
Noname manuscript No.
(will be inserted by the editor)

Extending Sledgehammer with SMT Solvers

Jasmin Christian Blanchette · Sascha Böhme ·
Lawrence C. Paulson

the date of receipt and acceptance should be inserted later

Abstract Sledgehammer is a component of Isabelle/HOL that employs resolution-
based first-order automatic theorem provers (ATPs) to discharge goals arising in in-
teractive proofs. It heuristically selects relevant facts and, if an ATP is successful,
produces a snippet that replays the proof in Isabelle. We extended Sledgehammer to
invoke satisfiability modulo theories (SMT) solvers as well, exploiting its relevance
filter and parallel architecture. The ATPs and SMT solvers nicely complement each
other, and Isabelle users are now pleasantly surprised by SMT proofs for problems
beyond the ATPs’ reach.

1 Introduction

It is widely recognized that combining automated reasoning systems of different
types can deliver huge rewards. There have been several attempts to combine inter-
active theorem provers (which are arguably better at formal modeling than at proving
theorems) with a variety of automatic theorem provers (ATPs). One of the most suc-
cessful such combinations is Sledgehammer [38, 45, 46], which interfaces Isabelle/
HOL [43] with resolution provers for classical first-order logic. Sledgehammer is
both effective, solving approximately one third of nontrivial goals arising in interac-
tive proofs [17], and easy to use, since it is invoked with a single command. For these
reasons, it has rapidly become indispensable to Isabelle users and has transformed
the way Isabelle is taught to beginners [45].

Research partially supported by the Deutsche Forschungsgemeinschaft [grant numbers Ni 491/11-2 and
Ni 491/14-1]. Sledgehammer was originally supported by the U.K.’s Engineering and Physical Sciences
Research Council [grant number GR/S57198/01].

J. C. Blanchette · S. Böhme
Institut für Informatik, Technische Universität München, Munich, Germany
E-mail: {blanchette,boehmes}@in.tum.de

L. C. Paulson
Computer Laboratory, University of Cambridge, U.K.
E-mail: lp15@cam.ac.uk

2 J. C. Blanchette, S. Böhme, L. C. Paulson

Given an Isabelle/HOL conjecture, Sledgehammer heuristically selects a few hun-
dred relevant lemmas from Isabelle’s libraries, translates them to first-order logic
along with the conjecture, and sends the resulting problem to four resolution provers
(Section 2). The provers run in parallel, either locally or remotely via SystemOn-
TPTP [56]. If a proof is found, Sledgehammer delivers it to the user in the form of an
explicit Isabelle command that can be inserted into the proof script. This command
consists of a call to Isabelle’s built-in prover metis [33, 46], supplying the facts that
were used in the original proof. Typically, metis finds an equivalent proof; this final
phase we call proof reconstruction.

First-order ATPs are powerful and general, but they can usefully be comple-
mented by other technologies. Satisfiability modulo theories (SMT) solvers combine
a satisfiability solver with decision procedures for first-order theories, such as equal-
ity, integer and real arithmetic, and bit-vector reasoning. SMT solvers are particularly
well suited to discharging large proof obligations arising from program verification.
Although SMT solvers are automatic theorem provers in a general sense, we find
it convenient to reserve the abbreviation ATP for provers rooted in the tradition of
TPTP (Thousands of Problems for Theorem Provers) [57].

There have also been several attempts to combine interactive theorem provers
with SMT solvers, either as trusted oracles or with proof reconstruction. In previous
work, we integrated the solvers CVC3 2.x [5], Yices 1.0.x [24] and Z3 2.x /3.x [41]
with Isabelle as oracles, and implemented step-by-step proof reconstruction for Z3
[18]. The resulting smt proof method takes a list of problem-specific facts that are
passed to the SMT solver along with the conjecture (Section 3).

While a motivated user can go a long way with the smt method [16], the need
to specify facts and to guess that a conjecture could be solved by SMT makes it
hard to use. As evidence of this, the Isabelle formalizations accepted in the Archive
of Formal Proofs [34] in 2010 and early 2011, after smt was introduced in Isabelle,
contain 7958 calls to the simplifier, 928 calls to the internal tableau prover, 219 calls
to metis (virtually all generated using Sledgehammer), but not even one call to smt.

Can Isabelle users benefit from SMT solvers? We assumed so and took the obvi-
ous next step, namely to have Sledgehammer run SMT solvers in parallel with ATPs,
reusing the existing relevance filter and parallel architecture (Section 4). This idea
seems promising for a number of reasons:

– SMT solvers natively support linear integer and real arithmetic.
– Even for nonarithmetic problems, ATPs and SMT solvers have complementary

strengths. The former handle quantifiers more elegantly, whereas the latter excel
on large, mostly ground problems.

– Users should not have to guess whether a problem is more appropriate for ATPs
or SMT solvers. Both classes of prover should be run concurrently.

The integration required extensive refactoring of Sledgehammer, a delicate piece of
engineering developed by eight people in Cambridge and Munich over several years.

The Sledgehammer–SMT integration appears to be the first of its kind, and we had
no clear idea of how successful it would be as we started the implementation work.
Would the SMT solvers only prove conjectures already provable using the ATPs,
or would they find original proofs? Would the decision procedures be pertinent to

Extending Sledgehammer with SMT Solvers 3

interactive goals? Would the SMT solvers scale in the face of hundreds of quantified
facts translated en masse, as opposed to carefully crafted axiomatizations?

The first results with Z3 were disappointing: Given a few hundred facts, the solver
often ran out of memory or crashed. It took some tweaking and help from the Z3 de-
velopers to obtain decent results. We eventually added support for CVC3 and Yices,
two solvers that, like Z3, support quantifiers via (automatically inferred) triggers—
patterns that guide quantifier instantiations. Our evaluation on a large benchmark
suite shows that SMT solvers (Z3 particularly) add considerable power to Sledge-
hammer (Section 6).

We presented an earlier version of this article at CADE-23 in Wrocław, Poland
[11]. New research makes it possible to answer questions left open by the CADE pa-
per. Other notable additions are a second example (Section 5.2) and further coverage
of related work (Section 7).

2 Sledgehammer and Metis

Sledgehammer is Isabelle/HOL’s subsystem for harnessing the power of other auto-
mated reasoning systems. Its processing steps include relevance filtering, translation
to classical first-order logic, parallel ATP invocation, proof reconstruction, and proof
minimization.

Relevance Filtering. Sledgehammer employs a simple relevance filter that examines
the given conjecture and then extracts a few hundred lemmas from Isabelle’s enor-
mous libraries. The relevance test is based on how many symbols are shared between
the conjecture and each candidate lemma [39], much in the style of SInE [30]. In-
troducing this filtering step greatly improves Sledgehammer’s success rate, because
most ATPs perform poorly in the presence of thousands of axioms. Although ATPs
have improved a great deal since Meng and Paulson’s original experiments [39], the
relevance filter is still beneficial [13, § 7].

