
Three Years of Experience with Sledgehammer, a Practical Link
between Automatic and Interactive Theorem Provers

Lawrence C. Paulson
Computer Laboratory

University of Cambridge, U.K.
lp15@cam.ac.uk

Abstract

Sledgehammer is a highly successful subsystem of Isabelle/HOL that calls automatic theorem
provers to assist with interactive proof construction. It requires no user configuration: it can be in-
voked with a single mouse gesture at any point in a proof. It automatically finds relevant lemmas
from all those currently available. An unusual aspect of its architecture is its use of unsound transla-
tions, coupled with its delivery of results as Isabelle/HOL proof scripts: its output cannot be trusted,
but it does not need to be trusted. Sledgehammer works well with Isar structured proofs and allows
beginners to prove challenging theorems.

1 Introduction

Interactive theorem provers are widely used by researchers for modelling complex algorithms or systems
using logic. They typically support rich formalisms that include recursive definitions of functions and
types; it may even be possible to reason about a partial recursive function’s domain of definition or to
define a relation co-inductively. The greatest weakness of these tools is the actual theorem proving,
which is extremely laborious; perhaps they should instead be called specification editors.

For nearly 20 years, researchers have sought to make interactive theorem provers better at proving
theorems. Much of this effort has been devoted to providing decision procedures. Certainly decision
procedures are essential, especially for arithmetic; without them, obvious identities can take hours to
prove, with them, complicated facts can be proved instantly. But most of the time, our problem lies
beyond the scope of any standard decision procedure. Automatic tools are needed that can work on any
type of problem.

Automatic theorem provers (ATPs) are capable of creating long, incomprehensible chains of deduc-
tion. Many researchers have attempted to use them to support interactive theorem proving; particularly
pertinent are Ahrendt et al. [1], Bezem et al. [5], Hurd [7] and Siekmann et al. [26]. But the only one
to pass the test of time is Sledgehammer [14, 21], which links Isabelle/HOL to the automatic provers E,
SPASS and Vampire. Isabelle users invoke Sledgehammer routinely when undertaking difficult proofs.
In a recent study involving older Isabelle proof scripts, Böhme and Nipkow demonstrated that Sledge-
hammer could prove 34% of the nontrivial goals contained in those proofs [6].

Sledgehammer was first released in February 2007 to users daring enough to download an Isabelle
nightly build. It was announced in November 2007 as a component of Isabelle2007. This paper outlines
the design goal that made Sledgehammer successful (§2). It describes some of the lessons learnt in the
past three years and its effect on the way Isabelle/HOL is taught (§3). Avenues for research are also
discussed (§4).

2 Design Principles

The single most important design goal was one-click invocation. Some earlier systems required the
user to gather up all facts that could be relevant to the problem, and furthermore to reduce it to first-order

1

lp15@cam.ac.uk


Three Years of Experience with Sledgehammer L. C. Paulson

form. Problem preparation could easily take hours, with no guarantee that the call to a first order theorem
prover would succeed. Such a tool would be of little value to users.

The two aspects of problem preparation (translation into first-order logic; identification of relevant
facts) each required a substantial research effort. The numerous choices outlined below were made on
the basis of innumerable experiments that consumed many thousands of hours of processor time.

2.1 Translation into First-Order Logic

Most interactive theorem provers support a language much richer than that of first-order logic. Is-
abelle/HOL [16] supports polymorphic higher-order logic, augmented with axiomatic type classes [32].1

Many user problems contain no higher-order features, and might be imagined to lie within first-order
logic; however, even these problems are full of typing information. Type information can take quadratic
space [12] because every term must be labelled with its type, recursively, right down to the variables.
Hurd [8] observed that omitting type information greatly improved the success rate of his theorem prover,
Metis. This is hardly surprising, since the type information virtually buries the terms themselves. Hurd
was able to omit type information because his proofs are reconstructed within the HOL4 system, which
rejected any proofs that did not correspond to well-typed higher-order logic deductions.

