Proof. For the lazy chain, we use a coupling trick. Y0 is uniform on Hn. Couple Xt and Yt as
follows: pick 1 ≤ i ≤ n at random and flip a coin at every step. If Xt(i) = Yt(i), this means the ith
bits are the same for them, if the coin is head we flip them simultaneously otherwise we do not flip.
If they are not the same, then flip Xt(i) if the coin is head and Yt(i) if it is tail. So with probability
1/2 that we flip a bit. The trick is that they have the same source of randomness. Once a bit has
been chosen, they become the same for X and Y . So it is a coupon collector problem.

3.3 Example: couplings for random transpositions

It is a Markov chain on the symmetric group Sn. For a deck of cards, in each step, we swap any
two of them. These two cards can be the same. A deck of cards can be seen as one permutation
σ ∈ Sn.

The main reference here is chapter 9 of Diaconis [1]. Use some marking schemes to boundthe
mixing time.
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Chapter 4

Spectral methods

Chapter 12 of [2] is the main reference for this chapter.

Proposition 4.1. Let P be a transition matrix.

1. If λ is a possibly complex eigenvalue, then |λ| ≤ 1

2. If P is irreducible then the eigenspace with λ = 1 is one-dimensional and is generated by 1

3. If P is irreducible and aperiodic then −1 is not an eigenvalue

Proof. For the third item, we need to know that in graph theory, G is a bipartite graph if and only
if −1 is an eigenvalue of its adjacency matrix A(G). Since P = D−1A, this is intuitively true if we
have a regular graph.

The idea is to assume -1 is an eigenvalue and we derive that T (x) ⊆ 2Z. In other words, we
prove that it is not aperiodic and also it is essentially the same as proving it is bipartite.

First of all for odd t we have∑
y

P t(x, y)f(y) = −f(x)⇒
∑
y

P t(x, y)
f(y)

f(x)
= −1

We pick f(x) = ‖f‖∞. Then we can prove that all the entries in f have the same absolute value.
Without loss of generality we assume they are all 1 or -1. Furthermore, we have noticed that when
x = y, f(y)/f)(x) is 1, hence P t(x, x) must be zero otherwise we cannot get −1 on the right hand
side. Hence we proved that only even number t can satisfy such things.

Note that some times we write 〈f, f1〉π = 0 as Eπ [f ], which is a very commonly used expression
and it makes a lot more sense when considering the space intuition.

The general logic here is that to use the spectral information, we need to decompose the original
transition matrix. Then multiplying them is equivalent to multiplying their eigenvalues.

To understand this type of methods better, we should introduce in functional analysis. One
needs to view the transition matrix P as an operator on functions f : Ω→ R by setting

(Pf)(x) =
∑
y

P (x, y)f(y)

Here f is a function on the state space. The inner product on real-valued functions on Ω is
defined as

21



22 CHAPTER 4. SPECTRAL METHODS

〈f, g〉π =
∑
x∈Ω

f(x)g(x)π(x)

Eigenfunctions means that Pf(x) = λf(x).

Theorem 4.2. Assume that π is reversible with respect to P . Then:

• There exists a set of eigenfunctions f1, ..., fn which are orthonormal for 〈·, ·〉π and f1 is the
constant vector (1, ..., 1)T .

• P t can be decomposed as:

P t(x, y)

π(y)
=

n∑
j=1

fj(x)fj(y)λtj

Proof. This form guarantees that the new matrix is symmetric. Then we apply the classical spectral
theorem.

A(x, y) =

√
π(x)

π(y)
P (x, y)

Then A is symmetric. It can be decomposed into

A =
∑
i

λiφiφ
T
i

By some basic calculations we find

fi(x) =
φi(x)√
π(x)

, i.e., fi = D−1/2
π φi

I made a mistake here, I accidently wrote P =
∑

i λifif
T
i but this is wrong because P is not

syymetric. We can have

P (x, y) =

√
π(y)

π(x)
A(x, y) =

√
π(y)

π(x)

∑
i

λiφi(x)φi(y)

Then we get what we have easily.

