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Chapter 1

Introduction

The aim of this book is to understand the spectral grpah theory. We combine all classic sources,
e.g. Fan Chung’s book, Dan Spielman and Luca Trevisan’s graduate courses. Also some other

important sources.
There is not much to say in the introduction. If later I have some insightful ideas about this

entire field I would probably write some rubbish here.
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Chapter 2

Linear Algebra Preliminaries

2.1 Views about a matrix for a graph

We have two important views about a matrix A. First it is a function that maps a vector x to
the vector Ax. Second, it is a function that maps a vector x to a number xT Ax, which is a
quadratic form. Note the name quadratic form is very fancy but it just means

ol Aw = " x(i)A(i, j)=(j)
0,3
The adjacency matrix is
1 if(u,v) € E

0 otherwise

Ag(u,v) = {

Though the adjacency matrix is natural to see a graph, it is the least useful. The eigenvectors
and eigenvalues are the most meaningful when trying to understand a natural operator or a natural
quadratic form.

2.2 Similar matrices and diagonalization

The definition of the similarity between two matrices is:

Definition 2.1. A matriz A is similar to a matrix B if there is a non-singular matric M such
that M—YAM = B. In this case, A and B have the same eigenvalues.

Definition 2.2. A square matriz A is diagonalizable or nondefective it is similar to a diagonal
matriz, i.e. if there is an invertible matriz P such that P~YAP is a diagonal matriz.

2.3 Spectral Theory
Recall that an eigenvector of a matrix M with eigenvalue A is defined as
Mf=Af

where AI — M should be a singular matrix. The eigenvalues are the roots of the characteristic
polynomial of M:
det(xI — M)

7



8 CHAPTER 2. LINEAR ALGEBRA PRELIMINARIES

Theorem 2.3 (The Spectral Theorem). If M is an n x n, real, symmetric matriz, then there exist
real numbers A1 < Ao < ... < A\, and n mutually orthogonal unit vectors f1,..., fn and such that f;
is an eigenvector of M of eigenvalue X\; for each 1.

This is why we like symmetric matrices. If the matrix is not symmetric it might not have n
eigenvalues. Even if it has n eigenvalues, their eigvenvectors will not be orthogonal (prove
by contradiction).

If the matrix is not symmetric, we may even not be interested in their eigenvalues/eigenvectors.

Definition 2.4 (The Rayleigh quotient). The Rayleigh quotient of a vector x with respect to a
matrix < is the ratio

T Mz
2Tz
Observe that if f is an eigenvector, then
MM
1t frf

Theorem 2.5. Let M be a symmetric matriz and x be a non-zero vector that mazximizes the
Rayleigh quotient w.r.t. M. Then x is an eigenvectro of M with eigenvalue equal to the Rayleigh
quotient. Moreover, this eigenvalue is the largest eigenvalue of M.

Proof. The common trick we would use to prove stuff in spectral graph theory is to decompose the
vector into n eigenvectors directions.
T
T = Z(f i ©)fi
i

The intuition here is that, we first compute the projection length of x onto f; which is just the
inner product T f;. Then we multiply it with the eigenvector of that direction. Assuming z is a
unit vector, then

= Z( Tﬂ?)(ijﬂJ))\jfinj because fIz and f]Tx are constants

= Z( Tx)Q)\j because the eigenvectors are orthogonal, their products are 0
J

= Apn because x is assumed to be a unit vector

It is easy to show that the equality can be reached. Hence the Rayleigh quotient is never greater
than A,,. O
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Note that this theorem shows how the Rayleigh quotient plus the spectral information char-
acterize the matrix M. When we want to study a symmetric matrix, we study this quotient
and it should reveal some information we need.
Similarly we have a very useful conclusion about the relationship between the eigenvalues
and the Rayleigh quotient.
. ' Max
=  min
2Lfi,fic1 TLE

i

So the ith smallest eigenvalue of M is the minimum Rayleigh quotient of M when z is an vector
from the perpendicular space of the subspece formed by f; to f;_1. Note that when 7 = n, we only
have one dimension in our matrix, so x is trivial.

