Computational Logic
and the Quest for Greater Automation

Lawrence C Paulson, Distinguished Affiliated Professor for Logic in Informatics
Technische Universitat Minchen

(and Computer Laboratory, University of Cambridge)



Themes of This Lecture

|. Logic and the Real World

ll.Computers, Logic and Mathematical Proofs

lll. Achievements

V. The Quest for Greater Automation



. Logic and the Real World




The Two Forms of Logical Reasoning

¢ Inductive logic draws general e Deductive logic draws specific
conclusions from observations conclusions by “pure reasoning”
from axioms

e |t is the basis of science, and it
concerns the real world ¢ |t is the basis of mathematics

e ... but it never gives an absolute e ...and is 100% certain, except
YES or NO. for human error.



Chickens Can Reason Inductively!

The man is our friend!

...oris he?



Can People Reason Deductively?

e A Sudoku has just one solution.

e An answer is right or wrong—
the rules are simple and clear.

e Chickens can’t solve this, and
neither can most people.

e However, as a logic problem,
it’s trivial!



What Can Deduction Say About the Real World?

e Self-assembly furniture is like a
Sudoku:

¢ millions of combinations, but
only one solution.

e Chickens can’t solve them, and
neither can most people.

e Deduction can help solve real-
world problems, if we can find
the right mathematical model.



What is the Right Type of Model?

Too simple: deductions about , ,

this say nothing about how to
build the real bookshelf. > |1 | <;

Too complicated: do we really
need to understand the fine
structure of the wood?

A good model will identify the
problem’s important features.



I. Computers, Logic and Mathematical Proofs




Myth: “Computers Can’t Do Logic”

e Reason 1: Gddel proved it was impossible.

He didn’t.

e Reason 2: Church did prove it was impossible. (No computer can answer all
problems in first-order logic.)

Computers can still help in many cases.

e Reason 3: Whitehead and Russell needed 362 pages to prove 1+1=2!

There are other ways of formalizing mathematics —
or, would you fly in a 100-year-old aeroplane?



A Formal Proof of 1+1=2 (Back in 1910)
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What’s In a Formal Logic”?

e Syntax: a grammar for logical statements
e Semantics: a definition of what each grammar element means

¢ Proof theory: mechanisms for transforming problems into simpler problems
(typically consisting of axioms and inference rules)

* Computers handle the syntax and proof theory. The semantics is for us.



A Simple Formal Logic: Boolean Satisfiability

e A problem is a list of OR-statements. Can they all be true at the same time?

rainy | cloudy | sunny

—sunny | hot “if sunny, then hot”
—rainy | wet “if rainy, then wet”
—hot
-wet

¢ \We conclude that it must be cloudy. A SAT-solver can handle problems
100,000 times this size.

e |s this logic trivial? No, it has endless applications, such as finding bugs in
Microsoft device drivers—or solving Sudokus!



The Classic Formalism: First-Order Logic (FOL)

e for all X, Y and Z, if father(X,Y) and father(Y,Z) then grandfather(X,2)
vX'Y Z. father(X,Y) & father(Y,Z) — grandfather(X,Z)
e for all X, there exists y such that father(X,Y)
vX. 3Y. father(X,Y)
¢ Much of mathematics can be expressed in FOL.

e Powerful automatic provers exist. (Unlike SAT-solvers, they are hardly used.)



Limitations of Automatic Proof Tools

e |f automatic software is so powerful, why do we need anything else?
Because it restricts us to small problems and simple models.
® \With richer formalisms, we could model almost anything:

® computer processors

® networked systems Lo=0
La—l—l — D(La)
® security environments Lo = U L¢
E<a
® advanced mathematics L = U L,



Interactive Theorem Proving

¢ Formal logics with deeper e Users prove the theorems:
concepts: functions, sets,

induction, recursion. e The software knows what proof

steps are legal at a given point.
e Hierarchies of mathematical books

(or “theories™): e It helps by doing basic steps

automatically.
e Each book defines some

concept, such as cryptography. e \We are constantly adding to this

automation.
e Books can build on other books,
so developments can be huge.



Isabelle: A Generic Interactive Prover

e Generic means the user can e Over the years, researchers at TUM
introduce new logical formalisms, in have given Isabelle...
addition to the standard ones.

¢ an elaborate formalization of
¢ The syntax and axioms can simply higher-order logic;
be listed.

¢ a structured language, Isar, for
¢ A general mechanism, called writing proofs in traditional style;
higher-order unification, combines

separate proof steps. e automatic typesetting of

mathematical proofs.



Ill. Achievements




Verified Computer Systems

human
judgement

computer
proof

® (Goal: to increase reliability through a mathematical
proof of correctness

® Results are only as accurate as the formal model.

® Traditional testing guards against errors in the model.



How to Verify a Computer System

¢ Define what it means for a
computation to be OK.

e Safety means nothing has gone
wrong (so far).

