
A Fixedpoint Approach to
(Co)Inductive and (Co)Datatype Definitions∗

Lawrence C. Paulson
lcp@cl.cam.ac.uk

Computer Laboratory, University of Cambridge, England

28 May 1998

Abstract

This paper presents a fixedpoint approach to inductive definitions. In-
stead of using a syntactic test such as “strictly positive,” the approach lets
definitions involve any operators that have been proved monotone. It is
conceptually simple, which has allowed the easy implementation of mutual
recursion and iterated definitions. It also handles coinductive definitions:
simply replace the least fixedpoint by a greatest fixedpoint.

The method has been implemented in two of Isabelle’s logics, zf set
theory and higher-order logic. It should be applicable to any logic in which
the Knaster-Tarski theorem can be proved. Examples include lists of n
elements, the accessible part of a relation and the set of primitive recursive
functions. One example of a coinductive definition is bisimulations for lazy
lists. Recursive datatypes are examined in detail, as well as one example
of a codatatype: lazy lists.

The Isabelle package has been applied in several large case studies,
including two proofs of the Church-Rosser theorem and a coinductive proof
of semantic consistency. The package can be trusted because it proves
theorems from definitions, instead of asserting desired properties as axioms.

Copyright c© 1998 by Lawrence C. Paulson

∗J. Grundy and S. Thompson made detailed comments. Mads Tofte and the referees were
also helpful. The research was funded by the SERC grants GR/G53279, GR/H40570 and by
the ESPRIT Project 6453 “Types”.

Contents

1 Introduction 1

2 Fixedpoint operators 2

3 Elements of an inductive or coinductive definition 3
3.1 The form of the introduction rules 3
3.2 The fixedpoint definitions . 4
3.3 Mutual recursion . 4
3.4 Proving the introduction rules . 5
3.5 The case analysis rule . 5

4 Induction and coinduction rules 6
4.1 The basic induction rule . 6
4.2 Modified induction rules . 7
4.3 Coinduction . 7

5 Examples of inductive and coinductive definitions 8
5.1 The finite powerset operator . 8
5.2 Lists of n elements . 9
5.3 Rule inversion: the function mk cases 11
5.4 A coinductive definition: bisimulations on lazy lists 12
5.5 The accessible part of a relation 13
5.6 The primitive recursive functions 14

6 Datatypes and codatatypes 16
6.1 Constructors and their domain . 16
6.2 The case analysis operator . 17
6.3 Example: lists and lazy lists . 18
6.4 Example: a four-constructor datatype 18
6.5 Proving freeness theorems . 19

7 Related work 20

8 Conclusions and future work 21

1 Introduction

Several theorem provers provide commands for formalizing recursive data struc-
tures, like lists and trees. Robin Milner implemented one of the first of these,
for Edinburgh lcf [16]. Given a description of the desired data structure, Mil-
ner’s package formulated appropriate definitions and proved the characteristic
theorems. Similar is Melham’s recursive type package for the Cambridge hol
system [15]. Such data structures are called datatypes below, by analogy with
datatype declarations in Standard ml. Some logics take datatypes as primitive;
consider Boyer and Moore’s shell principle [4] and the Coq type theory [22].

A datatype is but one example of an inductive definition. Such a defini-
tion [2] specifies the least set R closed under given rules: applying a rule to
elements of R yields a result within R. Inductive definitions have many applica-
tions. The collection of theorems in a logic is inductively defined. A structural
operational semantics [13] is an inductive definition of a reduction or evaluation
relation on programs. A few theorem provers provide commands for formalizing
inductive definitions; these include Coq [22] and again the hol system [5].

The dual notion is that of a coinductive definition. Such a definition
specifies the greatest set R consistent with given rules: every element of R
can be seen as arising by applying a rule to elements of R. Important examples
include using bisimulation relations to formalize equivalence of processes [17] or
lazy functional programs [1]. Other examples include lazy lists and other infinite
data structures; these are called codatatypes below.

Not all inductive definitions are meaningful. Monotone inductive defini-
tions are a large, well-behaved class. Monotonicity can be enforced by syntactic
conditions such as “strictly positive,” but this could lead to monotone definitions
being rejected on the grounds of their syntactic form. More flexible is to formalize
monotonicity within the logic and allow users to prove it.

