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1 Previous Research Track
Record

1.1 Highlights

The key prior items of work are the MetiTarski theorem
prover (Cambridge) and the RAHD decision procedure
(Edinburgh). RAHD1 is a proof procedure for
polynomials over the reals, and MetiTarski additionally
is tailored for handling special functions such as log,
exp, sin and cos. Both systems are well beyond the first
prototype stage, and both have already shown
world-leading characteristics [1, 2, 10, 20, 25, 24, 26].

However our experiments have also made us very
aware of gap between their current capabilities and
what is needed to support formal verification of hybrid
systems – the primary application domain we are
considering. Our previous work has thrown up a
wealth of ideas for enhancing MetiTarski and RAHD,
and we put forward this proposal as an opportunity to
explore and realise these ideas. Further, we are very
excited by the potential of a unified RAHD-MetiTarski
system that combines the strengths of each. Hence we
are not submitting two separate proposals, but rather
this joint proposal to bring work on these two systems
together.

1.2 In more depth

Lawrence C. Paulson is Professor of Computational
Logic at the University of Cambridge, where he has held
established posts since 1983. One of his main activities
is developing proof tools. His early work made
fundamental contributions to Prof. M. J. C. Gordon’s
proof assistant, HOL. In 1986, Paulson introduced
Isabelle [22], a generic proof assistant. Isabelle
supports higher-order logic (HOL), Zermelo-Fraenkel
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set theory (ZF) and other formalisms. Starting in 1996,
he made significant advances in the verification of
security protocols. More recently, Paulson developed
MetiTarski, an automatic theorem prover for functions
such as logarithms and exponentials. In 2008, the ACM
designated him an ACM Fellow “for contributions to
theorem provers and verification techniques.”

Paulson’s work has had a major impact. His
H-index is approximately 42, which means that he has
published over 42 papers each of which has been cited
at least 42 times. His top five publications have been
cited approximately 3660 times. (Data from Google
Scholar.) His work on Isabelle has had a profound
impact on research in the UK; for example, Prof Alan
Bundy’s current EPSRC grant portfolio includes nearly
£2 million worth of Isabelle-related projects. Paulson’s
work on computer security will eventually improve the
quality of life of everyone living in the UK, because
improved security will reduce the incidence of identity
theft and similar crimes.

The project will be done within the Cambridge
Automated Reasoning Group. This group has built two
of the world’s leading proof environments: HOL and
Isabelle. Hardware verification was pioneered here by
Prof. Gordon and his students. Our HOL technology
has become part of the design workflow for major
companies such as NVIDIA and Intel. Isabelle is used
as a research tool in most of the world’s advanced
countries.

The EPSRC has funded several projects at
Cambridge with Paulson as the principal investigator.
Most relevant is Beyond Linear Arithmetic: Automatic
Proof Procedures for the Reals (EPSRC ref.
EP/C013409/1), 2005–08. This project investigated
advanced methods of proving theorems about the
transcendental functions: log, exp, sin, cos, etc. It
delivered the MetiTarski theorem prover [1] and
demonstrated its potential for verifying hybrid systems
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[2] and analogue circuits [10]. MetiTarski is the focus
of the Cambridge half of this proposal.

Paul B. Jackson is Lecturer in the School of
Informatics at the University of Edinburgh, where he
has held established posts since 1995. His research
interests since 1988 have been in the development and
use of formal verification technologies, principally
theorem provers and model checkers. Jackson gained
his PhD in 1995 from Cornell University for work
which included formalising computer algebra
algorithms in the Nuprl interactive theorem prover, and
extending the prover with linear arithmetic decision
procedures. In 2010, he was elected as a trustee of the
Calculemus Interest Group, a leading international
consortium of researchers working towards the
integration of algorithms for algebraic symbolic
computation and mechanical theorem proving.

Most recently, Jackson’s work has centred around
(i) the development of novel decision procedures for
non-linear real arithmetic, and (ii) the use of SMT
(Satisfiability Modulo Theories) solvers to verify
high-integrity programs.

