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Abstract. MetiTarski, an automatic proof procedure for inequalities
on elementary functions, can be used to verify control and hybrid sys-
tems. We perform a stability analysis of control systems using Nichols
plots, presenting an inverted pendulum and a magnetic disk drive reader
system. Given a hybrid systems specified by a system of differential equa-
tions, we use Maple to obtain a problem involving the exponential and
trigonometric functions, which MetiTarski can prove automatically.

1 Introduction

Most research into the verification of hybrid systems involves model checking and
constraint solving. In this paper, we present preliminary results involving the use
of automated theorem proving. Our approach delivers proofs of its claims, which
can be checked by other tools or even examined by humans. These proofs are
low-level and can be very long; for example, the proof of the collision avoidance
problem (see Sect. 4.1) consists of nearly 2600 text lines and 162 logical infer-
ences, some of which refer to decision procedures. Formal verification is typically
used in applications that demand high assurance. Our methodology can produce
documentation of every phase of the formal analysis of the design, from differ-
ential equations to proof.

MetiTarski [1–3] is a new automatic theorem prover for special functions over
the real numbers. It consists of a resolution theorem prover (Metis) combined
with a decision procedure (QEPCAD) for the theory of real closed fields. It can
prove logical statements involving the functions ln, exp, sin, cos, arctan, sqrt,
etc. We have applied it to hundreds of problems mainly of mathematical origin.
In this paper, we report recent experiments in which we have applied MetiTarski
to standard benchmark problems about hybrid and control systems.

Our workflow typically involves using a computer algebra system (Maple)
to solve a differential equation. The result is a formula over the real numbers,
which we supply to MetiTarski. For most problems that we have investigated,
MetiTarski returns a proof in seconds. The entry of problems is currently man-
ual, though it is not difficult, because the output of Maple can be pasted into
MetiTarski, with modest further editing to put the problem into the right form.
These tasks are routine and could be automated.



Paper outline. Section (§2) reviews some related work. Section (§3) describes
the verification of control systems. Section (§4) describes the details of our ap-
proach for the verification of hybrid systems using illustrative case studies. Sec-
tion (§5) concludes the paper and provides hints for future work directions.

2 Related Work

Control systems are traditionally analysed using numerical techniques, often in-
volving the visual inspection of plots for a number of sample inputs and different
values of parameters. Then we must assume that the results of this analysis also
hold for any values of the input and the parameters. This assumption can lead to
incorrect conclusions. Hardy [10] proposed a formal and symbolic technique to
increase the reliability of the results, removing the possibility of erroneous results
due to plotting errors and uncertain parameters. She examined the underlying
mathematical representation of a particular form of control system requirements:
Nichols plot requirements. These requirements were reduced to their most basic
form and a decision procedure was developed for use in the analysis which can
be used to decide the positivity or negativity of finitely inflective functions. The
resulting tool, called Nichols plot Requirements Verifier (NRV), was developed
in the Maple-PVS-QEPCAD system which exploits the symbolic computation
provided by the computer algebra system Maple, the formal techniques provided
by the theorem prover PVS and the quantifier elimination routines provided by
QEPCAD. Hardy presented two case studies to demonstrate the practical appli-
cation of the NRV system. In this paper, we achieve similar results by replacing
the PVS-QEPCAD combination with MetiTarski. We still use Maple for ini-
tial calculations but we replace the semi-automatic proofs by PVS with fully
automatic proofs of MetiTarski.

Several techniques for model checking of hybrid systems have been proposed.
The most widely investigated is bounded model checking (BMC), which com-
putes a set of reachable states that corresponds to an over-approximation of the
solution of the system equations obtained for a bounded period of time. This
approach provides the algorithmic foundations for the tools that are available for
computer-aided verification of hybrid systems such as Checkmate [6], d/dt [5],
PHaver [9], and HyTech [11]. On the other hand, there are some hybrid sys-
tem verification tools such as Stefan Ratschan’s HSolver [14], which are based
on constraint solving techniques. The basic idea is to decompose the state space
into hyperboxes according to a rectangular grid and then use interval constraint-
propagation techniques to check the flow on the boundary between neighboring
grid elements. This is done via an abstraction refinement framework in order to
achieve precise results.