This paper describes a package based on a fixedpoint approach. Least fixed-
points yield inductive definitions; greatest fixedpoints yield coinductive defini-
tions. Most of the discussion below applies equally to inductive and coinductive
definitions, and most of the code is shared.

The package supports mutual recursion and infinitely-branching datatypes
and codatatypes. It allows use of any operators that have been proved monotone,
thus accepting all provably monotone inductive definitions, including iterated
definitions.

The package has been implemented in Isabelle [29, 25] using zf set theory
[24, 27]; part of it has since been ported to Isabelle/hol (higher-order logic).
The recursion equations are specified as introduction rules for the mutually re-
cursive sets. The package transforms these rules into a mapping over sets, and
attempts to prove that the mapping is monotonic and well-typed. If successful,
the package makes fixedpoint definitions and proves the introduction, elimination
and (co)induction rules. Users invoke the package by making simple declarations

1

in Isabelle theory files.
Most datatype packages equip the new datatype with some means of ex-

pressing recursive functions. This is the main omission from my package. Its
fixedpoint operators define only recursive sets. The Isabelle/zf theory provides
well-founded recursion [27], which is harder to use than structural recursion but
considerably more general. Slind [34] has written a package to automate the
definition of well-founded recursive functions in Isabelle/hol.

Outline. Section 2 introduces the least and greatest fixedpoint operators. Sec-
tion 3 discusses the form of introduction rules, mutual recursion and other points
common to inductive and coinductive definitions. Section 4 discusses induction
and coinduction rules separately. Section 5 presents several examples, includ-
ing a coinductive definition. Section 6 describes datatype definitions. Section 7
presents related work. Section 8 draws brief conclusions.

Most of the definitions and theorems shown below have been generated by
the package. I have renamed some variables to improve readability.

2 Fixedpoint operators

In set theory, the least and greatest fixedpoint operators are defined as follows:

lfp(D , h) ≡
⋂
{X ⊆ D . h(X) ⊆ X }

gfp(D , h) ≡
⋃
{X ⊆ D . X ⊆ h(X)}

Let D be a set. Say that h is bounded by D if h(D) ⊆ D , and monotone
below D if h(A) ⊆ h(B) for all A and B such that A ⊆ B ⊆ D . If h is bounded
by D and monotone then both operators yield fixedpoints:

lfp(D , h) = h(lfp(D , h))

gfp(D , h) = h(gfp(D , h))

These equations are instances of the Knaster-Tarski theorem, which states that
every monotonic function over a complete lattice has a fixedpoint [6]. It is obvious
from their definitions that lfp must be the least fixedpoint, and gfp the greatest.

This fixedpoint theory is simple. The Knaster-Tarski theorem is easy to prove.
Showing monotonicity of h is trivial, in typical cases. We must also exhibit a
bounding set D for h. Frequently this is trivial, as when a set of theorems is
(co)inductively defined over some previously existing set of formulæ. Isabelle/zf
provides suitable bounding sets for infinitely-branching (co)datatype definitions;
see §6.1. Bounding sets are also called domains.

The powerset operator is monotone, but by Cantor’s theorem there is no set A
such that A = P(A). We cannot put A = lfp(D ,P) because there is no suitable
domain D . But §5.5 demonstrates that P is still useful in inductive definitions.

2

3 Elements of an inductive or coinductive defi-

nition

Consider a (co)inductive definition of the sets R1, . . . , Rn , in mutual recursion.
They will be constructed from domains D1, . . . , Dn , respectively. The construc-
tion yields not Ri ⊆ Di but Ri ⊆ D1 + · · · + Dn , where Ri is contained in the
image of Di under an injection. Reasons for this are discussed elsewhere [27,
§4.5].

The definition may involve arbitrary parameters ~p = p1, . . . , pk . Each re-
cursive set then has the form Ri(~p). The parameters must be identical every
time they occur within a definition. This would appear to be a serious restriction
compared with other systems such as Coq [22]. For instance, we cannot define
the lists of n elements as the set listn(A, n) using rules where the parameter n
varies. Section 5.2 describes how to express this set using the inductive definition
package.

To avoid clutter below, the recursive sets are shown as simply Ri instead
of Ri(~p).

3.1 The form of the introduction rules

The body of the definition consists of the desired introduction rules. The con-
clusion of each rule must have the form t ∈ Ri , where t is any term. Premises
typically have the same form, but they can have the more general form t ∈ M (Ri)
or express arbitrary side-conditions.