Translation into Untyped First-Order Logic. Isabelle/HOL’s formalism, polymor-
phic higher-order logic [2, 61], is much richer than the ATPs’ unsorted first-order
logic. Sledgehammer’s translation uses various techniques to translate HOL formulas
to first-order logic [38]: Curried functions are passed varying numbers of arguments
by means of an explicit, deeply embedded application operator, and λ-abstractions
are rewritten to Turner combinators or transformed into explicit functions using λ-
lifting [31]. These techniques help find proofs where no or little higher-order reason-
ing is needed.

Until recently, the translation of types was unsound: It provided enough informa-
tion to enforce correct type class reasoning but not to prevent ill-typed instantiations.
Soundness is not crucial because the proofs are rechecked by Isabelle’s inference
kernel. The current implementation safely erases most of the type information by in-
ferring type monotonicity, resulting in a sound and efficient encoding [12]. Newer
versions of SPASS [60] and Vampire [49] support a many-sorted logic, which would
seem to make it more appropriate to encode HOL typing information than unsorted

4 J. C. Blanchette, S. Böhme, L. C. Paulson

first-order logic, but they do not support polymorphism. The solution is to monomor-
phize the formulas [12, § 3; 13]: Polymorphic formulas are iteratively instantiated
with relevant ground instances of their polymorphic constants.

Parallel ATP Invocation. For a number of years, Isabelle has emphasized parallelism
to exploit modern multi-core architectures [62]. Sledgehammer invokes several ATPs
in parallel, with great success: Running E [54], SPASS, and Vampire in parallel for
five seconds solves as many problems as running a single theorem prover for two min-
utes [17, § 8]. Recent versions of Sledgehammer also invoke E-SInE [30], a wrapper
around E that is designed to cope with large axiom bases, and several other provers are
also supported [10, § 6.6.4]. The automatic provers are executed in the background
so that users can keep working on a proof, although many users prefer to take this
opportunity to rest.

Proof Reconstruction. In keeping with the LCF philosophy [28], Isabelle theorems
can only be generated within a small inference kernel. It is possible to bypass this
safety mechanism if some external tool is to be trusted as an oracle, but all ora-
cle inferences are tracked. Sledgehammer reconstructs proofs by running Metis, a
first-order resolution prover written in ML [33]. Although Metis was designed to be
interfaced with an LCF-style prover (HOL4), integrating it with Isabelle’s inference
kernel required significant effort [46]. The resulting metis proof method is given the
typically short list of facts referenced in the proof found by the external ATP.1 The
metis call is delivered to the user in source form, so that it can then be replayed with-
out running the external provers again. Given only a handful of facts, metis often
succeeds almost instantly. Since metis has to re-find the proof, the external provers
are essentially used as very precise relevance filters.

Proof Minimization. The final stage, attempting proof reconstruction using metis,
fails about 5% of the time because metis takes too long. ATPs frequently use many
more facts than are necessary. Sledgehammer’s minimization tool takes a set of facts
returned by an ATP and repeatedly calls that ATP with subsets of the facts to find a
minimal set. Depending on the number of initial facts, it relies on either of these two
algorithms:

– The naive linear algorithm attempts to remove one fact at a time. This can require
as many ATP invocations as there are facts in the initial set.

– The binary algorithm recursively bisects the facts [21, § 4.3]. It performs best
when a small fraction of the facts are actually required [17, § 7].

Example. In the Isabelle proof below, taken from a formalization of the Robbins
conjecture [58], four of the five subproofs are discharged by a metis call generated
automatically by Sledgehammer using an ATP:

1 To avoid confusion between the Isabelle proof method and the underlying first-order prover, we con-
sistently write metis for the former and Metis for the latter.

Extending Sledgehammer with SMT Solvers 5

lemma −(y t k ⊗ (x t −(x t −y))) =−y
proof –

let z = −(x t −y) and ky = y t k ⊗ (x t z)
have −(x t −ky) = z by (simp add: copyp0)
hence −(−ky t −(−y t z)) = z by (metis assms sup_comm)
also have −(z t −ky) = x by (metis assms copyp0 sup_comm)
hence z =−(−y t −(−ky t z)) by (metis sup_comm)
finally show −(y t k ⊗ (x t −(x t −y))) =−y by (metis eq_intro)

qed

Briefly, let introduces term abbreviations; have, hence, and also hence announce
intermediate facts; finally show announces the conclusion; and by discharges a proof
obligation by invoking a method customized by arguments (typically, references to
already proved lemmas).

The example is typical of the way Isabelle users employ the tool: If they under-
stand the problem well enough to propose some intermediate properties and perform
the necessary inductions, all they need to do is state a progression of properties in
small enough steps and let Sledgehammer or an automatic tactic prove each one.

3 The smt Proof Method

SMT solvers are available in Isabelle through the smt proof method [15,18]. It trans-
lates the conjecture and any user-supplied facts to the SMT solvers’ many-sorted
first-order logic, invokes a solver, and (depending on the solver) either trusts the re-
sult or attempts to reconstruct the proof in Isabelle.

Translation into Many-Sorted First-Order Logic. The translation maps HOL’s arith-
metic operators to the corresponding SMT-LIB 1.2 [47] concepts.2 The translation
is otherwise similar to that performed when communicating with many-sorted ATPs:
Partial applications are translated using an explicit application operator, λ-abstractions
are lifted, and polymorphic types are monomorphized and mapped to SMT-LIB sorts
[14, § 2].

Proof Reconstruction. CVC3 and Z3 provide independently checkable proofs of un-
satisfiability. The smt method reconstructs Z3’s proofs and supports CVC3 and Yices
as oracles. Reconstruction relies extensively on standard Isabelle proof methods such
as the simplifier, the classical reasoner, and the arithmetic decision procedures. The
theories of equality with uninterpreted functions and linear integer and real arith-
metic are supported. Certificates make it possible to store Z3 proofs alongside Isa-
belle formalizations, allowing SMT proof replay without Z3; only if the formaliza-
tions change must the certificates be regenerated. Using oracles requires trusting both
the solvers and the smt method’s translation, so it is generally frowned upon.

2 Support for SMT-LIB 2.0 [4] is future work.

6 J. C. Blanchette, S. Böhme, L. C. Paulson

Example. The periodic integer recurrence relation xi+2 = |xi+1| − xi has period 9.
This property can be proved in Isabelle using the smt method as follows [14, § 1.2]:

lemma x3 = |x2|− x1 ∧ x4 = |x3|− x2 ∧ x5 = |x4|− x3 ∧ x6 = |x5|− x4 ∧
x7 = |x6|− x5 ∧ x8 = |x7|− x6 ∧ x9 = |x8|− x7 ∧ x10 = |x9|− x8 ∧
x11 = |x10|− x9 =⇒ x1 = x10 ∧ x2 = (x11 :: int)

by smt

SMT solvers prove the formula almost instantly, and proof reconstruction (if enabled)
takes a few seconds. In contrast, Isabelle’s arithmetic decision procedure requires sev-
eral minutes to establish the same result. This example does not require any problem-
specific facts, but these would have been supplied as arguments in the smt call just
like for metis in Section 2.

4 Extending Sledgehammer with SMT

Extending Sledgehammer with SMT solvers was to a large extent a matter of con-
necting existing components: Sledgehammer’s relevance filter and minimizer with
the smt method’s translation and proof reconstruction. Figure 1 depicts the resulting
architecture, omitting proof reconstruction and minimization.

