
MetiTarski: An Automatic Theorem Prover for
Real-Valued Special Functions

Behzad Akbarpour and Lawrence C. Paulson

Abstract Many theorems involving special functions such as ln, exp and sin can be

proved automatically by MetiTarski: a resolution theorem prover modified to call a de-

cision procedure for the theory of real closed fields. Special functions are approximated

by upper and lower bounds, which are typically rational functions derived from Taylor

or continued fraction expansions. The decision procedure simplifies clauses by deleting

literals that are inconsistent with other algebraic facts. MetiTarski simplifies arithmetic

expressions by conversion to a recursive representation, followed by flattening of nested

quotients. Applications include verifying hybrid and control systems.

1 Introduction

Many branches of mathematics, engineering and science require reasoning about special

functions: logarithms, sines, cosines and dozens of others. Few techniques are known

for automatically proving statements involving such functions. We have implemented

a theorem prover that works by eliminating special functions, substituting rational

function upper or lower bounds, transforming parts of the problem into polynomial

inequalities, and finally applying a decision procedure for the theory of real closed

fields.

The theory of real closed fields (RCF) concerns equalities and inequalities involv-

ing addition, subtraction and multiplication. (We call logical formulas in this theory

algebraic.) A field F is real closed if every positive number has a square root in F

and every odd degree univariate polynomial with coefficients in F has a root in F .

The decision procedure works by eliminating quantifiers from the supplied formula; for

example, ∃x. ax2 + bx+ c = 0 reduces to

(a 6= 0 ∧ b2 − 4ac ≥ 0) ∨ (a = 0 ∧ b 6= 0) ∨ (a = b = c = 0).

Both universal and existential quantifiers can be eliminated, but our current experi-

ments only require the decision procedure to refute purely existential formulas.

Tarski proved the decidability of RCF in the 1930s, but his procedure was im-

practical [19]. McLaughlin and Harrison [34] recently implemented a more efficient

Computer Laboratory, University of Cambridge, England
E-mail: {ba265,lp15}@cl.cam.ac.uk

2

procedure credited to Hörmander [27] and Cohen. We used it in earlier work [2,4], but

unfortunately it fails to terminate if applied to a polynomial of degree greater than

six or so. QEPCAD-B [11,26] is an advanced implementation of cylindrical algebraic

decomposition (CAD), which is the best available decision procedure for the complete

theory of RCF [19]. CAD is still doubly exponential in the number of variables, but it is

polynomial in other parameters such as size of the input formula, the maximum degree

of polynomials, the maximum coefficient length and so forth [11]. In our experience,

QEPCAD usually returns quickly if the formula has only a few variables. We run it as

a separate process.

Our approach [2–4] to proving inequalities involving special functions is to replace

function occurrences one by one with appropriate upper or lower bounds. Once we have

also eliminated occurrences of division, we can call QEPCAD and if it is successful,

simplify the problem. Daumas et al. [17] present families of upper and lower bounds for

square roots, trigonometric functions, logarithms and exponentials; in fact, virtually

all functions of interest to engineering can be approximated by a power series or a

continued fraction [14]. Each approximation is typically an upper or lower bound of the

desired function on some good-sized interval. A small modification, such as including

the next term of the power series, frequently transforms a lower bound into an upper

bound or vice versa. We can use a variety of approximations in order to obtain coverage

over wider intervals, in many cases infinite intervals.

Our approach requires a full first-order theorem prover even to prove simple inequal-

ities. The bounds typically have side conditions that must be proved. Case analysis is

necessary when eliminating division and often when substituting bounds, for exam-

ple when combining intervals. We chose to modify a resolution theorem prover rather

than implementing a theorem prover from scratch. Impressive examples of the latter

approach include Analytica [13] and Weierstrass [9], both of which implement a form

of sequent calculus. However, we felt that writing an entire prover would require more

effort than modifying a resolution prover, while delivering inferior results. We were also

inspired by SPASS+T [38], which effectively combines the resolution theorem prover

SPASS with various SMT solvers. For the resolution prover, we chose Hurd’s Metis [28].

Compared with leading provers, it is slow (being coded in Standard ML rather than

C) and it lacks many refinements (such as advanced data structures for indexing).

However, it implements the superposition calculus [7] and its code is extremely clear.

MetiTarski outputs proofs in the standard TSTP format [43]. These are machine-

readable and can also, with perseverance, be checked by humans. Most proof steps

involve standard resolution inference rules. To these we add specialist inference rules

for arithmetic simplification, decision procedure calls and other steps. It should be

straightforward to build an independent tool for checking MetiTarski proofs.

Paper outline. We begin with a general architectural overview (§2). We then discuss

(§3) the upper and lower bounds we use, and other aspects of the axiom system. We

proceed to describe (§4) how we modified the resolution prover Metis. We finally present

a table of new results (§5) along with brief conclusions (§6).

2 Overview of MetiTarski

We work in first-order logic with equality. Detailed technical definitions can be found

in standard reference works [7]. The following summary highlights the specific points

that pertain to MetiTarski.

3

2.1 Definitions

Our universe of discourse is the set of real numbers. All variables range over the reals.

A term is a variable, a constant or an n-ary function applied to an n-tuple of terms.

Our language includes constants for the integers and the arithmetic functions +, −, ×
and /. Below we use familiar mathematical notation, for example writing xy or x · y
instead of x× y.

MetiTarski simplifies arithmetic expressions based on the assumptions outlined

above. We are particularly interested in real-valued functions such as sin and cos, and

their properties must be defined axiomatically. For each function of interest, axioms

must be provided that express upper or lower bounds, or properties such as monotonic-

ity. Needless to say, invalid axioms will yield invalid proofs.

An atomic formula P , Q, . . . has the form t = u or t ≤ u, where t and u are terms.

A literal is an atomic formula or its negation. We regard t < u as abbreviating the

literal ¬(u ≤ t) and accept the familiar abbreviations t 6= u, t ≥ u and t > u.

A clause is a finite set of literals, interpreted as a disjunction. We typically write

clauses as logical formulas such as ¬P1 ∨ ¬P2 ∨ Q1 ∨ Q2 or P1 ∧ P2 → Q1 ∨ Q2

instead of sets such as {¬P1,¬P2, Q1, Q2}. The empty clause denotes the formula ⊥,

contradiction. A set of clauses is interpreted as a conjunction.

A ground term, literal or clause is one containing no variables.

2.2 The Resolution Loop

A resolution prover [7] represents and works on a problem as a set of clauses, which

can be seen as a formula in conjunctive normal form. The conjecture is typically sup-

plied as a first-order formula; it is negated and conjoined with axioms appropriate to

the problem domain. The resolution procedure attempts to deduce the empty clause,

thereby proving the original conjecture by contradiction.

Passive

clause set

Active

clause set

 selected
clause

 inference
rules

 deduced
clauses

 simplification

new
clauses

Contradic-
tion found

Fig. 1 The main loop of resolution

Each resolution inference combines two clauses and yields a new clause as follows:

P ∨A ¬Q ∨B
(A ∨B)σ

4

Here P and Q are atomic formulas, A and B are sets of literals, and σ is the most

general unifier of P and Q. In general, the new clause will be longer than the original

ones, and most such steps are fruitless. The key to successful theorem proving is to

choose the right literals, P and ¬Q, to resolve upon. Resolution provers use a term

ordering to select the most appropriate literal; with the right ordering (since resolution

deletes the selected literals), this process gradually eliminates all occurrences of special

functions. We assist resolution by allowing a decision procedure (QEPCAD) to delete

ground algebraic literals that it determines to be inconsistent with their context (such

as adjacent literals).

A resolution prover’s main loop (Fig. 1) manages two sets of clauses, Active and

Passive [33]. The Active set consists of clauses that have been resolved with every other

Active clause, while the Passive set consists of clauses waiting to be processed. At the

start, all clauses belong to Passive. At each iteration, the following steps take place:

– An element of the Passive set (called the given clause) is selected and moved to

the Active set.

– The given clause is resolved with every member of the Active set.

– Newly inferred clauses are first simplified, for example by rewriting. Those that are

not redundant are added to the Passive set.

MetiTarski modifies this procedure in several respects. The simplification phase

converts arithmetic formulas to a canonical form and attempts to isolate special func-

tions. It can also delete ground algebraic literals that it determines to be inconsistent

with their context. The built-in term ordering is modified to ensure that special function

occurrences are eliminated despite the existence of apparently more complex algebraic

formulas. Clauses that are obviously trivial, such as t ≤ 0 ∨ t ≥ 0, are automatically

discarded. Every aspect of this architecture has been designed to ensure good perfor-

mance for an axiom system of a specific form. Despite the modifications outlined above,

MetiTarski remains a resolution theorem prover, with a control flow as shown in Fig. 1.

2.3 On Case Splitting

Newcomers to resolution may be surprised to learn that the procedure works by sat-

uration rather than by posing subgoals or by case splitting on variables. It processes

a single pool of assertions until it succeeds by detecting a contradiction or fails by

running out of clauses to process (or running out of memory). To prove a formula of

the form P ∨ Q → R, a subgoaling approach would attempt to prove two separate

problems, P → R and Q→ R. Resolution expresses the problem P ∨Q→ R as a pair

of clauses derived from its negation: P ∨Q and ¬R. Rather than proving the formula

P → R, resolution may succeed (with the help of other axioms present in the problem)

in deducing Q from P ∨ Q and ¬R. It could complete the proof by finding a contra-

diction between Q and ¬R. The two cases are actually proved sequentially. Because

every clause having two or more literals is a disjunction, every resolution proof can be

regarded as consisting of a series of case analyses.

