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Prologue




Mathematics 1s getting formalised!

Cap set problem

Diagonal Ramsey

Liquid tensor experiment

Polynomial Freiman—-Ruzsa

Brand new results, often formally checked before the referees!



But why? Here’s one reason

The footnotes on a single page (118)
of Jech's The Axiom of Choice

! The result of Problem 11 contradicts the results announced by Levy [1963b]. Un-
fortunately, the construction presented there cannot be completed.

2 The transfer to ZF was also claimed by Marek [1966] but the outlined method appears
to be unsatisfactory and has not been published.

3 A contradicting result was announced and later withdrawn by Truss [1970].

4 The example in Problem 22 is a counterexample to another condition of Mostowski,
who conjectured its sufficiency and singled out this example as a test case.

5 The independence result contradicts the claim of Felgner [1969] that the Cofinality
Principle implies the Axiom of Choice. An error has been found by Morris (see Felgner’s
corrections to [1969]).



Using what? A proof assistant

+ A language for abstract + ... and for managing a
concepts and assertions large formal development

+ ... and another language + Simplification and other
for expressing proofs. proof automation

+ An interface tor doing * Libraries of undergraduate

proofs interactively level mathematics



Commonly used formalisms

Higher-order logic, also known as simple type theory

Relatively simple, allowing good automation
HOL Light, Isabelle/HOL ...

Calculus of constructions or other dependent type theory

Stronger than ZF, and supports constructive proof
Agda, Coq, Lean ...




Formalhisation 1s not new

+ Euclid: unitying Greek geometry under an axiomatic system
* Cauchy, Weierstrass: removing infinitesimals from analysis
+ Dedekind, Cantor, Frege, Zermelo: set theory and the axiom of choice

+ Whitehead, Russell, Bourbaki: formal (or super-rigorous) mathematics

+ de Bruijn: the AUTOMATH type theory and proof checker; also
Trybulec and Mizar

Now Lt’s w'wleLg accepted that all
mathematices Ls formalisable




But 1s all maths really formalisable?

As to the question what part of mathematics can be written
in AUTOMATH, it should first be remarked that we do not
possess a workable definition of the word "mathematics".

Quite often a mathematician jumps from his mathematical
language into a kind of metalanguage, obtains results
there, and uses these results in his original context. It
seems to be very hard to create a single language in which
such things can be done without any restriction.

— NG de Bruijn (1968)



FFormalising Maths n Isabelle/HOL.




2017-25: ALEXANDRIA

(ERC Project GA 742178)

Aim: to support working mathematicians

... by developing tools and libraries

What areas of mathematics
can we formalise?

What sorts of proofs
can we formalise?




Existing Maths in Isabelle (2017

<+ Lots formalised a]ready Matrix theory, e.g. Perron-Frobenius

Analytic number theory, e.g.
Hermite-Lindemann

+ But... was it sophisticated
enough? Modern enough?

Homology theory

+ We had to explore our
boundaries, and compare and probability theory

with dep endent type theories Complex analysis: residue

theorem, prime number theorem



Some warmup formalisations

* Irrational rapidly convergent series, tormalising a 2002
paper by J. Hancl

* projective geometry and quantum computing

+ counting real and complex roots of polynomials;
Budan—Fourier theorem

Our focus: recent, sophisticated
or potentially problematical material



Another early experiment (2019):
algebraically closed fields

Every field admits an algebraically closed extension

(Example: adjoining a root of x* + 1 to R to get C)

In general, a limit of field extensions
K:EO—)E1—>E2—)°--—)En—)...

obtained by adjoining roots. We can
form this limit using Zorn’s lemma

The work of two summer students, Paulo de
Vilhena and Martin Baillon, and the first
formalisation of this result in any system.



Taking over a special 1ssue of
Fxperimental Mathematics

+ Irrationality and transcendence criteria for infinite series,
incorporating Erdds—-Straus and Hancl-Rucki

* Ordinal partition theory: delicate constructions by Erd6s—
Milner and Larson on set-theoretic combinatorics

+ Grothendieck schemes: answering a challenge by Kevin
Buzzard (and completed on the first attempt)

These formed 3 of the 6 papers in the special issue



Upping our ambitions

+ extremal graph theory

+ additive combinatorics

+ combinatorial block designs

+ graduate-level number theory

* strict w-categories



Szemeredi’s regularity lemma, and
Roth on arithmetic progressions

For every € > 0, there exists a constant M such that every graph has an

e-regular partition of its vertex set into at most M parts.

An e-reqular partition is where the edges between
different parts behave “almost randomly”

The key tool in the study of large graphs

Every subset of the integers with positive upper asymptotic

density contains a 3-term arithmetic progression.