Relevance filter

E E-SInE SPASS CVC3 Yices Z3

Relevance filter

ATP translation SMT translation

Vampire

Sledgehammer

Figure 1 Sledgehammer’s extended architecture

Two instances of the relevance filter run in parallel threads, to account for differ-
ent sets of built-in constructs. The relevant facts and the conjecture are translated to
the ATP or SMT version of first-order logic, and the resulting problems are passed to
the provers.

4.1 SMT Solver Invocation

In our first experiments, we simply invoked Z3 as an oracle with the monomorphized
relevant facts, using the same translation as for the smt proof method. The results were
disappointing. Several factors were to blame. The translation to SMT-LIB format
took many seconds. It took us some time to get the bugs out of our translation code;
syntax errors in generated problems often caused Z3 to give up immediately. Z3 often
ran out of memory after a few seconds or, worse, crashed. Latent issues both in our

Extending Sledgehammer with SMT Solvers 7

translation and in Z3 were magnified by the number of facts involved. Our previous
experience with the smt method had involved only a handful of carefully chosen facts.

The bottleneck in the translation was monomorphization. Iterative expansion of
a few hundred HOL formulas yielded thousands of monomorphic instances. We re-
duced the maximum number of iterations from 10 to 3, to great effect. This choice,
like many of the others reported below, was arrived at empirically, after extensive
experimentation using our “Judgment Day” test harness [17].

The syntax errors were typically caused by confusion between formulas and terms
or the use of a partially applied built-in symbol (both of which are legal in HOL).
These were bugs in the smt proof method; we gradually eradicated them.

We reported the Z3 issues to its developers, who released an improved version.
The crashes were caused by a bug in Z3’s proof generation facility, which is disabled
by default and hence not well tested. To handle the frequent out-of-memory condi-
tions, we modified Sledgehammer to retry aborted solver calls with half the facts.
This simple change was enough to increase the success rate dramatically.

But even in the absence of errors, we found it advantageous to divide the time
available into slices, each given half the time and half the facts as the previous slice,
rather than letting SMT solvers run undisturbed for the full time period. For example,
given a time limit of 30 seconds, Z3 is first invoked with 350 facts for (up to) 15
seconds, then with 175 facts for 7.5 seconds, and so on. This smoothly generalizes
the out-of-memory handling described above and increases the success rate further.

4.2 Proof Reconstruction

In case of success, Sledgehammer extracts the facts used in the SMT proof—the
unsatisfiable core—and generates an smt proof method call with these facts supplied
as arguments. The smt method invokes Z3 to re-find the proof and replays it step
by step. The Z3 proof can also be stored alongside the Isabelle formalization as a
certificate to avoid invoking the solver each time the proof is rechecked. Minimization
can be done as for ATP proofs to reduce the number of facts.

To increase the success rate and reduce the dependency on external solvers or
certificates, Sledgehammer first tries Metis internally for a few seconds. If Metis
succeeds, Sledgehammer returns a metis call to the user rather than an smt call. (Re-
call that Sledgehammer always returns proofs in Isabelle source form.) Metis will
of course fail if the proof requires theories other than equality. Conversely, Sledge-
hammer also tries smt for proofs found by ATPs when Metis takes too long.

One of the less academically rewarding aspects of integrating third-party tools is
the effort spent on solving mundane issues. Obtaining an unsatisfiable core from the
SMT solvers turned out to be surprisingly difficult:

1. CVC3 returns a full proof, but somehow the proof refers to all facts, whether
they are actually needed or not, and there is no easy way to find out which facts
are actually needed. We rely on Sledgehammer’s proof minimizer and its binary
algorithm to reduce the facts used to a reasonable number.

8 J. C. Blanchette, S. Böhme, L. C. Paulson

2. Yices can output a minimal core, but for technical reasons only when its native
input syntax is used rather than SMT-LIB 1.2. We tried using off-the-shelf file
format converters to translate SMT-LIB 1.2 to 2 then to Yices, but this repeatedly
crashed. In the end, we settled for the same solution as for CVC3.

3. For Z3, we could reuse our existing proof parser, which we need to reconstruct
proofs. The proof format is fairly stable, although new releases often include their
share of minor incompatibilities.

The problem of interpreting the solvers’ output is widely acknowledged in the SMT
community. Efforts are under way to define a standard proof format for SMT solvers
to complement SMT-LIB [8, 19].

4.3 Relevance Filtering

The relevance filter gives more precise results if it ignores HOL symbols that are
translated to built-in constructs (logical and interpreted nonlogical symbols). For
ATPs, this concerns equality, connectives, and quantifiers. SMT solvers support a
much larger set of built-in constructs, notably arithmetic constants and operators. A
fact such as 1+1 = 2 on integers might be considered relevant for the ATPs but should
always be left out of SMT problems, since it involves only built-in symbols—indeed,
it is a tautology of linear arithmetic.

In the original Sledgehammer architecture, the available lemmas were rewritten
to clause normal form using a naive application of distributive laws before the rel-
evance filter was invoked [39]. To avoid clausifying thousands of lemmas on each
invocation, the clauses were kept in a cache. This design was technically incompati-
ble with the (cache-unaware) smt method, and it was already unsatisfactory for ATPs,
which include custom polynomial-time clausifiers [44]. We rewrote the relevance fil-
ter so that it operates on arbitrary HOL formulas, trying to simulate the old behavior.
To mimic the penalty associated with Skolem functions in the clause-based code, we
keep track of polarities and detect quantifiers that give rise to Skolem functions.

Observing that some provers cope better with large fact bases than others, we op-
timized the maximum number of relevant facts to include in a problem independently
for each prover (from a library of about 10000 facts). The maxima we obtained are
400 for CVC3, 150 for Yices, and 350 for Z3, which are comparable to the figures
we had previously obtained for the ATPs [39].

4.4 Redistribution and Distribution

Our goal with Sledgehammer is to help as many Isabelle users as possible. Third-
party provers should ideally be bundled with Isabelle and ready to be used without
requiring configuration. On the ATP side, Isabelle includes E and SPASS executables
for Linux, Mac OS X, and Windows; users can download Vampire (whose license
forbids redistribution), but most simply run Vampire remotely on SystemOnTPTP.

CVC3 allows redistribution and use by noncommercial and commercial users
alike. Yices’s license forbids redistribution, but noncommercial users can download

Extending Sledgehammer with SMT Solvers 9

it from its official web site. Z3 requires a license for commercial uses but redistribu-
tion with Isabelle is allowed. Isabelle now includes CVC3 and Z3 executables for all
major platforms, with Z3 disabled unless users confirm their noncommercial inten-
tions via a configuration option.

For convenience, we additionally set up a server in Munich in the style of System-
OnTPTP for running CVC3 and Z3 remotely. Remote servers are satisfactory for
proof search, at least when they are up and running and the user has Internet access.
They also distribute the load: Unless the user’s machine has eight processor cores, it
would be reckless to launch four ATPs and three SMT solvers locally in parallel and
expect the user interface to remain responsive. On an N-core machine, Sledgehammer
runs at most N provers locally and up to four of the remaining provers remotely.

