
Getting Started With Isabelle

Lecture III: Interactive Proof

Lawrence C. Paulson
Computer Laboratory

Lecture Outline

• Syntax of rules

• Proof states; subgoals

• Specialist tactics

• Primitive tactics

• Automatic tactics

• Simplification tactics

• The tableau prover (classical reasoner)

1 L. C. Paulson

Expressing Inference Rules in Isabelle

P & Q ==> P

premises conclusion

[| P-->Q; P |] ==> Q

(!!x. P x) ==> ALL x. P x

general premise conclusion with HOL quantifier

==> and !! belong to the logical framework

2 L. C. Paulson

An Isabelle Proof State

Goal "(i * j) * k = i * ((j * k)::nat)";
by (induct_tac "i" 1);

Level 1 (2 subgoals)
i * j * k = i * (j * k)

1. 0 * j * k = 0 * (j * k)
2. !!n. n * j * k = n * (j * k)

==> Suc n * j * k = Suc n * (j * k)

Subgoal 1 is the base case.

Subgoal 2 is the inductive step.

• The !!n names a natural number

• The ==> separates the hypothesis and conclusion

3 L. C. Paulson

The Form of a Subgoal

Each subgoal of a proof state looks like this:

!! x1 . . . xk. [| φ1; . . . ; φn |] ==> φ

parameters assumptions conclusion

• Parameters stand for arbitrary values

• Assumptions are typical of Natural Deduction

[| φ1; φ2 |] ==> ψ is the same as

φ1 ==> (φ2 ==> ψ)

4 L. C. Paulson

Specialist Tactics

induct tac " x" i induction over a datatype
value x

case tac " P" i case analysis on property P

subgoal tac " P" i introduce P as a lemma

Clarify tac i perform all obvious steps

Replace subgoal i by new subgoals

May add new assumptions & parameters

5 L. C. Paulson

Primitive Tactics: Single-Step Proof

Apply to subgoal i the rule

φ1 . . . φn

ψ

rtac rule i replace goal ψ by subgoals
φ1, . . . , φn

—backward proof

dtac rule i replace assumption φ1 by ψ
—new subgoals φ2, . . . , φn

—forward proof

etac rule i apply an elimination rule —
new subgoals φ2, . . . , φn

6 L. C. Paulson

“Try Everything” Tactics

Auto tac break up & try to prove all subgoals
— may leave many subgoals

Force tac i prove subgoal i using everything —
or give up

These call the simplifier and the classical reasoner.

7 L. C. Paulson

Simplification Tactics

Simp tac i simplify conclusion

Asm simp tac i . . . using assumptions as
extra rewrite rules

Full simp tac i simplify assumptions and
conclusion

Asm full simp tac i . . . using assumptions as
extra rewrite rules

These apply rewrite rules and specialized proof
procedures to subgoal i .

8 L. C. Paulson

Using Your Own Simplification Rules

Add them globally:

Addsimps [my_thm];

Or add them locally:

by (simp_tac (simpset() addsimps [my_thm]) 2);
! ! note lower case!

• Try conditional rules like m<n ==> m mod n = m.

• To sort, use permutative rules like m*n = n*m.

9 L. C. Paulson

Using the Tableau Prover

Blast tac i search for a proof of subgoal i

Some rules that work with Blast tac :

[| x<=y; y <=x |] ==> x=y
Introduction rule: backward proof

{x} = {y} ==> x=y
Destruction rule: forward proof

[| P|Q; P ==> R; Q ==> R |] ==> R
Elimination rule

10 L. C. Paulson

Using Your Own Tableau Rules

Easy way: prove an equivalence like finite Un:

finite (A Un B) = (finit e A & finite B)

Then install it—to simplifier also—by

AddIffs [finite_Un];

Or add them locally:

by (blast_tac (claset() addIs intro rules
addDs destructionrules
addEs elim rules) 2);

Rules are used to break down formulas

11 L. C. Paulson

Finding Theorems in the Library

thms_containing ["map", "rev"];

[("List.rev_concat",
"rev (concat ?xs) = concat (map rev (rev ?xs))"),

("List.rev_map",
"rev (map ?f ?xs) = map ?f (rev ?xs)")]

: (string * thm) list

thms_containing ["op div", "op mod", "op <"];

[("IntDiv.zmod_zmult2_eq",
"#0 < ?c ==> ?a mod (?b * ?c) =

?b * (?a div ?b mod ?c) + ?a mod ?b")]

Result is a list of names and theorems — as ML values.

An infix has a declared name or the default op-form.
See theory file!

12 L. C. Paulson