3 Axiom System

We distribute MetiTarski with several axiom files that users can insert into problems.

MetiTarski requires axioms that specify the properties of the ≤ relation. Few of these

5

axioms are general; they typically concern the special functions or division. The most

important axioms provide bounds for special functions. These bounds must be correct,

accurate and not too complicated. They also need to be valid over a good-sized interval.

We have sought reasonably accurate bounds for the purposes of our experiments, but

these can always be improved upon.

In our earlier work [2–4], we relied almost exclusively on Daumas et al. [17], who

provide bounds for a few well-known functions. Those bounds, however, were intended

for a different application: to decide constant formulas like e > 2
√

2 using interval

arithmetic. For each function, they supplied a family of increasingly accurate bounds.

Each bound included range reduction: scaling to ensure accuracy for function argu-

ments of arbitrary magnitude. Their software selected appropriate parameters for the

problem at hand. In effect, each bound was an infinite family indexed in two dimensions

(accuracy and range). Resolution provers require a finite and preferably small axiom

system.

We have addressed these difficulties in a variety of ways. We have moved away from

Taylor expansions, which tend to be accurate only on narrow intervals and then veer

away wildly, in favour of continued fractions. For some functions, in particular loga-

rithm and arctan, the continued fraction approximation gives excellent accuracy over

wide intervals. We have eliminated arbitrary range reduction and choosen a few fixed

ranges of accuracy. These simplifications are adequate for our experiments, allowing

us to focus on crucial issues such as the search space and the treatment of complex

expressions. The original bounds were only claimed [17] to hold over narrow intervals;

these could often be relaxed. In other cases, we sought new bounds that were valid over

wider intervals. Relaxing the range restrictions allows inequalities to be proved over

infinite intervals. The resolution procedure can perform case analyses (in the sense of

Sect. 2.3) in order to join proofs involving bounds valid over different intervals, but it

can only consider finitely many cases.

Our problems demand a wide range of accuracies. Those of mathematical origin

sometimes require razor-sharp bounds while some derived from real-world problems [42]

can be solved with crude bounds. The most accurate bounds are only necessary for a

few problems, so we keep them in separate axiom files because the presence of many

bounds for a particular function can greatly increase the search space. One of our

continued fraction bounds for the exponential function is accurate to 1.06× 10−12 on

the interval [−2, 0], according to the computer algebra system Maple.

The continued fraction expansions come from a standard reference book [14]. In

order to avoid introducing specialised notation, we do not present the continued frac-

tions but instead the specific instances (“approximants”) that we require. We have

computed these approximants using Maple and library code obtained from the book’s

associated website [8]. We also omit the proofs that these approximants are upper or

lower bounds for the functions they approximate. To present those proofs would require

us to develop the theory of continued fractions at length. Continued fractions are not

essential to MetiTarski: our previous paper [3] does not use them at all.

Remark : we use f(x) and f(x) to stand for upper or lower bounds of f(x) often in

the absence of specific definitions; when we write say ln(x), we often refer to a different

function than do Daumas et al. [17].

6

3.1 The Square Root Function

In early work, we manually replaced square roots by new variables, replacing
√
t by

y such that y ≥ 0 and y2 = t. Provided the term t contains no special functions,

we obtain algebraic constraints that QEPCAD can accept. However, this approach can

only be applied to algebraic terms, and increasing the number of variables is inadvisable

when the decision procedure is doubly exponential in that number. MetiTarski can now

support the square root function directly, by means of upper and lower bounds.

Daumas et al. [17] base their bounds for
√
x on Newton’s method. We have improved

their accuracy, making them exact when x = 1. Our versions are defined as follows:

sqrt(x, 0) =
x+ 1

2

sqrt(x, n) =
y + x/y

2
n ≥ 1,where y = sqrt(x, n− 1)

sqrt(x, n) =
x

sqrt(x, n)

Their complexity increases rapidly. For example,

sqrt(x, 2) =
x4 + 28x3 + 70x2 + 28x+ 1

8(x+ 1)(x2 + 6x+ 1)

sqrt(x, 3) =
x8 + 120x7 + 1820x6 + 8008x5 + +12870x4 + 8008x3 + 1820x2 + 120x+ 1

16(x+ 1)(x2 + 6x+ 1)(x4 + 28x3 + 70x2 + 28x+ 1)

We supply MetiTarski with axioms that assert

sqrt(x, n) ≤
√
x ≤ sqrt(x, n)

subject to the condition that x ≥ 0. As remarked above, we must choose a finite number

of these. If we plot these functions (Fig. 2), the graphs suggest that the versions with

higher values of n are more accurate everywhere, and so the best approach should be

to choose one reasonably large n. Experiments demonstrate however that proofs are

frequently found faster if versions with lower values of n are also present, presumably

because the formulas are simpler. We therefore include instances of the axioms for

n = 0, . . . , 4, a total of 10 axioms.

Their correctness is easy to demonstrate. Below, let n denote a non-negative integer.

Lemma 1 If x ≥ 0 then sqrt(x, n) > 0.

Proof. Immediate, by induction on n. ut

Proposition 1 If x ≥ 0 then sqrt(x, n) ≥
√
x.

Proof. By the previous lemma, it suffices to show
`
sqrt(x, n)

´2 ≥ x. Regardless of

whether n is zero or nonzero, sqrt(x, n) can be written in the form 1
2 (y+x/y) for some

y > 0. A simple calculation reveals that„
y + x/y

2

«2

− x =
y2

4
+
x

2
+

x2

4y2
− x =

y2

4
− x

2
+

x2

4y2
=

„
y − x/y

2

«2

≥ 0,

from which we conclude
`

1
2 (y + x/y)

´2 ≥ x. ut

Proposition 2 If x ≥ 0 then sqrt(x, n) ≤
√
x.

Proof. Immediate, by the previous two propositions. ut

7

Fig. 2 Square Root Upper Bounds: sqrt(x, 2), sqrt(x, 3)

3.2 The Logarithm Function

Daumas et al. [17] derive bounds for lnx from Taylor approximations,

nX
i=1

(−1)i+1 (x− 1)i

i
,

for the range 1 < x ≤ 2. With this series, even values of n yield lower bounds while

odd values of n yield upper bounds. Unfortunately, these approximations become wildly

inaccurate as x increases because their leading term involves xn.

Our upper bounds are finite approximants of the continued fraction expansion

(11.2.1) of Cuyt et al. [14, p. 196]. Odd approximants yield upper bounds for lnx for

x > 0. Lower bounds are obtained by the identity lnx = − ln(1/x): we can define

ln(x) = −ln(1/x) because the change of sign reverses the inequality. Here are the first

four pairs of bounds:

x− 1

x
≤ lnx ≤ x− 1

(1 + 5x)(x− 1)

2x(2 + x)
≤ lnx ≤ (x+ 5)(x− 1)

2(2x+ 1)

(1 + 19x+ 10x2)(x− 1)

3x(3 + 6x+ x2)
≤ lnx ≤ (x2 + 19x+ 10)(x− 1)

3(3x2 + 6x+ 1)

(47x3 + 239x2 + 131x+ 3)(x− 1)

12x(x3 + 12x2 + 18x+ 4)
≤ lnx ≤ (3x3 + 131x2 + 239x+ 47)(x− 1)

12(4x3 + 18x2 + 12x+ 1)

They are valid for x > 0 and are reasonably accurate: Fig. 3 portrays the second and

third bounds shown above for the intervals (0, 1] and [1, 8]. Their correctness can be

proved by a straightforward argument, appealing to general theorems concerning the

monotonicity properties of continued fraction tails [15].

The superiority of continued fractions over Taylor series is evident in Fig. 4. It

compares one of our simplest upper bounds with a Taylor formula, which is inferior

near zero and from x > 2 zooms into the stratosphere (its limiting value is x5/5).

8

Fig. 3 Logarithm Upper Bounds: ln(x, 2), ln(x, 3)

Fig. 4 Logarithm Upper Bounds: (x− 1)(12x4 − 63x3 + 137x2 − 163x+ 137)/60, ln(x, 2)

3.3 The Exponential Function

Daumas et al. [17] derive bounds for expx from its Taylor expansion, but only for

−1 ≤ x < 0. They use a complicated system of transformations, first covering the

negative numbers in separate intervals of the form [k − 1, k) for integer k < 0. For

x > 0, they use the identity

exp(−x) =
1

expx.
(1)

The rapid growth of the exponential function necessitates the use range reduction to

scale down large arguments. The variety of scaling possibilities yields a multiplicity

9

of bounds, but we can use only finitely many. Nevertheless, we have managed to find

simpler bounds valid over wide ranges. We complement these Taylor series bounds with

others based on continued fractions, specifically expansion (11.1.2) of Cuyt et al. [14,

p. 194].

We use a crucial fact about the Taylor expansion [12, p. 83].

Proposition 3 If n is odd and x 6= 0 then

expx >

nX
i=0

xi

i!
.

If n is even then this inequality holds if x > 0, while the opposite inequality holds if

x < 0. Obviously we have equality when x = 0.