4.5 Experiment: Generation of Weights and Triggers

SMT solvers work by incrementally building a model for the quantifier-free part of
the problem, which consists of axioms and a negated conjecture. Quantifiers are in-
stantiated at each iteration based on the set of active terms (i.e., the ground terms
that the current partial model can interpret). These instances are conjoined with the
quantifier-free part of the problem, helping to refine the model.

To guide quantifier instantiation and avert an explosion in the number of instances
generated, some SMT solvers support extralogical annotations on their quantifiers.
We have done some experiments with weights and triggers.

Weights are specific to Z3. The greater the weight of the quantifier, the fewer
instantiations are allowed. The instantiations that take place are those by terms that
became active early, because they are more likely to be relevant to the problem at
hand. Sledgehammer’s iterative relevance filter yields a list of facts sorted by likely
relevance. This gives an easy way for Sledgehammer to fill in the weights meaning-
fully: Give a weight of 0 to the most relevant fact included, N to the least relevant fact,
and interpolate in between. The case N = 0 corresponds to Z3’s default behavior. We
use N = 10 with a quadratic interpolation, which appears to help more than it harms.

A trigger is a set of patterns that must all match some active term for the instanti-
ation to take place. Patterns are usually subterms of the quantified formula. All three
supported SMT solvers infer triggers heuristically, but CVC3 and Z3 also provide a
syntax for user-specified triggers. We tried to rely on this mechanism to exploit the
form of Isabelle lemmas. In particular, equations registered for use by the simplifier
often define a function symbol applied to a constructor pattern in terms of a (possibly
recursive) right-hand side, as in ML function definitions. It then makes sense to take
the entire left-hand side as the only trigger. When an instance of the left-hand side is
active, the trigger enables the equation’s instantiation.

In stark contrast with the SMT folklore that well chosen triggers are a prerequi-
site for success [40], we found that the SMT solvers can be relied on to infer suitable
triggers and that our scheme for equations is too limited to help much. Future re-
searchers could experiment with adding support for other common syntactic forms,
such as introduction and elimination rules.

10 J. C. Blanchette, S. Böhme, L. C. Paulson

5 Examples

The Sledgehammer–SMT integration was introduced in late 2010, and since then we
have received frequent confirmation of its usefulness, from novices and experts alike.
The SMT integration played a prominent role in a library of relational and algebraic
methods for modeling computing systems developed by Guttmann et al. [29, p. 630]:

Our results show that algebraic formal methods can easily be developed by
automated reasoning within Isabelle/HOL. A surprising observation is that
the SMT solver Z3 often outperformed Metis and sometimes even the external
ATP systems invoked by Sledgehammer.

This section relates two success stories: The first one arose on the Isabelle mailing
list; the second one originates from a theory of setoids developed by colleagues.

5.1 An Arithmetic Datatype

This gratifying example arose on the Isabelle mailing list [42] barely one week after
we had enabled SMT solvers in the development version of Sledgehammer. A new
Isabelle user was experimenting with a simple arithmetic algebraic datatype:

datatype arith = Z | Succ arith | Pred arith

inductive isvalue :: arith→ bool where
isvalue Z
isvalue m =⇒ isvalue (Succ m)

inductive step :: arith→ arith→ bool where
s_succ: step m m′ =⇒ step (Succ m) (Succ m′)
s_pred_zero: step (Pred Z) Z
s_pred: step m m′ =⇒ step (Pred m) (Pred m′)
s_pred_succ: isvalue v =⇒ step (Pred (Succ v)) v

He wanted to prove the following simple property about his inductive predicate step,
which takes two arith values, but did not know how to proceed:

lemma step (Pred Z) m =⇒ m = Z

Our colleague Tobias Nipkow helpfully supplied a structured Isabelle proof:

using assms proof cases
case s_pred_zero thus m = Z by simp

next
case (s_pred m′)
from ‘step Z m′’ have False by cases
thus m = Z by blast

qed

The proof is fairly simple by interactive proving standards, but it nonetheless repre-
sents a few minutes’ work to a seasoned user (and, as we saw, was too difficult for
a novice). Nipkow then tried the development version of Sledgehammer and found a
much shorter proof due to Z3:

Extending Sledgehammer with SMT Solvers 11

by (smt arith.simps(2,4,5,8) step.simps)

The arith.simps facts express injectivity of the Pred constructor and distinctness of Z,
Succ, and Pred, whereas step.simps captures step’s introduction and elimination rules
as a single equivalence of the form step m m′ ←→ ∃m m′ v Although the proof
involves no theory reasoning beyond equality, the ATPs failed to find it within 30
seconds because of the presence of too many extraneous facts.

5.2 Setoids

A setoid A = (A,∼) is a set A equipped with an equivalence relation ∼. Setoids are
heavily used in the Coq theorem prover, where ∼ may be some form of extensional
equality [7]. As part of a tool for transferring theorems across isomorphisms, Andreas
Schropp and Andrei Popescu developed a formalization of setoids in Isabelle [53].
Rather than spend time developing a general theory of setoids, they were interested
in deriving the needed results quickly, using automatic tools whenever possible.

Like Guttmann et al., they found that many of their proofs were found by Z3 but
not by E, SPASS, or Vampire. Here is a typical example from their formalization,
where the proof is found almost instantly by Z3:

lemma f ∈ A B =⇒ invB ,A (invA ,B f) ∼A→B f
by (smt assms equiv_rel_trans iso_sDfunsp iso_sDsetoid(2) s_inv_eqOf

s_inv_iso_s setoid_def sfun_elim sfun_eq_def ssym)

Here, A and B are two setoids, and ∼A→B is the lifting of their equivalence relations
to the function space. The lemma states that (f−1)−1 is equivalent to f if f is an
isomorphism between A and B . A setoid function is an isomorphism if it preserves
and reflects the equivalence relations and is surjective modulo equivalence.

A detailed hand-written proof would involve tedious transitivity chains inter-
mixed with applications of preservation and symmetry. This kind of reasoning has
an algebraic flavor with mild higher-order aspects. The proof found by Z3 requires
10 facts, reflecting the lack of intermediate lemmas in the formalization (partly as
a result of heavily relying on Sledgehammer). The need for so many facts probably
explains why the problem was outside the ATPs’ reach; 10 facts really are a lot, given
the size and complexity of Sledgehammer problems.

6 Evaluation

In their “Judgment Day” study, Böhme and Nipkow [17] evaluated Sledgehammer
with E, SPASS, and Vampire on 1240 provable proof goals arising in seven represen-
tative Isabelle formalizations. To evaluate the SMT integration, we ran an enlarged
version of their benchmark suite with the latest versions of Sledgehammer, the ATPs,
and of course the SMT solvers.3

3 Our test data set is available at http://www21.in.tum.de/~blanchet/jar-smt-data.tgz .

12 J. C. Blanchette, S. Böhme, L. C. Paulson

Thy. Description Goals Feats.

