
Ackermann's Function in Iterative Form

A Subtle Termination Proof with Isabelle/HOL

Lawrence C Paulson FRS, Computer Laboratory, University of Cambridge
Isabelle Workshop 2020

I. A Brief History of Ackermann’s Function

Wilhelm Ackermann’s “generalised exponential” (1928)

Rózsa Péter’s 2-argument function (1935)

Raphael Robinson’s refinement (1948)

Basic facts about Ackermann’s function, ϕm(n)

• Its purpose was always to exhibit a computable function wasn’t “recursive”.

• what we now call primitive recursive (PR)

• if f is PR, then there exists m where is a strict upper bound for f

• It generates huge numbers:

• Expressing it in most formal models of computation is difficult.

ϕm

ϕ4(3) = 2265536 − 3

II. Ackermann’s Function using a Stack

Ackermann’s function in Isabelle

the recursive version that we all know and love

A stack-oriented version as a term rewriting system

• The box constrains rewriting to the head of the list

• A stack represents a nest of calls:

• Does it terminate? No term rewriting termination checker knows!

ack(kn, ack(kn − 1,…, k1))

3 2
2 2 1
1 2 1 1
0 2 1 1 1
1 1 1 1 1
0 1 0 1 1 1
1 0 0 1 1 1
2 0 1 1 1
3 1 1 1
2 1 0 1 1
1 1 0 0 1 1
0 1 0 0 0 1 1
1 0 0 0 0 1 1
2 0 0 0 1 1
3 0 0 1 1
4 0 1 1

= ack(1,ack(2,2))

A stack-oriented computation of ack(2,3)

5 1 1
4 1 0 1
3 1 0 0 1
2 1 0 0 0 1
1 1 0 0 0 0 1
0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1
3 0 0 0 0 1
4 0 0 0 1
5 0 0 1
6 0 1

ack(1,ack(1,5))
7 1
6 1 0
5 1 0 0
4 1 0 0 0
3 1 0 0 0 0
2 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0
6 0 0 0
7 0 0
8 0
9

ack(1,7)

what is the ordering here??

ack(2,2) = 7

Defining a recursive function without a proof of termination

• All recursion calls hold conditionally: only if the domain predicate holds

• Our task is to prove that the domain predicate is always true

III. Verifying Ackermann’s Function in Isabelle/HOL

Built-in properties of the domain predicate

• It terminates for empty and single-element lists.

• It terminates for some longer lists.

• Does it terminate for all lists?

Proving termination in all cases: by induction on ack m n

this implies termination for a longer list beginning with n and m

The base case is ack 0 n # L

which reduces to Suc n # L, and we have (by definition)

Continuing the induction on ack m n

The case ack (Suc m) 0 # L reduces to ack m 1 # L

The case ack (Suc m) (Suc n) # L is similar, but needs 2 induction hyps

We have the induction hypothesis

then (by definition)

The entire inductive proof is a one-liner!

It’s fully automatic, using the
special Ackermann induction rule

An auxiliary function to complete the proof

• This formalises how the list represents

• … and its induction rule is just right, case-splitting on whether .

k1, …, kn ack(kn, ack(kn − 1,…, k1))

n < 2

Terminating the termination argument

Another one-liner using a special
induction and our lemma

Finally, Isabelle recognises our function as total!

Concluding the proof: Ackermann can be computed iteratively

Equivalence between the term rewriting system
 and direct calls to Ackermann’s function

Concluding remarks

• The verification of the iterative Ackermann function is easy in Isabelle/HOL

• … yet the termination of the term rewriting system is an open question!

• Implementations of Ackermann's function in > 200 different languages are
available online:

https://rosettacode.org/wiki/Ackermann_function

Funded by ERC Advanced Grant ALEXANDRIA (Project GA 742178).
René Thiemann investigated the rewrite systems.