This opposite inequality yields upper bounds for x ≤ 0. The bound using n = 4

is already poor when x < −2, but they are valid for all x ≤ 0. Prop. 3 with odd n

yields lower bounds for x ≥ 0. Using (1), we define exp(−x) = 1/exp(x): dividing by a

positive lower bound yields an upper bound. Obviously the exponential function is not

bounded by any rational function for x > 0, and one might imagine that the exponential

function overtakes its bound after a certain point. In fact, our upper bounds are never

overtaken, but reach a singularity as the denominator goes to zero. With n = 3, the

upper bound is 6/(6−6x+3x2−x3); its denominator is a cubic equation with one real

root at x ≈ 1.60. We extend this upper limit using range reduction, via the identity

expx = exp(x/k)k, for k = 2, 4. With k = 4 and n = 3, the denominator of the

upper bound becomes a 12th degree polynomial; QEPCAD easily copes with such high

degrees. As always, we can employ only finitely many cases of range reduction.

Fig. 5 Upper Bounds for the Exponential Function

Continued fraction bounds have advantages and disadvantages compared with Tay-

lor series bounds. A Taylor series bound is valid for both positive and negative argu-

ments, subject to the singularity mentioned above. With continued fractions, we must

10

treat the positive and negative cases separately.1 On the other hand, a continued frac-

tion bound is typically much more accurate (measured as absolute difference) than a

similarly complex Taylor series bound, and is good over a wider interval. The Taylor

bounds we use are reasonably accurate near zero but go wildly astray as x → −∞.

Some of these points can be seen in Fig. 5, which compares a range-reduced Taylor

upper bound with the fifth (for x ≥ 0) and sixth (for x ≤ 0) continued fraction ap-

proximants. We computed these approximants, as before, using Maple code from a

continued fractions library [8].

−x
5 + 30x4 + 420x3 + 3360x2 + 15120x+ 30240

x5 − 30x4 + 420x3 − 3360x2 + 15120x− 30240
(5th approximant)

x6 + 42x5 + 840x4 + 10080x3 + 75600x2 + 332640x+ 665280

x6 − 42x5 + 840x4 − 10080x3 + 75600x2 − 332640x+ 665280
(6th approximant)

21743271936
“
−x3 + 12x2 − 96x+ 384

”−4
(Taylor)

For x ≥ 0, the continued fraction upper bounds are valid over wider ranges than

the Taylor series bounds, even without range reduction. However, they all reach a

singularity eventually. For example, the denominator of the fifth approximant goes to

zero at x ≈ 7.29. Obviously, a bound is not valid beyond such a singularity.

Fig. 6 Lower Bounds for the Exponential Function

Lower bounds are plentiful. By Prop. 3, the truncated Taylor expansion of expx for

odd n is a lower bound over the entire real line. Unfortunately, for negative arguments

they are only accurate near zero. We can again use expx = exp(x/k)k as a means of

range reduction, but only for odd k. In order to use exp(x/k)k as another lower bound

for expx, it suffices to deduce

exp(x/k)k ≤ exp(x/k)k = expx

1 For x ≥ 0, odd approximants yield upper bounds of expx while even ones yield lower
bounds; for x ≤ 0, the situation is reversed.

11

from exp(x/k) ≤ exp(x/k), for which we need k to be odd because exp(x/k) could

be negative. We use the Taylor expansion with n = 5, performing range reduction as

described above with k = 3; this bound has degree 15 and gives an acceptable fit for

−6 ≤ x ≤ 6. We include the lower bound 1 + x (the Taylor expansion with n = 1)

because of its simplicity. We also use continued fraction approximants: the third (for

x ≤ 0) and second (for x ≥ 0), going right up to the seventh when we need high

accuracy. Finally, since the exponential function is always positive, we include zero as

a lower bound; the other lower bounds are insufficient to prove expx > 0.

Figure 6 presents some of our lower bounds. It compares a range-reduced Taylor

lower bound, namely

„
1 +

x

3
+
x2

18
+

x3

162
+

x4

1944
+

x5

29160

«3

,

with the fifth (for x ≤ 0) and sixth (for x ≥ 0) continued fraction approximants. Note

that the continued fraction lower bound peters out when x > 8, while the Taylor bound

continues to follow the function upwards.

Fig. 7 Taylor Approximations for the Sine Function

3.4 Trigonometric Functions

For sinx and cosx, we follow Daumas et al. [17] and rely on the Taylor expansions:

sinx =

nX
i=0

(−1)i

(2i+ 1)!
x2i+1

cosx =

nX
i=0

(−1)i

(2i)!
x2i

12

For x > 0, these yield upper bounds when n is even and lower bounds when n is odd;

for x < 0, the situation is reversed.2 We illustrate their behaviour by plotting sinx

against its Taylor expansions of seven and eight terms (Fig. 7), the most accurate ones

we use; they deteriorate badly when |x| > 5.

Daumas et al. [17] also suggest families of bounds that converge to π, but we are

using a fixed set of axioms and have simply chosen the pair 3.1415926 < π < 3.1415927.

For the inverse tangent, Daumas et al. [17] use the Taylor expansion once again:

tan−1 x =

nX
i=0

(−1)i

2i+ 1
x2i+1

Unfortunately, this series is notorious for its slow convergence, especially when |x| ≈ 1.

We adopted it for our early experiments [3], but even 25 terms of the series yielded

poor accuracy. We have since adopted bounds derived from its continued fraction

representation (11.4.8) [14, p. 207]. They are extremely accurate when |x| ≤ 1, and

otherwise we can transform them by the identities tan−1 x = π/2 − tan−1(1/x) and

tan−1(−x) = − tan−1 x. We thereby obtain excellent bounds for the entire real line,

at the expense of having separate bounds for the cases x < −1, x ≤ 0, x ≥ 0, x > 1.

Note that there is no need to make the ranges of coverage disjoint.

Here are the first four approximants yielded by the continued fraction:

x,
3x

x2 + 3
,

(4x2 + 15)x

3(3x2 + 5)
,

(11x2 + 21)5x

3(3x4 + 30x2 + 35)

By Lemma 1 of Cuyt et al. [16], the odd-numbered approximants are upper bounds

while the even-numbered ones are lower bounds.

The first two approximants are not very accurate but they yield simple bounds,

which benefits the more complicated proofs (those involving nested functions, for in-

stance).

tan−1 x ≤ −π
2
− 1

x
(x < −1)

tan−1 x ≤ 3x

x2 + 3
(x < 0)

tan−1 x ≤ x (x > 0)

tan−1 x ≤ π

2
− 3x

1 + 3x2
(x > 1)

We also use accurate bounds derived from the fifth and sixth approximants.

tan−1 x ≤ −π
2
− 64 + 735x2 + 945x4

15x(15 + 70x2 + 63x4)
(x < −1)

tan−1 x ≤ (33x4 + 170x2 + 165)7x

5(5x6 + 105x4 + 315x2 + 231)
(x < 0)

tan−1 x ≤ (64x4 + 735x2 + 945)x

15(15x4 + 70x2 + 63)
(x > 0)

tan−1 x ≤ π

2
− (33 + 170x2 + 165x4)7x

5(5 + 105x2 + 315x4 + 231x6)
(x > 1)

2 For the proofs of these statements, we refer to Daumas et al. [17], who have formally
verified all the bounds in their paper using PVS.

13

The bounds that we show as valid for x < −1 are actually valid for x < 0, and those

that we show as valid for x > 1 are actually valid for all x, but with poor accuracy. We

find that restricting them as shown reduces the search space and improves performance.

We omit the lower bounds due to lack of space, but they are easily obtained from

those shown. We define tan−1(x) = −tan−1(−x), since

tan−1(x) = −tan−1(−x) ≤ − tan−1(−x) = tan−1 x.

3.5 Other Functions

Many familiar mathematical functions are normally defined in terms of other functions.

Examples include the following:

xy = exp(y lnx) tanx =
sinx

cosx
sinhx =

expx− exp(−x)

2

It seems natural to use these definitions directly rather than to seek upper and lower

bounds from first principles. The prover will then use the approximations it has for the

functions on the right-hand side.

Metis, like other modern resolution theorem provers, supports equality reasoning.

Given an equality axiom of the form t = u, it can replace instances of the term t by

corresponding instances of the term u, or vice versa. We can therefore insert such def-

initions as equality axioms and let resolution do the rest. However, MetiTarski usually

gives better results if we regard the definitions as absolutely precise upper and lower

bounds,
sinx

cosx
≤ tanx ≤ sinx

cosx
,

which we formalise as discussed in Sect. 3.6 below. This use of inequalities has the

advantage of postponing the introduction of the definiens (right-hand side) until the

definiendum (left-hand side) becomes outermost in a term. Regardless of whether we

regard a function’s definition as an equality or as a pair of bounds, it is essential to

modify the term ordering (Sect. 4.5) to ensure that the definiendum is replaced by the

definiens and not the other way round.

Since the difficulty of a problem rises sharply with the number of function occur-

rences it contains, it may be preferable to specify functions through upper and lower

bounds rather than in terms of other special functions. Reference works such as Cuyt

et al. [14] present approximations for dozens of special functions, which could serve as

the basis for upper and lower bounds. This approach requires more work initially: we

have to identify new upper and lower bounds rather than reusing the ones we already

have. It may yield better results in the long run.