Additive combmatorics

The study of the additive structure of sets, with
numerous applications across mathematics

Additive
Combinatorics

Combinat- Number  Ergodic Graph
orics Theory Theory Theory

Group

Geometry Theory

Probability



This topic concerns the sumset A+ B={a+b:a € A,b € B}

for a given al

belian group (G, + )

and the iterated sumset: t

Pliinnecke—Ruzsa inequality:
an upper bound on mB — nB

ne n-fold sumnA =A+ ---+ A

Khovanskii’s theorem: |nA| grows like

a polynomial for sufficiently large n

Kneser's theorem and the Cauchy—Davenport

theorem: lower bounds for |A

+ B|

Balog—Szemerédi—Gowers: a deep result

bearing on Szemerédi's theorem



Combinatorial structures

+ dozens of varieties of block designs, hypergraphs, graphs
and the relationships among them

+ E.g. Fisher’s inequality for balanced incomplete block
designs

+ probabilistic and generating function methods

+ advanced techniques using Isabelle’s locales

PhD work of Chelsea Edmonds



Some Papers We Formalised




Irrational Rapidly Convergent Series.

JAROSLAV HANCL (*)

ABSTRACT - The main result of this paper is a criterion for irrational series which
consist of rational numbers and converge very quickly.

1. Introduction.

Mahler in [6] introduced the main method of proving the irrationality
of sums of infinite series. This method has been extended several times
and Nishioka’s book [7] contains a survey of these results. Other
methods are given in Sandor [8], Hanél [5] and Erdés [4].

In 1987 in [1] Badea proved the following theorem.

THEOREM 1. Let {a,};-, and {b,};-, be two sequences of positive
2

integers such that for every large n, a, ., > b;'lan - %ﬁlaﬂ + 1. Then

m
H

b, . ) .
the sum o = E 18 an rrational number.
k=1 a,

Later in [2] he improved this result. Erdos in [4] introduced the no-
tion of irrational sequences of positive integers and proved that the se-
quence {2%}7_, is irrational. In [5] the present author extended this
definition of irrational sequences to sequences of positive real num-

bers.



A THEOREM IN THE PARTITION CALCULUS

BY
P. ERDOS AND E. C. MILNER()

1. Introduction If S is an ordered set we write tp S to denote the order type of
S and |S| for the cardinal of S. We also write [S]* for the set {X:X < S, |X|=k}.

The partition symbol
(1) & — (Bo, B1)*

connecting the order types «, f,, f; by definition (see [2]) means: if tp S=a and
[S]? is partitioned in any way into two sets Ky, K, then there are i<2 and B < § such
that tp B={f, and [B]* = K,. The negation of (1) is written as a+>(8,, 5,)°.

The purpose of this note 1s to prove that

{2} m1+r.h 1 (2.&’ w1+v)ﬂ

holds for A<w and »<w,. We have known this result since 1959. It has been
quoted in lectures on the partition calculus by Erdds and there is mention of the
theorem in the literature ([3], [7], [11]). A proof was given in Milner’s thesis [6].
However, we have been asked for details of the proof on several occasions and so
it seems desirable to have a reference which is more readily available than [6].



A SHORT PROOF OF A PARTITION THEOREM
FOR THE ORDINAL w"

Jean A. LARSON *#*
University of California, Los Angeles

Received 10 May 1973

§0. Introduction

An ordinal « is equal to the set of its predecessors and is ordered by
the membership relation. For any ordinal a, one writes a - (a, m)? if
and only if for any set A order-isomorphic to a, and any function f
from the pairs of elements of A into {0, 1}, either there is a subset
X € A order-isomorphic to a, so that f of any pair of elements of X is
zero, or there is an m element set ¥ € A, so that f of any pair of ele-
ments of Y is one.

Erdos and Rado [4] first asked for which e and m does this relation
hold. Specker [10] first noticed the special difficulty in proving it for
w* , where w* is that ordinal which is the result of raising w to the
power w by ordinal exponentiation. With the usual ordering, w*® is or-
der-isomorphic to the set of finite sequences of natural numbers ordered
first by length and then lexicographically.

Chang [1] proved that w* - (w", 3)2, and E.C. Milner (unpublished)
generalized his result to prove the following theorem:

For all natural numbers m, w*“ - (w*, m)?.



Introduction to additive combinatorics

W.T. Gowers

Contents

1 Introduction 1

2 Elementary results concerning sumsets 3
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1 Introduction

This course is about a branch of combinatorics that has become very active over the last
thirty vears or so. It is slightly hard to characterize, but one way of thinking about it is
that it is an expanded version of an older branch that went under the name of combina-
torial number theory. Combinatorial number theory concerned itself with arbitrary sets of
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AN EXPONENTIAL IMPROVEMENT FOR DIAGONAL RAMSEY
MARCELO CAMPOS, SIMON GRIFFITHS, ROBERT MORRIS, AND JULIAN SAHASRABUDHE

ABSTRACT. The Ramsey number R(k) is the minimum n € N such that every red-blue
colouring of the edges of the complete graph K,, on n vertices contains a monochromatic
copy of K. We prove that

R(k) < (4 —¢)*
for some constant £ > 0. This is the first exponential improvement over the upper bound
of Erd6s and Szekeres, proved in 1935.

