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I.  Logic and the Real World



The Two Forms of Logical Reasoning

• Inductive logic draws general 
conclusions from observations

• It is the basis of science, and it 
concerns the real world

• ... but it never gives an absolute 
YES or NO.

• Deductive logic draws specific 
conclusions by “pure reasoning” 
from axioms

• It is the basis of mathematics

• ... and is 100% certain, except 
for human error.



Chickens Can Reason Inductively!

The man is our friend!

...or is he?



Can People Reason Deductively?

• A Sudoku has just one solution.

• An answer is right or wrong—
the rules are simple and clear.

• Chickens can’t solve this, and 
neither can most people.

• However, as a logic problem, 
it’s trivial!



What Can Deduction Say About the Real World?

• Self-assembly furniture is like a 
Sudoku: 

• millions of combinations, but 
only one solution.

• Chickens can’t solve them, and 
neither can most people.

• Deduction can help solve real-
world problems, if we can find 
the right mathematical model.



What is the Right Type of Model?

Too simple: deductions about 
this say nothing about how to 
build the real bookshelf.

Too complicated: do we really 
need to understand the fine 
structure of the wood?

A good model will identify the  
problem’s important features.



II.  Computers, Logic and Mathematical Proofs



Myth: “Computers Can’t Do Logic”

• Reason 1: Gödel proved it was impossible.

He didn’t.

• Reason 2: Church did prove it was impossible. (No computer can answer all 
problems in first-order logic.)

Computers can still help in many cases.

• Reason 3: Whitehead and Russell needed 362 pages to prove 1+1=2!

There are other ways of formalizing mathematics—
or, would you fly in a 100-year-old aeroplane?



A Formal Proof of 1+1=2 (Back in 1910)



What’s In a Formal Logic?

• Syntax: a grammar for logical statements

• Semantics: a definition of what each grammar element means

• Proof theory: mechanisms for transforming problems into simpler problems 
(typically consisting of axioms and inference rules)

! Computers handle the syntax and proof theory. The semantics is for us.



A Simple Formal Logic: Boolean Satisfiability

• A problem is a list of OR-statements. Can they all be true at the same time?

rainy | cloudy | sunny
–sunny | hot! ! ! “if sunny, then hot”

–rainy | wet!! ! ! “if rainy, then wet”

–hot
–wet

• We conclude that it must be cloudy. A SAT-solver can handle problems 
100,000 times this size.

• Is this logic trivial? No, it has endless applications, such as finding bugs in 
Microsoft device drivers—or solving Sudokus!



The Classic Formalism: First-Order Logic (FOL)

• for all X, Y and Z, if father(X,Y) and father(Y,Z) then grandfather(X,Z)

∀X Y Z. father(X,Y) & father(Y,Z) → grandfather(X,Z) 

• for all X, there exists y such that father(X,Y)

∀X. ∃Y. father(X,Y)

• Much of mathematics can be expressed in FOL.

• Powerful automatic provers exist. (Unlike SAT-solvers, they are hardly used.)



Limitations of Automatic Proof Tools

• If automatic software is so powerful, why do we need anything else?

Because it restricts us to small problems and simple models.

• With richer formalisms, we could model almost anything:

• computer processors

• networked systems

• security environments

• advanced mathematics
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Interactive Theorem Proving

• Formal logics with deeper 
concepts: functions, sets, 
induction, recursion.

• Hierarchies of mathematical books 
(or “theories”):

• Each book defines some 
concept, such as cryptography.

• Books can build on other books, 
so developments can be huge.

• Users prove the theorems:

• The software knows what proof 
steps are legal at a given point.

• It helps by doing basic steps 
automatically.

• We are constantly adding to this 
automation.



Isabelle: A Generic Interactive Prover

• Generic means the user can 
introduce new logical formalisms, in 
addition to the standard ones.

• The syntax and axioms can simply 
be listed.

• A general mechanism, called 
higher-order unification, combines 
separate proof steps.

• Over the years, researchers at TUM 
have given Isabelle...

• an elaborate formalization of 
higher-order logic;

• a structured language, Isar, for 
writing proofs in traditional style;

• automatic typesetting of 
mathematical proofs.

!Isa
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lle



III. Achievements



Verified Computer Systems

• Goal: to increase reliability through a mathematical 
proof of correctness

• Results are only as accurate as the formal model.

