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m Success rate on the test suite (%)

Sledgehammer 25.7

Sledgehammer: premise selection based on
modern automated theorem provers (ATPSs)

Proof assistant and premise selection

* Proof assistants (e.g, Isabelle) allow mathematical theorems to

be proved rigorously.

* \We need to select premises (lemmas and definitions) when
proving theorems. You don’'t want to prove every theorem from
scratch.

theorem imo 1959 pl: then have "gcd (21*n+4) (14*n+3)=1"

fixes n :: nat using cl c0

shows "gcd (21*n+4) (14*n+3)=1" by (metis |ab semigroup add class.add ac(1l)
proof - gcd.commute| gcd add mult)
have c0O: "21*n+4 = 1*(14*n+3)+7*n+1"
by auto

have cl: "14*n+3 = 2*(7*n+1)+1"
using cO by auto

then have "gcd (7*n+l1l) 1 = 1"
using cl by auto

then have "gcd (21*n+4) (14*n+3)=1"

lemma (in semiring gcd) gcd add mult:

» Automated theorem provers can solve SAT, SMT, TPTP, etc.
problems that contain millions of variables.

* Proof assistants use Sledgehammer to tackle the premise
selection problem by relegating it to ATPs.

* But Sledgehammer is not great with problems involving high-
level reasoning, e.g., induction.

Thor: Combining language models and ATPs

Vanilla language model 39.0
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Table 1, Thor solves 8.2% more problems than
Sledgehammer and language model naively combined

Is Thor better at premise selection?

using cl c0 "?Cdlm (Kd* T + n) = gi? m n"
by (rule gcdIl [symmetric o | _ ' ' ! L del _ L del
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#Premises in proofs #Premises in ground truth proofs

Premise selection is a bottleneck for language

Output: a special token

fes’ » indicating Sledgehammer
mOdeIS tO prOve theorems proof (prove) should be called
using this: Can Sledgehammer
: ?Zd*(z + g : :zl)*l(; i n+1) +1 solve this? Ta keaWayS
»21 *n+4=1*(14*n+3)+7*n+1 : : . . g : :
» Language Models (LMs) predict the next proof step given the o (G swgoan: ?&g@ :Dremlse Selegtlclm IS ImpOrtar;t atn.cti difficult. Vanilla pre-trained
. gcC *n o+ *n o+ =
proven facts and the remaining objectives. They achieved Input: Proof state No.. | Output: the origina anguage modaeils are no good at It.
proof step

* Don’t throw away the symbolic tools when you have a
language model! Integrate them together for better
performance.

SOoTA in multiple proof assistants [1,2,3].

proot (prove)
using this:
« gcd (7 *
« 14 * n
« 21 *n

by (metlis ab semigroup add class.add ac(l)
gcd.commute gcd add mult)

Experiments

» Language model: decoder-only transformer with 700M
parameters. Pre-trained on the Github+arXiv subsets of the Pile » How could other symbolic tools be integrated with language
dataset. models?

L et’s talk about:

* What's the next step in machine mathematics?

goal (1 subgoal):
1. gcd (21 *n +4) (14 * n + 3) =1

Proof state Proof step

» Sledgehammer: default setup in Isabelle2021.
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* Empirically, when a LM tries to select premises, 98.1% of the
time It produces syntax errors.