The premise t ∈ M (Ri) is permitted if M is a monotonic operator on sets,
satisfying the rule

A ⊆ B

M (A) ⊆ M (B)

The user must supply the package with monotonicity rules for all such premises.
The ability to introduce new monotone operators makes the approach flexible.

A suitable choice of M and t can express a lot. The powerset operator P is
monotone, and the premise t ∈ P(R) expresses t ⊆ R; see §5.5 for an example.
The list of operator is monotone, as is easily proved by induction. The premise
t ∈ list(R) avoids having to encode the effect of list(R) using mutual recursion;
see §5.6 and also my earlier paper [27, §4.4].

Introduction rules may also contain side-conditions. These are premises
consisting of arbitrary formulæ not mentioning the recursive sets. Side-conditions
typically involve type-checking. One example is the premise a ∈ A in the follow-
ing rule from the definition of lists:

a ∈ A l ∈ list(A)

Cons(a, l) ∈ list(A)

3

3.2 The fixedpoint definitions

The package translates the list of desired introduction rules into a fixedpoint
definition. Consider, as a running example, the finite powerset operator Fin(A):
the set of all finite subsets of A. It can be defined as the least set closed under
the rules

∅ ∈ Fin(A)

a ∈ A b ∈ Fin(A)

{a} ∪ b ∈ Fin(A)

The domain in a (co)inductive definition must be some existing set closed
under the rules. A suitable domain for Fin(A) is P(A), the set of all subsets
of A. The package generates the definition

Fin(A) ≡ lfp(P(A), λX . {z ∈ P(A). z = ∅ ∨
(∃a b . z = {a} ∪ b ∧ a ∈ A ∧ b ∈ X)})

The contribution of each rule to the definition of Fin(A) should be obvious. A
coinductive definition is similar but uses gfp instead of lfp.

The package must prove that the fixedpoint operator is applied to a monotonic
function. If the introduction rules have the form described above, and if the
package is supplied a monotonicity theorem for every t ∈ M (Ri) premise, then
this proof is trivial.1

The package returns its result as an ml structure, which consists of named
components; we may regard it as a record. The result structure contains the
definitions of the recursive sets as a theorem list called defs. It also contains
some theorems; dom subset is an inclusion such as Fin(A) ⊆ P(A), while bnd

mono asserts that the fixedpoint definition is monotonic.
Internally the package uses the theorem unfold, a fixedpoint equation such

as
Fin(A) = {z ∈ P(A). z = ∅ ∨

(∃a b . z = {a} ∪ b ∧ a ∈ A ∧ b ∈ Fin(A))}
In order to save space, this theorem is not exported.

3.3 Mutual recursion

In a mutually recursive definition, the domain of the fixedpoint construction is
the disjoint sum of the domain Di of each Ri , for i = 1, . . . , n. The package
uses the injections of the binary disjoint sum, typically Inl and Inr, to express
injections h1n , . . . , hnn for the n-ary disjoint sum D1 + · · ·+ Dn .

1Due to the presence of logical connectives in the fixedpoint’s body, the monotonicity proof
requires some unusual rules. These state that the connectives ∧, ∨ and ∃ preserve monotonicity
with respect to the partial ordering on unary predicates given by P v Q if and only if ∀x .P(x)→
Q(x).

4

As discussed elsewhere [27, §4.5], Isabelle/zf defines the operator Part to
support mutual recursion. The set Part(A, h) contains those elements of A having
the form h(z):

Part(A, h) ≡ {x ∈ A . ∃z . x = h(z)}.
For mutually recursive sets R1, . . . , Rn with n > 1, the package makes n + 1
definitions. The first defines a set R using a fixedpoint operator. The remaining
n definitions have the form

Ri ≡ Part(R, hin), i = 1, . . . , n.

It follows that R = R1 ∪ · · · ∪ Rn , where the Ri are pairwise disjoint.

3.4 Proving the introduction rules

The user supplies the package with the desired form of the introduction rules.
Once it has derived the theorem unfold, it attempts to prove those rules. From
the user’s point of view, this is the trickiest stage; the proofs often fail. The task
is to show that the domain D1 + · · · + Dn of the combined set R1 ∪ · · · ∪ Rn is
closed under all the introduction rules. This essentially involves replacing each Ri

by D1 + · · · + Dn in each of the introduction rules and attempting to prove the
result.