In this paper, we present a novel approach based on automatic theorem prov-
ing for hybrid system verification. We show how our tool MetiTarski assisted with
Maple can be used to prove safety properties about hybrid systems. We have
selected a set of case studies in real world applications collected from standard
benchmarks [15] for evaluating and comparing tools for hybrid system design



and verification. Our current examples are restricted to linear systems for which
we can solve the systems of ordinary differential equations (ODE) using methods
like the Laplace transform to find the closed form solutions based on elementary
functions. We have been able to prove safety properties of the systems such as
Room Heating and Navigation, which cannot be verified by HSolver.3 We are
planning to extend our case studies to cover nonlinear cases by finding methods
of solving systems of polynomial nonlinear ordinary differential equations analyt-
ically in terms of elementary and special functions. An example of such method
is the Prelle-Singer procedure [12], extensions of which are also implemented
in computer algebra systems such as REDUCE (the PSODE package [13]) and
Maple (the PSsolver package [8]).

3 Control Systems Verification

This section presents our methodology for using MetiTarski in the verification
of control systems. Our approach can be briefly described as follows. We start
from the open loop transfer function of the feedback control system in Laplace
domain as a function of s (G (s)). Then we replace s with jw and switch to fre-
quency domain. Then we calculate the gain and phase shift of G(jw) according
to Equation 1, as real valued functions over w, and plot them in the x/y plane
and call it the Nichols plot. For stability, the Nichols plot of the system should
lie outside an exclusion region which will be explained later. We describe this
obligation as inequalities on special functions such as arctan and log over w, and
prove them using MetiTarski. We use Maple to plot the Nichols plots, and also
for some preliminary investigations about the intermediate expressions.

We illustrate our methodology using two moderately sized case studies, both
based on examples that appear regularly in control engineering texts. In Sec-
tion 3.2, an inverted pendulum system is analysed. The stability criteria are
specified in terms of three intervals in which the Nichols plot of the system must
not enter a given bounded region on the graph. We use MetiTarski to verify this
system. We then alter the system and use MetiTarski to show that the system
is now unstable. In both cases, the Nichols plot for the system lies too close to
the exclusion region to be confirmed by visual inspection. In Section 3.3, a disk
drive reader system is analysed with respect to stability. This system has an
‘uncertain’ parameter, whose value is known to lie within an interval. This type
of problem is difficult to analyse using classical Nichols plot techniques as it is a
three dimensional rather than two dimensional problem. The classical solution
is to plot a suite of Nichols plots showing the system response for various values
of the parameter. If the system meets its requirements in all of these plots the
assumption is made that the system meets its requirements for all permissible
values of the parameter. In this case study we provide symbolic analysis of the
system for all permissible values of the parameter, generating a formal proof.

3 See http://hsolver.sourceforge.net/benchmarks/



3.1 Nichols Plot Requirements

There are three main graphical analysis techniques used in the analysis of control
systems in frequency or the complex plane: the Nyquist plot (complex plane),
Bode diagrams (frequency domain), and Nichols plots (frequency domain). We
will discuss in particular analysis using Nichols plots. The Nichols plot [7] (also
known as Nichols chart) plots the gain (in decibels) against the phase-shift of
the output sinusoid as the frequency varies. The gain and phase-shift of a system
with transfer function G can be calculated explicitly using the following formulas:

y = gain = 20 log10(|G(jw)|)
x = phase-shift = argument(G(jw))

=

{

arctan(ℑ(G(jw))
ℜ(G(jw)) ) + kπ if ℜ(G(jw)) 6= 0

π
2 + kπ if ℜ(G(jw)) = 0

(1)

where ℜ (ℑ) denotes the real (imaginary) part of a complex number, and k is an
integer. When using arctan to calculate the value of phase-shift, we may have to
adjust the range of arctan, which normally is restricted to (−π

2 , π
2 ) in radians. If

the shift in phase at w is greater than π
2 then arctan(ℑ(G(jw))

ℜ(G(jw)) ) must be adjusted

by an appropriate multiple k of π to give the phase-shift as in equation 1.
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Fig. 1. Exclusion Region

Nichols plots often show exclusion regions that must be avoided to achieve
stability and performance. In general, a system is considered stable if its Nichols
plot does not enter a certain hexagonal region about the point (−π, 0) as shown
in Fig. 1. This requirement can be expressed in terms of the lines bounding the
region in three intervals.