1. INTRODUCTION

The Ramsey number R(k) is the minimum n € N such that every red-blue colouring of
the edges of the complete graph on n vertices contains a monochromatic clique on k vertices.



What Did ALEXANDRIA Achieve?




no borders between

, , ...and no topics off-limits
mathematical topics

—_——
good automation
. sophisticated, modern
legible proots .
mathematics




No borders between topics

session Modular Functions (AFP) = Zeta Function +
options [timeout = 3600]
sessions

"HOL-Library"

"HOL-Real Asymp”

"HOL-Computational Algebra

Formal Pulseux Series

Winding Number Eval

Linear Recurrences

Algebraic Numbers

Dirichlet Series

Dirichlet L

Polynomial Factorization

Bernoulli

Landau Symbols

Cotangent PFD Formula
theories

Kronecker Theorem

Modular Functions

Dedekind Eta Function



We combined probability with combinatorics
... transfinite recursion with holomorphic functions
we are perfectly fine without dependent types

with locales we can handle multiple inheritance
(“diamonds”)



Performance matters too!

+ 14 seconds for Szemerédi’s regularity lemma

+ 15s for Erd6s—Straus theorem on irrational series
+ 50s for ordinal partitions

+ 1:11 tor Balog-Szemerédi—Gowers

+ 1:04 for Grothendieck schemes

+ 1:03 for Roth’s theorem on arithmetic progressions

Run on a 2019 iMac, 3.6 GHz 8-Core Intel Core 19



What we get from Lean fans

You never prove anything hard

... only the work of two Fields medalists (Roth, Gowers),

an Abel prize winner (Szemerédi) and Paul Erdés.

You need dependent types

We can get T(i) = T(j) from i = j without
worrying about definitional equality

Our proofs are nicer




On the Legibility of Proofs




Is a proof a proof just because Lean agrees it’s one?
In some ways, it’s as good as the people who
convert the proof into inputs for Lean.



A small summation identity

lemma sum diff split:
fixes f:: "nat = 'a::ab group add”
assumes "m < n"
shows “() i<n - m. f(n - 1)) = (). i<n. f i) - () i<m. f i)"
proof -
have "Ai. i < n-m = 3k>m. k < n A i1 = n-k"
using <m<n> by presburger
then have eq: "{..n-m} = (-)n ~ {m..n}"
by force
have inj: "inj on ((-)n) {m..n}"
by (auto simp: inj on def)
have "(> i<n - m. f(n - 1)) = (O i=m..n. f 1)"
by (simp add: eq sum.reindex cong [OF inj])
also have "... = (> i<n. f i) - (D i<m. f i)"
using sum diff nat ivl[of O "m" "Suc n" f] assms
by (simp only: atLeastOAtMost atLeastOLessThan atLeastLessThanSuc atlLeastAtMost)
finally show ?thesis .
qed



Aside: Ramsey’s theorem

For all m and n there exists a number R(m, n) such
that every graph with at least R(m, n) vertices
contains a cligue of size m or an anti-cliqgue of size n




Proving Rim+ 1,n+ 1) > mn

+ Construct a graph with m X n vertices, containing
+ No clique of size m + 1, and
+ No independent set (anticlique) of size n + 1

+ The vertices are pairs (x, y)

+ The edges join every (x, y) with (x', y)



Our m X n graph, with its edges




Lemma Ramsey number times lower: "— is clique RN (TYPE(nat*nat)) (Suc m) (Suc n) (m*n)"
proof
define edges where "edges = {{(X,y),(x',y)}] X X' y. Xx<m A X'<m A y<n}"
assume "is clique RN (TYPE(nat*nat)) (Suc m) (Suc n) (m*n)"
then obtain K where K: "K C {..<m} x {..<n}" and "clique indep (Suc m) (Suc n) K edges"
unfolding is clique RN def
by (metis card cartesian product card lessThan finite cartesian product finite lessThan le refl)
then consider "card K = Suc m A clique K edges" | "card K = Suc n A indep K edges"
by (meson clique indep def)
then show False
proof cases
case 1
then have "inj on fst K" "fst " K C {..<m}"
using K by (auto simp: inj on def clique def edges def doubleton eq iff)
then have "card K < m"
by (metis card image card lessThan card mono finite lessThan)
then show False
by (simp add: "1")
next
case 2
then have snd eq: "snd u # snd v" 1f "u € K" "v € K" "u # v" for u v
using that K unfolding edges def indep def
by (smt (verit, best) lessThan iff mem Collect eq mem Sigma iff prod.exhaust sel subsetD)
then have "inj on snd K"
by (meson inj onI)
moreover have "snd ° K C {..<n}"
using comp sgraph.wellformed K by auto
ultimately show False
by (metis "2" Suc n not le n card inj on le card lessThan finite lessThan)
ged
ged