Arr Arrow’s impossibility theorem 101 L S
FFT Fast Fourier transform 146 A L
FTA Fundamental theorem of algebra 422 A
Hoa Completeness of Hoare logic with procedures 203 A I L
Huf Optimality of Huffman’s algorithm 284 A I L S
Jin Type soundness of a subset of Java 182 I L
NS Needham–Schroeder shared-key protocol 99 I
QE DNF-based quantifier elimination 191 A L S
S2S Sum of two squares 130 A
SN Strong normalization of the typed λ-calculus 115 A I

Figure 2 Isabelle theories

6.1 Setup

The Judgment Day benchmarks consist of all the proof goals arising in seven theo-
ries from the Isabelle distribution and the Archive of Formal Proofs [34]. We added
two theories (QE and S2S) that rely heavily on arithmetic to exercise the SMT de-
cision procedures and a third one (Huf) that combines all four features. These ten
theories are listed in Figure 2 under short names. The third column lists the num-
ber of goals from each theory, and the last column specifies the features it contains,
where A means arithmetic, I means induction/recursion, L means λ-abstractions, and
S means sets. Our examples are representative of typical applications, with a bias
toward arithmetic.

We used the following provers as backends: CVC3 2.4.1, E 1.4, E-SInE 0.4,
SPASS 3.8ds, Vampire 1.8 (revision 1435), Yices 1.0.33, and Z3 3.2. E-SInE was
run remotely via SystemOnTPTP; the other provers were installed on 32-bit Linux
servers featuring 3.06 GHz Dual-Core Intel Xeon processors. Each prover was in-
voked with the set of options we had previously determined worked best.4

We ran the provers for 30 seconds each, which corresponds to the default time
limit in Sledgehammer. Most proofs are found within a few seconds; Böhme and
Nipkow considered timeouts of 60 and 120 seconds, with little impact [17]. Success-
ful proof attempts are followed by a potential 30 second minimization phase and a
30 second reconstruction phase.

6.2 Proof Search

Figure 3 gives the success rates for each prover (or class of prover) on each formaliza-
tion together with the unique contributions of each prover. Sledgehammer now solves
60.1% of the goals, compared with 54.2% without SMT. The best SMT solver, Z3,

4 The setup for E was suggested by Stephan Schulz and includes the little known symbol offset weight
function. The SPASS setup is described elsewhere [13]. Vampire was run in CASC mode, alternately with
and without the set-of-support strategy, and with BDDs disabled. CVC3, E-SInE, Yices, and Z3 were run
with the default configuration. All provers except E-SInE were invoked repeatedly with different options
for a fraction of the total time limit [10, § 6.6.3].

Extending Sledgehammer with SMT Solvers 13

FFT QE Huf NS Jin Arr Hoa SN FTA S2S All Uniq.
AL ALS AILS I IL LS AIL AI A A

E 27 32 30 30 47 47 54 71 66 61 47.8 0.3
E-SInE 22 28 27 30 40 26 45 62 60 56 41.8 0.4
SPASS 27 29 29 40 43 46 62 70 68 62 48.7 0.9
Vampire 23 28 23 38 44 40 61 65 65 52 45.3 0.5

CVC3 28 30 36 29 36 39 59 54 65 61 46.3 0.7
Yices 25 34 26 28 40 41 56 59 55 61 43.1 0.2
Z3 27 31 36 39 49 51 54 63 62 58 48.1 1.5

ATPs 30 36 36 49 48 53 67 72 71 70 54.2 5.8
SMT Solvers 32 36 42 44 49 51 68 64 70 69 54.3 5.9

All Provers 38 45 44 52 52 58 72 74 76 79 60.1 –

Figure 3 Success rates on all goals per prover and theory (%)

FFT QE Huf NS Jin Arr Hoa SN FTA S2S All Uniq.
AL ALS AILS I IL LS AIL AI A A

E 22 21 20 19 39 35 40 63 41 27 31.7 0.1
E-SInE 17 16 16 18 34 18 29 56 39 21 26.1 0.4
SPASS 22 17 20 31 38 32 49 59 45 39 33.9 1.2
Vampire 20 14 16 29 39 29 49 53 40 21 30.4 0.6

CVC3 23 12 25 16 29 27 46 41 43 30 29.8 0.8
Yices 19 16 17 16 36 24 47 47 32 23 27.5 0.3
Z3 20 9 26 30 47 35 44 47 40 25 32.1 1.4

ATPs 25 24 25 42 42 39 57 64 49 43 39.2 6.6
SMT Solvers 26 17 29 35 47 34 58 51 49 34 38.1 5.5

All Provers 32 26 32 43 47 40 63 64 56 55 44.7 –

Figure 4 Success rates on “nontrivial” goals per prover and theory (%)

outperforms both E and Vampire and sometimes even SPASS, which was specifically
optimized for Isabelle [13]. Z3 contributes the most unique proofs: 1.5% of the goals
are proved only by it, a figure that climbs to 4.1% if we exclude CVC3 and Yices.
While it might be tempting to see this evaluation as a direct comparison of provers,
recall that even provers of the same class are not given the same problems or the same
options. Sledgehammer is not so much a competition as a combination of provers.

About 40% of the goals from the chosen Isabelle formalizations are “trivial” in
the sense that they can be solved directly by standard Isabelle tactics invoked with
no arguments. If we ignore these and focus on the “nontrivial” goals, which users are
especially keen on seeing solved by Sledgehammer, the success rates are somewhat
lower, as shown in Figure 4: The ATPs solve 39.2% of these harder goals, and SMT
solvers increase the success rate to 44.7%.

It is instructive to compare these results with those obtained by Geoff Sutcliffe on
the TPTP [57] benchmark suite. In a preliminary run over 7143 TPTP problems in the
FOF (first-order form) division, he found that Z3 2.15 solved 2487 of these, compared

14 J. C. Blanchette, S. Böhme, L. C. Paulson

with 3848 for E 1.2 and 4511 for Vampire 0.6 (Sutcliffe, G., private communication).
The comparison is biased because E and Vampire have been extensively optimized
against the TPTP, but it still suggests that Isabelle problems are better suited to SMT
than typical TPTP problems are.

6.3 Decision Procedures

We also evaluated the extent to which the SMT decision procedures, beyond equality,
contribute to the overall result. To this end, we inspected the successful Z3 proofs
(including “trivial” ones) to determine the percentage of proofs that involve an arith-
metic decision procedure. Theory-specific rewrite rules, which do not rely on any de-
cision procedure, are not counted. Complementarily, we extracted the relevant facts
from each Z3 proof and passed them to metis with a 30-second time limit.

Figure 5 summarizes the results. The two rows roughly add up to 100% in each
column, since Metis is complete for first-order logic but has no support for arithmetic.
For the formalizations under study, the vast majority of SMT proofs do not require
any theory reasoning and can be reconstructed by a resolution prover.