Similarly we have

f . 2T Mz
;=arg min
elftnficr @l

2.4 Positive (Semi)definite Matrices
For a symmetric matrix A, we write
A=0

if A is positive semidefinite, which means all the eigenvalues are nonnegative. This is equivalent
to

vl Av >0
for all v.
An extention is
A= B
if
A—-—B=0

which is equivalent to
vl Av > 0T By

for all v.

2.5 Matrix Norm

The operator norm of a matrix M also called the 2-norm is defined by

M
M| = max [ Mol
v ol

It measures how much a vector can increase in size when it is multiplied by M. When M
is symmetric, the 2-norm is just the largest absolute value of an eigenvalue of M. Also we
have

[M1M| < || M| Mz
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Chapter 3

Graph Preliminaries

Definition 3.1. A graph is 3-connected if there is no set of two vertices whose removal disconnects
the graph.

Definition 3.2. A planar graph is a special graph that can be drawn in the plane without crossing
edges.

Definition 3.3. A planar graph divides the plane into connected regions called faces. Each face
1s identified with the vertices and edges on its boarder.

Theorem 3.4. Let G = (V, E) and F be the set of faces. Then
VI =Bl +|F] =2

Definition 3.5. A hypercube is the graph with vertex set {0,1}¢ with edges between vertices whose
labels differ in exactly one bit.

11
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Chapter 4

The Matrices of Interest

We give some basic information about the matrices we like to discuss and some simple facts about
their eigenvalues.

4.1 Laplacian matrix

This is the most basic matrix in the spectral graph theory.

L:=D—-A

where D is the diagonal matrix in which
D(u,u) = deg()

and the rest are all Os.
Why is this design important? If we look at the Laplacian quadratic form, we see its relationship
with the Rayleigh quotient
el Lo = Z (z(u) — z(v))?

(u,v)€EE

because we would have a —z(u)z(v) and a —z(v)x(u) and also one z(u)? and one z(v)?. The thing
is we should notice that for one edge (u,v) we only compute it once. We do not consider the edge
(u,v) and (v, u).

This form measures the smoothness of the function z. It is small if the function = does not
jump too much over any edge. Intuitively, if z(u) — z(v) is large, then it contributes a lot
to the quadratic form. Note that if the edge is not in the graph, then it is ok to have large
difference between the two nodes.

If the graph is weighted then we can have G = (V, E, w) where w : E — R*. Then the Laplacian
quadratic form is

2l Le = Z Wy (z(u) — x(v))2

(u,v)EE

For two vertices in the graph G, the corresponding entries of them w, v, in the graph G in the
Laplacian is
LGu,v = (5u - 5v)(5u - 5v)T

13



14 CHAPTER 4. THE MATRICES OF INTEREST

4.2 Adjacency Matrix

In this part we study the features of the adjacency matrix. We denote its eigenvalues by

here we make it a bit different from what we do for the Laplacian. First we order them in a
decreasing order, and we use p instead of A. There is a reason why we do such things. Note that
in the Laplacian we use L = D — A. Hence p; in fact corresponds to A;. If the graph is d-regular,
then

L=1d-— A

hence
Ai =d — py

Note that if it is not regular, then we do not see this relationship immediately. So the largest
eigenvalue of the adjacency matrix of a d-regular graph is d because we know the smallest eigenvalue
of the Laplacian is 0. The eigenvector is the uniform eigenvector.

4.3 Non-regular graphs

Now we look at a more interesting case, graphs that are not necessarily regular and we study its
eigenvalues.

Lemma 4.1. For a graph G, we let dyax be the maximum degree and let dqye be the average degree.
Then we have
dave < p1 < dinax

Proof. The lower bound proof simply follows the Rayleigh quotient. The upper bound proof requires
using the eigenvector of eigenvalue. O

Lemma 4.2. If G is connected and p11 = dmax then G is dmax-regular.

The eigenvector corresponding to the largest eigenvalue is usually not a constant vector. It
is always a positive vector if the graph is connected.

Theorem 4.3 (Perron-Frobenius). Let G be a graph and A its adjacency matriz, then
® i1 = —fin
o [ > 2
o The eigenvalue uy has a strictly positive eitgenvector

Proposition 4.4. If G is connected, then p, = —p1 if and only if G is bipartite.