4.1 The spectral gap and the relaxation time

Definition 4.3. P is irreducible aperiodic. λ∗ = max |λ| : λ 6= 1. γ∗ = 1−λ∗ is called the absolute
spectral gap, and γ = 1− λ2 is called the spectral gap of P . The relaxation time trel

trel =
1

γ∗

The important thing is to understand where these definitions come from and where they are
used. The special thing is that this relaxation time is defined by the absolute spectral gap. Why
this is a time? Why do we call it relaxation? Also why we define γ as 1− λ?
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Definition 4.4 (l2 distance).

d2(t) = sup
x∈Ω

∥∥∥∥P t(x, ·)π(·)
− 1

∥∥∥∥
2

= sup
x∈Ω

∑
y∈Ω

π(y)

∣∣∣∣P t(x, y)

π(y)
− 1

∣∣∣∣2
1/2

We’ve seen this many times. We never discuss the intuition. Note that when talking about the
spectral things, we use a norm lp(π).

‖f‖p,π =

(∑
x

|f(x)|pπ(x)

)1/p

An important thing is that l1 distance is dominated by an l2 distance. What does dominate
mean?

Lemma 4.5. Assume P is irreducible, aperiodic. Then d(t) ≤ (1/2)d2(t).

Proof.

2d(t) = 2
∥∥P t(x, ·)− π∥∥

TV
=
∑
y∈Ω

|P t(x, y)− π(y)|

=
∑
y∈Ω

π(y)

∣∣∣∣P t(x, y)

π(y)
− 1

∣∣∣∣
=

∥∥∥∥P t(x, y)

π(y)
− 1

∥∥∥∥
1,π

Note that this can be also seen as an expectation. Taking the square and using Jensen’s inequality:
f(E [X]) ≤ E [f(X)] where f(X) = X2

4d2(t) = 4
∥∥P t(x, ·)− π∥∥2

TV
= Eπ

[∣∣∣∣P t(x, y)

π(y)
− 1

∣∣∣∣]2

≤ Eπ

[∣∣∣∣P t(x, y)

π(y)
− 1

∣∣∣∣2
]

≤ sup
x∈Ω

∑
y∈Ω

π(y)

∣∣∣∣P t(x, y)

π(y)
− 1

∣∣∣∣2


= d2
2(t)

Why do we care about this l2 norm and why do we have a minus 1? If we expand the definition
of l2 it does not give us any intuition. So we need to use the previous decomposition. Also the
main purpose of this definition serves to show the relationship between the relaxation time and the
mixing time.

Theorem 4.6. Fix 0 < ε < 1 arbitrary. Assume that P is aperiodic, irreducible and reversible with
respect to π. Then

(trel − 1) log

(
1

2ε

)
≤ tmix(ε) ≤ trel log

(
1

2ε
√
πmin

)
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Proof. For the upper bound, we expand the l2 norm:

∥∥∥∥P t(x, ·)π(·)
− 1

∥∥∥∥2

2,π

=

∥∥∥∥∥∥
n∑
j=1

fj(x)fj(·)λtj − 1

∥∥∥∥∥∥
2

2,π

=

∥∥∥∥∥∥
n∑
j=2

fj(x)fj(·)λtj

∥∥∥∥∥∥
2

2,π

=
∑
y∈Ω

π(y)

∣∣∣∣∣∣
n∑
j=2

fj(x)fj(y)λtj

∣∣∣∣∣∣
2

=
∑
y∈Ω

π(y)

 n∑
j=2

f2
j (x)f2

j (y)λ2t
j +

∑
j 6=k

fj(x)fj(y)λtjfk(x)fk(y)λtk


Fix j, k in the second term, and

∑
y∈Ω π(y)fj(y)fk(y) = 0 because fs are orthonormal.

=
∑
y∈Ω

π(y)

n∑
j=2

f2
j (x)f2

j (y)λ2t
j

Again, since fs are normalized

=
n∑
j=2

f2
j (x)λ2t

j

≤ λ2t
∗

n∑
j=2

f2
j (x)

Note that here it maybe not λ2. So how large is
∑n

j=2 f
2
j (x)? To see the result, we need to observe

when we would have f2
j (x). We want a vector decomposed on fs.

δx =

n∑
j=1

〈δx, fj〉πfj =

n∑
j=1

fj(x)π(x)fj

Remember that this trick of decomposition onto different directions when having eigen bases is
very commonly used in the literature.