Sledgehammer was always intended to rely on an analogous process of sound proof reconstruction,
and from the outset it was clear that including complete type information would be unworkable. Com-
pletely omitting type information, although successful for Hurd, would not have worked for Isabelle
because of its heavy use of type classes. Meng and I chose to include enough type information to enforce
correct type class reasoning (the type class hierarchy is easily expressed using Horn clauses) but not
to specify the type of every term [14, §4]. Colleagues have expressed horror at the very idea of using
unsound translations; I have written a lengthy exploration of the salient issues [12, §2.8].

Although resolution theorem proving is based on clause form, most modern ATPs accept problems
in first-order format. Sledgehammer nevertheless translates problems into clause form itself, and using a
naive application of distributive laws rather than a polynomial time algorithm based on formula renaming
[17]. Moreover, the translation to clauses is performed using Isabelle’s internal proof engine; this was
thought to be essential to allow proof reconstruction within Isabelle. Sledgehammer’s naive translation
algorithm has caused real difficulties. Its exponential worst-case behaviour can be triggered by real-world
examples. To prevent the naive translation from generating prohibitively many clauses, an arbitrary cut-
off (currently 60) had to be introduced. Using first-order format could improve the success rate by
exploiting the superior translation technology built into modern ATPs.

Higher-order problems posed special difficulties. We never expected first-order theorem provers
to be capable of performing deep higher-order reasoning, but merely hoped to automate proofs where
the higher-order steps were trivial. We examined several methods of translating higher-order problems
into first-order logic, allowing for at least truth values to be used as the values of terms and for curried
functions taking varying numbers of arguments [12]. We eventually adopted a translation based on the
one that we used for first-order logic, modified to introduce higher-order mechanisms (such as an “ap-
ply operator” for function values) only when absolutely necessary. We thereby eliminated our original
distinction between first-order and higher-order problems. A higher-order feature within a problem af-
fects the translation locally, giving a smooth transition from purely first-order to heavily higher-order
problems.

We also experimented with two methods of eliminating λ -abstractions in terms: by translating them
into combinator form or by declaring equivalent functions. We ultimately opted for combinators, us-
ing fairly naive translation scheme. (More sophisticated schemes delivered no benefits.) Experience

1Note that Isabelle/HOL is the instantiation of Isabelle [20] to higher-order logic. Isabelle is a generic theorem prover,
based on a logical framework [19].

2



Three Years of Experience with Sledgehammer L. C. Paulson

suggests, unfortunately, that Sledgehammer is seldom successful on problems containing higher-order
elements. Integration with a genuine higher-order automatic theorem prover, such as LEO-II [3], seems
necessary. This would pose interesting problems for proof reconstruction: LEO-II’s approach is to re-
duce higher-order problems to first-order ones by repeatedly applying specialised inference rules and
then calling first-order ATPs. A LEO-II proof will therefore consist of a string of higher-order steps
followed by a first-order proof. The latter part we know how to do; the crucial challenge is to devise a
reliable way of emulating the higher-order steps within Isabelle.

Arithmetic remains an issue. A purely arithmetic problem can be solved using decision procedures,
but what about problems that combine arithmetic with a significant amount of logic? In principle, Sledge-
hammer could solve such problems with the help of an ATP that combined arithmetic and logical reason-
ing, analogous to LEO-II’s approach to higher-order logic. Current SMT solvers are probably of little
value, because they do not handle quantified formulas well. But progress in that field is extremely rapid,
and soon this option could become attractive.

2.2 Relevance Filtering

Our initial goals for Sledgehammer were modest: to improve upon Isabelle’s built-in automatic tools,
using only the lemma libraries used by those tools. There were two libraries, one consisting of facts
useful for forward and backward chaining, the other consisting of rewriting rules for simplification.
Each library contained hundreds of lemmas. Meng and I [13] discovered that automatic theorem provers
could solve only trivial problems in the presence so many extraneous facts; by developing a lightweight,
symbol-based relevance filter, we greatly improved the success rate. Users would still have to identify
relevant facts that did not belong to these lemma libraries.

Tobias Nipkow made the crucial suggestion to dispense with the lemma libraries, substituting the full
collection of Isabelle theorems (around 7000). This idea offered the enticing prospect that any relevant
existing theorem, however obscure, could be located. I thought this goal to be unrealistic; it seemed
to have too much in common with McAllester’s Ontic system [9]. Ontic was intended to be able to
prove mathematical results using known results that it identified automatically, and it seems fair to say
that this objective was too ambitious. But Sledgehammer would only be part of the system rather than
all-encompassing, and it could take advantage of 20 years of increasing hardware performance.