We specify the absolute value function by a pair of clauses:

¬(0 ≤ x) ∨ |x| = x 0 ≤ x ∨ |x| = −x

The theorem prover uses these axioms to replace |t| by t or −t through case analysis on

the sign of t. This occurs via the paramodulation rule, which is the standard inference

rule for dealing with equality. If we have a clause of the form

P (|t|) ∨ C

14

then paramodulation generates two clauses:

P (t) ∨ ¬(0 ≤ t) ∨ C
P (−t) ∨ 0 ≤ t ∨ C

The new literals have the form ¬(0 ≤ t) or 0 ≤ t and they are therefore complementary.

To destroy this property by strengthening the second clause of the absolute value

function to 0 < x ∨ |x| = −x would harm performance.

3.6 Axioms

The guiding principle behind our axiom system is to avoid all use of general properties

of orderings, such as transitivity, antisymmetry, and monotonicity of addition and

multiplication. Such properties are notorious for blowing up the search space. Necessary

instances of these properties are built into other axioms, built into simplification or left

to the decision procedure. To limit the problem size and search space, we only include

axioms that are relevant to the functions that appear in the problem. It is often obvious

by inspection whether upper or lower bounds are required. At present the user has to

identify the required sets of axioms, although this step would be straightforward to

automate. On the other hand, analysis of a problem to determine the required accuracy

and range of bounds is difficult; we have identified good general-purpose bounds, but

no fixed set can be appropriate for all problems.

A significant change from our earlier work [2] is that the less-than relation no longer

exists. We have only one primitive ordering relation, ≤. The equivalence X < Y ⇐⇒
¬(Y ≤ X), formerly a pair of clauses, is built into the parser. When we write t < u in

a clause, as just below for example, it actually abbreviates ¬(u ≤ t).
To illustrate our formalization of bounds, consider the fact 1+x ≤ expx. We could

combine it with transitivity for ≤ and < by asserting two axioms:

¬(Y ≤ 1 +X) ∨ Y ≤ exp(X)

¬(Y < 1 +X) ∨ Y < exp(X)

However, writing each bound twice would be inconvenient and could result in user

errors. Instead we introduce a generalized less-than relation. Its first argument indi-

cates which relation it designates. We express the following two equivalences using the

obvious four axiom clauses:

lgen(0, X, Y) ⇐⇒ X ≤ Y
lgen(1, X, Y) ⇐⇒ X < Y

Now, the lower bound axiom for ≤ and < can be expressed by a single clause:

¬(lgen(R, Y, 1 +X)) ∨ lgen(R, Y, exp(X)).

The theorem prover will then generate the two clauses shown above.

We modify the term ordering (used in resolution, Sect. 4.5) to ensure that the

exp literals are selected. The lower bound clauses combine with literals of the form

¬(t ≤ exp(u)) or ¬(t < exp(u)), respectively, and therefore can resolve with a fact

of the form exp(u) < t yielding the new fact 1 + u < t, and similarly for ≤. Since

resolution works by negating the conjecture to be proved, these inferences can be

15

regarded as reducing a conjecture of the form t ≤ exp(u) to t ≤ 1 + u, and similarly

for <.

As before [2], we include axioms concerning division in order to encourage its re-

placement by multiplication. The term ordering is set up (see Sect. 4.5) to ensure that

these axioms do not instead replace multiplication by division.

¬(X ≤ Y · Z) ∨X/Z ≤ Y ∨ Z ≤ 0

¬(X ≤ Y/Z) ∨X · Z ≤ Y ∨ Z ≤ 0

¬(X · Z ≤ Y) ∨X ≤ Y/Z ∨ Z ≤ 0

¬(X/Z ≤ Y) ∨X ≤ Y · Z ∨ Z ≤ 0

Because simplification flattens nested quotients (Sect. 4.1), these axioms are reasonably

effective in removing division from a problem. Those shown include the literal Z ≤ 0,

which means they concern the case when Z > 0; we also include the analogous axioms

for when Z < 0.

4 Modifications to the Resolution Procedure

The axioms presented above are sufficient to reduce a problem involving special func-

tions to one involving division and finally to one that is purely algebraic. The remaining

reasoning takes place in the theory of real closed fields. To accomplish this reasoning,

we modify the resolution procedure so that it interacts with a decision procedure for

RCF. Specifically, our modifications are as follows:

– The integer constants are available, and the input file can express fractions in

decimal notation; for example, 1.2 denotes 6
5 . The prover can perform rational

arithmetic on such fractions. We never use floating point arithmetic.

– Arithmetic expressions are simplified in order to identify redundant forms and to

isolate the special functions.

– Ground algebraic literals that are inconsistent with existing algebraic facts are

deleted from every new clause. This brings us closer to the empty clause.

– New clauses that follow in RCF from existing algebraic facts are regarded as re-

dundant and deleted. This reduces the use of space and time.

– The built-in term ordering supports subterm coefficients [32]. This encourages the

replacement of functions by bounds, even when they superficially appear to be more

complex.

4.1 Arithmetic Simplification

MetiTarski uses a recursive representation of polynomials. We map all variants of an

expression to a unique canonical form. To focus the proof search, we isolate occurrences

of special functions and flatten nested divisions.

4.1.1 Horner normal form

All terms built up using constants, negation, addition, subtraction, and multiplication

can be considered as multivariate polynomials. Following Grégoire and Mahboubi [22],

16

we transform them to Horner normal form, also called the recursive representation. This

representation is canonical : distinct representations imply that the original polynomials

are not equal.

Any univariate polynomial anx
n + · · ·+a1x+a0 can be rewritten in recursive form

as

a0 + x(a1 + · · ·x(an−1 + xan)).

We can consider a multivariate polynomial as a polynomial in one variable whose

coefficients are themselves a canonical polynomial in the remaining variables.

For example, we can represent the polynomial 3xy2 + 2xyz + 4y + yz/2 + 5 as

(5 + y(4 + y(0 + x3))) + z(0 + y(
1

2
+ x2)).

It is a polynomial in z whose coefficients are polynomials in y and then x. (Our Horner

normal form makes the constant term explicit even if it is zero.) Integer constants

denote themselves, while rational numbers are expressed using the binary function

symbol “rational”, which is distinct from the general division operator.

We define arithmetic operations on canonical polynomials, subject to a fixed vari-

able ordering. For addition, our task is to add c+ xp and d+ yq. If variables x and y

are the same, then we just compute (c+ xp) + (d+ xq) = (c+ d) + x(p+ q), returning

simply c + d if p + q = 0. If variable x is smaller than y in the ordering, then c + xp

is recursively added to d, yielding some d′, and the result is d′ + yq. The remaining

case (y smaller than x) is handled by symmetry. For negation, we recursively negate

the coefficients, while subtraction is an easy combination of addition and negation.

We can base a recursive definition of polynomial multiplication on the following

equation, solving the simpler sub-problems p · d and p · q recursively:

p · (d+ yq) = (p · d) + (0 + y(p · q))

However, for 0 + y(p · q) to be in canonical form we need y to be the topmost variable

overall, with p having no variables strictly earlier in the list. Hence, we first check which

polynomial has the earlier topmost variable and exchange the operands if necessary.

Powers pn (for fixed n) are computed by repeated multiplication. Our implementa-

tion of the canonical form algorithm is based on a preprint of John Harrison’s recent

book [24].

Any algebraic term can now be translated into canonical form by transforming

constants and variables, then recursively applying the appropriate canonical form op-

erations. We simplify a formula of the form X ≤ Y by converting X−Y to its canonical

form Z and returning the equivalent formula Z ≤ 0. We simplify 1+x ≤ −4 to 5+x ≤ 0,

for example. Any fixed format can harm completeness, but note that the literal deletion

strategy described below is indifferent to the particular representation of a formula.

4.1.2 The Treatment of Division

Our normal form supports the operations of addition, subtraction, and multiplication.

Division by an integer or rational does not present a problem, since a coefficient can be

a rational number: the divisor is recursively supplied to the normal form conversion.

Other occurrences of division must somehow be removed from a formula before we can

give it to the RCF decision procedure.

17

Division can occur deep inside expressions as a proof develops. Without special

treatment, such occurrences will be difficult to eliminate using resolution alone. Accord-

ingly, we transform an expression containing division into a rational function according

to the following rules. (We identify E with E
1 if necessary.)

x1

y1
+
x2

y2
=
x1y2 + x2y1

y1y2

x1

y1
· x2

y2
=
x1x2

y1y2

x1

y1
− x2

y2
=
x1y2 − x2y1

y1y2

x1

y1
÷ x2

y2
=
x1y2
y1x2

Thus we replace nested divisions by one single division, which as the outermost symbol

can be eliminated by one proof step using an appropriate division axiom (see Sect. 3.6).

In this example, three divisions are replaced by one.„
x

y

«
1`

x+ 1
x

´ =
x2

y(x2 + 1)

We add literals to the resulting clause to account for the possibility of division

by zero. In particular, if we simplify x1/y1 + x2/y2 then we make the resulting clause

conditional on y1 6= 0 and y2 6= 0. However, for (x1/y1) ·(x2/y2) and (x1/y1)÷(x2/y2),

no such conditions are necessary. That is because we define x/0 = 0. It is trivial to see

that (x1/y1) · (x2/y2) = 0 if and only if any of x1, x2, y1, y2, are zero, and in this they

agree with the corresponding right-hand side.

