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Computer Algebra and Formal Proof




A and b are both nice: why not A&S?

Three decades of trying to combine CA and ATP

“Computer algebra is unsound”

“CA tools can’t reason logically”

Approaches: certificates, tightly
constrained oracles, reflection

Often missing: a
compelling application




Computer algebra techniques

within Isabelle/HOI.

+ Differentiation and integration
+ Automatic asymptotic/limit proofs
+ Arbitrary precision calculations by interval arithmetic

+ Real & complex root-finding, counting winding
numbers, and other specialised proof methods



Symbolic differentiation

Let's differentiate e’ cos(2xt) by proof alone

lemma "dJf'. ((Ax. exp(-x)*cos(2*pi*x)) has real derivative f' t) (at t) A P(f' t)" for t
apply (rule exI conjI derivative eq intros)+

(just a partial step to reveal what's going on:)

goal (6 subgoals):
1. = ?f'15
2. - ?2f'15 = ?Dbll
3. exp (- t) * ?Dbll = ?Da6
4. ((Ax. cos (2 * pi * x)) has real derivative 7?Db6) (at t)
5. ?Da6 * cos (2 * pi * t) + 7?Db6 * exp (- t) = ?f' t
6. P (?f' t)



To do it properly, we must supply a
tactic to prove the equality subgoals

lemma "dJf'. ((Ax. exp(-x)*cos(2*pi*x)) has real derivative f' t) (at t) A P(f"' t)" for t
apply (rule exI conjI derivative eq intros || force)+

The result is (sometimes) even simplified!

goal (1 subgoal):
1. P (- (exp (- t) * cos (2 * p1 * t)) -
sin (2 * p1 * t) * (2 * pi) * exp (- t))

—e 'cos(2nt) — sin(2xt) - 2me™!



Symbolic integration
‘cheating with Maple|

2 cos(4.x) e NILY xzsirz(4x) singézlx) : xcos8(4x)

Just ask Isabelle to check Maple by taking the derivative:

Llemma " ((AXx. X*2 * sin(4*x)/4 - sin(4*x)/32 + X * cos(4*x)/8)
has real derivative x72 * cos(4*x)) (at x)" for x
apply (rule exI conjI derivative eq intros refl | force)+



This time, the output is ugly

goal (1 subgoal):
1. ((real 2 * (1 * x ™ (2 - Suc 0)) * sin (4 * x) +
cos (4 * x) * (0 * x + 1 * 4) * x2) *
4 -
X2 * sin (4 * x) * Q) /
(4 * 4) -
(cos (4 * x) * (0 * x +1* 4) * 32 - sin (4 * x) * 0) /
(32 * 32) +
((1 * cos (4 * X) + - sin (4 * x) * (0 * x + 1 * 4) * x) * 8 -
X * cos (4 * x) *0) /
(8 * 8) =
X2 * cos (4 * Xx)

... but easy to fix:

apply (simp add: field simps)
done

We can even evaluate definite integrals
via the fundamental theorem of calculus



Eberl’s real asymptotics package

+ Proves claims about limits, properties holding in the
limit, claims involving Landau symbols

+ ... by computing multiseries expansions tor a variety of
real-valued functions (cf Richardson et al., 1996).

+ All by inference alone!



1 X
. I_EXZ_COS<1—)C2> 23
hm = =
x—0 ;X4 24

lemma "(Ax::real. (1 - 1/2 * x®2 - cos (x / (1 - x72))) / x~4) —0— 23/24"
by real asymp

n* = o(c")

lemma "c > 1 — (An. real n ©~ k) € o(An. c™n)"
by real asymp



Can even do one-sided limits

Llemma "eventually (Ax::real. 1 - 1/x < ln(x)) (at right 0)"
by real asymp

| |
l—-—<Inx) asx—- 0" .
. |

1.5 2




Exact numeric calculations

Simple inequalities:

lemma "] sin 100 + 0.50636564110975879 ! < (inverse 10 ©~ 17 ::

by (approximation 70)

Inequalities over a range of inputs:

lemma "0.5 < X A x < 4.5 — | arctan x - 0.91 | < 0.455"
by (approximation 10)

Going beyond interval arithmetic:

lemma "x € { O .. 1 :: real } — x?2 < x"
by (approximation 30 splitting: x=1 taylor: x = 3)

real)"



But 1s there an application?