He has overseen the design and development of
the RAHD decision procedure for non-linear real
arithmetic by his Ph.D. student Grant Passmore, and
has authored the Victor tool for the verification of
SPARK Ada programs by high-performance SMT
solvers. RAHD is the focus of the Edinburgh arm of this
project. Both of these efforts have resulted in robust
tools which are being taken up both by other
researchers and by industry.

The development of these tools has led to strong
research relationships between Jackson, Passmore,
Microsoft Research, Altran Praxis, AdaCore, SRI
International, and INRIA/IRISA. We plan to continue
these collaborations and take full advantage of them to
improve the practical impact of this work.

Jackson also has expertise in integrated circuit
design and verification that will enable him to stimulate
and guide our efforts to apply our work in the field of
formal analogue hardware verification. He has an
undergraduate studies in electronics, 2 years work
experience as an integrated circuit designer, and has
regularly taught hardware verification courses and
supervised projects at the Institute for System-Level
Integration, a partnership of four Scottish universities
and the electronics industry.

The EPSRC has funded multiple projects at
Edinburgh with Jackson as investigator. He was PI on
Hardware Verification by Combining Model Checking
and Theorem Proving Technologies (GR/N64243/01),
2000–2004, and has been coinvestigator on three
platform grants, the two most recent entitled The
Integration and Interaction of Multiple Mathematical
Reasoning Processes (GR/S01771/01, 2002–07 and
EP/E005713/1 2007–11).

This project will be done within both the
Laboratory of Foundations of Computer Science and
the Mathematical Reasoning Group of the University of
Edinburgh. Both groups are world-leaders in the theory
and practice of decision procedures and mechanical
theorem provers.

Jackson is a member of EU COST Action IC0901:
Rich-Model Toolkit - An Infrastructure for Reliable
Computer Systems2 which started in October 2009 and
runs for 4 years. The central topic of this Action is the
integration of automated reasoning and synthesis tools
to support formal hardware and software verification.
The Action funds activities such as visits and meetings
to encourage coordination of research between Action
members. Members have expertise in SMT solvers and
in techniques for non-linear arithmetic reasoning, and
have expressed interest in the reasoning services this
proposal shall provide. We shall collaborate with other
Action members and present our work at Action
meetings.

Grant Passmore is currently completing his PhD
at the University of Edinburgh. He is Edinburgh’s
designated Research Assistant and will undertake much
of Edinburgh’s part of the work plan. He is one of the
world’s leading experts on RCF (real-closed fields)
decision procedures and is the developer of RAHD.
With Jackson, he has co-authored a paper on
combining Gröbner basis calculations with a restricted
variant of cylindrical algebraic decomposition for
many-variable non-linear real arithmetic [26]. With de
Moura (of Microsoft Research, and the author of the
SMT solver Z3) and Jackson, he has co-authored papers
on a new breed of Gröbner basis algorithms based on
high-performance saturation loops used in resolution
theorem provers [24, 25]. These Gröbner basis
algorithms significantly out-perform previously
available methods for classes of large non-linear
polynomial systems arising in industrial program
verification, and are being used by Passmore and de
Moura as the foundation of new decision methods for
non-linear real arithmetic in both RAHD and Z3.

Over the period of his PhD studies, Passmore has
held a 5 month Visiting Fellow position at SRI
International and a 3 month internship at Microsoft
Research. The first supported the development of an
initial RAHD prototype and the second this
investigation of new Gröbner basis algorithms tailored
to formal verification needs. This proposal builds on
the close research relationship Passmore has with both
these research centres, and we expect fruitful
mutually-beneficial collaborations with both over the
course of this project.