FFT QE Huf NS Jin Arr Hoa SN FTA S2S All
AL ALS AILS I IL LS AIL AI A A

Arithmetic 42 14 28 0 0 0 6 0 8 51 13.2
metis 36 69 62 95 92 88 89 92 93 24 78.8

Figure 5 Use of arithmetic in successful Z3 proofs and reconstructibility with metis (%)

These results prompted us to benchmark the SMT solvers with Isabelle’s arith-
metic symbols left uninterpreted, effectively disabling theory reasoning. Arithmetic
reasoning is still possible using facts such as 1 + 1 = 2, which are then considered
relevant by the relevance filter. We expected a loss comparable to the use of arith-
metic in Z3 proofs, but the actual loss is much smaller. For the QE formalization,
the SMT solvers’ support for arithmetic is actually harmful, as shown in Figure 6.
Clearly, arithmetic decision procedures are not the main reason why the SMT solvers
perform so well on Isabelle problems.

FFT QE Huf NS Jin Arr Hoa SN FTA S2S All
AL ALS AILS I IL LS AIL AI A A

CVC3 +5 −10 +4 −1 +1 −1 +3 0 +2 +2 +0.9
Yices +6 −2 +2 +5 −1 +4 +4 −1 +1 +13 +2.5
Z3 +8 −7 +5 −1 −1 0 −2 +2 −1 +1 +0.1

All Solvers +6 −6 +4 +1 0 +1 +1 0 +1 +5 +2.7

Figure 6 Absolute success rate differences between SMT solver runs with and without arithmetic on all
goals with proof reconstruction (% points)

Extending Sledgehammer with SMT Solvers 15

6.4 Discussion

When evaluating the provers for the CADE paper, we were surprised to find that Z3
outperformed the ATPs by a wide margin. We advanced several explanations, which
can now be revisited in the light of new empirical results.

– Unsound ATP encoding of types: Until recently, Sledgehammer’s encoding of
types in unsorted first-order logic was unsound.5 About 5% of the proofs found
by ATPs were type-unsound in HOL and could not be replayed [17, § 4.1]. In
contrast, the many-sorted SMT translation was designed to be sound. The passage
to sound encodings and use of SPASS’s and Vampire’s newly introduced sorts
improved the ATP success rate by a few percentage points [13, § 7].

– Translation of λ-abstractions: Looking at the test data closely, we noticed that
SMT solvers seemed to perform better on higher-order problems, suggesting that
the smt method’s λ-lifting approach might be superior to the combinator approach
used with the ATPs. However, new experiments reveal that the two λ translation
schemes are comparable [10, § 6.7.3], corroborating earlier results [38, § 4].

– Reliable reconstruction: In the earlier Sledgehammer setup, as evaluated in the
CADE paper, only metis was tried on (potentially type-unsound) ATP proofs, not
the often more powerful smt method. The success rate of ATP proof reconstruc-
tion was 88.8%. Now that we have adopted type-sound encodings and added smt
as a fallback if metis times out, 97.7% of the proofs found by ATPs are success-
fully reconstructed (which is comparable to 98.6% for SMT solvers).

– Nature of SMT solvers: Irrespective of the differences in problem encoding and
proof reconstruction, SMT solvers appeared to be a good match for the proof
obligations arising in Isabelle formalizations. This is largely confirmed by an
evaluation where we gave exactly the same TPTP problem files to E, iProver,
SPASS, Vampire, and Z3, exploiting Z3’s support for the many-sorted TPTP syn-
tax TFF0 [12, § 6].

7 Related Work

We know of very little other work that is comparable to Sledgehammer with regard
to key features such as full automation (no need for the user to prepare the problem
in any way), proof reconstruction (no assumption that externally found proofs are
correct), and source code delivery (no need to run the external reasoners again when
replaying a proof). And no other work ever enjoyed the same widespread deployment.
Therefore, we use the phrase “related work” in a loose sense.

ATP Integrations. The most notable integrations of resolution and tableau provers in
interactive provers are probably Otter in ACL2 [35]; Bliksem in Coq [9]; Gandalf in
HOL98 [32]; DISCOUNT, SETHEO, and SPASS in ILF [23]; E and SPASS in Jahob
[20]; Otter, PROTEIN, SETHEO, SPASS, and 3TAP in KIV [1, 48]; and Bliksem,
EQP, LEO, Otter, PROTEIN, SPASS, TPS, and Waldmeister in ΩMEGA [37, 55].

5 A sound encoding was also available, but its performance left much to be desired [17, § 4.2; 38, § 3].

16 J. C. Blanchette, S. Böhme, L. C. Paulson

ΩMEGA appears to have the most in common with our work, including back-
ground execution of external solvers and very powerful techniques for translating a
proof found by one system into a proof intelligible to another. The chief difference is
that ΩMEGA was created as a research project specifically to investigate proof plan-
ning and related ideas within a new, sophisticated architecture.

Few of these other tools seem to have won user acceptance or to have withstood
the test of time. Sledgehammer’s success ostensibly inspired the new MizAR web
service for Mizar [51], based on Vampire and SInE. An integration of the equational
prover Waldmeister with Agda is under development [27].

SMT Solver Integrations. On the SMT side of things, PVS employs Yices as an oracle
[52]. HOL Light integrates CVC Lite and reconstructs its proofs [36]. Jahob supports
CVC3 and Z3 as oracles [50]. Isabelle/HOL enjoys two oracle integrations [6, 25]
and two tactics with proof reconstruction [15, 18, 26]. HOL4 includes an SMT tactic
[18, 59], and an integration of veriT in Coq, based on SMT proof validation, is in
progress [3].

8 Conclusion

Sledgehammer has enjoyed considerable success since its inception in 2007 and has
become indispensable to most Isabelle users. It is possibly the only interface between
interactive and automatic theorem provers to achieve such popularity. It owes much
of its success to its ease of use: Sledgehammer is integral to Isabelle and works out
of the box, using a combination of locally installed provers and remote servers. It can
even be configured to run automatically on all newly entered conjectures, in parallel
with other proof tools and counterexample generators.

To Isabelle users, the addition of SMT solvers as backends means that they now
get more proofs without effort. The SMT solvers, led by Z3, compete advantageously
with the resolution-based ATPs and metis even on nonarithmetic problems. In our
evaluation, they solved 38% of the nontrivial goals, increasing Sledgehammer’s suc-
cess rate from 39% to 45% on these. Running the SMT solvers in parallel with the
ATPs is consistent with our objective of full automation.

To users of SMT solvers, the Sledgehammer–SMT integration eases the transi-
tion from automatic proving in first-order logic to interactive proving in higher-order
logic. Other tools, such as HOL-Boogie [16], assist in specific applications. Isabelle/
HOL is powerful enough for the vast majority of hardware and software verifica-
tion efforts, and its LCF-style inference kernel provides a trustworthy foundation.
Even the developers of SMT solvers profit from the integration: It helps them reach a
larger audience, and proof reconstruction brings to light bugs in their tools, including
soundness bugs, which might otherwise go undetected.6

The recent work by Guttmann et al. on a large Isabelle/HOL repository of alge-
bras for modeling computing systems [29] constitutes an unanticipated validation of
our work: They relied almost exclusively on Sledgehammer and the SMT integration

6 Indeed, we discovered soundness bugs in Yices and Z3 while preparing the CADE paper.

Extending Sledgehammer with SMT Solvers 17

to prove over 1000 propositions, including intricate refinement and termination theo-
rems. To their surprise, they found that Sledgehammer can often automate algebraic
proofs at the textbook level.