Consider the Fin(A) example. After substituting P(A) for Fin(A) in the
rules, the package must prove

∅ ∈ P(A)

a ∈ A b ∈ P(A)

{a} ∪ b ∈ P(A)

Such proofs can be regarded as type-checking the definition.2 The user supplies
the package with type-checking rules to apply. Usually these are general purpose
rules from the zf theory. They could however be rules specifically proved for
a particular inductive definition; sometimes this is the easiest way to get the
definition through!

The result structure contains the introduction rules as the theorem list intrs.

3.5 The case analysis rule

The elimination rule, called elim, performs case analysis. It is a simple conse-
quence of unfold. There is one case for each introduction rule. If x ∈ Fin(A)
then either x = ∅ or else x = {a} ∪ b for some a ∈ A and b ∈ Fin(A). Formally,

2The Isabelle/hol version does not require these proofs, as hol has implicit type-checking.

5

the elimination rule for Fin(A) is written

x ∈ Fin(A)

[x = ∅]
....

Q

[x = {a} ∪ b a ∈ A b ∈ Fin(A)]a,b....
Q

Q

The subscripted variables a and b above the third premise are eigenvariables,
subject to the usual “not free in . . . ” proviso.

4 Induction and coinduction rules

Here we must consider inductive and coinductive definitions separately. For an
inductive definition, the package returns an induction rule derived directly from
the properties of least fixedpoints, as well as a modified rule for mutual recursion.
For a coinductive definition, the package returns a basic coinduction rule.

4.1 The basic induction rule

The basic rule, called induct, is appropriate in most situations. For inductive
definitions, it is strong rule induction [5]; for datatype definitions (see below), it
is just structural induction.

The induction rule for an inductively defined set R has the form described
below. For the time being, assume that R’s domain is not a Cartesian product;
inductively defined relations are treated slightly differently.

The major premise is x ∈ R. There is a minor premise for each introduction
rule:

• If the introduction rule concludes t ∈ Ri , then the minor premise is P(t).

• The minor premise’s eigenvariables are precisely the introduction rule’s free
variables that are not parameters of R. For instance, the eigenvariables in
the Fin(A) rule below are a and b, but not A.

• If the introduction rule has a premise t ∈ Ri , then the minor premise
discharges the assumption t ∈ Ri and the induction hypothesis P(t). If
the introduction rule has a premise t ∈ M (Ri) then the minor premise
discharges the single assumption

t ∈ M ({z ∈ Ri . P(z)}).

Because M is monotonic, this assumption implies t ∈ M (Ri). The oc-
currence of P gives the effect of an induction hypothesis, which may be
exploited by appealing to properties of M .

6

The induction rule for Fin(A) resembles the elimination rule shown above, but
includes an induction hypothesis:

x ∈ Fin(A) P(∅)

[a ∈ A b ∈ Fin(A) P(b)]a,b....
P({a} ∪ b)

P(x)

Stronger induction rules often suggest themselves. We can derive a rule for Fin(A)
whose third premise discharges the extra assumption a 6∈ b. The package provides
rules for mutual induction and inductive relations. The Isabelle/zf theory also
supports well-founded induction and recursion over datatypes, by reasoning about
the rank of a set [27, §3.4].

4.2 Modified induction rules

If the domain of R is a Cartesian product A1 × · · · ×Am (however nested), then
the corresponding predicate Pi takes m arguments. The major premise becomes
〈z1, . . . , zm〉 ∈ R instead of x ∈ R; the conclusion becomes P(z1, . . . , zm). This
simplifies reasoning about inductively defined relations, eliminating the need to
express properties of z1, . . . , zm as properties of the tuple 〈z1, . . . , zm〉. Occasion-
ally it may require you to split up the induction variable using SigmaE and dom

subset, especially if the constant split appears in the rule.
The mutual induction rule is called mutual induct. It differs from the basic

rule in two respects:

• Instead of a single predicate P , it uses n predicates P1, . . . , Pn : one for
each recursive set.

• There is no major premise such as x ∈ Ri . Instead, the conclusion refers to
all the recursive sets:

(∀z . z ∈ R1 → P1(z)) ∧ · · · ∧ (∀z . z ∈ Rn → Pn(z))

Proving the premises establishes Pi(z) for z ∈ Ri and i = 1, . . . , n.

If the domain of some Ri is a Cartesian product, then the mutual induction rule
is modified accordingly. The predicates are made to take m separate arguments
instead of a tuple, and the quantification in the conclusion is over the separate
variables z1, . . . , zm .