Hence we find that

〈δx, δx〉π =
n∑
j=1

f2
j (x)π2(x)〈fj , fj〉π =

n∑
j=1

f2
j (x)π2(x) = π2(x)

n∑
j=1

f2
j (x)

Since we know that 〈δx, δx〉π = π(x), we derive that
∑n

j=2 f
2
j (x) = 1/π(x). Therefore by combining

the previous results we have
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4d2(t) = 4
∥∥P t(x, ·)− π∥∥2

TV
≤ sup

x∈Ω

∑
y∈Ω

π(y)

∣∣∣∣P t(x, y)

π(y)
− 1

∣∣∣∣2


≤ λ2t
∗

n∑
j=2

f2
j (x)

≤ λ2t
∗

1

π(x)

≤ λ2t
∗

1

πmin(x)

≤ (1− γ∗)2tπ−1
min

≤ e−2γ∗tπ−1
min

Hence maximizing over x and taking the square root, we get

d(t) ≤ 1

2
eγ∗t

√
π−1

min

Solving for the right-hand side equal to ε gives us d(t) ≤ ε as soon as t ≥ 1
γ∗

log
(

1
2ε
√
πmin

)
.

Note that at first we define γ = 1− λ but then use 1− γ back to represent λ. The reason lies
above: we need a cleaner expression.

Till now we’ve seen why we want γ∗ and why it directly influences the mixing rate. Also we see
how important our l2 norm is in our field.

For the lower bound, we need it to show the bound is tight, this is very important. To prove
a lower bound we need to find something like d(t) ≥ .... The l2 norm is not going to be used. So
where do we start? Maybe we start from the definition of 2d(t) =

∑
y∈Ω |P t(x, y)− π(y)|. We pick

an eigenfunction orthogonal to f1, then since Eπ [f ] =
∑

y∈Ω π(y)f(y) = 0.

|λtf(x)| = |P tf(x)| =

∣∣∣∣∣∣
∑
y∈Ω

P t(x, y)f(y)− π(y)f(y)

∣∣∣∣∣∣ ≤ 2 ‖f‖∞ d(t)

Taking f(x) = ‖f‖∞. We can obtain
|λ|t ≤ 2d(t)

and take λ = λ∗ evaluating at t = tmix(ε) we have

λ
tmix(ε)
∗ ≤ 2ε

hence
1

2ε
≤ 1

λ
tmix(ε)
∗

If we take the log we would get

tmix(ε) ≥ − log

(
1

2ε

)
1

log(1− γ∗)
Using −(1− x) log(1− x) ≤ x for x ∈ [0, 1] on γ∗, we have

tmix(ε) ≥ log

(
1

2ε

(
trel − 1)

as desired.
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4.2 Examples

4.2.1 Example: Random walk on the cycle

Since we’ve developed the spectral method, we see how to use it. Clearly we need eigenvalues and
eigenfunctions of the transition matrix. For circle, this is not hard, we omit the proof here and give
the eigenfunctions/eigenvales.

For cycle, the n eigenfunctions/values are φj(z) = zj is an eigenfunction with eigenvalue
cos(2πj/n) for 1 ≤ j ≤ n. If n is even, then the chain is periodic and the absolute (1 − λ∗)
spectral gap is 0. If it is odd, then the absolute spectral gap is γ∗ = 1 − cos(π/n) ≈ π2/2n2. So
trel = 2n2/π2. However we have πmin = 1/n so in Theorem 4.6, the upper bound is n2 log n which
does not match the lower bound.

To fix the problem, we use all the information from all eigenvalues. We omit the proof because
there is no more clever things. Maybe later we come back to this as a practice.

4.2.2 Example: Random walk on the hypercube

Finding the eigenvalues and eigenfunctions is a bit complicated. It also requires some familiarity
of the product chains. We can go back to some technical details later. For now just memorize
γ∗ = 1/n.

4.3 Spectra and their matrices

Graph/Markov chain Matrix spectra

d-regular A, adjacency λ1 = d
any finite Markov chain P , transition matrix |λ| ≤ 1

irreducible, aperiodic P , transition matrix -1 is not an eigenvalue
bipartite (periodic) P , transition matrix -1 is an eigenvalue

d-regular lazy random walk positive semi-definite
any graph L = D −A, Laplacian positive semi-definite

Note that the PSD property exists for lazy walks because we can prove something like xTPx =∑
cij(xi + xj)

2.