2http://richmodels.epfl.ch/
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2 Proposed Research

2.1 Background

Highlights

Hybrid systems – control systems and their
environments, for example – are ubiquitous in today’s
technological society and we all depend on their safety
and predictability. Formal approaches to verifying that
hybrid systems behave as expected promise much
stronger guarantees of correctness than the main
analysis techniques in use today. However, their
practicality is restricted by the current capabilities of
underlying automated reasoning engines. The
proposed research will radically enhance core
reasoning engines and hence enable much improved
formal verification of hybrid systems.

The core engines addressed in this proposal
involve procedures for proving mathematical assertions
involving polynomials and special functions over the
reals. The proposal brings together world-class experts
in such procedures: Paulson, whose MetiTarski system
is virtually unique in handling special functions, and
Passmore, whose RAHD system integrates the best of a
variety of current approaches for polynomials.

The key idea is to combine these two systems and
further enhance each to produce a new system with
radically improved capabilities. Further, we plan to
collaborate on integrating major components of our
new system into SMT solvers. These are the central
reasoning components in many current formal
verification approaches, but currently they have
non-existent or limited capabilities for handling
polynomials and special functions.

A critical element of our proposal is that we engage
with application domains from the start, to ensure we
steer our research in the most fruitful directions: much
of our success will depend on targetting classes of
problems with particular structure that we can exploit.

In more depth

Automatic decision procedures are central to most
practical applications of formal methods. These
procedures address problem domains such as
propositional logic, uninterpreted functions with
equality, arrays and linear arithmetic, which are
ubiquitous in applications. Much progress has been
made since the pioneering work of Nelson and Oppen
[21] and Shostak [34] 30 years ago. Modern methods
can solve problems that are orders of magnitude larger.
However the problem domains tackled have changed
little. Our project concerns automatic tools and
techniques for solving classes of problems that have
even higher intrinsic complexity: inequalities involving
polynomials or real-valued special functions. Such
problems are common in hybrid system applications
that involve continuously-varying physical quantities.

There will never be a decision procedure for
special function inequalities because the problem is
undecidable, but there is an automatic theorem prover:
MetiTarski [1]. This software system, developed with
EPSRC funding, has a unique and novel architecture: it
combines a resolution theorem prover (Metis) with a
decision procedure for the theory of real closed fields
(QEPCAD [3]). The decision procedure simplifies
clauses generated by resolution, deleting literals that
are inconsistent with other facts. MetiTarski
automatically proves theorems such as

0 ≤ x ≤ 2 =⇒

14.2 exp(−0.318x) −[
3.3 cos(1.16x) − 0.16 sin(1.16x)

]
e−1.34x < 12

This formula, which arises from a collision avoidance
system [33], is proved in under 3 seconds. This sort of
problem arises in several types of control and
engineering applications. We have successfully applied
MetiTarski in the verification of two classes of systems:

1. Linear systems described by a linear differential
equation. Applying a Laplace transform yields a
closed-form solution; we are left to prove an
inequality typically involving the exponential, sine
and cosine functions. MetiTarski proves many
such inequalities easily [2].

2. Analogue circuits, such as tunnel diode oscillators.
These models are especially hard to verify since
they are described by nonlinear differential
equations, and we have approximated them by
piecewise linear differential equations in order to
obtain a hybrid linear model [10].

MetiTarski delivers explicit proofs that can be checked
without performing search. Few tools exist that can
solve such difficult problems while delivering evidence
of correctness. To the best of our knowledge, nobody
else in the world is investigating automated proof
procedures for special functions. The most relevant
related work involves interval arithmetic [8, 31].

The decision problem for polynomial inequalities
(more formally, real-closed fields or RCF [13]) has been
known to be solvable since the 1930s. The decision
problem is intractable, with doubly exponential
complexity [7], but many special cases can be solved
with reasonable efficiency. For instance, an existentially
quantified variable appearing at most quadratically in a
formula can be eliminated in polynomial time.