On division by zero. The Isabelle and HOL communities are comfortable with a for-

malised mathematics that defines x/0 = 0 on many numerical domains. They appre-

ciate that it simplifies deductions by making certain identities unconditional, such as

(x · y)−1 = x−1 · y−1. But some mathematicians view the idea with suspicion. To

simplify the discussion, let us restrict ourselves to fields, taking x/y as an abbreviation

for x · y−1 and restricting the issue to the status of 0−1.

In first-order logic, all functions are total. There are no models of the field axioms

in which 0−1 is undefined: 0−1 must denote something. Because the field axioms do

not constrain the value of 0−1, the axiom 0−1 = 0 is consistent with them; assuming it

cannot allow anything to be proved that contradicts the other axioms. If we augment

the real number system with an undefined value∞ and augment the field axioms with

axioms to propagate undefinedness, then we can derive ∞ = 0 · ∞ = 0; that approach

just replaces the issue of 0−1 with the equally vexing issue of 0 · ∞.

Bergstra and Tucker [10] have recently given an equational specification of the

rational numbers from which 0−1 = 0 is deducible, which they readily accept. Their

article presents the issue in historical perspective.

4.1.3 Isolating Function Occurrences

We attempt to isolate occurrences of special functions. In the Horner normal form

transformation (Sect. 4.1.1), we regard any non-algebraic term (preferably a special

function occurrence) as a variable. We order the variables, taken in this general sense,

using Metis’s built-in Knuth-Bendix ordering. This ensures that one of the function

occurrences will appear as the outermost “variable.” If we detect this situation, we

leave this term by itself on one side of the inequality, for example as ln t ≤ t′. We even

18

divide both sides by any constant coefficient, so that −2 ln t ≤ t′ becomes −t′/2 ≤ ln t.

This transformation is built into arithmetic simplification.

Isolating the function is more difficult in cases such as (ln t)u ≤ t′, where a special

function is multiplied by an arbitrary term u. It is natural to divide both sides of the

inequality by this term, but we cannot do so unless we know the sign of u. Our solution

is to generate a case analysis. This step cannot be integrated with simplification; it is,

in fact, implemented as a separate rule of inference. Its logical justification is trivial,

by the properties of division.

If we have a clause of the form tu ≤ t′ ∨C (the analogous inference is available for

t′ ≤ tu ∨ C), then we create four new clauses:

t ≤ t′/u ∨ u ≤ 0 ∨ C

0 ≤ t′ ∨ u 6= 0 ∨ C

t′/u ≤ t ∨ u ≥ 0 ∨ C
u < 0 ∨ u = 0 ∨ u > 0

The first three clauses describe the situation when u > 0, u = 0 or u < 0, respec-

tively. The final clause expresses case analysis on the sign of u. We could express this

trichotomy axiom in full generality, but its effect on the search space would be catas-

trophic. It is interesting to note that few of our examples require the fourth clause;

it is only necessary when u is not algebraic (otherwise QEPCAD could perform the

necessary reasoning) and cannot be proved to have one uniform sign.

4.2 Algebraic Literal Deletion

Literal deletion [2] simplifies new clauses that emerge from inference rules. For each

ground algebraic literal in such a clause, we conjoin it with the negations of all ground

algebraic literals in that clause (its context) and with all ground algebraic clauses known

to the prover. Taking as variables all Skolem constants present in this conjunction, we

proceed to form its existential closure. If the RCF solver (QEPCAD) reduces this

existential formula to false, then the literal under consideration is deleted. This is the

primary mechanism by which the decision procedure contributes to deduction.

As a small example, suppose we are trying to prove

∀x [−3 < x < 1→ ln(1− x) ≤ −x]

with the help of a range-restricted polynomial upper bound f2,

∀x [2 ≤ x ≤ 4→ lnx ≤ f2(x)] .

Skolemization of the conjecture will yield three clauses, with u a Skolem constant:

−3 < u u < 1 ¬[ln(1− u) ≤ −u].

MetiTarski maintains a list consisting of all ground algebraic clauses (regardless of

whether they are active or passive). At the start of the proof, −3 < u and u < 1 will be

the only elements of this list. As the proof proceeds, a resolution step will eventually

substitute our upper bound, yielding the following unsimplified clause:

f2(1− u) ≤ −u ∨ 2 > 1− u ∨ 1− u > 4. (2)

19

Ordinary arithmetic simplification can reduce 2 > 1 − u to u > −1, and 1 − u > 4 to

−3 > u, but if f2(1−u) is a complicated polynomial, then only QEPCAD can achieve

a real simplification: we give it the formula

∃u
ˆ
f2(1− u) ≤ −u ∧ u ≤ −1 ∧ −3 ≤ u| {z }

negated literals

∧ −3 < u ∧ u < 1| {z }
algebraic clauses

˜
.

Provided f2 is a sufficiently tight bound, the result will be false and the literal can be

deleted from clause (2). The literal u > −1 turns out to be consistent with its context,

so it is preserved. Then we call QEPCAD for −3 > u:

∃u [−3 > u ∧ u ≤ −1 ∧ −3 < u ∧ u < 1] .

This again is false, and the final simplified clause is

u > −1.

It will be added to our list of ground algebraic clauses. We have tightened the range of

u to −1 < u < 1; if it becomes empty, then we have reached a contradiction.

In this example, the constraints that accumulate are linear, but in general they

could relate arbitrary polynomials. QEPCAD can detect inconsistencies among non-

linear constraints.

4.3 Algebraic Subsumption

Resolution theorem provers generate many redundant clauses. To conserve space, they

typically delete any clause that is a syntactic instance of another. The redundancy test

is applied just before new clauses are added to the passive clause set (recall Fig. 1).

We generalize this redundancy criterion, known as subsumption, by performing an

analogous redundancy check in the RCF theory.

When a new clause is generated, we identify its ground algebraic literals and form

their disjunction. If this disjunction is an algebraic consequence of the existing ground

algebraic clauses, then we ignore the new clause; in future QEPCAD calls, it could only

contribute redundant information. This technique can even improve the performance

of some failing proofs so that they terminate (reporting failure) rather than running

forever. The resulting performance improvement depends on other aspects of the for-

malization; at present, around four percent of our problems are proved significantly

faster when this technique is enabled. Note that if we applied this idea to standard

resolution inferences, then all new clauses would be ignored, because all clauses are

logical consequences of the previous clauses.

Recall our previous example, where the ground algebraic clauses included −1 < u

and u < 1. Suppose that a resolution step yields the following clause:

ln(1− u) ≤ u2 ∨ u2 < 2 ∨ 4u > 3.

Algebraic subsumption will call QEPCAD with the formula

∃u. u2 ≥ 2 ∧ 4u ≤ 3| {z }
negated literals

∧ −1 < u ∧ u < 1| {z }
algebraic clauses

.

QEPCAD returns false, indicating that the algebraic part of the clause follows from

−1 < u < 1. The clause is discarded.

20

4.4 Removal of Arithmetic Tautologies

The division axioms presented above (Sect. 3.6) give rise to many fruitless deductions.

These yield clauses such as X ≤ 0∨X ≥ 0∨ Note that the slightly different clause

X ≤ 0 ∨X > 0 is a propositional tautology, because X > 0 abbreviates ¬(X ≤ 0). It

is therefore natural to interpret X ≤ 0 ∨X ≥ 0 as a tautology also. Generalising this

idea, we examine each literal of the form t ≤ 0 or t ≥ 0 in a newly deduced clause in

order to determine whether it is tautologous in the context of the neighbouring literals.

If the term has the form t1 · t2 or t1/t2, then we recursively perform the obvious sign

computation on t1 and t2. If the computed sign for t logically implies the literal, then

the entire clause is deleted as tautologous.

For example, consider the clause X ≤ 0∨Y ≤ 0∨X ·Y > 0. It is logically equivalent

to

X > 0 ∧ Y > 0→ X · Y > 0,

so when we examine the literal X · Y > 0, we can assume X > 0 and Y > 0. The sign

computation concludes that X · Y is positive: the literal X · Y > 0 is implied by its

context, so the clause is deleted. The effect is to reduce the search space by ignoring

deductions that cannot lead to a contradiction.

This procedure is the sole exception to our principle that properties of the spe-

cial functions are specified by axioms rather than being built into the code. Our sign

computation gives terms of the form expx and coshx a positive sign; for example, the

clause X ≤ 0 ∨ X expY > 0 will be deleted.

4.5 Modified Knuth-Bendix Ordering

The execution of a modern resolution prover is governed by a term ordering [7]. This

ordering serves several purposes:

– to orient equations appropriately,

– to eliminate redundant combinations of inferences (those that could never produce

essentially new results), and

– to draw the prover’s attention to literals of high priority.

Metis follows most resolution theorem provers in providing the Knuth-Bendix ordering

(KBO) [6, p. 124]. Its advantages include computational efficiency and a tendency to

prefer simpler terms. The latter property, however, can be a drawback.

It gives an equation like X−X = 0 the obvious orientation, but others can be diffi-

cult to orient. For example, consider the equation u = 1
2 , where u is a Skolem constant.

The default ordering will consider the fraction 1
2 (which is a function application) to

be more complex than u, and will therefore choose the perverse orientation 1
2 = u. We

can solve this issue by assigning suitable weights. Weights (typically positive integers)

can be assigned to all function symbols; the sum of the weights in a term is a key

measure in the ordering. By giving Skolem constants a weight of 5, while integers and

the function “rational” have a weight of 1, MetiTarski ensures that the orientation

u = 1
2 is chosen. Weights can similarly ensure that the equation tanx = sinx/cosx

is oriented from left to right, so that it eliminates rather than introduces the tangent

function.