We were able to scale up the relevance filter to cope with the 20-fold increase in the number of
facts to process. However, it relies on ad-hoc heuristics that sometimes deliver poor results. Briefly,
it assigns a score to every available theorem based upon how many constants that theorem shares with
the conjecture; this process iterates to include theorems relevant to those just accepted, but with a decay
factor to ensure termination. The constants are weighted to give unusual ones greater significance. The
relevance filter copes best when the statement to be proved contains some unusual constants; if all the
constants are common then it is unable to discriminate among the hundreds of facts that are picked up.
The relevance filter is also memoryless: it has no information about how many times a particular fact has
been used in a proof, and it cannot learn.

It would obviously be preferable for the automatic theorem provers themselves to perform relevance
filtering. Or we should use a sophisticated system based on machine learning, such as Josef Urban’s
MaLARea [28], where successful proofs provide information to guide other proofs. Unfortunately, any
such approach will fail given Sledgehammer’s use of unsound translations. In unpublished work by
Urban, MaLARea easily proved the full Sledgehammer test suite by identifying an inconsistency in the
translated lemma library; once MaLARea had found the inconsistency in one proof, it easily found it
in all the others. Sledgehammer is successful only because its relevance filter generally selects too few
lemmas to produce an inconsistent axiom set, even with the unsound translations.

To accomplish better relevance filtering, we must decide whether to adopt a general first-order ap-

3



Three Years of Experience with Sledgehammer L. C. Paulson

proach or to build a sophisticated relevance filter directly into Isabelle. The former approach could take
advantage of the efforts of the entire ATP community, but it would have to be good enough to cope with
soundly translated (and presumably enormous) formulas. The latter approach would avoid translation
issues, but it would impose the entire effort onto a few Isabelle developers.

2.3 Parallelism

Parallelism was another design objective, both to exploit the abundance of cheap processing power and
so that users would not have to wait. Sledgehammer was intended to run in the background; Isabelle
would continue to respond to commands, and users could keep working. This idea has turned out to
be misconceived: thinking is difficult, and when users hope that a proof might be found for them, they
stop and wait for Sledgehammer to report back. We do hope that eventually Sledgehammer will be
configured to run spontaneously, without even the need for a mouse click. Then users will simply work
and occasionally be delighted to have solutions displayed for them. Such a configuration would require
a machine with enough processing power to support several ATP executions without becoming sluggish.
An agent-based implementation of similar ideas, using a blackboard architecture, has for some time been
part of the Ωmega system [4, 26].

The parallel invocation of different theorem provers is invaluable. Böhme and Nipkow [6] have
demonstrated that running three different theorem provers (E [25], SPASS [30] and Vampire [22]) for
five seconds solves as many problems as running the best theorem prover (Vampire) for two full min-
utes. It would be better to utilise even more theorem provers. I have undertaken informal, unpublished
experiments involving many other systems.

• Gandalf [27] shows great potential, but unfortunately it does not output useful proofs; one cannot
easily identify which axioms have taken part in the proof. A simple source code modification to
improve the legibility of proofs would allow Gandalf to make useful contributions. Unfortunately,
I was unable to identify the necessary changes. Gandalf has been found to be unsound,2 but a
small percentage of incorrect proofs would be tolerable.

• People sometimes suggest that we include Prover9 [10]. In my experiments, Prover9 performed
poorly on the large problems generated by Sledgehammer. It could be effective in conjunction
with an advanced and selective relevance filter.

• Another possibility is to run multiple instances of a theorem prover with different heuristics. This
is not necessary with Vampire, which attempts a variety of heuristics in separate time slices. It
could be particularly effective with the E prover, but designing suitable heuristics requires highly
specialised skills.