Such decision method “sweet spots” can routinely
solve problems in many more variables than those
solvable by general methods. Moreover, decision
methods for such fragments can often be combined to
solve problems beyond the reach of any individual
method. RAHD [26] (Real Algebra in High Dimensions)
is an RCF decision procedure which tightly integrates a
heterogeneous collection of decision methods
operating within their respective “sweet spots,” and
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incorporates a number of heuristics for intelligently
combining them. In doing so, RAHD is able to solve
problems in many variables, and can be tailored to
solve problems of a particular shape; in this way, it can
be tuned to particular applications.

Our project will develop MetiTarski and RAHD in
conjunction. MetiTarski will be integrated with an
interval arithmetic constraint solver. RAHD will replace
QEPCAD as the decision procedure component of
MetiTarski. Our project will pursue a variety of
ideas—such as recent advances in algorithmic algebra
and algebraic geometry—for improving the scope and
performance of both systems.

Applications we shall explore as sources of
problems to direct our research include analogue
mixed signal electronics, air traffic control and
engineering control systems. All these systems are
instances of hybrid systems. We shall also provide
specialist automated reasoning services to other formal
verification tools closer to the applications. Examples of
such tools include the KeYmaera theorem prover for
hybrid systems verification, the hybrid-SAL hybrid
systems model checker, general purpose interactive
theorem provers such as Isabelle, PVS and Coq,
verification condition generators for programming
languages such as SPARK-Ada, and SMT solvers such as
Z3 and Alt-Ergo. Whenever possible, we shall
collaborate with experts in the application areas and
with developers of these other formal verification tools.

2.2 Research Hypothesis and Objectives

Our research hypothesis is that

automatic proof procedures for polynomials
and special functions can be made powerful
enough to solve engineering problems of
realistic size.

We intend to demonstrate this by improving our
existing software tools and by applying them to
problems derived from real-world engineering
domains. We shall investigate a variety of heuristics
and techniques, described below.

The most exciting new developments in the field
of decision procedures concern non-linear real
arithmetic. Researchers have developed novel decision
methods for fragments of RCF. While their approaches
vary widely, they generally take the view that full RCF
quantifier elimination (as in QEPCAD) is usually
overkill: simply deciding the satisfiability of low-degree
formulas is often sufficient. Impressive milestones on
this path include sums of squares methods based on
semidefinite programming [17, 23], methods based on
Gröbner bases and ideal saturation [30, 39], virtual
term substitution (VTS) with integrated simplification
and dimensional reduction [11], combinations of VTS
and partial CAD [37], PSPACE methods based on critical
point analysis and connected component sampling [4],
and powerful techniques based upon combinations of

control methods and interval arithmetic [8, 31]. RAHD
has been developed with the goal of (i) providing
robust implementations and enhancements of these
new techniques, and (ii) developing automatic methods
for orchestrating their combination.

MetiTarski’s chief limitation is that it can only
handle problems in a few variables. This limitation
stems from QEPCAD, whose complexity in the number
of variables is hyper-exponential. While QEPCAD is old
and largely unsupported, RAHD is under active
development and has been tailored to solve problems
generated by MetiTarski. Improvements to RAHD will
allow MetiTarski to solve problems in 10 variables,
enough to express many deep problems. Integrating
MetiTarski with an interval arithmetic solver could relax
the restrictions on variables entirely.

The assessment criteria are thus as follows:

• The size and complexity of the formulas processed
by MetiTarski and RAHD. Complexity can be
measured in several ways, including the number of
variables, the maximum polynomial degree and
the maximum nesting depth of special functions.

• The scale of the engineering problems that can be
modelled and verified using our tools.

The project will produce two main deliverables:

• Substantially improved versions of our software.
• An enormous corpus of test data. We already have

thousands of problems; we shall augment this
with many application-level problems.

2.3 Programme and Methodology

Cambridge will focus on MetiTarski: refinements to the
software, experiments with new techniques and
application case studies. Edinburgh will similarly focus
on RAHD. Including RAHD as a component of
MetiTarski will give the two sites a common vision: to
develop automatic procedures for solving mathematical
problems that go far beyond the comfortable realm of
linear arithmetic.