Lemma 4.5. Let A be symmetric and S be a subset of its row and column indices then we have

Amaz(A) Z )\maw(A(S)) > Amzn(A(S)) > )\mzn(A)



Chapter 5

Spectral Information

We have seen some interesting facts in the first preliminary chapter. Here we basically focus more
on the eigenvalues stuff.

5.1 Eigenvectors of the Laplacian

The matrix M in previous chapter is general. We need the theorems because we want to study the
Laplacian matrix L and we want to know its eigenvalues.

By observing the above theorem, we should notice that the quadratic form 7 Lz is non-negative.
Hence the smallest eigenvalue A1 is 0. We can also show that Ay > 0 if and only if the graph
is connected. If the graph is disconnected, then we can construct two orthogonal vectors with
eigenvalue zero: consider we have two components, then one eigenvector can be constant on one
component and 0 everywhere else for the other component.

A2 has a name: algebraic connectivity of a graph [I]. When we relate Az to how well a graph
is connected, we are converting qualitative statements to quantitative statements.

An interesting thing is that if we compute all the eigenvectors of the Laplacian, and for each
node u, we use two of the eigenvectors as its cordinates say f;(u), fj(u) we can have very nice
embedding drawings.

5.2 The Courant-Fischer Theoerm

We have seen this theorem briefly before, now we give the complete verison of it.

Theorem 5.1 (Courant-Fischer Theorem). Let L be a symmetric matriz with eigenvalues A; <
Ao < ... < A\,. Then,

. 2l Lx 2T
AL = min max T = max min —
SCR™ zeS x'x TCR™ zeT xlx
dim(S)=k dim(T)=n—k+1

In previous chapters, we denote S as the eigenspace formed by the first k& eigenvectors. Also we
denote T as the complement space of the eigenspace formed by the first £ — 1 eigenvectors.

To see it more intuitively, when & = 1, then S is just the span of f; and T is all of R". For
general k, the optima will be achieved when S is the span of fi, ..., fr and T is the span of f, ..., fi.

15



16 CHAPTER 5. SPECTRAL INFORMATION

Proof. We only prove the first equlity because they are similar.
For x € Sy which is the span of f1, ..., fr, we decompose x:

k

T = Zcz‘fz'

i=1

so we apply the old trick,

k k
o L . D i1 )\ic? D iet )\kc% _
< = A\

T - k — k
T i1 € i1 €
Now we should explain the min g-grr» part. Essentially this says that we should pick a subspace
dim(S)=k
S of dimension k, among all candidates, we pick the S in which the maximum Rayleigh quotient
that = € S can make is minimized.
We pick T}, be the span of f, ..., f. Then we know S must have an intersection with T} because

their dimensions sum to n + 1.
! La yT Ly
max —= > max T
zeS I T yesSnT, Yy vy

We decompose y as
n

y= Z cifi
i=k
and so T " ) " )
y Ly 2 imh AiC > iz AKC — A\
yly PN D DU
This shows that all k-dimensional subspaces should have a lower bound on the Rayleigh quotient
Ak. The equality holds trivially. O

5.3 Bounds on )\,

We apply the Courant-Fischer theorem then we have

L 1))
A9 = min —
viwT1=0 V'V



Chapter 6

Graph Coloring

Definition 6.1. A coloring of a graph is an assignment of one color to every vertex in a graph
so that each edge attaches vertices of different colors.

It is easy to see that we are interested in using as few colors as possible.
Definition 6.2. The chromatic number of a graph, xa, is the least k for which G is k-colorable.

Lemma 6.3. A graph is 2-colorable if and only if it is bipartite.

6.1 Wilf’s theorem

Theorem 6.4. yg < [p1] + 1.

Proof. We order all the vertices. Then we look at the number k where
Vu, [{v:v <u,(u,v) € E} <k

Once we have the smallest x we can color the graph because for ¢ we can always pick a color
different from its previous less than s neighbours. Now we need to show x < [p1].

Since we know the average degree is less than p we put a node with that degree as n. For the
subgraph, meaning we remove the row/column corresponding to that vertex, the largest eigenvalue
of the new adjacency matrix is at most uq, so we put another node to n — 1 and we keep doing
S0. ]

Note that the graph’s max eigenvalue can be smaller than d,,q,; so the chromatic number can
be smaller than d,,q,; + 1 where we can easily show that all graphs can be colored by dpee + 1
colors.