2.4 Proof Reconstruction

Isabelle subscribes to the LCF philosophy: all proofs ultimately reduce to primitives executed by a
logical kernel. Isabelle users would not trust a tool that uncritically accepted proofs from an external
source (especially one coded in C++!). But Sledgehammer had an even stronger design objective: to
deliver Isabelle proofs in source form. We envisaged that Sledgehammer runs would demand substantial
computational resources; if somebody used Sledgehammer many times while constructing a proof, would
it be feasible to run that proof again, perhaps to modify it using a laptop while at a conference? To be
useful, Sledgehammer would have to return a piece of proof script that could be executed cheaply.

2See http://www.cs.miami.edu/~tptp/TPTP/BustedAsUnsound.html

4

http://www.cs.miami.edu/~tptp/TPTP/BustedAsUnsound.html


Three Years of Experience with Sledgehammer L. C. Paulson

2.4.1 Reconstruction of the Resolution Proof

The original plan was to emulate the inference rules of automatic theorem provers directly within Isa-
belle. We should have known better: Hurd [7] had noticed that the proofs delivered by automatic theorem
provers (Gandalf, in his case) were not detailed and explicit enough. We made the same discovery [14]
(in the case of SPASS), and despite considerable efforts, were only able to reconstruct a handful of
proofs.

We came up with a new plan: to use a general theorem prover, Metis, to reconstruct each proof step.
Metis was designed to be interfaced with LCF-style interactive theorem provers, specifically HOL4.
Integrating it with Isabelle’s proof kernel required significant effort [21]. Metis then became available
to Isabelle users, and it turned out to be capable of reconstructing proof steps easily. The output of
Sledgehammer was now a list of calls to Metis, each of which proved a clause. This approach was
inspired by the Otterfier proof transformation service [33].

Resolution proofs should ideally be translated to natural, intuitive Isabelle proofs. The best-known
prior work on translating resolution proofs is TRAMP [11]; its applicability to Sledgehammer is un-
explored. Preliminary work has commenced at Munich to see to what extent resolution proofs can be
transformed into intelligible proofs.

2.4.2 One-Line Reconstruction, or ATPs as Relevance Filters

Having Metis available made possible an entirely different approach to proof reconstruction: to throw
the proof away and allow Metis to find its own proof, using the lemmas that took part in the original
resolution proof [21]. With this approach, Sledgehammer became merely a lemma finder, one that used
automatic theorem provers merely as relevance filters. But this approach was generally effective, and
had the great advantage that each Sledgehammer call now delivered a one-line result, rather than a
lengthy and incomprehensible proof script in which all formulas were in clause form. At least one
ATP implementer expressed disbelief that his system could be used merely as a relevance filter, but this
approach allows any ATP to be used with Sledgehammer provided it returns the list of axioms used in its
proof.

Metis sometimes fails to reconstruct the result of a Sledgehammer call. (Böhme and Nipkow [6]
present detailed statistics.) Reconstruction necessarily fails if the resolution proof did not correspond
to a well-typed Isabelle proof (recall that, normally, Sledgehammer omits most type information when
translating Isabelle formulas into first-order logic). This type of failure could be eliminated by using
sound translations, but the overall success rate would actually decrease considerably. The seasoned
Sledgehammer user eventually learns to recognise unsound proofs (certain lemmas always seem to be
mentioned). The number of such proofs could perhaps be reduced by ad hoc measures, such as removing
those lemmas from the scope of Sledgehammer, possibly even with the help of machine learning.

Unfortunately, sometimes Metis is simply not powerful enough to prove a theorem that has already
been proved by a more powerful system, despite being given a small list of axioms. ATPs frequently
use many more axioms than are strictly necessary. The minimization tool developed by Philipp Meyer
at TUM takes a set of axioms returned by a given ATP and repeatedly calls the same ATP with subsets
of those axioms in order to find a minimal set. Reducing the number of axioms improves Metis’s suc-
cess rate, while also removing superfluous clutter from the proof scripts. ATPs themselves could return
proofs using a minimum of axioms, or alternatively, proofs of a minimum length. Vampire’s well-known
limited resource strategy [23], although designed to cope with limited processor time, could probably be
modified to minimise proofs efficiently.