Programme of work (Cambridge)

The Cambridge work will be done by a Research
Assistant and a PhD student, with a significant
contribution (20%) from the principal investigator.

Task 1: Developments to MetiTarski. A few
specific improvements will dramatically improve
MetiTarski’s power and performance:

The RCF decision procedure is a crucial
component. RAHD will replace QEPCAD; we shall also
consider REDLOG [12] and other RCF procedures that
emerge in the course of the project. It is easy to allow
MetiTarski to invoke multiple decision procedures.

Interval arithmetic constraint solvers [15, 32] are
another technology that could solve problems involving
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special functions. Their strengths and weaknesses are
complementary to RCF decision procedures: they are
less sensitive to the number of variables, but they often
fail for other reasons. We shall integrate an interval
arithmetic solver with MetiTarski, where it will play a
similar role to the RCF procedure: simplifying clauses
and identifying redundant ones. For example, it could
simplify the clause x ≤ 1 ∨ x ≥ 2 ∨ log x > 1 to
x ≤ 1 ∨ x ≥ 2, eliminating an occurrence of logarithm.

MetiTarski can support a huge class of
mathematically well-behaved functions. It currently
uses a fixed set of axioms that describe upper and
lower bounds for special functions. These bounds are
typically rational functions derived from Taylor or
continued fraction expansions. We shall identify
bounds for other functions needed for our applications,
for example, the Bessel functions Jν(z). We shall also
implement a mechanism to introduce bounds of
increasing accuracy automatically.

This Task will be done by the PI, supported by the
Cambridge Research Assistant.

Task 2: A Front-End for MetiTarski. MetiTarski
currently accepts problems in the form of text files.
Converting a real-world problem to such a text file
requires many tiresome manual steps. This workflow
must be automated before MetiTarski will be taken up
by outside users. Therefore, we shall write a
problem-oriented user interface to MetiTarski. Such an
interface could accept a user’s problem in a more
natural form and output a MetiTarski problem file, or
simply call MetiTarski and display the results. The
interface will perform the following functions.

• Invocation of an external computer algebra system
in order to solve problems that involve differential
equations. Currently, the user must transfer the
output of a computer algebra system into a
MetiTarski input file using copy and paste.

• Support for range reduction. A problem involving
ln t where t ≈ 100 should be transformed by
ln t = ln(100) + ln(t/100) because our bounds for
ln x are most accurate when x ≈ 1. Our front-end
could identify the need for range reduction using
interval analysis, then apply it.

• The ability to apply simplifying problem
transformations. One example is to replace a pair
of terms sin t, cos t by a pair of variables x, y
constrained by x2 + y2 = 1, creating a more
abstract and often easier problem.

• Support for inspecting proofs, based on the
Interactive Derivation Viewer [40], and possibly
for diagnosing failing proof attempts.

We shall also make MetiTarski more robust, with better
error messages and documentation. Our objective is to
transform our research prototypes into useful tools for
the scientific community. You cannot achieve impact
without usability.

Activities in this task will also support the
construction of rich interfaces to other formal
verification tools, as required by other tasks.

This Task will be done by the Cambridge RA.

Task 3: Case studies using MetiTarski. We shall
focus on a suitable engineering application and develop
a methodology for verifying that the engineer’s
specified design goals are met.

Our primary candidate for an application area is
analogue and AMS (analogue mixed-signal) circuit
verification. Currently steady state, frequency domain
or time domain (simulation-based) analysis of analogue
circuits must be repeated for a sample of values for
fabrication-process parameters and operating
conditions (supply voltage, ambient temperature).
Much experience is needed to judge when the sample
set is sufficient. There are benefits to integrating
analogue and digital circuits on SoC (System-on-Chip)
devices using the latest process technologies, but
analogue design engineers often hold back on this
integration and use separate older processes for
analogue and AMS circuits: the challenge is that the
latest processes have wider variability of process
parameters which makes it more difficult to ensure that
fabricated analogue and AMS designs will meet their
specifications. Formal analogue verification approaches
enable process parameters and operating conditions to
be handled symbolically rather than numerically; they
can address this challenge of wider variability.