Ramsey’s Theorem




“Party Problem” version (2-sets)

For all m and n there exists a number R(m, n) such
that every graph with at least R(m, n) vertices
contains a cligue of size m or an anti-cliqgue of size n

Or: a complete graph with
edges coloured red /blue
contains a red clique of size
m or a blue cligue of size n

R(3,3) =6



Other forms (for r-sets, r # 2

r = 1: Ramsey’s theorem is just the
pigeonhole principle

r > 2: hypergraph form, with

unimaginably large Ramsey numbers

The r = 2 case can also be generalised

with transfinite ordinals or cardinals




Ramsey numbers

Erd6s (with Szekeres for the upper bound) proved

V2 <Rk k) < (2k_ 2) <4

k—1

A new result replaces 4 by 4 — ¢,

an exponential improvement



“Algorithm™ to prove the 4% hound

At start: put all vertices in X; set A = B = {}

X->Nox)nX A—->AU{x)
if x has more red neighbours than blue in X

X—>Ngx)NX B—-BU{x}

otherwise

e Builds a red clique in A, a blue clique in B



+ At each step, choose the vertex x arbitrarily
+ ... the set X loses up to half its vertices
+ ... there are only red edges to A, blue edges to B

+ If |X| > 2"t then iteration finally yields a clique:
either |A| > kor |B| > ¢

+ In the “diagonal” case k = £, the upper bound is 4*

Could a more sophisticated algorithm do better?



A New Paper on Ramsey’s T"heorem




AN EXPONENTIAL IMPROVEMENT FOR DIAGONAL RAMSEY
MARCELO CAMPOS, SIMON GRIFFITHS, ROBERT MORRIS, AND JULIAN SAHASRABUDHE

ABSTRACT. The Ramsey number R(k) is the minimum n € N such that every red-blue
colouring of the edges of the complete graph K, on n vertices contains a monochromatic
copy of K. We prove that

R(k) < (4 —¢)*
for some constant € > 0. This is the first exponential improvement over the upper bound
of Erdos and Szekeres, proved in 1935.

First formalised, in Lean, by Bhavik Mehta:
before the referees had completed their reviews!



What's the mathematies like?

+* A more complicated “book algorithm”

+ A string of technical lemmas describing its behaviour
+ Numerous estimates with finite sums / products
+ Numeric parameters; high-precision calculations
* Lots and lots of limit arguments

Awnd it’s 5F pages



The varmables and their constramts

+ Integers £ < k and a complete n-graph

+ Edge colouring with no red k-clique, no blue £-clique
+ Sets of vertices X, Y, A, B, the latter two initially empty
+ All edges between A and A, X, Y are red

+ All edges between B and B, X are blue






Some mathematical preliminaries

Standard definitions for undirected graphs

As X and Y evolve, need to maintain a sutficient red density

. BR(X,Y)
| X[]Y]

P

Algorithm tries to build a large red clique in A



T'’he main execution steps

+ Degree reqularisation: remove from X all vertices with
“few” red neighbours in Y

= Big blue step: If there exist R(k, [£*°]) vertices in X with
“lots” of blue neighbours in X, move a block of them
into B while leaving just their blue neighbours in X

+ Red and density-boost steps: an element of X with “few”
blue neighbours in X is moved into A or into B,
according to the red density of the resulting X and Y



A red or density-boost step

X = Np(x)NnX Y - Np(x)NY A—> AU (¥}
Versus
X—=> Ngx)nX Y > No(x)NY B —- BU {x}

resembles the basic algorithm,
except that x is carefully selected



A Glimpse at the Proofs




Defining the "book algorithm’

definition next state :: "[real,nat,nat,'a config] = 'a config" where
"next state = My U k (X,Y,A,B).