5



Three Years of Experience with Sledgehammer L. C. Paulson

3 Sledgehammer and Teaching

Sledgehammer was not designed specifically as an aid to novices. Experienced users have come to
rely on it. But Sledgehammer seems to offer the greatest benefits to the least experienced users. It has
certainly transformed the way Isabelle is taught. There are two reasons for this:

• Because it identifies relevant facts, users no longer need to memorise lemma libraries.

• Because it works in harmony with Isar structured proofs, users no longer need to learn many low-
level tactics.

Demonstrations of interactive theorem provers necessarily involve deception. The implementers
naturally want to show off their system in the best possible light, so they present examples that look
more difficult than they really are. Typically they define some recursive functions and prove properties
using obvious inductions followed by some sort of auto-tactic. The audience will be duly impressed,
and some among them will decide to adopt that tool as the basis for their Ph.D. research. Too late, they
encounter the crucial issue:

What do I do when the auto-tactic fails?

Typically, the answer is that one must write incomprehensible scripts that invoke a plethora of obscure
commands. These generally include tactics to manipulate the set of assumptions in natural deduction
or a sequent calculus. There may be tactics to transform an assumption by applying a rewrite rule or
theorem, or to create a case split from an assumption. Some tactics substitute user-supplied terms into
theorems.

In Isabelle, the simple combination of structured proofs and Sledgehammer takes the user surpris-
ingly far. This is not the place to give a detailed tutorial on Isar structured proofs [15, 31]. In brief,
they support natural deduction through local scopes that can introduce assumptions (using the keyword
assume) as well as local variables and definitions. Moreover, while traditional tactic scripts contain
only commands, a structured proof explicitly states the assumptions and goals. When proving a proposi-
tion, you can state intermediate properties that you believe to be helpful. If you understand the problem
well enough to propose some intermediate properties, then all you have to do is state a progression of
properties in small enough gaps for Sledgehammer to be able to prove each one.

proof -
assume x: "x ∈ lambda system M f"
hence "x ⊆ space M"

by (metis sets into space lambda system sets)
hence "space M - (space M - x) = x"

by (metis double diff equalityE)
thus "space M - x ∈ lambda system M f" using x

by (force simp add: lambda system def)
qed

Figure 1: A Structured Proof Completed with the Help of Sledgehammer

Figure 1 presents an example, where two intermediate facts (introduced by the keyword hence) assist
in the proof of the conclusion (introduced by thus). Each of the intermediate facts is proved by a call to
Metis that was generated using Sledgehammer. Nor need we restrict ourselves to a linear progression of
facts. Because proofs are structured, you can nest the proofs of these lemmas to any depth.

Isar also supports calculational reasoning [2]. A chain of reasoning steps, connected by familiar
relations such as =, ≤ and <, can be written with separate proofs for each step of the calculation. Once

6



Three Years of Experience with Sledgehammer L. C. Paulson

again, if you can see the intermediate stages of the transformation, then the proofs of each step can be
found easily. Figure 2 presents an example of calculational reasoning, taken from a measure theory
development.

have "f(u ∩ (x ∩ y)) + f(u - x ∩ y) =
(f(u ∩ (x ∩ y)) + f(u ∩ y - x)) + f(u - y)"

by (metis class semiring.add a ey)
also have "... = (f((u ∩ y) ∩ x) + f(u ∩ y - x)) + f(u - y)"

by (metis Int commute Int left commute)
also have "... = f(u ∩ y) + f(u - y)" using fx Int y u

by auto
also have "... = f u"

by (metis fy u)
finally show "f(u ∩ (x ∩ y)) + f(u - x ∩ y) = f u" .

Figure 2: A Calculational Proof Completed with the Help of Sledgehammer

Top down proof development is greatly assisted by a trivial Isar feature: the ability to omit proofs.
Where a proof is required, the user may simply insert the word sorry. Isabelle then regards the theorem
as proved.3 The user can then check that the newly introduced proposition indeed suffices to prove the
next proposition in the development. A difficult proof can develop as a series of propositions, each
initially “proved” using sorry but eventually using either Sledgehammer, another automated method, or
a nested proof development of the same form. Progress in such a proof can be measured in terms of
the difficulty of the propositions that lack real proofs. Although we can never be certain that a proof
development can be completed until the very end, the ability to write sorry in place of a proof reduces
the risk of discovering that a lemma is useless only after spending weeks proving it.