1. The Nichols plot for the system must lie below the line y = − 12
π

x−18 between
the points (− 5

4π,−3) and (−π,−6), or above the line (y = 12
π

x+18) between
the points (− 5

4π, 3) and (−π, 6).
2. It must lie below the line y = − 12

π
x − 6 between the points (−π,−6) and

(− 3
4π,−3), or above the line y = 12

π
x + 6 between (−π, 6) and (− 3

4π, 3).
3. It must lie to the left of line x = − 5

4π between the points (− 5
4π,−3) and

(− 5
4π, 3), or to the right of line x = −3

4 π between (− 3
4π,−3) and (− 3

4π, 3).

These conditions can be expressed as inequalities in arctan, ln, and square root.
Several different cases of curves can be identified depending on whether y =

f(x) is monotonic decreasing, or monotonic increasing and concave, or monotonic
increasing and convex. These properties help to reduce the proofs to specific
points instead of a whole range. A real-valued function f defined on an interval
is convex if for any two points x and y in its domain and any t in [0, 1], we have

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y).

A function f is said to be concave if −f is convex. A twice differentiable function
of one variable is convex on an interval if and only if its second derivative is non-
negative there; this gives a practical test for convexity. A point of inflection is a
point on a curve at which the curvature changes sign; at this point, the graph of
the function makes a smooth transition between convexity and strict concavity.
These conditions can be easily checked using Maple.

3.2 Inverted Pendulum

This section focuses on the modeling and analysis of an inverted pendulum
system. An inverted pendulum is a pendulum that has its mass above its pivot
point, which is mounted on a cart that can move horizontally (Fig. 2). Whereas
a normal pendulum is stable when hanging downwards, an inverted pendulum
is inherently unstable, and must be actively balanced in order to remain upright
by applying a horizontal force to the cart. The inverted pendulum is a classic
problem in dynamics and control theory and is widely used as benchmark for
testing control algorithms.

There are two outputs of interest: the displacement of the cart x and the angle
of the pendulum θ. When concerned only with the angle of the pendulum, the
behaviour of the system can be represented using the following transfer function

G(s) =
ml(Kds

2 + Kps + Ki)

(MI + Mml2 + mI)s3 + (bI + bml2)s2 − (Mmgl + m2gl)s − bmgl

Table 1 shows the values for the parameters of the system chosen for this
example. The value of the mass of the pendulum m is left undecided.

Analysis of an Inverted Pendulum that Meets its Requirements As-
suming that the mass of the pendulum is 0.2 kg, the open loop transfer function



Fig. 2. Inverted Pendulum

Table 1. Values for parameters in an inverted pendulum system

Mass of cart M 0.5 kg
Friction of the cart b 0.1
Length to the pendulum’s center of mass l 0.3 m
Inertia of the pendulum I 0.006 kgm2

Gravitational acceleration g 9.8 m/sec2

Proportional coefficient Kp 3.5
Integral coefficient Ki -1
Derivative coefficient Kd -1

for the inverted pendulum system is

G(s) =
−25(2s2 − 7s + 2)

11s3 + 2s2 − 343s− 49

and the gain and phase-shift can be calculated as follows:

y = 20 log10









25

√

484w10 + 35161w8 + 781414w6

+ 4871449w4 + 569821w2 + 9604
121w6 + 7550w4 + 117845w2 + 2401









x =























− arctan(
650w3 − 1029w + 22w5

81w4 + 24595w2 − 98
) if 0 ≤ w < 0.198

−π if w = 0.198

− arctan(
650w3 − 1029w + 22w5

81w4 + 24595w2 − 98
) − π if 0.198 < w

Next we use Maple and MetiTarski to analyse this system with respect to
the exclusion region criteria and prove that it meets its requirements as follows:

1. We first calculate using Maple that the interval [− 5
4π,−π], in terms of x,

corresponds to the interval [157128 , 129
32 ] in terms of w and then use MetiTarski



to show that

∀w.
157

128
≥ w ∨ w ≥ 129

32
=⇒ −5

4
π ≥ x ∨ x ≥ −π.