21

Ordered resolution can implement our strategy of replacing special functions by

rational functions and then division by multiplication, provided we adopt a suitable

ordering. We are concerned with clauses such as the following:

¬0 < X ∨ ¬[(X + 5)(X − 1)/(4X + 2) ≤ Y] ∨ lnX ≤ Y.

This combines the upper bound property lnX ≤ (X + 5)(X − 1)/(4X + 2) with tran-

sitivity, allowing lnX to be replaced by its bound. We would like resolution to select

the literal lnX ≤ Y in order to eliminate an occurrence of ln t from another clause.

Unfortunately, standard KBO will want to select ¬[(X + 5)(X − 1)/(4X + 2) ≤ Y]

because it is syntactically larger than lnX ≤ Y . We can attempt to force the issue by

assigning ln a very high weight. Then lnX ≤ Y will be selected, but the second literal

will continue to be selected as well: KBO takes into account the number of variable

occurrences in the terms being compared, and the upper bound for lnX contains mul-

tiple occurrences of X while lnX contains only one occurrence. Therefore both literals

are maximal. Selecting multiple literals for resolution is normal, but in this case it

needlessly expands the search space.

Ludwig and Waldmann [32] provide a solution to this difficulty. They give pre-

cise definitions of useful extensions to KBO, along with theory and implementation

advice. We have modified Metis’s built-in ordering so that a function can have not

only a weight, but also a subterm coefficient. For example, if ln has a subterm coeffi-

cient of 10, then each occurrence of a variable in ln t is equivalent to 10 occurrences

of that variable in t; then lnX is regarded as containing 10 occurrences of X while

(X + 5)(X − 1)/(4X + 2) continues to contain only three occurrences. If we make a

function’s subterm coefficient large enough (greater than the number of occurrences

of the variable in any bound), we can ensure that a literal containing that function is

selected every time. This modification to Metis yields dramatic reductions in solution

times for the great majority of problems.

A further detail is extremely important. Ordered resolution frequently employs a

heuristic entitled negative selection: a literal’s sign is taken into account, in addition

to its rank in the ordering. Specifically, only maximal negative literals can be selected

for resolution. Metis employs negative selection by default but also offers3 unsigned

literal selection. With this option, 76 percent of our problems are proved; with negative

selection, only 10 percent are proved; with no ordering whatever (all literals selected),

42 percent are proved.4 The terrible result with negative selection, where 58 percent of

the proof attempts quickly terminate with a result of “countersatisfiable” is strange:

negative selection should be complete, but clearly not with our heuristics! MetiTarski

uses unsigned literal selection in order to eliminate occurrences of special functions

regardless of their sign.

4.6 Waiting Queue Parameters

A resolution prover manages the unprocessed clauses in a priority queue. Other things

being equal, the following priorities apply:

1. A simple clause will have priority over one containing large expressions.

3 via a simple change to its source code, see file Clause.sml
4 Tests were run on a 2.66 GHz Mac Pro allowing 10 seconds per problem.

22

2. A clause containing few literals will have priority over one containing many literals.

3. Older clauses have priority over younger ones.

The last point above ensures that every clause will eventually be processed, which

is essential for completeness. The Metis prover, by default, gives equal weight to the

first two points and a very low weight to the third. MetiTarski modifies this basic

framework.

The complexity of an expression is generally referred to as its weight, but note

that there is no connection between this concept of weight and that mentioned in the

previous section. The weight of an expression is typically the sum of the weights of its

constituent variables, constants and function symbols. Our upper and lower bounds

produce large expressions. We therefore assign low weights to the algebraic operators

(addition, subtraction and multiplication), a slightly higher weight to division, much

higher weights to the special functions, and a very high weight to the absolute value

function. All constants have a weight of zero. Variables receive an unusual treatment:

the first occurrence of a variable in a literal is assigned a high weight, but subsequent

occurrences are assigned a low weight. This penalises clauses that contain many lit-

erals containing variables. For ground literals, we have almost eliminated the penalty

assessed on the number of literals in a clause. Many of our problems require extensive

case analysis, which means that their proofs will require clauses having many liter-

als. We have determined these values5 by extensive empirical testing. They give much

better results than the default settings.

5 Results and Related Work

As of this writing, we have nearly 400 problems, of which 79 percent are proved in

under 40 seconds. For this paper, we present (Table 1) a small sample of the more

interesting and difficult problems. The runtimes were measured on a 2.66 GHz Mac

Pro running Poly/ML.

MetiTarski can prove problems involving square roots, but each square root
√
E in

the problems presented here has been manually replaced by a new variable y such that

y ≥ 0 and y2 = E. This transformation encodes square roots as algebraic constraints

and can easily be automated. Obviously, it is only useful if E is algebraic.

Our problems come from a variety of sources. Some were suggested by colleagues;

many others come from mathematical textbooks and reference works [1,29,30,35,36].

We have recently been applying MetiTarski to problems in hybrid systems and control

theory [5] and to analogue circuit verification [18]. For several problems obtained from

the HSolver website [42], MetiTarski performs better than HSolver [41] itself, as we

describe elsewhere [5].

Hybrid system problems are frequently expressed using linear differential equations,

which can be solved using a computer algebra system such as Maple. The result is

an inequality, typically involving the exponential, sine and cosine functions, which

MetiTarski can often prove. The following formula arises from a collision avoidance

5 Currently 10 for variables but 450 on the first occurrence; 7 for algebraic operators, 40 for
division, 100 for special functions and 900 for the absolute value function.

23

Table 1 Problems and Runtimes

problem seconds

−1 < x =⇒ 2|x|/(2 + x) ≤ |ln(1 + x)| 0.372
|x| < 1 =⇒ |ln(1 + x)| ≤ − ln(1− |x|) 0.100
|x| < 1 =⇒ |x|/(1 + |x|) ≤ |ln(1 + x)| 0.318
|x| < 1 =⇒ |ln(1 + x)| ≤ |x|(1 + |x|)/|1 + x| 0.611
|x| < 1 =⇒ |x|/4 < |expx− 1| 0.230

0 < |x| < 1 =⇒ |expx− 1| < 7|x|/4 0.262
|expx− 1| ≤ exp(|x|)− 1 0.174
|expx− (1 + x)| ≤ |exp(|x|)− (1 + |x|)| 0.327
|expx− (1 + x/2)2| ≤ |exp(|x|)− (1 + |x|/2)2| 0.368
0 ≤ x =⇒ 2x/(2 + x) ≤ ln(1 + x) 0.110

−1/3 ≤ x ≤ 0 =⇒ x/
√

1 + x ≤ ln(1 + x) 0.121
1/3 ≤ x =⇒ ln((1 + x)/x) ≤ (12x2 + 12x+ 1)/(12x3 + 18x2 + 6x) 0.211

1/3 ≤ x =⇒ ln((1 + x)/x) ≤ 1/
√
x2 + x 0.109

0 < y < x =⇒ (1/2) ln(x/y) > (x− y)/(x+ y) 0.181

0 ≤ x ≤ 1 =⇒ exp(x− x2) ≤ 1 + x 0.125

x ≤ 1/2 =⇒ exp(−x/(1− x)) ≤ 1− x 0.386
|x| < 1 =⇒ |sin(x)| ≤ 6/5|x| 0.116
0 < x < 100/201 =⇒ cos(πx) > 1− 2x 0.296
cos(x)− 1 + x2/2 ≥ 0 0.005

x > 0 =⇒ tan−1 x > 8
√

3x/(3
√

3 +
√

75 + 80x2) 285.200

x > 0 =⇒ (x+ 1/x) tan−1 x > 1 0.103

x > 0 =⇒ tan−1 x > 3x/(1 + 2
√

1 + x2) 3.299
0 < x ≤ π =⇒ cos(x) ≤ sin(x)/x 0.143
0 < x < π/2 =⇒ cosx < sin2 x/x2 0.324
π/3 ≤ x ≤ 2π/3 =⇒ sinx/3 + sin(3x)/6 > 0 1.368

system:

0 ≤ x ≤ 2 =⇒
12− 14.2 exp(−0.318x) +

ˆ
3.25 cos(1.16x)− 0.155 sin(1.16x)

˜
exp(−1.34x) > 0.

MetiTarski can prove this formula in 25 seconds. MetiTarski can also prove a wide

variety of problems derived from the verification of Nichols plots [21,23]. These typically

involve the arctangent, logarithm and square root functions; many of the proofs take

under one second.

Proofs require surprisingly few steps. Of our current set of problems, 314 can be

proved with a limit of 300 seconds. Of these 314 proofs, the longest is 482 steps. The

median proof is 50 steps long, so 50 per cent of the proofs are no longer than that.

Because many of the proofs contain large formulas, we also examined their length in

tokens (counted using the UNIX utility wc). The largest proof is 6586 tokens long and

the median proof is 352 tokens long.

5.1 Limitations

Limitations of our approach can be seen in the facts that cannot be proved. We can

prove cos(πx) > 1− 2x under the assumption 0 < x < 100/201 but unfortunately not

24

under the assumption 0 < x < 1/2: our approximation to π is fixed and some precision

is inevitably lost. If MetiTarski cannot prove a formula (whether it is a theorem or

not), it typically runs forever rather than reporting this fact.