In January 2010, as part of its new MPhil. programme, the University of Cambridge offered a lecture
course on Isabelle [18]. The course materials included almost no information about the low-level tactics
that had been the mainstay of Isabelle proofs for nearly 20 years. Only two of the 12 lectures were
devoted to Isar structured proofs, and they took a novel approach: rather than proceeding methodically
through the Isar fundamentals, the lectures presented the outer skeleton of a proof, with crucial sections
replaced by sorry. They described the idea of trying to eliminate each sorry using either Sledgehammer
or some automatic tactic. Practical work submitted by the students later demonstrated that several of them
had learned how to write complex, well-structured proofs. I was happy to reassure them that submitting
work generated largely by Sledgehammer was by no means cheating!

I have taught Isabelle on a number of occasions, starting in the mid-1990s. Sledgehammer is ob-
viously not the only thing to have changed in that expanse of time. The introduction of Isar, continual
improvements to Isabelle’s automated reasoners, and 15 years of Moore’s Law have transformed the user
experience. Interactive theorem proving has never been practical because it required far too much effort,
even from highly specialised and experienced experts. For the first time, we can envisage the day when
interactive theorem proving becomes straightforward enough to be adopted on a large scale.

4 Conclusions

Sledgehammer has been available for over three years, and in that time it has become an essential part
of the Isabelle user’s workflow. It is possibly the only interface between an interactive theorem prover

3The existence of sorry does not compromise Isabelle’s soundness, because it is only permitted during interactive sessions.
A theory file containing an occurrence of sorry may not be imported by another theory.

7



Three Years of Experience with Sledgehammer L. C. Paulson

and automatic ones to achieve such popularity with users. It has transformed the way beginners perceive
Isabelle.

Counterexample generators are worth mentioning at this point. Users waste much time attempting to
prove statements that are not theorems. Tools that can refute invalid conjectures are every bit as helpful
as those that prove theorems. Random testing is an obvious way to do this, but counterexample finding
can also make use of automated deduction technology. An early example is refute, which uses a SAT
solver to find counterexamples [29]; it is also a component of Isabelle.

Sledgehammer has a number of limitations, most of which open up suggestions for future work. The
relevance filter is primitive, but an improved one will have to be part of Sledgehammer itself as long as
unsound translations are used; only if a compact but sound translation is invented can we rely on auto-
matic theorem provers doing relevance filtering for themselves. Unsound translations can be used safely
because Sledgehammer does not trust the proofs that it receives from ATPs but merely uses them as hints
to generate Isabelle proof scripts; proofs that violate Isabelle’s typing rules are eliminated at this stage.
The success rate for first-order problems might be improved by eliminating Sledgehammer’s transfor-
mation to clause form, delegating that task to ATPs; the impact of such a change on proof reconstruction
might be limited, since that is now done using Metis. Sledgehammer’s performance on higher-order
problems is unimpressive, and given the inherent difficulty of performing higher-order reasoning using
first-order theorem provers, the way forward is to integrate Sledgehammer with an actual higher-order
theorem prover, such as LEO-II [3]. Proof reconstruction would benefit from new ideas, especially so
that it can deliver natural, intuitive proofs.

Acknowledgements

The Cambridge team that developed Sledgehammer included Jia Meng, Claire Quigley and Kong Woei
Susanto. Sledgehammer has since been refined, improved and tested by the Isabelle team at T.U. Munich.
Christoph Benzmüller and Jasmin Blanchette commented on this paper.

The research was supported by the Engineering and Physical Sciences Research Council [grant num-
ber GR/S57198/01], Automation for Interactive Proof.

References

[1] Wolfgang Ahrendt, Bernhard Beckert, Reiner Hähnle, Wolfram Menzel, Wolfgang Reif, Gerhard Schellhorn,
and Peter H. Schmitt. Integrating automated and interactive theorem proving. In Wolfgang Bibel and Peter H.
Schmitt, editors, Automated Deduction— A Basis for Applications, volume II. Systems and Implementation
Techniques, pages 97–116. Kluwer Academic Publishers, 1998.