While the evaluation and user feedback show that the integration is a resounding
success, much can still be improved. More work is needed to reconstruct Z3 proofs
involving bit vectors and algebraic datatypes [15]. The heuristics for trigger genera-
tion are simplistic and would probably benefit from more research.

With the notable exceptions of triggers and weights, we treated the SMT solvers
as black boxes. A tighter integration might prove beneficial, as has been observed
with other verification tool chains (e.g., VCC/Boogie/Z3 [22] and PVS/SAL/Yices
[52]), but it would also require much more work. Obtaining an unsatisfiable core
from CVC3 and Yices would be a first small step in the right direction.

Acknowledgments Tobias Nipkow made this collaboration possible and encouraged us throughout. An-
drei Popescu helped us write the subsection on setoids. Nikolaj Bjørner promptly fixed a critical bug in
Z3’s proof generator, and Leonardo de Moura supplied a new executable. Michał Moskal provided expert
help on Z3 triggers. Viktor Kuncak, Mark Summerfield, Geoff Sutcliffe, Tjark Weber, and a number of
anonymous reviewers provided useful comments on earlier versions of this article. We thank them all.

References

1. Ahrendt, W., Beckert, B., Hähnle, R., Menzel, W., Reif, W., Schellhorn, G., Schmitt, P.H.: Integrating
automated and interactive theorem proving. In: W. Bibel, P.H. Schmitt (eds.) Automated Deduction—
A Basis for Applications, Systems and Implementation Techniques, vol. II, pp. 97–116. Kluwer (1998)

2. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof
(2nd Ed.), Applied Logic, vol. 27. Springer (2002)

3. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular integration of SAT/
SMT solvers to Coq through proof witnesses. In: J.P. Jouannaud, Z. Shao (eds.) Certified Programs
and Proofs (CPP 2011), LNCS, vol. 7086, pp. 135–150. Springer (2011)

4. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard—Version 2.0. In: A. Gupta, D. Kroening
(eds.) Satisfiability Modulo Theories (SMT 2010) (2010)

5. Barrett, C., Tinelli, C.: CVC3. In: W. Damm, H. Hermanns (eds.) Computer Aided Verification (CAV
2007), LNCS, vol. 4590, pp. 298–302. Springer (2007)

6. Barsotti, D., Nieto, L.P., Tiu, A.: Verification of clock synchronization algorithms: Experiments on a
combination of deductive tools. Formal Asp. Comput. 19(3), 321–341 (2007)

7. Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. J. Funct. Program. 13(2), 261–293 (2003)
8. Besson, F., Fontaine, P., Théry, L.: A flexible proof format for SMT: A proposal. In: P. Fontaine,

A. Stump (eds.) Proof Exchange for Theorem Proving (PxTP-2011), pp. 15–26 (2011)
9. Bezem, M., Hendriks, D., de Nivelle, H.: Automatic proof construction in type theory using resolution.

J. Autom. Reasoning 29(3-4), 253–275 (2002)
10. Blanchette, J.C.: Automatic proofs and refutations for higher-order logic. Ph.D. thesis, Dept. of In-

formatics, T.U. München (2012)
11. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT solvers. In:

N. Bjørner, V. Sofronie-Stokkermans (eds.) Conference on Automated Deduction (CADE-23), LNAI,
vol. 6803, pp. 207–221. Springer (2011)

12. Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and polymorphic
types. In: N. Piterman, S. Smolka (eds.) Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2013), LNCS, vol. 7795. Springer (2013)

13. Blanchette, J.C., Popescu, A., Wand, D., Weidenbach, C.: More SPASS with Isabelle—Superposition
with hard sorts and configurable simplification. In: L. Beringer, A. Felty (eds.) Interactive Theorem
Proving (ITP 2012), LNCS, vol. 7406, pp. 345–360. Springer (2012)

14. Böhme, S.: Proving theorems of higher-order logic with SMT solvers. Ph.D. thesis, Dept. of Infor-
matics, T.U. München (2012)

18 J. C. Blanchette, S. Böhme, L. C. Paulson

15. Böhme, S., Fox, A.C.J., Sewell, T., Weber, T.: Reconstruction of Z3’s bit-vector proofs in HOL4 and
Isabelle/HOL. In: J.P. Jouannaud, Z. Shao (eds.) Certified Programs and Proofs (CPP 2011), LNCS,
vol. 7086, pp. 183–198. Springer (2011)

16. Böhme, S., Moskal, M., Schulte, W., Wolff, B.: HOL-Boogie—An interactive prover-backend for the
Verifying C Compiler. J. Autom. Reasoning 44(1-2), 111–144 (2010)

17. Böhme, S., Nipkow, T.: Sledgehammer: Judgement Day. In: J. Giesl, R. Hähnle (eds.) International
Joint Conference on Automated Reasoning (IJCAR 2010), LNAI, vol. 6173, pp. 107–121. Springer
(2010)

18. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: M. Kaufmann, L. Paulson (eds.)
Interactive Theorem Proving (ITP 2010), LNCS, vol. 6172, pp. 179–194. Springer (2010)

19. Böhme, S., Weber, T.: Designing proof formats: A user’s perspective. In: P. Fontaine, A. Stump (eds.)
Proof Exchange for Theorem Proving (PxTP-2011), pp. 27–32 (2011)

20. Bouillaguet, C., Kuncak, V., Wies, T., Zee, K., Rinard, M.C.: Using first-order theorem provers in the
Jahob data structure verification system. In: B. Cook, A. Podelski (eds.) Verification, Model Checking,
and Abstract Interpretation (VMCAI 2007), LNCS, vol. 4349, pp. 74–88. Springer (2007)

21. Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation. Formal Asp. Comput.
20, 379–405 (2008)

22. Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M., Santen, T., Schulte, W.,
Tobies, S.: VCC: A practical system for verifying concurrent C. In: S. Berghofer, T. Nipkow, C. Urban,
M. Wenzel (eds.) Theorem Proving in Higher Order Logics (TPHOLs 2009), LNCS, vol. 5674, pp.
23–42. Springer (2009)

23. Dahn, B., Gehne, J., Honigmann, T., Wolf, A.: Integration of automated and interactive theorem prov-
ing in ILF. In: W. McCune (ed.) Conference on Automated Deduction (CADE-14), LNCS, vol. 1249,
pp. 57–60. Springer (1997)

24. Dutertre, B., de Moura, L.: The Yices SMT solver (2006). Available at http://yices.csl.sri.com/
tool-paper.pdf

25. Erkök, L., Matthews, J.: Using Yices as an automated solver in Isabelle/HOL. In: J. Rushby,
N. Shankar (eds.) Automated Formal Methods (AFM08), pp. 3–13 (2008)

26. Fontaine, P., Marion, J.Y., Merz, S., Nieto, L.P., Tiu, A.: Expressiveness + automation + soundness:
Towards combining SMT solvers and interactive proof assistants. In: H. Hermanns, J. Palsberg (eds.)
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2006), LNCS, vol. 3920,
pp. 167–181. Springer (2006)