This work will be initiated by the Cambridge PhD
student, who will investigate existing formal verification
methods and the role MetiTarski could feasibly play.
Expertise from the Edinburgh PI will also help guide this
initial phase. As we then progress to exploring
verification of larger designs, we will inevitably reach a
point beyond which further progress is only possible
after significant improvements to our tools and
modelling techniques. Other team members will
therefore share in this task, and this task will help
shape the direction of other tasks.

An example of an advanced issue we expect to
encounter is that differential equations used in designs
will not necessarily be linear, and are unlikely to admit
closed-form solutions. However, a differential equation
that is part of the model of a sound engineering design
will naturally not be expected to exhibit chaotic
behaviour. Many such equations will pass the Painlevé
test [6], and the solution to such an equation can often
be expressed in the form of a power series from which
upper and lower bounds can be obtained. Equipped
with these bounds, MetiTarski could reason about the
solution without requiring the equation to be solved
explicitly. This is one of many ideas that will allow us to
tackle a wide range of problems.
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Programme of work (Edinburgh)

The Edinburgh work will be done by a Research
Assistant and a PhD student, with significant
contribution (20%) from the principal investigator.

Task 4: Developments to RAHD. We shall improve
RAHD by using practical problems to guide the
development and implementation of new RCF decision
techniques. We shall develop methods for combining
these techniques to significantly increase the size of
real-world problems soluble by RAHD and MetiTarski.

Many new approaches (RCF “sweet spots”) have
appeared recently in the algorithmic real algebraic
geometry community but have not been exploited
sufficiently. These include

• virtual term substitution and dimensional
reduction methods of Redlog [12],

• PSPACE sampling and critical point methods of
SALSA/Raglib [4],

• a new way of computing CADs by complex
triangulation, prototyped in Maple [5],

• recent improvements to general CAD in
Mathematica [35],

• techniques for paving high-dimensional real
solution sets in RealPaver [15],

• interval methods for numerically robust predicates
found in RSolver [31], and

• methods for computing Real Nullstellensatz
witnesses via SOS and Gröbner bases found in
KeYmaera [29].

We shall investigate these published RCF decision
methods as well as developing novel techniques
tailored to classes of problems encountered in practice.
This line of research has the potential to deliver both
theoretical and practical advances.

This task will be primarily undertaken by the
Edinburgh RA.

Task 5: Integration of RAHD with MetiTarski. As
stated in Task 1, RAHD will become the RCF decision
procedure for MetiTarski. But there are many other
possibilities for obtaining a deep and extensible
integration of these two tools.

For example, RAHD allows users a high level of
control over the strategies used to combine its decision
methods. We shall further develop these control
mechanisms in RAHD so that they are easy to exploit
by users of MetiTarski.

We shall also investigate new ways in which RAHD
can contribute to MetiTarski proof search. Currently,
the RCF procedure is used by MetiTarski to simplify
clauses by eliminating contextually inconsistent ground
arithmetical facts. RAHD computes much global
information about the real solution space that could be
communicated to MetiTarski.

This task will be undertaken jointly by the
Edinburgh RA and the Cambridge PI.

Task 6: Integration of RAHD with SMT solvers.
We shall develop a version of RAHD tailored to the
needs of SMT solvers. Several research groups
producing high-performance SMT solvers have
requested that we undertake this work. As many
industrial program verification systems use SMT solvers
as their theorem proving back-end, this will have
immediate impact by allowing more programs with
non-linear arithmetical components to be verified.