4.3 Coinduction

A coinductive definition yields a primitive coinduction rule, with no refinements
such as those for the induction rules. (Experience may suggest refinements later.)

7

Consider the codatatype of lazy lists as an example. For suitable definitions of
LNil and LCons, lazy lists may be defined as the greatest set consistent with the
rules

LNil ∈ llist(A)

a ∈ A l ∈ llist(A)

LCons(a, l) ∈ llist(A)
(−)

The (−) tag stresses that this is a coinductive definition. A suitable domain
for llist(A) is quniv(A); this set is closed under the variant forms of sum and
product that are used to represent non-well-founded data structures (see §6.1).

The package derives an unfold theorem similar to that for Fin(A). Then
it proves the theorem coinduct, which expresses that llist(A) is the greatest
solution to this equation contained in quniv(A):

x ∈ X X ⊆ quniv(A)

[z ∈ X]z....
z = LNil ∨ (∃a l . z = LCons(a, l) ∧ a ∈ A ∧

l ∈ X ∪ llist(A))

x ∈ llist(A)

This rule complements the introduction rules; it provides a means of showing
x ∈ llist(A) when x is infinite. For instance, if x = LCons(0, x) then applying
the rule with X = {x} proves x ∈ llist(nat). (Here nat is the set of natural
numbers.)

Having X∪llist(A) instead of simply X in the third premise above represents
a slight strengthening of the greatest fixedpoint property. I discuss several forms
of coinduction rules elsewhere [28].

The clumsy form of the third premise makes the rule hard to use, especially
in large definitions. Probably a constant should be declared to abbreviate the
large disjunction, and rules derived to allow proving the separate disjuncts.

5 Examples of inductive and coinductive defini-

tions

This section presents several examples from the literature: the finite powerset
operator, lists of n elements, bisimulations on lazy lists, the well-founded part of
a relation, and the primitive recursive functions.

5.1 The finite powerset operator

This operator has been discussed extensively above. Here is the corresponding
invocation in an Isabelle theory file. Note that cons(a, b) abbreviates {a} ∪ b in

8

Isabelle/zf.

Finite = Arith +
consts Fin :: i=>i
inductive

domains "Fin(A)" <= "Pow(A)"
intrs

emptyI "0 : Fin(A)"
consI "[| a: A; b: Fin(A) |] ==> cons(a,b) : Fin(A)"

type_intrs "[empty_subsetI, cons_subsetI, PowI]"
type_elims "[make_elim PowD]"

end

Theory Finite extends the parent theory Arith by declaring the unary function
symbol Fin, which is defined inductively. Its domain is specified as P(A), where
A is the parameter appearing in the introduction rules. For type-checking, we
supply two introduction rules:

∅ ⊆ A

a ∈ C B ⊆ C

{a} ∪ B ⊆ C

A further introduction rule and an elimination rule express both directions of the
equivalence A ∈ P(B) ↔ A ⊆ B . Type-checking involves mostly introduction
rules.

Like all Isabelle theory files, this one yields a structure containing the new
theory as an ml value. Structure Finite also has a substructure, called Fin.
After declaring open Finite; we can refer to the Fin(A) introduction rules as
the list Fin.intrs or individually as Fin.emptyI and Fin.consI. The induction
rule is Fin.induct.

5.2 Lists of n elements

This has become a standard example of an inductive definition. Following Paulin-
Mohring [22], we could attempt to define a new datatype listn(A, n), for lists
of length n, as an n-indexed family of sets. But her introduction rules

Niln ∈ listn(A, 0)

n ∈ nat a ∈ A l ∈ listn(A, n)

Consn(n, a, l) ∈ listn(A, succ(n))

are not acceptable to the inductive definition package: listn occurs with three
different parameter lists in the definition.