Analysis using Maple shows that within this interval there is one point of
inflection, which lies in the interval [569256 , 1139

512 ]. The curve is convex for w ∈
[157128 , 569

256 ] and concave for w ∈ [1139512 , 129
32 ]. Then MetiTarski proves that the

curve lies below − 12
π

x−18 at 157
128 , 569

256 and 1139
512 , and thus that it lies outside

the exclusion region for x ∈ [− 5
4π,−π].

y < −12

π
x − 18 at

157

128
,
569

256
, and

1139

512

2. Maple calculates that the interval [−π,− 3
4π], in terms of x, corresponds to

the interval [ 57
128 , 629

512 ] in terms of w and then MetiTarski proves that

∀w.
57

128
≥ w ∨ w ≥ 629

512
=⇒ −π ≥ x ∨ x ≥ −3

4
π

Within this interval there are no points of inflection. The curve is convex for
w ∈ [ 57

128 , 629
512 ]. MetiTarski proves that the curve lies below 12

π
x + 6 at 57

128
and 629

512 , and thus it lies outside the exclusion region for x ∈ [−π,− 3
4π].

y <
12

π
x + 6 at

57

128
and

629

512

3. Maple calculates that the interval [−3, 3], in terms of y, corresponds to the
interval [0, 101

512 ] in terms of w and then MetiTarski proves that

∀w. w ≥ 101

512
=⇒ −3 ≥ y ∨ y ≥ 3

Within this interval there are no points of inflection. The curve is convex
for w ∈ [0, 101

512 ]. MetiTarski proves that the curve lies above − 3
4π at 101

512 and
thus that it lies outside the exclusion region for y ∈ [−3, 3].

−3

4
π < x at

101

512

Analysis of an Inverted Pendulum that Fails to Meet its Requirements

Next a parameter of the inverted pendulum system is altered slightly and the
system is re-analysed with respect to the same criteria. Given that the mass of
the pendulum in the inverted pendulum system has the value 0.17, the open
loop transfer function for the system is

G(s) =
−4250(2s2 − 7s + 2)

1945s3 + 355s2 − 55811s− 8330



and the gain and phase-shift can be calculated as follows:

y = 20 log10

(

425
√

0.1w10 + 10.2w8 + 214.0w6 + 1290.9w4 + 153.2w2 + 2.7

37.8w6 + 2172.3w4 + 31207.8w2 + 693.8

)

x =























− arctan(
105247w3 + 3890w5 − 169932w

14325w4 + 406627w2 − 16660
) if 0 ≤ w < 0.202

−π if w = 0.202

− arctan(
105247w3 + 3890w5 − 169932w

14325w4 + 406627w2 − 16660
) − π if 0.202 < w

We use Maple and MetiTarski to analyse this system with respect to the
exclusion region criteria and prove that it fails to meet its requirements by
providing a counter example as follows:

1. We first calculate using Maple that the interval [− 5
4π,−π], in terms of x,

corresponds to the interval [7964 , 517
128 ] in terms of w and then use MetiTarski

to show that

∀w.
79

64
≥ w ∨ w ≥ 517

128
=⇒ −5

4
π ≥ x ∨ x ≥ −π

Within this interval there is one point of inflection, which lies in the in-
terval [1059512 , 265

128 ]. The curve is convex for w ∈ [7964 , 1059
512 ] and concave for

w ∈ [256128 , 517
128 ]. MetiTarski proves that the curve lies below the line − 12

π
x−18

at 79
64 and 1059

512 .

y < −12

π
x − 18 at

79

64
and

1059

512

MetiTarski then proves that at 265
128 the curve lies within the exclusion region

and thus the Nichols plot fails to meet its requirements for x ∈ [− 5
4π,−π].

y ≥ −12

π
x − 18 ∧ y ≤ 12

π
x + 18 at

256

128

2. Maple calculates that the interval [−π,− 3
4π], in terms of x, corresponds to

the interval [231512 , 633
512 ] in terms of w and then MetiTarski proves that

∀w.
231

512
≥ w ∨ w ≥ 633

512
=⇒ −π ≥ x ∨ x ≥ −3

4
π

Within this interval there are no points of inflection. The curve is convex
for w ∈ [231512 , 633