• Traditional testing guards against errors in the model.

computer 

proof

human 

judgement



How to Verify a Computer System

• Define what it means for a 
computation to be OK.

• Safety means nothing has gone 
wrong (so far).

• Progress issues—does it do 
anything?—are reduced to 
safety properties.

• Show all initial states to be OK.

• Show that all possible actions yield 
an OK state if they start in one.

• The model needs to include enough 
detail about states and possible 
state changes.



• Whom are you talking to really?

• Can a spy on the Internet trick your 
bank into revealing your details?

• In Isabelle, realistic models of 
protocols can be formalized.

• Industrial protocols such as SET 
(Secure Electronic Transaction) can be 
proved correct.
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Verification Example: Security Protocols

These message exchanges use 
encryption to keep data secret while 
authenticating the remote computer



Verified Mathematics

• Mathematical techniques are of 
unlimited variety and sophistication.

• Verifying known mathematics helps 
us improve our tools.

• Algebra requires a flexible 
treatment of abstractions.

• Real analysis requires special 
solvers for inequalities.

• Formalization finds exceptional 
cases and can yield historical 
insights.

• Known proofs of the Four Colour 
Theorem and of the Kepler 
Conjecture are too complicated for 
manual methods.



Isabelle Milestones in Verified Mathematics

• Equivalents of the Axiom of Choice: 
Gr!bczewski (1996) verified two 
chapters of this famous book by 
Rubin and Rubin.

• Newton's Principia: Fleuriot (1998) 
combined geometry with non-
standard analysis to formalize 
Newton’s logic and check some 
proofs.

• The relative consistency of the 
axiom of choice: was Gödel right to 
claim that his proof did not require 
meta-mathematical reasoning?

• The prime number theorem: Avigad 
(2004) formalized this landmark of 
number theory.

• Tame graphs: Nipkow and 
colleagues (2006) are contributing 
to the effort to prove the Kepler 
Conjecture formally.



Verifying Newton’s Principia

• Newton’s great book on motion and 
gravity did not use the calculus.

• In this proof of the inverse-square 
law, he merely asks what happens 
when “the points P and Q coincide.”

• Fleuriot formalized Newton’s 
infinitesimal geometry using non-
standard analysis.

• He found an error in this proof, but 
found an alternative way to the result.

Proposition XI: a 
body in elliptical orbit



IV.  The Quest for Greater Automation



Interactive Proof: What’s the Catch?

• Proving theorems interactively 
is like building one of these.

• Even obvious facts can be 
difficult to prove.

• Legal proof steps are tiny, so 
the proofs are long.

• The work can be tiresome and 
frustrating...

• and only experts can do it.



Greater Automation: What’s Been Done?

• Most proof tools can use equations like 
this one to simplify formulas.

• Isabelle can also use implications like 
these to search for proofs, using forward 
and backward chaining ...

• thanks to which it can prove 
complicated things automatically.

x �= 0 =⇒ x
x
= 1

Still we need more automation!



Idea 1: Combine Isabelle with Automatic Provers

• The best automatic provers—E, SPASS, Vampire—do much more than 
chaining.

• To use them requires encoding Isabelle’s rich formalism into the spartan 
language of first-order logic.

• They can beat Isabelle’s built-in provers, but not always: they will require 
tuning before they become effective on problems generated by Isabelle.

• Parallelism can be exploited: we can call multiple provers, take the best result 
and record it permanently.



Idea 2: Proving Inequalities

• We often need to prove formulas 
involving functions like sin, cos, 
exp, log. There is no general 
solution procedure...

• but often the function is bounded 
above or below by a polynomial 
(at least in a finite range).

• Inequalities involving polynomials 
can be solved using a procedure 
for real closed fields.



Idea 3: Telling the User When to Give Up

• Often our problem has no solution:

• the chip design isn’t correct, or

• we have expressed it wrongly, or 

• forgot to mention essential facts.

• Trying to solve impossible problems 
is a terrible waste of time!

• People at TUM have built tools for 
warning Isabelle users of this 
situation.

• One way to do this is simply by 
testing the problem on a few 
values. (More complicated than it 
sounds!)



The Future?

• Proof technologies of all sorts have developed rapidly.

• In the past, we have benefitted from faster processors, 

• ... and now we are ready to exploit the new multi-core computers.

• Large-scale trials are under way, such as the VeriSoft project,

• ... with other applications in the U. S. and Australia,

• ... and research projects in many countries.