® Progress issues—does it do
anything?—are reduced to
safety properties.

e Show all initial states to be OK.

e Show that-all possible actions yield
an OK state if they start in one.

® The model needs to include enough
detail about states and possible
state changes.



Verification Example: Security Protocols

PURCHASE REQUEST e Whom are you talking to really?
CARDHOLDER MERCHANT
COMPUTER INITIATE COMPUTER
REQUEST
CARDHOLDER , : e Can a spy on the Internet trick your
REQUEST . . . ,?
bank into revealing your details”
RESPONSE CERTIFICATE(S)
CARDHOLDER
RECEIVES . .
RES:NCI):)NSE P:;&'l"g? ® In ISabe”e, I’ea|IStIC mOde|S Of
AEaUEST , protocols can be formalized.
MERCHANT
PROCESSES
PURCHASE REQUEST
CARDHOLDER RESPONSE MESSAGE
RECEIVES "
PURCHASE | 4| |+ * Industrial protocols such as SET
(Secure Electronic Transaction) can be

roved correct.
These message exchanges use P

encryption to keep data secret while
authenticating the remote computer



Veriflied Mathematics

e Mathematical techniques are of

unlimited variety and sophistication.

¢ \erifying known mathematics helps
us improve our tools.

e Algebra requires a flexible
treatment of abstractions.

e Real analysis requires special
solvers for inequalities.

¢ Formalization finds exceptional
cases and can yield historical
insights.

e Known proofs of the Four Colour
Theorem and of the Kepler
Conjecture are too complicated for
manual methods.



Isabelle Milestones in Verifled Mathematics

e Equivalents of the Axiom of Choice: e The relative consistency of the
Grabczewski (1996) verified two axiom of choice: was Godel right to
chapters of this famous book by claim that his proof did not require
Rubin and Rubin. meta-mathematical reasoning?

e Newton's Principia: Fleuriot (1998) ¢ The prime number theorem: Avigad
combined geometry with non- (2004) formalized this landmark of
standard analysis to formalize number theory.

Newton’s logic and check some
proofs.

e Jame graphs: Nipkow and
colleagues (2006) are contributing
to the effort to prove the Kepler
Conjecture formally.



Veriftying Newton’s Principia

* Newton’s great book on motion and
gravity did not use the calculus.

e |In this proof of the inverse-square
law, he merely asks what happens
when “the points P and Q coincide.”

¢ Fleuriot formalized Newton’s
infinitesimal geometry using non-
standard analysis.

Proposition Xl: a

* He found an error in this proof, but body in elliptical orbit

found an alternative way to the result.



V. The Quest for Greater Automation




Interactive Proof: What'’s the Catch?

® Proving theorems interactively
is like building one of these.

e Even obvious facts can be
difficult to prove.

¢ |_egal proof steps are tiny, so
the proofs are long.

e The work can be tiresome and
frustrating...

e and only experts can do it.



Greater Automation: What’s Been Done?

e Most proof tools can use equations like X
this one to simplify formulas. x#z0= ; =1

* |sabelle can also use implications like X< )y y<z=—>x<2z
these to search for proofs, using forward
and backward chaining ... xz2<yz,0sz=>x<Yy

¢ thanks to which it can prove
complicated things automatically. U(Ai UB;) = (U Aj ) U (U B; )

iel iel iel

Still we need more automation!



ldea 1: Combine Isabelle with Automatic Provers

e The best automatic provers—E, SPASS, Vampire—do much more than
chaining.

¢ To use them requires encoding Isabelle’s rich formalism into the spartan
language of first-order logic.

¢ They can beat Isabelle’s built-in provers, but not always: they will require
tuning before they become effective on problems generated by Isabelle.

¢ Parallelism can be exploited: we can call multiple provers, take the best result
and record it permanently.



ldea 2: Proving Inequalities

¢ \\e often need to prove formulas
involving functions like sin, cos, D<xyx<l=—e <1l+x+x°
exp, log. There is no general
solution procedure...

e but often the function is bounded
above or below by a polynomial
(at least in a finite range).

¢ Inequalities involving polynomials
can be solved using a procedure

for real closed fields. —1
(-x)*  (—x)° )
1+ (—x)+ 5 + 5 <l+x+x




ldea 3: Telling the User When to Give Up

e Often our problem has no solution: ¢ People at TUM have built tools for
warning Isabelle users of this

¢ the chip design isn’t correct, or situation.

e One way to do this is simply by
testing the problem on a few
values. (More complicated than it

e forgot to mention essential facts. sounds!)

e we have expressed it wrongly, or

¢ Trying to solve impossible problems
is a terrible waste of time!



The Future?

¢ Proof technologies of all sorts have developed rapidly.

¢ In the past, we have benefitted from faster processors,

¢ ... and now we are ready to exploit the new multi-core computers.
¢ | arge-scale trials are under way, such as the VeriSoft project,

e ... with other applications in the U. S. and Australia,

¢ ... and research projects in many countries.