[2] Gertrud Bauer and Markus Wenzel. Calculational reasoning revisited (an Isabelle/Isar experience). In
Richard J. Boulton and Paul B. Jackson, editors, Theorem Proving in Higher Order Logics: TPHOLs
2001, LNCS 2152, pages 75–90. Springer, 2001. Online at http://link.springer.de/link/service/
series/0558/tocs/t2152.htm.

[3] Christoph Benzmüller, Lawrence C. Paulson, Frank Theiss, and Arnaud Fietzke. LEO-II - a cooperative
automatic theorem prover for higher-order logic. In Alessandro Armando, Peter Baumgartner, and Gilles
Dowek, editors, Automated Reasoning — 4th International Joint Conference, IJCAR 2008, LNAI 5195.
Springer, 2008.

[4] Christoph Benzmüller and Volker Sorge. OANTS – an open approach at combining interactive and automated
theorem proving. In Manfred Kerber and Michael Kohlhase, editors, Symbolic Computation and Automated
Reasoning, pages 81–97. A. K. Peters, 2000.

[5] Marc Bezem, Dimitri Hendriks, and Hans de Nivelle. Automatic proof construction in type theory using
resolution. Journal of Automated Reasoning, 29(3-4):253–275, 2002.

8

http://link.springer.de/link/service/series/0558/tocs/t2152.htm
http://link.springer.de/link/service/series/0558/tocs/t2152.htm


Three Years of Experience with Sledgehammer L. C. Paulson

[6] Sascha Böhme and Tobias Nipkow. Sledgehammer: Judgement day. In J. Giesl and R. Hähnle, editors,
Automated Reasoning (IJCAR 2010), LNCS 6173. Springer, 2010. In press.

[7] Joe Hurd. Integrating Gandalf and HOL. In Yves Bertot, Gilles Dowek, André Hirschowitz, Christine
Paulin, and Laurent Théry, editors, Theorem Proving in Higher Order Logics: TPHOLs ’99, LNCS 1690,
pages 311–321. Springer, 1999.

[8] Joe Hurd. First-order proof tactics in higher-order logic theorem provers. In Myla Archer, Ben Di Vito,
and César Muñoz, editors, Design and Application of Strategies/Tactics in Higher Order Logics, number
NASA/CP-2003-212448 in NASA Technical Reports, pages 56–68, September 2003.

[9] David McAllester. Ontic: A knowledge representation system for mathematics. In E. Lusk and R. Overbeek,
editors, 9th International Conference on Automated Deduction, LNCS 310, pages 742–743. Springer, 1988.

[10] William McCune. Prover9 and Mace4. http://www.cs.unm.edu/~mccune/mace4/.
[11] Andreas Meier. TRAMP: Transformation of machine-found proofs into natural deduction proofs at the asser-

tion level (system description). In David McAllester, editor, Automated Deduction — CADE-17 International
Conference, LNAI 1831, pages 460–464. Springer, 2000.

[12] Jia Meng and Lawrence C. Paulson. Translating higher-order clauses to first-order clauses. Journal of
Automated Reasoning, 40(1):35–60, January 2008.

[13] Jia Meng and Lawrence C. Paulson. Lightweight relevance filtering for machine-generated resolution prob-
lems. Journal of Applied Logic, 7(1):41–57, 2009.

[14] Jia Meng, Claire Quigley, and Lawrence C. Paulson. Automation for interactive proof: First prototype.
Information and Computation, 204(10):1575–1596, 2006.

[15] Tobias Nipkow. A tutorial introduction to structured Isar proofs. http://isabelle.in.tum.de/dist/
Isabelle/doc/isar-overview.pdf.

[16] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant for Higher-
Order Logic. Springer, 2002. LNCS Tutorial 2283.

[17] Andreas Nonnengart and Christoph Weidenbach. Computing small clause normal forms. In Robinson and
Voronkov [24], chapter 6, pages 335–367.

[18] Lawrence C. Paulson. Interactive formal verification. http://www.cl.cam.ac.uk/teaching/0910/
L21/. Lecture course materials.

[19] Lawrence C. Paulson. The foundation of a generic theorem prover. Journal of Automated Reasoning,
5(3):363–397, 1989.