Chapter 5

Comparison Methods and Geometric
Methods

First why do we need comparison methods in the first place? In many cases, computing the spectral
gap explicitly is hard. So the spectral gap has to be estimated. Amon all the comparison methods,
geometric methods are the most important ones. Common methods for estimating the spectral
gap is: canonical paths of Diaconis and Saloff-Coste, which gives a Poincaré inequality and thus
an estimate of the spectral gap by a path counting argument. The second is Cheeger’s inequality
which relates the spectral gap to bottleneck ratios.

Definition 5.1. Let f, g : Ω→ R. The Dirichlet form associated with a reversible P is defined
by

E (f, g) = 〈(I − P )f, g〉π
=
∑
x

π(x)[f(x)− Pf(x)]g(x)

=
∑
x

π(x)

[∑
y

P (x, y)(f(x)− f(y))

]
g(x)

=
∑
x,y

π(x)P (x, y)g(x)(f(x)− f(y))

Remark 5.2. Compared with the variance definition in Definition 2.9, the Dirichlet form is the
local variance by considering only adjacent pairs.

When P is reversible, π(x)P (x, y) = π(y)P (y, x) in the last line and we have

E (f, g) =
∑
x,y

π(y)P (y, x)g(x)(f(x)− f(y))

We swap x, y which gives us

E (f, g) =
∑
x,y

π(x)P (x, y)g(y)(f(y)− f(x)) =
∑
x,y

π(x)P (x, y)(−g(y))(f(x)− f(y))

Summing them yields

E (f, g) =
1

2

∑
x,y

(f(x)− f(y))(g(x)− g(y))π(x)P (x, y)

27
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a much more useful expression.

When f = g,

E (f, f) =
1

2

∑
x,y

(f(x)− f(y))2π(x)P (x, y)

Because P is reversible, the operator f → Pf is self-adjoint on l2 with eigenvalues 1 = λ1 >
λ2 ≥ ... ≥ λ|Ω|−1 ≥ −1.

We call

Q(e) = π(x)P (x, y)

and

∇f(e) = f(y)− f(x)

These are more like potential functions.

E (f, g) =
1

2

∑
e

Q(e)∇f(e)∇g(e) =

∫
D
∇f(e)∇g(e)

When f = g, this energy measures how rough or how smooth the function is.

The following variational characterisation/minimax characterization of the spectral gap in terms
of the Dirichlet form is very useful. It essentially links the spectral gap with the Dirichlet
form! Then using the Dirichlet form we convert P to be comparable with P̃ .

Theorem 5.3 (Variational characterisation). (P, π) is reversible, then

1− λ2 = γ = min
f :Ω→R

Eπ [f ]=0,‖f‖2,π=1

E (f, f) = min
f :Ω→R
Eπ [f ]=0

E (f, f)

‖f‖22,π

Proof. Check [2]. Eπ [f ] = 0 is equivalent to saying f⊥π1. It involves diagonalization and since we
have I−P in the Dirichlet form we get 1−λ2 = γ. Let n = |Ω|, and f1, ..., fn are the eigenfunctions
of P corresponding to the decreasing ordered eigenvalues and are orthonormal. f1 = 1. Hence,
if ‖f‖2,π = 1 and f⊥π1, then f =

∑n
j=2 ajfj (because it is perpendicular to f1 so it can be only

represented by these eigenvectors) and notice that after we take l2-norm on both sides we have∑n
j=2 a

2
j = 1 (because the forms like aiaj〈fi, fj〉π = 0 and 〈fi, fi〉π = ‖fi‖22,π = 1). Thus,

〈(I − P )f, f〉π =

n∑
j=2

a2
j (1− λj) ≥ (1− λ2)

As for the third equality, note that we can define f̃ := f/ ‖f‖2,π and replace it in the second

equality. We know that
∥∥∥f̃∥∥∥

2,π
= 1 and we can find that E

(
f̃ , f̃

)
= E (f, f) / ‖f‖22,π. It follows

from the standard variational characterization of eigenvalues (minimax theorem/The Courant-
Fischer Theorem) of symmetric matrices; since P is not necessarily symmetric, but is reversible,
and hence similar to a symmetric matrix, the standard formula has to be suitably weighted by the
principal eigenvector π.