if many bluish p L k X

then let (S,T) = choose blue book u (X,Y,A,B)

else let x = choose central vx p (X,Y,A,B) 1in
if reddish k X Y (red density X Y) x
then (Neighbours Red x N X, Neighbours Red x N Y, insert x A, B)
else (Neighbours Blue x N X, Neighbours Red x N Y, A, insert x B)"

in (T, Y, A, BUS)

primrec stepper :: "[real,nat,nat,nat] = 'a config" where
"stepper © L k 0 = (X0,Y0,{},{})"
| "stepper p L k (Suc n) =
(let (X,Y,A,B) = stepper p L k n 1in
if termination condition U k X Y then (X,Y,A,B)
else if even n then degree reg k (X,Y,A,B) else next state x L k (X,Y,A,B))"

Many routine properties easiLg proveo



A proof in more detail: LLemma 4.1

Lemma 4.1. Set b = 1/, If there are R(k, (%) vertices x € X such that
[Np(z) N X[ > p|X], (9)
then X contains either a red Ky, or a blue book (S, T) with |S| > b and |T| > pl¥!| X|/2.

Four weeks, 354 Lines anad
several buckets of sweat Later...

Llemma Blue 4 1:
assumes "XCV" and manyb: "many bluish X" and big: "Big Blue 4 1 p "
shows "dS T. good blue book X (S,T) A card S > 1 powr (1/4)"

| The claim holds for sufficiently large £ and k]



What did | do in those three weeks?

Proved the Erdés lower bound for
Ramsey numbers, g ROk

Got to grips with neighbours,
edge densities, convexity

figured out that most claims
only hold in the limit

Formalised a second
probabilistic proof




First half of the proof

Proof of Lemma /.1 Let W C X be the set of vertices with blue degree at least u|X|, set
m = ¢*/3 and note that |[W| > R(k,m), so W contains either a red K} or a blue K,,. In the
former case we are done, so assume that U C W is the vertex set of a blue K,,. Let o be
the density of blue edges between U and X \ U, and observe that

eg(U, X \U) _ plX|—|U]| 1
g = > >:UJ__‘, (10)
U] - | X\ U| | X| —[U] k

since [U| = m and |X| > R(k,m), and gach vertex of U has at least j|X| blue neighbours
in X. Since > 0 is constant, b = £}/ and m = ¢%/3, it follows that b <\om/2.

Bhavik changed
Inequalities this to 2

frequently hold
only in the limit




have " * (card X - card U) < card (Blue N all edges betw un {u} (X-U)) + (1l-p) * m"
if "u € U" for u
proof -
have NBU: "Neighbours Blue u n U =U - {u}"
using <clique U Blue> Red Blue all singleton not edge that
by (force simp: Neighbours def clique def)
then have NBX split: "(Neighbours Blue u N X) = (Neighbours Blue u N (X-U)) U (U - {u})"
using <U C X> by blast
moreover have "Neighbours Blue u n (X-U) n (U - {u}) = {}"
by blast
ultimately have "card(Neighbours Blue u N X) = card(Neighbours Blue u N (X-U)) + (m - Suc 0)"
by (simp add: card Un disjoint finite Neighbours <finite U> <card U = m> that)
then have "u * (card X) < real (card (Neighbours Blue u n (X-U))) + real (m - Suc 0)"
using W def <U C W»> bluish def that by force
then have "u * (card X - card U)
< card (Neighbours Blue u N (X-U)) + real (m - Suc 0) - p *card U"
by (smt (verit) cardU less X nless le of nat diff right diff distrib')
then have *: "y * (card X - card U) < real (card (Neighbours Blue u N (X-U))) + (1-p)*m"
using assms by (simp add: <card U = m> left diff distrib)
have "inj on (Ax. {u,x}) (Neighbours Blue u N X)"
by (simp add: doubleton eq iff inj on def)
moreover have "(Ax. {u,x}) ° (Neighbours Blue u N (X-U)) C Blue N all edges betw un {u} (X-U)"
using Blue E by (auto simp: Neighbours def all edges betw un def)
ultimately have "card (Neighbours Blue u N (X-U)) < card (Blue n all edges betw un {u} (X-U))"
by (metis NBX split Blue eq card image card mono complete fin edges finite Diff finite Int| inj
with * show ?thesis
by auto
qed