Our approach is inherently incapable of proving non-algebraic equalities. The idea

of reducing f(x) = g(x) to a pair of inequalities must fail, as we cannot hope to prove

f(x) ≤ g(x) after we have substituted an upper bound for f and a lower bound for g.

At best we can prove |f(x)− g(x)| < ε for some positive ε, whose value will depend on

the accuracy of our bounds.

QEPCAD is hyperexponential in the number of variables, and it often fails to

terminate if the problem involves more than three variables. Eliminating this serious

limitation requires the development of more efficient RCF decision procedures. QEP-

CAD is usually to blame when a proof takes a long time; the proof in Table 1 that takes

285 seconds spends 284 seconds in QEPCAD. We do not require the full power of QEP-

CAD, which handles both existential and universal quantifiers; a decision procedure

that can prove purely universal formulas would suffice.

5.2 Related Work

We are not aware of much related work. SPASS+T [38] combines a resolution theorem

prover (SPASS) with an arbitrary SMT (satisfiability modulo theories) procedure. The

objective is to combine resolution’s power to handle quantification with SMT’s ability

to cope with huge propositional formulas whose atoms involve linear arithmetic or other

decidable theories. It terminates successfully if either SPASS or the SMT procedure

detect a contradiction. There are clear parallels with our project, but our method of

integration is different (we use the decision procedure to simplify individual clauses)

and we focus on a different problem domain, namely that of the real-valued special

functions.

Interval-based arithmetic constraint solving is a general method for handling prob-

lems that involve non-linear formulas over the reals. In combination with an SMT

solver, it has the potential to solve large problems in many variables. It generally

yields a decision procedure, while theorem provers often fail to terminate. However, in-

terval arithmetic also has drawbacks. It does not deliver proofs of its claims. Floating

point arithmetic is typically used, rounding conservatively to ensure correctness. Inter-

val arithmetic can lose precision rapidly in certain situations. Many of our examples

are proved over unbounded intervals, which is not possible with interval arithmetic.

RSolver [39] is a constraint solver based on interval arithmetic. Termination is only

guaranteed for problems that are robust “in the sense that their truth value . . . does

not change under small perturbations of the occurring constants.” For example, the

theorem ∀x [1 + x ≤ exp(x)] is not robust because ∀x [(1 + ε) + x ≤ exp(x)] fails for

all ε > 0. More generally, any theorem of the form ∀x ∈ I [f(x) ≤ g(x)] is not robust

if f(x) = g(x) for some x ∈ I. The robustness requirement is natural in engineering

applications but it does not hold for many of the problems in Table 1. HSolver [41] is

a program for verifying of hybrid systems based upon RSolver; it works by generating

a discrete approximation of the continuous state space. HySAT [20] combines SAT

solving techniques with interval-based arithmetic constraint solving. Both HySAT [25]

and RSolver [40] can reason about some transcendental functions but neither supports

the division operator and therefore cannot express many of our problems.

25

Tangential to our approach, but possibly of interest, is the work of Lafferriere et

al. [31] concerning the reachability problem for systems of linear differential equations.

In general, closed form solutions to such systems involve transcendental functions, but

they can be reduced to polynomial problems in certain highly specialised cases. For

example, occasionally all occurrences of x belong to the expression exp(x), so a simple

change of variable eliminates the exponential function. QEPCAD and similar decision

procedures are then applicable. This work can be used to verify hybrid systems.

6 Conclusions

MetiTarski, which combines a resolution theorem prover with specialized simplification

and a decision procedure, can prove numerous facts involving special functions auto-

matically. By further refining our techniques, we expect to prove increasingly difficult

theorems. The approach is flexible, and should work with any well-behaved functions.

MetiTarski delivers machine-readable proofs that could be checked, in principle,

by a separate tool. Checking a proof is much easier than finding a proof because it

requires no search, and proofs are fairly short. A complicating factor is that QEPCAD

performs lengthy computations using sophisticated algorithms. A proof verifier could

check its results by calling an alternative RCF decision procedure, but it would be bet-

ter not to trust any decision procedure. We do not require the full power of QEPCAD,

since we only seek to refute ∃-formulas (equivalently, to prove ∀-formulas). We could

therefore consider decision procedures that yield independently checkable certificates,

for example by transforming a polynomial into a sum of squares [37]. The transforma-

tion is easily verified using elementary algebra, and it is trivial to check that a sum

of squares is nonnegative. Such an approach may yield both better performance and

more trustworthy proof reconstruction.

Our choice of Metis over more advanced resolution provers has been successful. We

have obtained acceptable performance and the source code has been easy to modify.

ML’s garbage collector has certainly simplified our task.

Resolution is traditionally regarded first as a formal calculus and only second as an

implementation. A resolution calculus is first developed, then proved to be complete,

before an implementation is contemplated. Our results demonstrate that modifying an

implementation can deliver proofs and insights. Our modifications are sympathetic to

the overall architecture of resolution: we modify its notions of simplification and sub-

sumption and its ordering. We ignore completeness because proving something is better

than proving nothing. Nonetheless, we welcome suggestions for achieving completeness

under particular circumstances.

Acknowledgements The research was supported by the Engineering and Physical Sciences
Research Council [grant number EP/C013409/1]. Joe Hurd offered much help with his Metis
prover. Christopher W. Brown and Ian Grant provided support for QEPCAD. Annie Cuyt
helped us with continued fractions. John Harrison, David Lester, César Muñoz , Thomas Türk
and Uwe Waldmann answered various queries. Jeremy Avigad commented on a draft of this
paper and he also provided several problems. The referees scrutinised the paper carefully and
made numerous comments and suggestions.

26

References

1. M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Wiley, 1972.

2. B. Akbarpour and L. Paulson. Extending a resolution prover for inequalities on
elementary functions. In Logic for Programming, Artificial Intelligence, and Reasoning,
pages 47–61, 2007.

3. B. Akbarpour and L. Paulson. MetiTarski: An automatic prover for the elementary
functions. In S. Autexier et al., editors, Intelligent Computer Mathematics, LNCS 5144,
pages 217–231. Springer, 2008.

4. B. Akbarpour and L. C. Paulson. Towards automatic proofs of inequalities involving
elementary functions. In B. Cook and R. Sebastiani, editors, PDPAR: Pragmatics of
Decision Procedures in Automated Reasoning, pages 27–37, 2006.

5. B. Akbarpour and L. C. Paulson. Applications of MetiTarski in the verification of
control and hybrid systems. In R. Majumdar and P. Tabuada, editors, Hybrid Systems:
Computation and Control, LNCS 5469, pages 1–15. Springer, 2009.

6. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

7. L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 2, pages
19–99. Elsevier Science, 2001.

8. F. Backeljauw, S. Becuwe, M. Colman, A. Cuyt, and T. Docx. Special functions:
continued fraction and series representations, 2008. On the Internet at
http://www.cfhblive.ua.ac.be/.

9. M. Beeson. Automatic generation of a proof of the irrationality of e. JSC, 32(4):333–349,
2001.

10. J. A. Bergstra and J. V. Tucker. The rational numbers as an abstract data type.
J. ACM, 54(2):Article No. 7, 2007.

11. C. W. Brown. QEPCAD B: a program for computing with semi-algebraic sets using
CADs. SIGSAM Bulletin, 37(4):97–108, 2003.

12. P. S. Bullen. A Dictionary of Inequalities. Longman, 1998.
13. E. Clarke and X. Zhao. Analytica: A theorem prover for Mathematica. Mathematica

Journal, 3(1):56–71, 1993.
14. A. Cuyt, V. Petersen, B. Verdonk, H. Waadeland, and W. Jones. Handbook of Continued

Fractions for Special Functions. Springer, 2008.
15. A. A. M. Cuyt. Upper/lower bounds. E-mail dated 7 September 2008.
16. A. A. M. Cuyt, B. Verdonk, and H. Waadeland. Efficient and reliable multiprecision

implementation of elementary and special functions. SIAM J. Scientific Computing,
28(4):1437–1462, 2006.

17. M. Daumas, C. Muñoz, and D. Lester. Verified real number calculations: A library for
integer arithmetic. IEEE Trans. Computers, 58(2):226–237, 2009.

18. W. Denman, B. Akbarpour, S. Tahar, M. Zaki, and L. C. Paulson. Automated formal
verification of analog designs using MetiTarski. In A. Biere and C. Pixley, editors,
Formal Methods in Computer Aided Design, 2009. Accepted for publication.

19. A. Dolzmann, T. Sturm, and V. Weispfenning. Real quantifier elimination in practice.
Technical Report MIP-9720, Universität Passau, D-94030, Germany, 1997.

20. M. Fränzle, C. Herde, S. Ratschan, T. Schubert, and T. Teige. Efficient solving of large
non-linear arithmetic constraint systems with complex boolean structure. Journal on
Satisfiability, Boolean Modeling and Computation, 1:209–236, 2007.

21. H. Gottliebsen, R. Hardy, O. Lightfoot, and U. Martin. Applications of real number
theorem proving in PVS. Preprint, 2007.

22. B. Grégoire and A. Mahboubi. Proving equalities in a commutative ring done right in
Coq. In J. Hurd and T. Melham, editors, Theorem Proving in Higher Order Logics:
TPHOLs 2005, LNCS 3603, pages 98–113. Springer, 2005.