Remark 5.4. Try to remember that Eπ [f ] = 0 means it is perpendicular to the first eigenvector
and also

Varπ [f ] = Eπ
[
(f − Eπ [f ])2

]
= Eπ

[
f2
]

=
∑
x

π(x)f2(x) = ‖f‖22,π
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. Based on the variational characterization theorem we know that for f⊥π1,

γ ‖f‖22,π ≤ E (f, f)

hence

Varπ [f ] ≤ 1

γ
E (f, f)

5.1 Geometric Bounds

How do we use the comparison technique? For two reversible transition matrix P, P̃ . P, π
is the chain of interest with edge set E = {(x, y) : P (x, y) > 0}, P̃ , π̃ is the chain with known
eigenvalues with edge set Ẽ = {(x, y) : P̃ (x, y) > 0}. For each pair x 6= y with P̃ (x, y) > 0, fix a
sequence of steps x = x0, ..., xk = y with P (xi, xi+1) > 0 called E-path denoted as Γxy with length
|Γxy| = k.

E (f, f) is the Dirichlet form corresponding to P and Ẽ (f, f) is the Dirichlet form corresponding
to P̃ .

Definition 5.5 (congestion ratio). Supposing for each (x, y) ∈ Ẽ, P̃ (x, y) > 0, there is an E-path
from x to y,Γxy. The congestion ratio is defined as

C = max
e∈E

 1

Q(e)

∑
x,y

Γxy3e

Q̃(x, y)|Γxy|


Intuitively, we fix an edge e ∈ E. Then we look at all the edges (x, y) ∈ Ẽ with their flows

Q̃(x, y) and for each of them we find one path from x to y in E which goes through e. It is important
to write Γxy 3 e because here we sum all possible paths that pass e with ending points x, y. To
maximize C, we hope that Q(e) is small and the number of possible paths Γxy 3 e is large. In
other words, e has many paths through it in E, and its ergodic flow is small.

Lemma 5.6. Let P and P̃ be reversible transition matrices with stationary distributions π and π̃.
If Ẽ (f, f) ≤ αE (f, f) for all f , then

γ̃ ≤
[
max
x∈Ω

π(x)

π̃(x)

]
αγ

Proof. The proof is ommited for now.

Theorem 5.7 (The canonical paths method). Given a choice of E-paths, use C as defined in
Definition 5.5 for all functions f : Ω→ R,

Ẽ (f, f) ≤ CE (f, f)

Consequently,

γ̃ ≤
[
max
x∈Ω

π(x)

π̃(x)

]
Cγ (5.1)

Proof. Define e = (z, w),∇f(e) = f(w) − f(z). One trick in this proof used the trick that f(x) −
f(y) =

∑
e∈Γxy

∇f(e) = (f(xk)− f(xk−1)) + (f(xk−1)− f(xk−2)) + ...+ (f(x1)− f(x0)). Hence
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2Ẽ (f, f) =
∑
x,y

Q̃(x, y)(f(x)− f(y))2 =
∑
x,y

Q̃(x, y)

 ∑
e∈Γxy

∇f(e)

2

≤
∑
x,y

Q̃(x, y)|Γxy|
∑
e∈Γxy

(∇f(e))2 =
∑
e∈E

 ∑
Γxy3e

Q̃(x, y)|Γxy|

 (∇f(e))2

≤
∑
e∈E

C ·Q(e)(∇f(e))2 = 2CE (f, f)

(5.2)

Note the technical details here: first we start from the Dirichlet form Ẽ (f, f), we do the sum
for all x, y (because of the definition of the Dirichlet form). Then we just pick one single arbitrary
E-path Γxy. Why can we do E−path when calculating the Dirichlet form for P̃? Because this f is
the same function for both P and P̃ , hence (f(x) − f(y))2 part would not be influenced. At first
(f(x) − f(y))2 is from the definition, then the second equality comes from its nature of being a
potential. Hence this is the key point we link P̃ back to P .