27. Foster, S., Struth, G.: Integrating an automated theorem prover into Agda. In: M.G. Bobaru,
K. Havelund, G.J. Holzmann, R. Joshi (eds.) NASA Formal Methods (NFM 2011), LNCS, vol. 6617,
pp. 116–130 (2011)

28. Gordon, M.J.C., Milner, R., Wadsworth, C.P.: Edinburgh LCF: A Mechanised Logic of Computation,
LNCS, vol. 78. Springer (1979)

29. Guttmann, W., Struth, G., Weber, T.: Automating algebraic methods in Isabelle. In: S. Qin, Z. Qiu
(eds.) International Conference on Formal Engineering Methods (ICFEM 2011), LNCS, vol. 6991,
pp. 617–632. Springer (2011)

30. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: N. Bjørner, V. Sofronie-
Stokkermans (eds.) Conference on Automated Deduction (CADE-23), LNAI, vol. 6803, pp. 299–314.
Springer (2011)

31. Hughes, R.J.M.: Super-combinators: A new implementation method for applicative languages. In:
LISP and Functional Programming (LFP 1982), pp. 1–10. ACM Press (1982)

32. Hurd, J.: Integrating Gandalf and HOL. In: Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, L. Théry
(eds.) Theorem Proving in Higher Order Logics (TPHOLs ’99), LNCS, vol. 1690, pp. 311–321 (1999)

33. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: M. Archer, B. Di Vito,
C. Muñoz (eds.) Design and Application of Strategies/Tactics in Higher Order Logics, no. CP-2003-
212448 in NASA Technical Reports, pp. 56–68 (2003)

34. Klein, G., Nipkow, T., Paulson, L. (eds.): The Archive of Formal Proofs. http://afp.sf.net/
35. McCune, W., Shumsky, O.: System description: IVY. In: D. McAllester (ed.) Conference on Auto-

mated Deduction (CADE-17), LNAI, vol. 1831, pp. 401–405. Springer (2000)
36. McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: A case study combining HOL-

Light and CVC Lite. Electr. Notes Theor. Comput. Sci. 144(2), 43–51 (2006)
37. Meier, A.: TRAMP: Transformation of machine-found proofs into natural deduction proofs at the

assertion level (system description). In: D. McAllester (ed.) Conference on Automated Deduction
(CADE-17), LNAI, vol. 1831, pp. 460–464. Springer (2000)

Extending Sledgehammer with SMT Solvers 19

38. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Autom. Reasoning
40(1), 35–60 (2008)

39. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution problems.
J. Applied Logic 7(1), 41–57 (2009)

40. Moskal, M.: Programming with triggers. In: B. Dutertre, O. Strichman (eds.) Satisfiability Modulo
Theories (SMT 2009) (2009)

41. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: C.R. Ramakrishnan, J. Rehof (eds.)
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2008), LNCS, vol. 4963,
pp. 337–340. Springer (2008)

42. Nipkow, T.: Re: [isabelle] A beginner’s questionu [sic] (26 November 2010). Archived at https:
//lists.cam.ac.uk/pipermail/cl-isabelle-users/2010-November/msg00097.html

43. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic,
LNCS, vol. 2283. Springer (2002)

44. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: A. Robinson, A. Voron-
kov (eds.) Handbook of Automated Reasoning, pp. 335–367. Elsevier (2001)

45. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link be-
tween automatic and interactive theorem provers. In: G. Sutcliffe, E. Ternovska, S. Schulz (eds.)
International Workshop on the Implementation of Logics (IWIL-2010) (2010)

46. Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive theorem proving. In:
K. Schneider, J. Brandt (eds.) Theorem Proving in Higher Order Logics (TPHOLs 2007), LNCS, vol.
4732, pp. 232–245 (2007)

47. Ranise, S., Tinelli, C.: The SMT-LIB standard: Version 1.2 (2006). Available at http://goedel.cs.
uiowa.edu/smtlib/papers/format-v1.2-r06.08.30.pdf

48. Reif, W., Schellhorn, G.: Theorem proving in large theories. In: W. Bibel, P.H. Schmitt (eds.) Auto-
mated Deduction—A Basis for Applications, vol. III: Applications, pp. 225–241. Kluwer (1998)

49. Riazanov, A., Voronkov, A.: The design and implementation of Vampire. AI Comm. 15(2-3), 91–110
(2002)

50. Rinard, M.C.: Integrated reasoning and proof choice point selection in the Jahob system—
Mechanisms for program survival. In: R.A. Schmidt (ed.) Conference on Automated Deduction
(CADE-22), LNCS, vol. 5663, pp. 1–16. Springer (2009)

51. Rudnicki, P., Urban, J.: Escape to ATP for Mizar. In: P. Fontaine, A. Stump (eds.) Proof Exchange for
Theorem Proving (PxTP-2011) (2011)

52. Rushby, J.M.: Tutorial: Automated formal methods with PVS, SAL, and Yices. In: D.V. Hung,
P. Pandya (eds.) Software Engineering and Formal Methods (SEFM 2006), p. 262. IEEE (2006)

53. Schropp, A.: Instantiating deeply embedded many-sorted theories into HOL types in Isabelle. M.Sc.
thesis, Dept. of Informatics, T.U. München (2012)

54. Schulz, S.: System description: E 0.81. In: D. Basin, M. Rusinowitch (eds.) International Joint Con-
ference on Automated Reasoning (IJCAR 2004), LNAI, vol. 3097, pp. 223–228. Springer (2004)

55. Siekmann, J., Benzmüller, C., Fiedler, A., Meier, A., Normann, I., Pollet, M.: Proof development
with ΩMEGA: The irrationality of

√
2. In: F. Kamareddine (ed.) Thirty Five Years of Automating

Mathematics, Applied Logic, vol. 28, pp. 271–314. Springer (2003)
56. Sutcliffe, G.: System description: SystemOnTPTP. In: D. McAllester (ed.) Conference on Automated

Deduction (CADE-17), LNAI, vol. 1831, pp. 406–410. Springer (2000)
57. Sutcliffe, G.: The TPTP problem library and associated infrastructure—The FOF and CNF parts,

v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)
58. Wampler-Doty, M.: A complete proof of the Robbins conjecture. In: G. Klein, T. Nipkow,

L. Paulson (eds.) The Archive of Formal Proofs. Available at http://afp.sf.net/entries/
Robbins-Conjecture.shtml (2010)

59. Weber, T.: SMT solvers: New oracles for the HOL theorem prover. J. Softw. Tools Technol. Transfer
13(5), 419–429 (2011)

60. Weidenbach, C.: Combining superposition, sorts and splitting. In: A. Robinson, A. Voronkov (eds.)
Handbook of Automated Reasoning, pp. 1965–2013. Elsevier (2001)

61. Wenzel, M.: Type classes and overloading in higher-order logic. In: E.L. Gunter, A. Felty (eds.)
Theorem Proving in Higher Order Logics (TPHOLs ’97), LNCS, vol. 1275, pp. 307–322 (1997)

62. Wenzel, M.: Parallel proof checking in Isabelle/Isar. In: G. Dos Reis, L. Théry (eds.) Programming
Languages for Mechanized Mathematics Systems (PLMMS 2009). ACM Digital Library (2009)