6.2 Hoffman’s bound

Hoffman proved a bound on the chromatic number of a graph in terms of its adjacency matrix
eigenvalues that is tight for bipartite graphs.

17
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Chapter 7

Conductance

7.1 Isoperimetry and )\,

Here X is the second smallest eigenvalue of the Laplacian.

Definition 7.1. For a subset S of the vertices of a graph. One way of measuring how well S can
be separated from the graph is to count the number of edges connecting S to the rest of the graph.
It is the boundary of S':

9(S) ={(u,v) e E:ue Sv¢S}

Then we can define the isoperimetric ratio of S.

1a(s)
") =g

The isoperimetric number of a graph is the minimum isoperimetric number over all sets of at
most half the vertices:

h(G) = min h(S
(G) = guin, h(S)
Theorem 7.2 (Lower bound of Cheeger).
h(S) > X2(1 —s)

where s = |S|/|V|]. In particular
h(G) > A2/2

Proof. By the min-max theorem, we know for all vectors orthogonal to 1, we have
2 La > )\ga:Tac

Hence we construct an indicator vector xyg where

XS(U):{l u€eSs

0 otherwise

We can observe a nice feature:

XsLxs = > (xs(u) = xs(v)* =10(5)|
(u,w)EE

19
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To make xg orthogonal to 1, we make x = yg — s1. Then x satisfies everything. To finish the
proof we only need to see

Tz =15|(1 - s)

The isoperimetric number shows the worst connected part of the graph because it has the
least ratio. This is lower bounded by the second-smallest eigenvalue of the Laplacian. Hence
Ao shows how good a graph is connected: if it is large, then G is well connected. If

7.1.1 Complete Graph K,

Lemma 7.3. The Laplacian of K, has eigenvalue 0 with multiplicity 1 and n with multiplicity
n—1.

7.2 Conductance

In previous section we have seen some relationship between the isoperimetric parameter and the
second smallest eigenvalue of the Laplacian. To get tighter bounds and cleaner results, we use the
conductance and the second smallest eigenvalue of the normalized Laplacian.

Definition 7.4 (Conductance). We define

B 9(5)]
®(5) = min(vol(S), vol(V — S))

where vol(S) is the sum of the degrees of the vertices in S. Note that many similar, though slightly
different definitions appear in the literature, like
vol(V)O(S)
vol(S)vol(V — 5)

Also the conductance of a graph is

P; = min ¢
¢ = min ®(5)

7.3 The Normalized Laplacian

Definition 7.5. We define the normalized Laplacian:

L£L=DY2LD1/?

7.4 Cheeger’s inequality
Theorem 7.6. Let 0 =11 <1y < ... < v, be the eigenvalues of L. Then Cheeger gives us
% <@g < V219

Proof. For now we omit it and if we have time we go back to type in the proof. The harder part,
which is the square root part, should be one’s favorite theorem in spectral graph theory. O



Chapter 8

Random Walks

The details about random walks can be found in other books on Markov chains. Here we only see
its analysis in spectral graph theory.
The matrix form of a lazy random walk is

W:%u+D4m

The distribution of the walk p we use is a row vector, though in many places people use column
vectors. The difference is minor. Note that the degrees of different nodes are not necessarily the
same, hence the matrix may not be symmetric.

How do we deal with this matrix and how to see its eigenvalues? We borrow the normalized
Laplacian:

1

W:I—§U—D4m
S %Dq/z([ _ D’l/QAD’lﬂ)Dl/Q
1

. *D_1/2£D1/2
2

where £ =1 — D~Y24AD=1/2 [ is symmetric, hence D~1/2£D'/? is diagonalizable. Therefore W
is also diagonalizable.

Assuming we know f; and v; are the eigenvectors/eigenvalues of £, then we can prove that
f;DY? is a left-eigenvector of W of eigenvalue 1 — v; /2.

(szl/Z)W — (fZDl/Q) <I o ;D1/2£D1/2>
= [iDV? L LD
= f;D'? - Zf,D'/?
2
= (1-v;/2)f;D'/?