Then we use Cauchy-Schwarz. Note that here the detail is: ∑
e∈Γxy

∇f(e)

2

=

 ∑
e∈Γxy

∇f(e) · 1

2

≤

 ∑
e∈Γxy

(∇f(e))2

 ∑
e∈Γxy

12


≤ |Γxy|

∑
e∈Γxy

(∇f(e))2

Next is a technical trick because the sum for all x, y basically means all pairs of nodes. Since
the graph is connected, all |Γxy| ≥ 1. For sure all the edges in P will be covered because we exhaust
all the paths, at least we can pick the two end point of each edge as our x, y. The last sum changes
the perspective, it says for each edge e we count how many paths actually cover it. In the edge, we
sum the same (∇f(e))2s.

The last non-trivial detail is that for the definition of Dirichlet form, we notice that the range
of sum can be changed from all x, y to e ∈ E in general. This is because Q(x, y) = 0 if the edge
(x, y) is not in the edge set. However this might cause confusion in the above calculation if we use
e ∈ E style at the beginning even though it is a true equality. To see this, imagine we have,

∑
(x,y)∈Ẽ

Q̃(x, y)|Γxy|
∑
e∈Γxy

(∇f(e))2 =
∑
e∈E

 ∑
Γxy3e

Q̃(x, y)|Γxy|

 (∇f(e))2

This looks like we miss some e ∈ E, though this does not influence the bound and the correctness
of the above equality. Imagine we have (u, v) ∈ E but u is only connected with v, and (u, v) /∈ Ẽ,
then we would never check any E−path going through (u, v) because they will not be chosen as
ending points and since u is not connected to any other vertices in E, no other E−path would use
it. So in the first sum, there is no way that (f(v)− f(u))2 would appear. Remember this will not
influence the equality even though in the second sum (u, v) ∈ E is considered. Since none of our
previous Γxys contain such an edge, it is just 0 in the second sum. Anyway, I am being a bit harsh.
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Since we mentioned that to upper bound the mixing time, we want a lower bound on the spectral
gap. We can have all the information we have except γ in the equation 5.1. γ̃ is known since we
know the eigenvalues of P̃ . We have got the lower bound of γ!

Definition 5.8. P satisfies Poincaré inequality with constant C if, for all functions f : Ω→ R,

Varπ [f ] ≤ CE (f, f)

Notice that

Varπ [f ] ≤ 1

γ
E (f, f)

from the variational characterization. Hence to make sure this always holds, C ≥ 1/γ, meaning
γ ≥ 1/C.

The Poincaré inequality is a control on the spectral gap. It is only sharp up to logarithms
when we use the standard relation between spectral gap and mixing times (Theorem 4.6). Here
sharp means something similar to tight.

Corollary 5.8.1. Let P be reversible and irreducible with π. Suppose Γxy is a choice of E-path for
each x, y and let

C = max
e∈E

 1

Q(e)

∑
x,y

e∈Γxy

π(x)π(y)|Γxy|


Then the spectral gap satisfies γ ≥ C−1. The Poincaré inequality holds with this C.

Proof. One important thing is to notice that we apply a trick here: P̃ (x, y) = π(y) and hence
π̃ = π! So the probability flow Q̃(x, y) = π̃(x)P̃ (x, y) = π(x)π(y).

Ẽ (f, f) =
1

2

∑
x,y∈Ω

(f(x)− f(y))2π(x)π(y)

=
1

2

∑
x,y∈Ω

(f2(x)− 2f(x)f(y) + f2(y))π(x)π(y)

=
1

2

∑
x∈Ω

f2(x)π(x)
∑
y∈Ω

π(y)

−
∑
x∈Ω

2f(x)π(x)
∑
y∈Ω

f(y)π(y)

+

∑
y∈Ω

f2(y)π(y)
∑
x∈Ω

π(x)


=

1

2

[
2

(∑
x∈Ω

f2(x)π(x)

)]
= Varf [π] = ‖f‖22,π

By the canonical path method, we know E (f, f) ≥ C−1 ‖f‖2,π. Together with the variational

characterization γ ≥ C−1.

