
Vampire Workshop, 1 July 2024, Nancy, France

Lawrence C Paulson

Sledgehammer: a Saga

Origins

• A suggestion by Andrei Voronkov (at IJCAR 2001 in Siena?): let’s
combine Isabelle with a real theorem prover

• Meetings with Weidenbach and Siekmann in Saarbrücken

• A grant of £249,905 starting in January 2004

• … and a report of early results that July, at IJCAR 2004

• First release early in 2007, integrating Isabelle with E, SPASS, Vampire

Some precursors and influences

Ωmega (Siekmann, Benzmüller et al.)

KIV + 3TAP (Ahrendt, Beckert et al.)

Coq + Bliksem (Bezem et al.)

Integrating Gandalf and HOL (Hurd)

Unfortunately, they demanded
too much work from the user

“Now that 2GHz processors are commonplace, we
should abandon the traditional mode of interaction,

where the proof tool does nothing until the user
types a command. Background processes … should

try to prove the outstanding subgoals.”

[from the original proposal, 2003]

Original design criteria

• Easy invocation (1-click, or even 0-click)

• Automatic translation from higher-order logic to first-order logic

• Instant access to the entire lemma library, with relevance checking

• Result as a proof certificate

• To avoid having to rerun the search

• To avoid trusting external tools

First Working Prototype

The tasks

Translating to FOL:
types

Translating to FOL:
λ-bindings

Relevance filtering

Proof reconstruction

[AKA premise selection]

Relevance filtering

• An Isabelle session may have 10,000+ accessible facts

• Theorem provers (at that time) could cope with a couple of hundred

• Relevance may be more obvious to the interactive prover (cf KIV)

• We adopted a crude approach based on symbol occurrences

Translating to FOL: types

A fully typed translation is heavy (quadratic),
burying the formulas themselves

E = mc2

((=)E)(×m(↑c2))

So I adopted a partially typed translation (unsound!)

[Joe Hurd had success with a completely typeless translation]

… handling polymorphism and type classes

Translating to FOL: λ-bindings

• Translation approaches (neither works well!) include:

1. Combinator form S, K, I, B, C, …

2. λ-lifting (generating new function definitions)

• Have an explicit “apply” function and “is true” predicate for booleans,
but full higher-order reasoning is not possible

• All of this omitted if the problem is fully first-order; in fact a
“smooth” translation is possible

Here we compare various translations by % problems solved

Thousands of hours of testing

0 50 100 150 200 250 30030

40

50

60 constant (FO)
constant
partial
full (FO)
full

Pe
rc

en
t s

ol
ve

d

Runtime per problem (seconds)

Proof reconstruction

Proofs given by ATPs are too
ambiguous to use

So we decided to use ATPs as
powerful relevance filters

From the proof we extract
nothing but the fact names

… giving them to one of
Isabelle's own proof tools

Hurd’s metis, a superposition prover
integrated with the kernel

Working by February 2007

isn’t hard, but requires four separate facts
b < a ⟶ 0 < b ⟶ (−a) × c < − (c × b)

Also with single-step proofs

Others Take Over

Issues with the prototype

Simplistic methods
(esp. relevance filtering)

Truly horrible code

Unsound translations
(resulting in worthless “proofs")

The all-new sledgehammer

• A family of efficient, sophisticated and sound translations for
monomorphic and polymorphic types

• An ML based relevance filter for premise selection

• Additional external provers, notably SMT solvers such as Z3

• … justified by additional internal provers, including Isabelle's Z3

The work of Jasmin Blanchette, Sascha Böhme and Tobias Nipkow

Running three different theorem provers
(E, SPASS and Vampire) each for five
seconds solves as many problems as

running the best theorem prover
(Vampire) for two full minutes.

Higher-order superposition

• An effective alternative to translating λ-calculus into first-order logic

• a sound and complete calculus for higher-order logic with
polymorphism, extensionality, Hilbert choice, and Henkin semantics

• And a term ordering to limit the search space

• And an implementation! Zipperposition outperforms all other
higher-order theorem provers

The work of Bentkamp, Blanchette, Tourret, Vukmirovic

(By verifying their theoretical canon)

Giving back to the ATP community

Formalizing Bachmair and Ganzinger’s
ordered resolution prover

A verified SAT solver framework with learn,
forget, restart, and incrementality

A verified prover based on ordered resolution

Formalized superposition

Impact

Synergy with structured proofs
Every line justified by sledgehammer!

… hence, easier for beginners

• No more memorising lists of built-in facts

• No more learning obscure tactics for pushing symbols around

• The key skill: thinking up intermediate goals

• Given the proof structure, Sledgehammer does the rest!

Draft, sketch and prove: Jiang et al.

Turning English into proofs using AI

Isabelle's Archive of Formal Proofs

Strong growth in lines of code

SH SH mk II

New applications for ATPs themselves

Strong justification for automating
higher-order logic, e.g. in CVC and E

A limitless supply of users
with tough problems

Motivation for extensions such
as types and polymorphism

And other hammers, notably for HOL,
Coq and Lean (forthcoming)

Hopes for the future

• Strong support for problems involving λ-binding

• Genuine, powerful higher-order reasoning

• Hints to users, say about possibly missing assumptions or lemmas

• A truly effective and sound integration with AI

Acknowledgements

Claire Quigley: process
management

Kong Woei Susanto: Metis

Jia Meng: relevance,
HO translations

Project GR/S57198/01 Automation for Interactive Proof

Plus the group at TU Munich that
created the second generation