512 ]. MetiTarski proves that at 57
128 the curve lies within the

exclusion region and thus the Nichols plot fails to meet its requirements for
x ∈ [−π,− 3

4π].

y ≥ 12

π
x + 6 ∧ y ≤ −12

π
x − 6 at

57

128

3. Maple calculates that the interval [−3, 3], in terms of y, corresponds to the
interval [0, 55

256 ] in terms of w and then MetiTarski proves that

∀w. w ≥ 55

256
=⇒ −3 ≥ y ∨ y ≥ 3



Within this interval there are no points of inflection. The curve is convex for
w ∈ [0, 103

512 ] and concave for w ∈ [ 1364 , 55
256 ]. MetiTarski proves that the curve

lies above − 3
4π at 103

512 , 13
64 , and 55

256 , and thus that it lies outside the exclusion
region for y ∈ [−3, 3].

−3

4
π < x at

103

512
,
13

64
, and

55

256

3.3 Magnetic Disk Drive Reader System

This section focuses on the modeling and analysis of a magnetic disk drive sys-
tem [7] with respect to stability. Modern computers use magnetic disks to store
data. A disk drive reader reads the data by positioning a reader head over a
track on the disk. It consists of a controller (or amplifier), a motor, an arm and
a read head. A metal spring (or flexure) holds the read head slightly above the
disk. For a given set of parameter values, the open loop transfer function of the
disk drive system is

G(s) =
2.8 × 1011Km

(s + 1000)s(s + 20)(3s2 + 30000 + 100000000).

This system has an ‘uncertain’ parameter, namely the motor constant which
is represented by the constant Km and its value is known to lie within the interval
[120, 130]. The gain and phase-shift of the system can be calculated as follows:

y = 20 log10

(

2.8 × 1011Km√
9w10 + 3.09 × 108w8 + 1.03 × 1016w6 + 1022w4 + 4 × 1024w2

)

x =























− arctan(
−130660000w2 + 3w4 + 2 × 1012

1140w(29w2 − 90000000)
) − π if 0 ≤ w < 1761.6

−π if w = 1761.6

− arctan(
−130660000w2 + 3w4 + 2 × 1012

1140w(29w2 − 90000000)
) − 2π if 1761.6 < w

Following a similar approach to the inverted pendulum, we have used Maple
and MetiTarski to provide a symbolic analysis and formal proof. The system
meets its requirements for all permissible parameter values. The three Nichols
plot exclusion zones (recall Sect. 3.1) give rise to the following proof obligations:

∀w.
15839

128
≥ w ∨ w ≥ 354991

512
=⇒ −5

4
π ≥ x ∨ x ≥ −π

y < −12

π
x − 18 at

15839

128
and

354991

512
for Km = 120 and Km = 130

∀w.
9745

512
≥ w ∨ w ≥ 63357

512
=⇒ −π ≥ x ∨ x ≥ −3

4
π

y <
12

π
x + 6 at

9745

512
and

63357

512
for Km = 120 and Km = 130



∀w.
1347

128
≥ w ∨ w ≥ 9601

512
=⇒ −3 ≥ y ∨ y ≥ 3

−3

4
π < x at

1347

128
for Km = 120 and Km = 130

4 Hybrid Systems Verification

In order to examine the feasibility of verifying hybrid systems using MetiTarski,
we developed the following procedure. It involves a number of manual steps, but
they are essentially mechanical and could be automated.

1. Derive the hybrid automaton model of the system under investigation as an
state diagram, including the number of locations with the corresponding pa-
rameters, the transition relation between different locations, and the system
of differential equations governing the system in each location.

2. Starting from any particular location, we supply its system of ODEs and ini-
tial condition to Maple, and apply a Laplace transform to find an expression
for the state variables of the system as an output function of time.

3. Using the transition relations, we use Maple to find the switching time from
the first location to the next location. At this calculated time, we deter-
mine the values of all state variables using the time-dependent analytical
expressions determined in the previous step, to find the final values of the
state variables in location 1, and use them as the initial condition for the
next state. We continue this procedure until we cover all reachable locations
taking non-singleton initial sets of states into account.

4. Formulate the verification question as a safety property involving inequalities
over the real-valued special functions.

5. Supply this first-order formula in TPTP format, including the corresponding
axioms, as an input file to MetiTarski.

If MetiTarski is successful, it delivers a proof. Otherwise, it will probably run
until terminated.