So let’s write some intuitions about this geometric method. We can see the goal is to use P̃ with
known eigenvalues/vectors to estimate the spectral information about P . The trick is to decide
how to compare P and P̃ . By the variational characterization, we see the spectral gap is lower
bounded by the Dirichlet form. Then we check the Dirichlet form of P , converting it to something
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related to the Dirichlet form of P̃ . They differ by C, the congestion ratio, which describes how
the probability flow in Ẽ would get stuck through a worst edge e in E. Regarding the conversion
of the Dirichlet form, we use the trick that f(x) − f(y) =

∑
e∈Γxy

∇f(e) is true for both E and

Ẽ. Then we find the relationship between their Dirichlet forms and hence find the correspoinding
relationship between the spectral gap of P and P̃ and successfully lower bound/estimate γ by
Lemma 5.6. To be more specific, by Corollary 5.8.1, we lower bound γ by C−1. To memorize this,
it means that trel is upper bounded by C, which means the congestion ration determines the mixing
time.

5.2 Examples

5.2.1 Example: random walk on a box

Note that a box is also a common term used to describe an area in a space. Formally

[n]d := {1, ..., n}d

with the restriction of the edges of Zd to these vertices. Then there exist c > 0 such that γ ≥
c(dn)−2. The congestion ratio is:

C = max
e

 1

Q(e)

∑
x,y:e∈Γxy

|Γxy|π(x)π(y)

 ≤ max
e

(
d2O(1)

nd−1
|{Γxy : e ∈ Γxy}|

)
We know that π(x) ≤ κ/nd, and Q(e) ≥ π(x)P (x, y) ≥ κ′/nd · 1/d. Also the length is at most dn.
The number of such paths is at most nd+1. Hence in the end C (which is roughly trel) is roughly
n2.

5.2.2 Example: random walk on a tree

We consider a tree with node n and max degree d and max height H. So in our formula of the
congestion ratio: |Γxy| ≤ H, π(x) ≤ d

n , 1/Q(e) ≤ dn,
∑

x,y:e∈Γxy
π(x)π(y) ≤ 1/4. So

γ ≥ 1

dnH

5.2.3 Example: random walk on a convex set

5.2.4 Example: random walk on the n-dog

5.3 Cheeger’s inequality

Cheeger’s inequality basically links the conductance of the entire graph to the spectral information.
Then the way of computing the conductance can be linked with the Dirichlet form. Then everything
here is connected.

The canonical paths method kinda shows that if an edge is passed by many paths, then this
slows down our mixing time. Cheeger handles this systematically.

The conductance is a bit different from what we have in the spectral graph theory but essentially
they are the same. Q(A,Ac) =

∑
x∈A,y∈B Q(x, y).

Φ(A) =
Q(A,Ac)

π(A)
=

∑
x∈A,y∈Ac π(x)P (x, y)

π(A)



5.3. CHEEGER’S INEQUALITY 33

Definition 5.9. The bottleneck ratio of the Markov chain is defined by

Φ∗ = min
A:π(A)≤1/2

Φ(A)

A very important thing is Cheeger’s inequality. Either bound can be sharp in some examples.
A more precise result can be proved when taking into account the whole isoperimetric profile.

Theorem 5.10. Suppose P is reversible and let γ = 1− λ2 be the spectral gap, then

Φ2
∗

2
≤ γ ≤ 2Φ∗

Proof. The proof of this is very worth learning. The connection between the spectral gap and the
conductance lies in their definitions.

Upper bound, easier Our goal is to prove γ ≤ 2Φ∗. How to think about this? If we expand
the definition on both side.

First, by variational characterization,

γ = min
f :Ω→R
Eπ [f ]=0

E (f, f)

‖f‖22,π

The trick is to define a clever f .

E (f, f) =
1

2

∑
x,y

(f(x)− f(y))2π(x)P (x, y)

You see here we have π(x)P (x, y) which also appears in the conductance. We want to introduce in
A and Ac. So f should treat states in these two parts differently.

We pick f(x) = −π(Ac) if x ∈ A, and f(x) = π(A) if x ∈ Ac. So if x, y are in the same cut,
(f(x)− f(y))2 is 0, if they belong to different sets, (f(x)− f(y))2 = (−1)2 = 1. Hence

E (f, f) =
1

2
(Q(A,Ac) +Q(Ac, A)) = Q(A,Ac)

On the other hand, we check ‖f‖22,π.