23. R. Hardy. Formal Methods for Control Engineering: A Validated Decision Procedure for
Nichols Plot Analysis. PhD thesis, University of St Andrews, 2006.

24. J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, 2009.

25. C. Herde. HySAT Quick Start Guide. University of Oldenburg, 2008. On the Internet at
http://hysat.informatik.uni-oldenburg.de/user_guide/hysat-user-guide.pdf.

27

26. H. Hong. QEPCAD — quantifier elimination by partial cylindrical algebraic
decomposition. Sources and documentation are on the Internet at
http://www.cs.usna.edu/~qepcad/B/QEPCAD.html.

27. L. Hörmander. The Analysis of Linear Partial Differential Operators II: Differential
Operators with Constant Coefficient. Springer, 2006. First published in 1983; cited by
McLaughlin and Harrison [34].

28. J. Hurd. Metis first order prover. http://gilith.com/software/metis/, 2007.
29. W. J. Kaczor and M. T. Nowak. Problems in Mathematical Analysis II: Continuity and

Differentiation. American Mathematical Society, 2001.
30. P. P. Korovkin. Inequalities. Pergamon, 1961.
31. G. Lafferriere, G. J. Pappas, and S. Yovine. Symbolic reachability computation for

families of linear vector fields. Journal of Symbolic Computation, 32(3):231–253, 2001.
32. M. Ludwig and U. Waldmann. An extension of the Knuth-Bendix ordering with

LPO-like properties. In N. Dershowitz and A. Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning, LPAR 2007, volume 4790 of Lecture Notes in
Computer Science, pages 348–362. Springer, 2007.

33. W. McCune and L. Wos. Otter: The CADE-13 competition incarnations. Journal of
Automated Reasoning, 18(2):211–220, 1997.

34. S. McLaughlin and J. Harrison. A proof-producing decision procedure for real
arithmetic. In R. Nieuwenhuis, editor, Automated Deduction — CADE-20 International
Conference, LNAI 3632, pages 295–314. Springer, 2005.

35. D. S. Mitrinović and P. M. Vasić. Analytic Inequalities. Springer, 1970.
36. J.-M. Muller. Elementary Functions: Algorithms and Implementation. Birkhäuser, 2nd

edition, 2006.
37. P. A. Parrilo. Semidefinite programming relaxations for semialgebraic problems.

Mathematical Programming, 96(2):293–320, 2003.
38. V. Prevosto and U. Waldmann. SPASS+T. In G. Sutcliffe, R. Schmidt, and S. Schulz,

editors, FLoC’06 Workshop on Empirically Successful Computerized Reasoning, volume
192 of CEUR Workshop Proceedings, pages 18–33, 2006.

39. S. Ratschan. Efficient solving of quantified inequality constraints over the real numbers.
ACM Trans. Comput. Logic, 7(4):723–748, 2006.

40. S. Ratschan. RSolver User Manual. Academy of Sciences of the Czech Republic, 2007.
On the Internet at http://rsolver.sourceforge.net/documentation/manual.pdf.

41. S. Ratschan and Z. She. Safety verification of hybrid systems by constraint propagation
based abstraction refinement. ACM Transactions in Embedded Computing Systems,
6(1), 2007.

42. S. Ratschan and Z. She. Benchmarks for safety verification of hybrid systems, 2008.
http://hsolver.sourceforge.net/benchmarks/.

43. G. Sutcliffe, J. Zimmer, and S. Schulz. TSTP data-exchange formats for automated
theorem proving tools. In W. Zhang and V. Sorge, editors, Distributed Constraint
Problem Solving and Reasoning in Multi-Agent Systems, number 112 in Frontiers in
Artificial Intelligence and Applications, pages 201–215. IOS Press, 2004.

A Sample Proof

We present the proof of the formula

x > 0 =⇒ (x+ 1/x) tan−1 x > 1.

In order to save space, we have manually removed applications of the substitution rule,

which most resolution provers would omit anyway. Otherwise, the output is precisely as

it was generated. Without examining the proof in detail, we can see which axioms were

used and which facts were deduced. In line 9, we can see how the arctan function was

isolated by dividing both sides of the previous line by 1 + x2, which QEPCAD proves

in line 11 to be positive. By line 12, MetiTarski is trying to derive a contradiction from

tan−1 x ≤ x/(1 + x2). By line 26, MetiTarski has derived 2x3 ≤ 0 ∨ x2 ≤ −3, which

quickly leads to the desired contradiction.

28

SZS output start CNFRefutation for atan-problem-9.tptp
fof(atan_problem_9, conjecture,

(! [X] : (~ X <= 0 => ~ (X + 1 / X) * arctan(X) <= 1))).

cnf(leq_right_mul_divide_pos, axiom, (~ X / Z <= Y | X <= Y * Z | Z <= 0)).

cnf(0, plain,
(~ skoX * ((1 + skoX * skoX) * 3) / (skoX ^ 2 + 3) <= skoX |
skoX * ((1 + skoX * skoX) * 3) <= skoX * (skoX ^ 2 + 3) |
skoX ^ 2 + 3 <= 0), inference(subst, [leq_right_mul_divide_pos])).

cnf(leq_left_mul_divide_pos, axiom, (~ X <= Y / Z | Z <= 0 | X * Z <= Y)).

cnf(2, plain, ((skoX + 1 / skoX) * arctan(skoX) <= 1),
inference(fof_to_cnf, [], [atan_problem_9])).

cnf(3, plain, (arctan(skoX) / skoX <= 1 + arctan(skoX) * -skoX),
inference(arith, [2])).

cnf(5, plain,
(arctan(skoX) <= (1 + arctan(skoX) * -skoX) * skoX | skoX <= 0),
inference(resolve, [3, leq_right_mul_divide_pos])).

cnf(6, plain, (arctan(skoX) * (1 + skoX * skoX) <= skoX | skoX <= 0),
inference(arith, [5])).

cnf(7, plain, (~ skoX <= 0), inference(fof_to_cnf, [], [atan_problem_9])).

cnf(8, plain, (arctan(skoX) * (1 + skoX * skoX) <= skoX),
inference(resolve, [6, 7])).

cnf(9, plain,
(1 + skoX * skoX <= 0 | arctan(skoX) <= skoX / (1 + skoX * skoX)),
inference(split, [8])).

cnf(10, plain,
(skoX * skoX <= -1 | arctan(skoX) <= skoX / (1 + skoX * skoX)),
inference(arith, [9])).

cnf(11, plain, (~ skoX * skoX <= -1), inference(decision, [7])).

cnf(12, plain, (arctan(skoX) <= skoX / (1 + skoX * skoX)),
inference(resolve, [10, 11])).

cnf(lgen_less_neg, axiom, (~ Y <= X | ~ lgen(1, X, Y))).

cnf(atan_lower_bound_case_13, axiom,
(~ 0 <= X | ~ lgen(R, Y, 3 * X / (X ^ 2 + 3)) |
lgen(R, Y, arctan(X)))).

cnf(15, plain,
(~ 0 <= X0 | ~ arctan(X0) <= X1 |
~ lgen(1, X1, 3 * X0 / (X0 ^ 2 + 3))),
inference(resolve, [atan_lower_bound_case_13, lgen_less_neg])).

cnf(16, plain,
(~ 0 <= X0 | ~ arctan(X0) <= X1 | 3 * X0 / (X0 ^ 2 + 3) <= X1),
inference(arith, [15])).

cnf(18, plain,

29

(~ 0 <= skoX | 3 * skoX / (skoX ^ 2 + 3) <= skoX / (1 + skoX * skoX)),
inference(resolve, [12, 16])).

cnf(19, plain,
(~ 0 <= skoX | skoX * 3 / (skoX ^ 2 + 3) <= skoX / (1 + skoX * skoX)),
inference(arith, [18])).

cnf(20, plain, (0 <= skoX), inference(decision, [7])).

cnf(21, plain, (skoX * 3 / (skoX ^ 2 + 3) <= skoX / (1 + skoX * skoX)),
inference(resolve, [20, 19])).

cnf(22, plain,
(skoX * 3 / (skoX ^ 2 + 3) * (1 + skoX * skoX) <= skoX |
1 + skoX * skoX <= 0),
inference(resolve, [21, leq_left_mul_divide_pos])).

cnf(23, plain,
(skoX * skoX <= -1 |
skoX * ((1 + skoX * skoX) * 3) / (skoX ^ 2 + 3) <= skoX),

inference(arith, [22])).

cnf(24, plain, (skoX * ((1 + skoX * skoX) * 3) / (skoX ^ 2 + 3) <= skoX),
inference(resolve, [23, 11])).

cnf(25, plain,
(skoX * ((1 + skoX * skoX) * 3) <= skoX * (skoX ^ 2 + 3) |
skoX ^ 2 + 3 <= 0), inference(resolve, [24, 0])).

cnf(26, plain, (skoX * (skoX * (skoX * 2)) <= 0 | skoX * skoX <= -3),
inference(arith, [25])).

cnf(27, plain, (~ skoX * (skoX * (skoX * 2)) <= 0 | skoX * skoX <= -3),
inference(decision, [7])).

cnf(28, plain, (skoX * skoX <= -3), inference(resolve, [26, 27])).

cnf(29, plain, (~ skoX * skoX <= -3), inference(decision, [7])).

cnf(30, plain, ($false), inference(resolve, [28, 29])).
SZS output end CNFRefutation for atan-problem-9.tptp