4.1 Collision Avoidance

We consider a cruise control system with automatic collision avoidance [16]. Let
gap, vf , v and a respectively represent the gap between the two cars, the velocity
of the leading car, and the velocity and acceleration of the rear car. Then, the
set of differential equations governing the system is

v̇ = a, ȧ = −3a− 3(v − vf ) + (gap − (v + 10)), ˙gap = vf − v

Assuming the variable vf is a parameter (unchanging symbolic constant), the
dynamics of the system can be written as ẋ = Ax + B, where

x =









v
vf

a
gap









A =









0 0 1 0
0 0 0 0
−4 3 −3 1
−1 1 0 0









B =









0
0

−10
0











For the given set of initial states as x0 = (2, 2,−0.5, 1)T , the problem is to verify
that rear car would never collide with the car in front, that is, always gap > 0.

Let X denote the Laplace transform of x (X = L x), then sX−x0 = AX+ B
s
,

and solving for X we have X = (sI − A)−1(x0 + B
s
). Using Maple we have

X =























2s3 + 5.5s2 − 3s + 2

s(s3 + 3s2 + 4s + 1.0)

2s−1

−0.5s(22 + s)

s3 + 3s2 + 4s + 1

3s2 + 4.5s + 12 + s3

s(s3 + 3s2 + 4s + 1)























Therefore, gap = L−1 3s2 + 4.5s + 12 + s3

s (s3 + 3s2 + 4s + 1)
, and using Maple for the inverse

Laplace transform we have

gap = 12 − 14.2e−0.318t + 3.24e−1.34t cos(1.16t)− 0.154e−1.34t sin(1.16t).

MetiTarski proves that this expression is always greater than zero, and therefore
the system is safe for the given initial conditions.

4.2 Navigation

This benchmark deals with an object (perhaps a vehicle, though the dynamics
are not exactly vehicle dynamics) that moves in the R

2 plane [9]. The desired
velocity vd is determined by the position of the object in an n×m grid, and the
desired velocities may take values as follows:

vd = (vd1(i), vd2(i)) = (sin(i × π

4
), cos(i × π

4
)), for i = 0, . . . , 7

We assume that the length and the width of a cell is 1, and that the lower left
corner of the grid is the origin. An example of a 3×3 grid is depicted in Fig. 3.a,
where the label i in each cell refers to the desired velocity. In addition, the grid
contains cells labelled A that have to be reached and cells labelled B that ought
to be avoided.

Given vd the behavior of the actual velocity v is determined by the differential
equation v̇ = C(v − vd), where C ∈ R

2×2 is assumed to have eigenvalues with
strictly negative real part. This guarantees that the velocity will converge to

the desired velocity. Figure 3.b shows two trajectories, with C =

(

−1.2 0.1
0.1 −1.2

)

.

Both satisfy the property that A should be reached, and B avoided.

An instance of this benchmark is characterized by the initial condition on x

and v, by matrix C in the differential equation for v and by the map of the grid,
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Fig. 3. a. The map determines the desired velocity of the moving object, depending
on the position of the object. b. Two trajectories of objects moving in the plane. Both
objects eventually reach cell A while avoiding B.

which can be represented as n×m matrix with elements from {0, . . . , 7}∪{A,B}.

For the example in Fig. 3 this matrix is





B 2 4
4 3 4
2 2 A



.

The dynamics of the 4-dimensional state vector (x1, x2, v1, v2)
T are given by









ẋ1

ẋ2

v̇1

v̇2









=









0 0 1 0
0 0 0 1
0 0 −1.2 0.1
0 0 0.1 −1.2

















x1

x2

v1

v2









−









0 0
0 0

−1.2 0.1
0.1 −1.2









(

vd1(i)
vd2(i)

)

The resulting time-deterministic hybrid system [4] is shown in Figure 4. The
system has five locations.

x1 ≥ 2

x2 ≤ 1 & x1 ≥ 2

i = 2B

ℓ3

x2 ≤ 1

A

i = 3 i = 4

x1 ≤ 1 & x2 ≤ 1

x1 ≥ 2 & x2 ≥ 2

x1 ≥ 2 & x2 ≤ 1

ℓ4

ℓ0 ℓ1 ℓ2

Fig. 4. The hybrid automaton model of the Navigation system.