Second halt of the proot

Let S C U be aiuniformly-chosen random subset:of size b, and let Z = [Np(S) N (X \ U)

be the number of co n blue neighbours of S in X \ U. By convexity, we have
Z| =

m) ™ INg(v) NU| BN | |
probabilistic ara‘glfIZlenZ ( b ) (b) (b) X\ U]

’U%X\U
Now, by Fact 4.2) and recalling (10, and that b = ¢/ and m = ¢2/3, it follows that

WV

b b’ w
E[Z] > —— )| X\U| > & -|X]|, 11
2) > oexp (— ) X\U| > A 1x (1)
and hence there exists a blue clique S C U of size b with at least this many common blue
neighbours in X \ U, as required. ]

Probabilistic proofs — commonplace in combinatorics —
were introduced by Erd0s



define (2 where "2 = nsets U b" —<Choose a random subset of size @{term b}>
have cardQ: "card (2 = m choose b"
by (simp add: © def <card U = m>)
then have finQ2: "finite Q" and ") # {}" and "card (2 > 0"
using <b < m> not less by fastforce+
define M where "M = uniform count measure Q"
interpret P: prob space M
using M def <b < m> cardQ) fin{2 prob space uniform count measure by force
have measure eq: "measure M C = (if C C Q) then card C / card ) else 0)" for C
by (simp add: M def fin{2 measure uniform count measure if)

define Int NB where "Int NB = AS. (|veS. Neighbours Blue v N (X-U)"
have sum card NB: " (> AcQ). card ([)(Neighbours Blue ~ A) N Y))
= (>_veY. card (Neighbours Blue v N U) choose b)"
if "finite Y" "Y C X-U" for Y
using that
proof (induction Y)
case (insert vy Y)
have *: ") N {A. VxeA. y € Neighbours Blue x} = nsets (Neighbours Blue y n U) b"
"O N - {A. VxeA. y € Neighbours Blue x} = () - nsets (Neighbours Blue y N U) b"
"[Neighbours Blue y N U]lsbs C O
using insert.prems by (auto simp: € def nsets def in Neighbours iff insert commute)
then show ?case
using insert finQ
by (simp add: Int insert right sum Suc sum.If cases if distrib [of card]
sum.subset diff flip: insert.IH)
qed auto



[Further stages of the proof

+ Ensuring the red density between X, Y is high enough
+ Ensuring that X and Y aren’t “used up” too quickly
+ Exponential improvements away from the diagonal

+ The main result, on the diagonal (k = £)



Computer Algebra Aspects




FFormalising claims about limits

+ Accumulate equalities required by each theorem, e.g.
2
£ > (6/1)'% or R VAGHAIE L
+ Check them out by plotting in Maple
+ ... then prove that they actually hold in the limit

+ For the base cases, use the proof method real_asymp



[Limit claims either local to the theorem

let ?Big = "Al. mof L > 12 A 1 > (6/u) powr (12/5) A 1 > 15
A1l < 5/4*%exp (- ((b_of 1)72) / ((p - 2/1) *mof 1)) A pu>2/1
AN2/1 < (pu - 2/1) * ((5/4) powr (1/b of 1) - 1)"

have big enough 1: "v~l. ?Big Ll"
unfolding m of def b of def using assms by (intro eventually conj; real asymp)

Or separate from the theorem

definition "Big X 7 6 =

A L. Lemma bblue dboost step limit p U A Lemma bblue step limit g4 U A Big X 7 12 pu 1
A (Vk. k>1 — Big X 7 8 k A 1 - 2 * eps k powr (1/4) > 0)"

lemma Big X 7 6:

assumes "O<y" "u<l"
shows "V~l. Big X 7 6 p 1"

unfolding Big X 7 6 def eventually conj iff all imp conj distrib eps def

apply (simp add: bblue dboost step limit Big X 7 8 Big X 7 12

bblue step limit eventually all ge at top assms)
by (intro eventually all ge at top; real asymp)



l.andau symbols n the proofs

Many formulas such as | Y| = 2°®p & o K

Quite a few difterent Landau
symbol occurrences, but mostly o(k)

[ preferred making these functions explicit



definition "ok fun X 7 6 =

AU K. ((1 + (real k 1 eal 1)) * In (1 - 2 * eps k powr (1/4))
) +

- (k powr

(3/4 * eps k powr (1/4) * k + 1) * (2 * ln k)) / 1n 2"

lemma ok fun X 7 6: "ok fun X 7 6 L € o(real)" for 1

unfoldlng eps

lemma X 7 6:
fixes 1 k

def ok fun X 7 6 def by real asymp

assumes p: "O<u" "upu<l" and "Colours 1 k"
assumes big: "Big X 7 6 pu 1"

defines "X =

shows " (][ieD.

