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1. Resolution Theorem Proving




Automated theorem proving

* combining a logical calculus
with syntactic algorithms

* Full automation is convenient,
but requires a weak calculus.

* Booleans + arithmetic (SMT)
* First-order logic (resolution)

* Good for program analysis.

* An interactive theorem prover

<

allows the construction of
elaborate specifications

and formal mathematical
proof developments

in an expressive logic,

but reasoning is laborious.



Interactive theorem proving

* Typically based on some form of higher-order logic
+ Isabelle, HOL4: classical HOL, with polymorphism

* PVS: a classical but dependently-typed HOL

* Coq: a constructive type theory
# Used for substantial verification projects

* ... And to formalise major results in group theory, logic, mathematical
analysis, etc.



The resolution proof procedure

* Objective is to contradict the negation of the statement to be proved.
* The negated formula is translated to a conjunction of disjunctions.
* A clause is a disjunction of literals: atoms or their negations.

* A resolution step combines two clauses to yield a new one.

* Producing the empty clause terminates the proof: it is the desired
contradiction.



A very simple resolution proof
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Applications of resolution

* Highly syntactic problems:
* Mainstream mathematical
* Robbins conjecture problems can't easily be
reduced to a few first-order
* completeness of certain formulas.
axiom systems
However, resolution can be modified
* Also in support of interactive fo solve a class of problems connected
theorem proving (Isabelle’s with the real numbers:--
sledgehammer)




2. Meti'Tarski




Resolution for the real numbers

* Metilarski proves first-order
statements involving functions
such as exp, In, sin, cos, tan’!

* ... using axioms bounding these
functions by rational functions

* ... and heuristics to isolate and
remove function occurrences
*RCF (real-closed field): a field that's
* integrated with the RCF* first-order equivalent to the reals
decision procedures QEPCAD,
Mathematica, Z3



Some easy Meti'larski problems
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Each proved in
a few seconds!
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A simple proof:
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What about that Magic Step?
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an upper bound for exp(x), for x < O:
eX < 2304/(—x> + 6x° — 24x + 48)?

using that upper bound
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The key: algebraic literal deletion

* A list of RCF clauses (algebraic, with no variables) is maintained.
* Every literal of each new clause is examined.

* A literal will be deleted if—according to the RCF decision procedure—
it is inconsistent with its context.

* MetiTarski also uses the decision procedure to detect redundant
clauses (those whose algebraic part is deducible from known facts).



Examples of literal deletion

* Unsatisfiable literals such as p? < 0 are deleted.

* If x(y+1) > 1 has previously been deduced, then x=0 will be deleted.

* The context includes the negations of adjacent literals in the clause:
z >51is deleted from z> >3 vz >5

* ... because quantifier elimination reduces 3z [z2 < 3 A z > 5] to FALSE.

# Or in our example,

X1 x <0 C(Fx3 + 6x2 — 24x + 48)2) < 2304




Architecture

Standard ML code for
arithmetic simplification

a superposition theorem

prover (Joe Hurd's Metis) 5 5
new inference rules to
attack nonlinear terms

an RCF decision procedure Axioms: upper and.lower
for nonlinear arithmetic bounds of functions




Inherent mitations

* Only non-sharp inequalities can be proved.
* Not suitable for developing mathematics:
* ugly, mechanical proofs
* ... relying on approximations alone, not “insights”

* Nested function calls? Difficult.



A few (engineering) applhications

* Abstracting non-polynomial dynamical systems (Denman)
* KeYmaera linkup: nonlinear hybrid systems (Sogokon et al.)

* Collision-avoidance projects for NASA (Mufioz & Denman)

ln engineering applications, inequalities typically hold “by accident”



MetTarski + PVS

* PVS: an interactive theorem * ... complementing PVS5’s
prover heavily used by NASA branch-and-bound methods for
polynomial estimation
* ... to verify flight control
software, etc * In NASA’s ACCoRD project,
MetiTarski has been effective!
* Now PVS uses MetiTarski as an
oracle via a trusted interface



3. Upper and Lower Bounds




+ MetiTarski works for any real-valued function that

can be approximated by upper and lower bounds.

* Bounds valid over various intervals, of varying

accuracy and complexity, are chosen automatically.



Some bounds for In

* based on the continued * including inaccurate but
fraction for In(x+1) very simple bounds

* much more accurate than
the Taylor expansion
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Some bounds for exponentials

=+ x+ - +x'/n (N odd)
- e+ /] (N even, X < 0)
X < 1/(1 — x +x?/2! — x°/3)) (x < 1.596)
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From Taylor series,

continued fractions,

identities.



Bounding e” from above
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+ Based on a continued fraction

80 -

+ Singularity around 4.644 .

* All exponential upper bounds 20
must have singularities! _




Veritying Meti'larski’'s Axioms

* Taylor series expansions: already verified (using Isabelle, PVS, etc.) for
the elementary functions sin, cos, tan’!, exp, In.

* continued fractions: more accurate; advanced theory

+ The axioms for the five transcendental functions have been verified
using Isabelle — using simple methods.

* no formalisations of their general continued fraction expansions



fiox =" (U=XxX<=1042)

By the monotonicity of In, it's enough to show
In(cf3x) = x

Take the derivative of the difference:

dix n(cf3x) — X =

6
(x3 — 12x2 + 60x — 120)(x3 + 12x2 + 60x + 120)




Plotting that derivative...

* Singularities at +4.644 Ipparese

* Nonnegative within that interval




Continuing the proof sketch

That derivative is positive provided
¢ 1D hlle = 120 =)

and in particular if O < x < 4.644. And since
ct3(0) =1 =exp0
The result follows.
Similar techniques justify a lower bound axiom:

cidpc=e"  Oc=1)



4. The Next Phase




Correctness concerns

* floating point arithmetic: * automated theorem provers:
* inevitable rounding errors * the system is responsible for
correctness

* programmers responsible for
correctness * users must be prevented from
making errors
* computer algebra systems:
assumptions are made, and How can we know that
users are responsible MetiTarski is sound?



Metr'larski soundness questions

* The axioms have been verified.
* MetiTarski produces proofs detailing all first-order reasoning steps.
* Its arithmetic simplification uses straightforward identities.

+* So what is left?

Those decision procedure calls.



Cylindrical algebraic
decomposition (CAD)

* Given a logical formula involving a set of polynomials in n variables
# ... partition R" into a finite number of cells

* ... such that each polynomial has a constant sign on each cell.

* Then quantifiers can be eliminated by picking a member of each cell.

The computational effort is hyper-exponential in n!



Simpler: CAD 1n one variable

Most MT problems are
univariate

Hardly any have more
than three variables.

In the one-dimensional
case, we just need the

roots of the polynomials.




CAD within MetTarski

* An experimental extension to + To verify these requires a
MetiTarski solves RCF formalisation of the Sturm-
problems Tarski theorem.

* ... while returning detailed * Then MetiTarski could be
proofs. [Univariate problems soundly integrated with

only] interactive theorem provers.



Future aspirati()ns

* MetiTarski works well!

It will work even better after
future improvements to
decision procedures.

Interactive theorem proving is
also effective in mathematical
analysis.

+* Jtis time to formalise

substantial bodies of complex
analysis, real algebraic
geometry, etc,

... and integrate algebraic and
analytical reasoning into our
theorem-proving tools.
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MetiTarski (like Isabelle) is coded in Standard ML.
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