1. Location ℓ0, corresponds to cells labelled B that ought to be avoided.



2. Location ℓ1, corresponds to i = 2 or vd = (1, 0). Therefore, the differential
equations of the system in this mode are

ẋ1 = v1, ẋ2 = v2, v̇1 = −1.2v1 + 0.1v2 + 1.2, v̇2 = 0.1v1 − 1.2v2 − 0.1. (2)

3. Location ℓ2, corresponds to i = 3 or vd = (+0.707,−0.707). Therefore, the
differential equations of the system in this mode are

ẋ1 = v1, ẋ2 = v2, v̇1 = −1.2v1+0.1v2+0.919, v̇2 = 0.1v1−1.2v2−0.919. (3)

4. Location ℓ3, corresponds to i = 4 or vd = (0,−1). Therefore, the differential
equations of the system in this mode are

ẋ1 = v1, ẋ2 = v2, v̇1 = −1.2v1 + 0.1v2 + 0.1, v̇2 = 0.1v1 − 1.2v2 − 1.2. (4)

5. Location ℓ4, corresponds to cells labelled A that have to be reached.

The transition relations between different locations are specified by logical
formulas in Fig. 4. Now, suppose we start from the initial states defined by
(0.5, 1.5, 0.1, 0)T , which means we are initially in location ℓ3, and the differential
equations governing the system are those described in equation (4). Using the
Laplace transform method as described before, we can solve this system of ODEs
using Maple to get the following closed form formulas for x1 and x2

x1 = −0.5e−1.1t + 0.654 + 0.346e−1.3t

x2 = −0.5e−1.1t + 2.35 − 0.346e−1.3t − t

More analysis with Maple shows that at t = 1.12, x1 = 1. At this point we
switch to location ℓ1 with i = 2. We also use Maple to calculate the value of the
other state variables at this time as x2 = 0.588, v1 = 0.057, and v2 = −0.735.
Therefore, the new initial states can be defined by (1, 0.588, 0.057,−0.735)T ,
and the differential equations governing the system are those described in equa-
tion (2). Using the Laplace transform method as described before, we can solve
this system of ODEs using Maple to derive formulas for x1 and x2:

x1 = 0.742e−1.1t − 0.252 + 0.0974e−1.3t + t

x2 = 0.736e−1.1t + 0.317 − 0.0538e−1.3t

We used MetiTarski to prove that in the first mode, for all values of time in the
range 0 ≤ t ≤ 1, we have x2 ≤ 2, and in the second mode, for all values of time
in the range 0 ≤ t, we have x2 ≤ 1, and therefore, we verified that B cannot be
reachable.

We have similarly verified safety properties of other hybrid system case stud-
ies such as the Room Heating and Mutant systems.



5 Conclusions

Our experiments demonstrate that problems arising in real-world applications
can be tackled using a suitable automatic theorem prover. Table 2 shows the
problems and runtimes for three categories of case studies: inverted pendulum,
disk drive reader, and hybrid systems. The runtimes were measured on a 2.66
GHz Mac Pro running Poly/ML.

Table 2. Problems with Runtimes in Seconds

IPM-1-1 8.4
IPM-1-2 0.2
IPM-1-3 0.4
IPM-1-5-w 0.4
IPM-2-1 0.1
IPM-2-2 5.3
IPM-2-3 0.4
IPM-2-5-w 0.4
IPM-3-1 0.1
IPM-3-2 0.2
IPF-1-1 29.4
IPF-1-2 0.2
IPF-1-3 0.6
IPF-1-5-w 2.7
IPF-2-1 0.2
IPF-2-2 23.3
IPF-2-3 0.6
IPF-3-1 0.1
IPF-3-2 0.2
Inverted Pendulum

DDR-1-1 0.8
DDR-1-2 6.8
DDR-1-3 0.2
DDR-1-5 0.8
DDR-1-6-w 0.3
DDR-1-7-w 0.4
DDR-1-8-w 0.3
DDR-2-1 1.0
DDR-2-2 0.2
DDR-2-5-w 0.4
DDR-2-6-w 0.4
DDR-2-7-w 0.4
DDR-2-8-w 0.4
DDR-3-1 0.1
DDR-3-2 0.1
Disk Drive Reader