7.2 Dirichlet’s approximation theorem

Theorem 7.1. Given any real 0 and any positive integer N, there exist integers
h and k with 0 < k < N such that

1
(1) Ikﬂ—hI{E—‘

PROOF. Let {x} = x — [x] denote the fractional part of x. Consider the
N + 1 real numbers
0,40}, {28); ix {NB)

All these numbers lie in the half open unit interval 0 < {mf} < 1. Now
divide the unit interval into N equal half-open subintervals of length 1/N.
Then some subinterval must contain at least two of these fractional parts,
say {af} and {b0}, where 0 < a < b < N. Hence we can write

) (66} ~ a6} ] < .

But
{bO} — {af} = b6 — [bO] — al + [al] = (b — a)f — ([bO] — [aB]).
Therefore if we let
k=b—a and h = [b0] — [af]

inequality (2) becomes
|k — h| r:%, with 0 < k < N.

This proves the theorem. L]



theorem Dirichlet approx:

fixes v::real and N::nat

assumes "N > @"

obtains h k where "0 < k" "k < int N" "}of int k * ¥ - of int h} < 1/N"
proof -

have lessN: "pat |[x * N|] < N" 1f "0 < x" "x < 1" for x::real

using that assms floor less iff nat less iff by fastforce
define X where "X (Ak. frac (k*)) ° {..N}"
define Y where "Y (Ak::nat. {k/N..< Suc k/N}) ° {..<N}"

I 1Ml

have False then obtain x x' where "x#x'" "x € X" "x' € X" and eq: "f x = f x'"
proof - by (auto simp: inj on def)
have "inj then obtain c c'::nat where c: "c # c'" "c < N" "c' < N"
using t and xeq: "x = frac (c * )" and xeq': "x' = frac (c' * )"
then have by (metis (no types, lifting) X def atMost iff image iff)

by (sin define k where "k = nat [x * N|"
have caY: then have k: "x € {k/N..< Suc k/N}"

unfoldi using assms by (auto simp: divide simps xeq) linarith
define f have k': "x' € {k/N..< Suc k/N}"
have "T ¢ using eq assms by (simp add: f def Let def divide simps xeq' k _def) linarith
by (for with assms kK have "!frac (c' * ) - frac (c * #)} <1 / real N"
then have by (simp add: xeq xeq' abs if add divide distrib)
using ¢ then show False
by (metis <«c < N» <c #£ c'> <«c' < N> abs minus commute nat neq iff non)
ged
then obtain a b::nat where "a<b" "b < N" and *: "|frac (b * ¢) - frac (a * ¢J)} < 1/N"
by blast

let ?k = "b-a" and ?h = "|b * ¢J]| - |a * J]|"
show ?thesis
proof
have "frac (b * ¢) - frac (a * ¥J) = ?k * ¥ - 7h"
using <a < b> by (simp add: frac def left diff distrib' of nat diff)
then show "jof int ?k * ¢ - ?h] <1 / N"
by (metis * of int of nat eq)
qed (use <a < b» <b < N» 1n auto)
ged



Why should proofs be legible?

+ Legible proofs can yield insights
+ No need to trust the proof if you can actually read it

“+ Proofs can be maintained, refactored, reused



l.essons and Conclusions




[t is in principle impossible to set up a system ot
formulas that would be equivalent to intuitionistic
mathematics, for the possibilities of thought cannot
be reduced to a finite number of rules set up in
advance.




Thus we are led to conclude that, although
everything mathematical is formalisable, it is
nevertheless impossible to formalise all of
mathematics in a single formal system, a fact that
intuitionism has asserted all along.



But simple type theory (higher-order logic) worked
fine for practically everything

(Whitehead and Russell were basically right)

We found nothing that we couldn’t handle, and never
had to redo a development

Although we never had to fight the formalism,
newcomers do struggle with the system



What areas of mathematics

can we formalise?

Everything we tried: combinatorics, number theory,
algebra, complex analysis, quantum computation, ...

What sorts of proofs

can we formalise?

Err... Correct proofs that don’t have large gaps

[and where AC is admissible]



Some Obstacles

+ The immensity and variety of mathematics

+ QOrganising libraries (including variant entries)

% ﬁnding things in these libraries

+ The difficulty of proving the obvious
(recall de Bruijn’s observation)
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