Some preliminary work has been done in this
direction. De Moura and Passmore have given
structure-sharing methods for minimising complex
Nullstellensatz proofs to ‘UNSAT cores’ in the context
of SMT decision loops [9]. Much further work, both
theoretical and practical, must be done to obtain a
robust integration of RAHD and high-performance
SMT. SMT teams we have had contact with include
those for Z3 (Microsoft Research) Yices2 (SRI), CVC3
(New York University and University of Iowa),
OpenSMT (Università della Svizzera) and Alt-Ergo
(INRIA Saclay - Île-de-France). We expect to actively
collaborate with a subset of these teams, perhaps
eventually focussing our integration activities on just
one or two of these solvers. This task will be
undertaken primarily by the Edinburgh RA.

Task 7: Tool Integration and Case Studies with
RAHD and MetiTarski. Real polynomial and special
function constraints arise in virtually all mathematical
sciences. Non-linear decision procedures therefore
have numerous applications, and our overriding
objective is to ensure that our decision procedures
scale up sufficiently.

Many formal verification tools need improved
support for non-linear real arithmetic. We shall
integrate RAHD and MetiTarski as trusted reasoning
components in a number of such tools. We shall then
apply these integrations in practice.

Verification domains for which non-linear decision
procedures are already finding use include control
systems [41], hybrid systems [38], aircraft collision
avoidance [28], robot motion planning [14], metric
geometry [27], loop invariant generation [19],
numerical algorithms [8], physical networks [36], and
formalised mathematics (Hales’s Flyspeck project [16]).

We shall seek to integrate MetiTarski and RAHD
with a number of interactive proof tools, with the
assistance of the corresponding development teams.
Specifically, we have in mind Isabelle/HOL from
Cambridge and Munich, PVS from SRI International and
Coq from INRIA. Preliminary integrations of RAHD
with PVS and Coq are ongoing and will be extended.
We shall also integrate RAHD and MetiTarski with the
hybrid systems analysers KeYmaera from Carnegie
Mellon and HybridSAL from SRI International. Target
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applications for which improved non-linear arithmetic
reasoning has already been requested include the
verification of aircraft collision avoidance algorithms in
PVS and KeYmaera, physical layer protocols in
HybridSAL and Isabelle/HOL, and Java byte code in
Coq. Non-linear reasoning is much needed for verifying
SPARK-Ada programs [18], and, as the integration of
RAHD with SMT solvers from Task 6 becomes
available, we shall also be pursuing this application.

To reach a wider audience, we shall integrate parts
of our software with the Sage computer algebra
system.3 Sage is open source and welcomes
contributions: QEPCAD, for example, is a component
of Sage.

This array of applications will provide us with a
rich collection of practical problems of various forms,
guaranteeing our software to be effective over broad
classes of problems from different domains.

Most the work here will be undertaken by the
Edinburgh PhD student and the Edinburgh PI.

Project management

Project management should be straightforward, in view
of the clear separation of tasks between Cambridge and
Edinburgh. Each site will have weekly project meetings,
and there will be joint project meetings every quarter
as well as extended visits by project staff to the
opposite site. We are already using collaboration
technology: project files are managed in a Subversion
repository, hosted at Cambridge; we are trialling
Google Wave as an informal blackboard to exchange
ideas. An equally simple management structure has
supported the development of Isabelle by Cambridge
and Munich since the early 1990s.

2.4 Relevance to Academic Beneficiaries

The project will deliver robust, documented
mathematical software that will support applications in
engineering and applied mathematics. The project has
the objective of finding applications in control
engineering and hybrid systems. Decision procedures
for RCF are a crucial component in many reasoning
tools, such as KeYmaera [29], a hybrid system verifier.
MetiTarski and RAHD will be valuable to research
communities in the mathematical sciences. By
integrating our software with heavily-used formal
verification tools and with the Sage computer algebra
system, we shall put our software at the disposal of
thousands of users.

Our findings and our vast corpus of test data will
be valuable to researchers studying automatic theorem
proving and decision procedures. Relevant fields of
computer science include formal methods/verification,
computer algebra, computational logic and artificial
intelligence.

3http://www.sagemath.org
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