Collision Avoidance 5.1
Room Heating 0.8
Navigation-1 0.2
Navigation-2 0.4
Mutant-1 0.1
Mutant-2 12.9
Mutant-3 67.9

Hybrid Systems

As can be seen from Table 2, there are different versions of the IPM and
DDR problems which are related to the three intervals specifying the stability
criteria of the Nichols plot of the systems. In each interval, we have proved
several problems to guarantee that it meets or fails to meet its requirements.
Different versions of a hybrid systems problem correspond to different modes of
operation for the corresponding system.

The formulas to be proved are complicated, containing many occurrences
of special functions. On the other hand, and in contrast to our earlier problems
from the world of mathematics, they often have great margins of error. Therefore,
they can be tackled even if we use fairly crude approximations, which in turn
makes proofs less taxing than they would be otherwise.

We still need to investigate how well our work scales to larger and nonlin-
ear problems. There will clearly still be a place for the competitive approaches
based on model checking and constraint solving. Nevertheless, a theorem proving
approach is a suitable alternative, particularly when we require proofs and not
merely claims of correctness.
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References

1. B. Akbarpour and L. Paulson. Towards Automatic Proofs of Inequalities Involv-
ing Elementary Functions. In Pragmatics of Decision Procedures in Automated
Reasoning (PDPAR), pages 27–37, 2006.

2. B. Akbarpour and L. Paulson. Extending a Resolution Prover for Inequalities
on Elementary Functions. In Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR), LNCS 4790, pages 47–61. Springer-Verlag, 2007.

3. B. Akbarpour and L. Paulson. Metitarski: An Automatic Prover for the Elemen-
tary Functions. In Intelligent Computer Mathematics, LNCS 5144, pages 217–231.
Springer-Verlag, 2008.

4. R. Alur, C. Courcoubetis, N. Halbwaches, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olibero, J. Sifakis, and S. Yovine. The Algorithmic Analysis of Hybrid Systems.
Theoretical Computer Science, 138:3–34, 1995.

5. E. Asarin, T. Dang, and O. Maler. The d/dt Tool for Verification of Hybrid
Systems. In Computer Aided Verification, LNCS 2404, pages 365–370. Springer-
Verlag, 2002.

6. A. Chutianan and B. H. Krogh. Computational Techniques for Hybrid System
Verification. IEEE Transactions on Automatic Control, 48(1):64–75, 2003.

7. R. C. Dorf and R. H. Bishop. Modern Control Systems. Prentice-Hall, 2001.
8. L. Duarte, S. Duarte, L. da Mota, and J. Skea. An Extension of the Prelle-

Singer Method and a Maple Implementation. Computer Physics Communications,
144(1):46–62, March 2002.

9. G. Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. In
Hybrid Systems: Computation and Control (HSCC), LNCS 3414, pages 258–273.
Springer-Verlag, 2005.

10. R. Hardy. Formal Methods for Control Engineering: A Validated Decision Proce-
dure for Nichols Plot Analysis. PhD thesis, St. Andrews University, 2006.

11. T. A. Henzinger, P. H. Ho, and H. Wong-Ti. HyTech: A Model Checker for Hybrid
Systems. Software Tools for Technology Transfer, 1(1-2):110–122, 1997.

12. M. S. M. Prelle. Elementary First Integrals of Differential Equations. Transactions
of the American Mathematical Society, 279(1):215–229, Sep. 1983.

13. Y. Man. Computing closed form solutions of first order odes using the prelle-singer
procedure. J. Symb. Comput., 16(5):423–443, 1993.

14. S. Ratschan and Z. She. Safety Verification of Hybrid Systems by Constraint
Propagation-Based Abstraction Refinement. ACM Transactions on Embedded
Computing Systems, 6(1), 2007.

15. S. Ratschan, Zhikun She. Benchmarks for Safety Verification of Hybrid Systems.
http://hsolver.sourceforge.net/benchmarks, June 13, 2008.

16. A. Tiwari. Approximate Reachability for Linear Systems. In Hybrid Systems:
Computation and Control (HSCC), LNCS 2623, pages 514–525. Springer-Verlag,
2003.