[20] Lawrence C. Paulson. Tool support for logics of programs. In Manfred Broy, editor, Mathematical Methods in
Program Development: Summer School Marktoberdorf 1996, NATO ASI Series F, pages 461–498. Springer,
Published 1997.

[21] Lawrence C. Paulson and Kong Woei Susanto. Source-level proof reconstruction for interactive theorem
proving. In Klaus Schneider and Jens Brandt, editors, Theorem Proving in Higher Order Logics: TPHOLs
2007, LNCS 4732, pages 232–245. Springer, 2007.

[22] Alexander Riazanov and Andrei Voronkov. Vampire 1.1 (system description). In Rajeev Goré, Alexander
Leitsch, and Tobias Nipkow, editors, Automated Reasoning — First International Joint Conference, IJCAR
2001, LNAI 2083, pages 376–380. Springer, 2001.

[23] Alexandre Riazanov and Andrei Voronkov. Limited resource strategy in resolution theorem proving. J. Symb.
Comput., 36(1-2):101–115, 2003.

[24] Alan Robinson and Andrei Voronkov, editors. Handbook of Automated Reasoning. Elsevier Science, 2001.
[25] Stephan Schulz. System description: E 0.81. In David Basin and Michaël Rusinowitch, editors, Automated

Reasoning — Second International Joint Conference, IJCAR 2004, LNAI 3097, pages 223–228. Springer,
2004.

[26] Jörg Siekmann, Christoph Benzmüller, Armin Fiedler, Andreas Meier, Immanuel Normann, and Martin Pol-
let. Proof development with Ωmega: The irrationality of

√
2. In Fairouz Kamareddine, editor, Thirty Five

Years of Automating Mathematics, pages 271–314. Kluwer Academic Publishers, 2003.
[27] Tanel Tammet. Gandalf. Journal of Automated Reasoning, 18(2):199–204, 1997.
[28] Josef Urban. MaLARea: a metasystem for automated reasoning in large theories. In Geoff Sutcliffe, Josef

9

http://www.cs.unm.edu/~mccune/mace4/
http://isabelle.in.tum.de/dist/Isabelle/doc/isar-overview.pdf
http://isabelle.in.tum.de/dist/Isabelle/doc/isar-overview.pdf
http://www.cl.cam.ac.uk/teaching/0910/L21/
http://www.cl.cam.ac.uk/teaching/0910/L21/


Three Years of Experience with Sledgehammer L. C. Paulson

Urban, and Schulz Schulz, editors, ESARLT 2007: Empirically Successful Automated Reasoning in Large
Theories, volume 257 of CEUR Workshop Proceedings, 2007.

[29] Tjark Weber. Bounded model generation for Isabelle/HOL. Electron. Notes Theor. Comput. Sci., 125(3):103–
116, 2005.

[30] Christoph Weidenbach. Combining superposition, sorts and splitting. In Robinson and Voronkov [24],
chapter 27, pages 1965–2013.

[31] Makarius Wenzel. Isabelle/Isar — a generic framework for human-readable proof documents. In R. Ma-
tuszewski and A. Zalewska, editors, From Insight to Proof — Festschrift in Honour of Andrzej Trybulec.
University of Białystok, 2007. Studies in Logic, Grammar, and Rhetoric 10(23).

[32] Markus Wenzel. Type classes and overloading in higher-order logic. In Elsa L. Gunter and Amy Felty,
editors, Theorem Proving in Higher Order Logics: TPHOLs ’97, LNCS 1275, pages 307–322. Springer,
1997.

[33] J. Zimmer, A. Meier, G. Sutcliffe, and Y. Zhang. Integrated proof transformation services. In C. Benzmüller
and W. Windsteiger, editors, Workshop on Computer-Supported Mathematical Theory Development, 2nd
International Joint Conference on Automated Reasoning, Electronic Notes in Theoretical Computer Science,
2004.

10


	Introduction
	Design Principles
	Translation into First-Order Logic
	Relevance Filtering
	Parallelism
	Proof Reconstruction
	Reconstruction of the Resolution Proof
	One-Line Reconstruction, or ATPs as Relevance Filters


	Sledgehammer and Teaching
	Conclusions