‖f‖22,π =
∑
x∈A

π(x)π(Ac)2 +
∑
x∈Ac

π(x)π(A)2 = π(A)π(Ac) ≥ π(A)/2

Consequently,

γ ≤ Q(A,Ac)

π(A)/2

Taking the minimum over all sets A gives γ ≤ 2Φ∗. This direction is eazy because an arbitrary f
would do, it does not have to satisfy the expectation being 0.
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Lower bound, harder Our goal is to prove γ ≥ Φ2
∗

2 . Can we still use definition? We should,
and also we should realize that the trick also hides in the designs of f .

To lower bound γ, by variational characterization, we should lower bound E (f, f) and upper
bound ‖f‖22,π = Eπ

[
f2
]
.

First let’s upper bound Eπ
[
f2
]
.

Lemma 5.11. Let g : Ω → [0,∞) be a nonnegative function such that π(g > 0) ≤ 1/2. Order Ω
so that g is non-increasing. Then

Eπ [g] ≤ Φ−1
∗
∑
x<y

Q(x, y)(g(x)− g(y))

Proof. Fix ε > 0 and let A = {x : g(x) > ε}, since Φ∗ is the minimum bottleneck ratio.

Φ∗ ≤
Q(A,Ac)

π(A)
=

∑
x,y:g(x)>ε≥g(y)Q(x, y)

π(g > ε)

Why do we define a set g > t? Because the expectation of the nonnegative function g can also be
calculated by

Eπ [g] =

∫ ∞
x=0

π(g > x)dx

Rewrite the inequality and take the integral.

Eπ [g] ≤ Φ−1
∗
∑
x<y

Q(x, y)(g(x)− g(y))

Since we can use this to upper bound the l2 norm of a nonnegative function. We should design
such a function to minimize the Dirichlet energy. Who are the candidates?

Let f2 be the eigenfunction corresponding to λ2. Why f2? Because it is linked to the Dirichlet
form and it minimizes variational characterization. We also know the expectation is 0, hence there
are some positive and negative entries.

To apply the above lemma we need an non-negative function so we let f = max(0, f2). Now
Eπ
[
f2
]

is upper bounded by

Eπ
[
f2
]
≤ Φ−1

∗
∑
x<y

Q(x, y)(f2(x)− f2(y))

To prepare for it, we need some link between this and
Note that here x < y serves for the order we defined in Ω to make f non-increasing. By

Cauchy-Schwarz

Eπ
[
f2
]2 ≤ Φ−2

∗

(∑
x<y

Q(x, y)(f2(x)− f2(y))

)2

≤ Φ−2
∗

(∑
x<y

Q(x, y)−1/2(f(x)− f(y))Q(x, y)−1/2(f(x) + f(y))

)2

≤ Φ−2
∗

(∑
x<y

Q(x, y)(f(x)− f(y))2

)(∑
x<y

Q(x, y)(f(x) + f(y))2

)
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a2 + b2 ≥ 2ab

≤ Φ−2
∗ · E (f, f)

(
2
∑
x<y

Q(x, y)(f(x)2 + f(y)2)

)
∑

x<y Q(x, y)f(x)2 =
∑

x<y Q(x, y)f(y)2 ≤ (1/2)
∑

x π(x)f2(x) ≤ (1/2)Eπ
[
f2
]

≤ Φ−2
∗ · E (f, f)

(
2Eπ

[
f2
])

Hence we have
Eπ
[
f2
]
≤ 2E (f, f) Φ−2

∗

Then

γ ≥ Φ2
∗

2

To be honest, the harder half is not that hard. Essentially we just need to play with the Dirichlet
form and use Cauchy-Schwarz and some inequalities. Of course it is hard to come up with this
proof, so we need to read this proof over and over again.

5.4 Expander graphs

If we look at Cheeger, we find that it bounds the spectral gap. If the conductance is large, which
means the graph does not have bottleneck, then the spectral gap is large and the mixing time is
small, which is consistent with the intuition.

The best graphs from this point of view are those for which the Cheeger constant is bounded
below. We call such graphs expanders.

Definition 5.12. A family of graphs {Gn} is called an expander family if the Cheeger constant
satisfies Φ∗ ≥ α for some α > 0

Theorem 5.13. Let Gn be a graph uniformly chosen among all d− regular graphs on n vertices,
then there exists α > 0 sufficiently small that with probability tending to 1 as n → ∞, Gn is an
α-expander.
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