Xseq p L k" and "D = Step class p L k {dreg step}”
card(X(Suc i)) / card (X i)) > 2 powr ok fun X 7 6 1 k"



A proof using exact calculations

Since § = min {1/200,v/20}, to deduce that ¢ > 2k/3 it now suffices to check thaﬂ

(1—%)(1—1—6(11_7))_12(1—%><1+%)_1>0.667>§ (47)

for all 1/10 < v < 1/5, and that

define c where "c = Mx::real. 1 + 1/ (exp 1 * (1-x))"
define f47 where "f47 = Xx. (1 - 1/(200*x)) * inverse (c x)"
have "concave on {1/10..1/5} f47" [46 lines]
moreover have "f47(1/10) > 0.667"
unfolding f47 def c def by (approximation 15)
moreover have "f47(1/5) > 0.667"
unfolding f47 def c def by (approximation 15)
ultimately have 47: "f47 x > 0.667" if "x € {1/10..1/5}" for x
using concave on ge min that by fastforce



Proving Lemma A.4

lemma A4:
assumes "y € {0.341..3/4}"
shows "f2 (x of y) vy <2 - 1/2711"
unfolding f2 def fl def x of def H def
using assms by (approximation 18 splitting: y = 13)

goal (1 subgoal):
1. 3 *y /5 +5454 /10~ 4 + vy +
(2 - (3 *y /5 +5454 /10 ~ 4)) *
(- (1 / (2-(3*y /5+5454 /10 ~ 4))) *
log2 (1 /7 (2-(3*y /5+5454 /10 " 4))) -
(1L -1/(2-((3*y/5+5454 /10 ~ 4))) *
log2 (1 -1/ (2-((3*y/5+5454 /10 ~ 4)))) -
1/ (40 * 1n 2) *
((1 - (3*y/5+5454 /106~ 4)) / (2 - (3 *y / 5+ 5454 /10 © 4)))
<2-1/72"11



Conclusions

+ Some proofs really do need computer algebra or exact
arithmetic

+ The approximation and real_asymp proof methods
are tfast and powertul

+ Differentiation by pure inference is easy, if a hack

+ This proof is incredibly difficult



text <Main theorem 1.1: the exponent is approximately 3.9987>
theorem Main 1 1:
obtains c::real where ">0" "V>*°k. RN k k < (4-¢)°k"
proof
let ?¢ = "0.00134::real”
have "V>*k. k>0 A log 2 (RN k k) / k < 2 - delta'"
unfolding eventually conj iff using Aux 1 1 eventually gt at top by blast
then have "V*k. RN k k < (2 powr (2-delta')) ~ k"
proof (eventually elim)
case (elim k)
then have "log 2 (RN k k) < (2-delta') * k"
by (meson of nat 0 less iff pos divide le eq)
then have "RN k k < 2 powr ((2-delta') * k)"
by (smt (verit, best) Transcendental.log le iff powr ge zero)
then show "RN k k < (2 powr (2-delta')) ©~ k"
by (simp add: mult.commute powr power)
qed
moreover have "2 powr (2-delta') < 4 - 7?&"
unfolding delta' def by (approximation 25)
ultimately show "V>*k. real (RN k k) < (4-?¢) ~ k"
by (smt (verit) power mono powr ge zero eventually mono)
qged auto

The whole development is 11 K lines and runs in
under 9 minutes. Formalisation took 251 days.



Many thanks to Mantas Baksys, Manuel Eberl,
Simon Griffiths, Fabian Immler, Bhavik Mehta and

Andrew Thomason

(If you want to understand the actual proof,
please see Bhavik’s Lean Together talk on the
leanprover community YouTube channel)



