
Getting Started With Isabelle

Lecture II: Theory Files

Lawrence C. Paulson
Computer Laboratory

Syntax Fundamentals

sorts to classify types for overloading*

types to classify terms (including polymorphism)

terms and formulas (which are just Boolean terms)

inference rules as assertions of the meta-logic

theory files to declare types, constants, etc.

proof files containing Goal , by , qed commands

new-style theories by Markus Wenzel (Isar)*

*not in this course

1 L. C. Paulson

Types in Isabelle/HOL

σ => τ function types

’a , ’b , . . . type variables (like in ML)

bool , nat , . . . base types

’a list , . . . type constructors

(bool*nat)list instance of a type constructor

x :: τ means “x has type τ”

2 L. C. Paulson

Type bool : Formulas of Higher-Order Logic

˜ P negation of P

P & Q conjunction of P and Q

P | Q disjunction of P and Q

P --> Q implication between P and Q

(P) = (Q) logical equivalence of P and Q

ALL x. P or ! x. P for all (universal quantifier)

EX x. P or ? x. P for some (existential quantifier)

Also conditional expressions: if P then t else u

3 L. C. Paulson

Numeric Types nat , int , real , . . .

- x unary minus of x all numerics

+ - * sum, difference, product all numerics

#ddd binary numerals all numerics

div mod quotient, remainder types nat , int

Suc n successor n+ 1 type nat

0 1 2 unary numerals type nat

< <= orderings overloaded

= ˜= equality, non-equality overloaded

Automatic simplification, including linear arithmetic

4 L. C. Paulson

Lists: the Type Constructor ’a list

Nil the empty list

Cons x l list with head x, tail l

xs @ ys append of xs, ys

hd tl rev . . . common list functions

map filter . . . common list functionals

[x1, . . . , xn] list notation

[x: l . P] nice syntax for filter

5 L. C. Paulson

Sets: the Type Constructor ’a set

x : A membership, x ∈ A

x ˜: A non-membership, x 6∈ A

A <= B subset, A ⊆ B

- A complement of A

A Un B union of A and B

A Int B intersection of A and B

ALL x: A. P bounded quantifier (also EX)

UN x: A. P union of a family of sets (also INT)

6 L. C. Paulson

Tupled and Curried Functions

[σ1, . . . , σn] => τ curried function type

%x1 . . . xn. t curried λ-abstraction

f t1 . . . tn curried function application

σ1 * · · · * σn => τ tupled function type

%(x1, . . . , xn). t tupled λ-abstraction

f (t1, . . . ,tn) tupled function application

Tupled abstraction allowed elsewhere:

ALL (x,y):edges. x ˜= y

7 L. C. Paulson

Constants and Variables

Name spaces resolve duplicate constant declarations

Identifiers not declared as constants can be variables

Unknowns are instantiated automatically

T.c constant c declared in theory T

c constant declared most recently

x free variable (if not declared as a constant)

?x schematic variable (unknown)

8 L. C. Paulson

Format of a Theory File

T = T1 + · · · + Tn +

consts uList :: "’a => ’a list"

defs uList_def "uList x == [x]"
(*note the == symbol!*)

rules f_axiom "f(f n) < f (Suc n)"

record . . .

inductive . . .

end

Extend theories T1, . . . , Tn with constants, axioms,
record declarations, etc., etc.

9 L. C. Paulson

Further Material Provided by Isabelle/HOL

Relations — their properties and operations on them

Equivalence classes — quotients and congruences

Well-foundedness of many orderings including
multisets

Cardinality including binomials and powersets

Non-standard analysis (thanks to Jacques Fleuriot)

Prime numbers — GCDs, unique factorization

Browse the Isabelle theory library on the WWW

10 L. C. Paulson