Note that because in Markov chain theory we usually use row vector. So here we adjust the
eigenvector to be left row vector. Essentially it is the same as using right column vector. Also

21



22 CHAPTER 8. RANDOM WALKS

here we use the advantage that £ is symmetric, so the eigenvectors are the same no matter which
form we would use. Also note that since W can be asymmetric, so these eigenvectors of W are not

necessarily orthogonal.

7~

the same thing.

Lazy random walk has some good features. One is that the eigenvalues of W are all between 1
and 0. Also from the above relationship, we can see the relationship between the eigenvalues
of the normalized Laplaican and the eigenvalues of the random walk matrix: w; = (1 —
So the second largest eigenvalue of W corresponds to 1 — v5/2. Then the spectral gap of
W is just v2/2. So when we use Cheeger to discuss the second smallest eigenvalue of the
Laplacian we are talking about the spectral gap of the random walk. They are essentially

N

8.1 The rate of convergence

We know the mixing time is related to the relaxation time: 1/ where «y is the spectral gap of the

random walk matrix.

Theorem 8.1. For all a,b and t, if pg = eq, then

[pe(b) — m(b)] <

To be consistent with our Markov chain stuff, we use row vectors.

Proof. First of all, we have
p(b) = pref
and we decompose poD_l/2 =>¢fi

pr = poW'

(=)
(o) (0w o

J

= (Z(l - Vi/2)tcifi> D'/?

= fiD? + [ Y (1 —wi/2)'cifi | DV?

i>2
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The last line is true because ;1 = 0. Also note that cllel/2 =, so we have
pe(b) = m(b) + Z(l —vi/2)teifi | DV2ef
i>2

Since pg = eq, hence
—1/2 T
¢ =eqD / fi

and

Y (U —vi/2)eifi | DVPef = | Y wieaDTV2 ST fi | DYef = deg(0) > wheaf fi ] ef

i>2 i>2 deg(a) i>2
We upper bound the right hand side.
D owieafl fi | ep | <Y wileafl I fie | Swh ) leafilIfiey] < o
i>2 i>2 i>2
We know wy = 1 — 15/2. So when converging t = O(logn/vs). O

Note that this proof is very classic. We should memorize it. How? KEssentially we decompose
the product of W and notice that the first eigenvector is related to w. Then the rest is to bound
the rest of the decomposition using the second largest eigenvalue.
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Chapter 9

Expanders

Intuitively expanders are graphs that connect well. For a set of vertices within an expander graph,
we can expect it to have a lot of neighbours and that is why people like expanders.

Definition 9.1. Expander graphs are an incredibly useful family of graphs. An expander is a
graph with constant vertex degree and constant conductance.

An expander family is a sequence of graphs of increasing numbers of vertices if there
exist constants d and ¢ such that every graph in the family has degree d and conductance at least

0.
The spectral characterization of expanders is:
|Ai —d| <ed,Vi>2
Random d-regular graphs are expanders with high probability.

9.1 Approximations of the Complete Graph

By introduing the approximation of graphs, we use this theory to determine good graphs when we
cannot achieve complete graphs.

Definition 9.2. An e-expander is a d-reqular graph such that
|pi < ed

fori > 2 where p1 > ... > uy are the eigenvalues of the adjacency matriz. The Laplacian eigenvalues
are
Ai =d —

which is equivalent to what we have above.

Note that if the spectral gap is a constant, then the mixing time is also of order logn which is
very small.

Definition 9.3. A graph G is e-approximation of a graph H if
1-¢eH<G=<x(1+e¢H

where H X G means for all x,
:BTLH:B < mTLGa:

25
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9.2 Vertex Expansion

FExpanders have a good property: for a small set of vertices, it has unusually large number of
neighbours.

Theorem 9.4. Let G = (V, E) be a d-regular graph on n vertices that e-approximates %Kn. Then
forallSCV,

() >

where |S| = an

9.3 Ramanujan graphs
The Ramanujan grpahs constructed by Margulis [3] and Lubotzky, Phillips and Sarnak [2] achieve

< 2vd -1
e< 2V~
- d
What does it mean? It means the Ramanujan graph can be very close to a complete graph in
terms of the adjacent matrices.
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