The Isabelle version of this example suggests a general treatment of varying
parameters. It uses the existing datatype definition of list(A), with constructors
Nil and Cons, and incorporates the parameter n into the inductive set itself.
It defines listn(A) as a relation consisting of pairs 〈n, l〉 such that n ∈ nat

and l ∈ list(A) and l has length n. In fact, listn(A) is the converse of the

9

length function on list(A). The Isabelle/zf introduction rules are

〈0, Nil〉 ∈ listn(A)

a ∈ A 〈n, l〉 ∈ listn(A)

〈succ(n), Cons(a, l)〉 ∈ listn(A)

The Isabelle theory file takes, as parent, the theory List of lists. We declare
the constant listn and supply an inductive definition, specifying the domain as
nat× list(A):

ListN = List +
consts listn :: i=>i
inductive

domains "listn(A)" <= "nat*list(A)"
intrs

NilI "<0,Nil>: listn(A)"
ConsI "[| a: A; <n,l>: listn(A) |] ==> <succ(n), Cons(a,l)>: listn(A)"

type_intrs "nat_typechecks @ list.intrs"
end

The type-checking rules include those for 0, succ, Nil and Cons. Because
listn(A) is a set of pairs, type-checking requires the equivalence 〈a, b〉 ∈ A×B ↔
a ∈ A ∧ b ∈ B . The package always includes the rules for ordered pairs.

The package returns introduction, elimination and induction rules for listn.
The basic induction rule, listn.induct, is

〈z1, z2〉 ∈ listn(A) P(0, Nil)

[a ∈ A 〈n, l〉 ∈ listn(A) P(n, l)]a,l ,n....
P(succ(n), Cons(a, l))

P(z1, z2)

This rule lets the induction formula to be a binary property of pairs, P(n, l). It
is now a simple matter to prove theorems about listn(A), such as

∀l ∈ list(A) . 〈length(l), l〉 ∈ listn(A)

listn(A)“{n} = {l ∈ list(A) . length(l) = n}
This latter result — here r“X denotes the image of X under r — asserts that
the inductive definition agrees with the obvious notion of n-element list.

A “list of n elements” really is a list, namely an element of list(A). It is
subject to list operators such as append (concatenation). For example, a trivial
induction on 〈m, l〉 ∈ listn(A) yields

〈m, l〉 ∈ listn(A) 〈m ′, l ′〉 ∈ listn(A)

〈m + m ′, l@l ′〉 ∈ listn(A)

where + denotes addition on the natural numbers and @ denotes append.

10

5.3 Rule inversion: the function mk cases

The elimination rule, listn.elim, is cumbersome:

x ∈ listn(A)

[x = 〈0, Nil〉]
....

Q

 x = 〈succ(n), Cons(a, l)〉
a ∈ A
〈n, l〉 ∈ listn(A)


a,l ,n....

Q

Q

The ml function listn.mk cases generates simplified instances of this rule. It
works by freeness reasoning on the list constructors: Cons(a, l) is injective in
its two arguments and differs from Nil. If x is 〈i , Nil〉 or 〈i , Cons(a, l)〉 then
listn.mk cases deduces the corresponding form of i ; this is called rule inversion.
Here is a sample session:

listn.mk_cases list.con_defs "<i,Nil> : listn(A)";
"[| <?i, []> : listn(?A); ?i = 0 ==> ?Q |] ==> ?Q" : thm

listn.mk_cases list.con_defs "<i,Cons(a,l)> : listn(A)";
"[| <?i, Cons(?a, ?l)> : listn(?A);

!!n. [| ?a : ?A; <n, ?l> : listn(?A); ?i = succ(n) |] ==> ?Q

|] ==> ?Q" : thm

Each of these rules has only two premises. In conventional notation, the second
rule is

〈i , Cons(a, l)〉 ∈ listn(A)

 a ∈ A
〈n, l〉 ∈ listn(A)
i = succ(n)


n....

Q

Q

The package also has built-in rules for freeness reasoning about 0 and succ. So
if x is 〈0, l〉 or 〈succ(i), l〉, then listn.mk cases can deduce the corresponding
form of l .

The function mk cases is also useful with datatype definitions. The instance
from the definition of lists, namely list.mk cases, can prove that Cons(a, l) ∈
list(A) implies a ∈ A and l ∈ list(A):

Cons(a, l) ∈ list(A)

[a ∈ A l ∈ list(A)]
....

Q

Q

A typical use of mk cases concerns inductive definitions of evaluation relations.
Then rule inversion yields case analysis on possible evaluations. For example,

11

Isabelle/zf includes a short proof of the diamond property for parallel contraction
on combinators. Ole Rasmussen used mk cases extensively in his development
of the theory of residuals [32].

5.4 A coinductive definition: bisimulations on lazy lists

This example anticipates the definition of the codatatype llist(A), which con-
sists of finite and infinite lists over A. Its constructors are LNil and LCons,
satisfying the introduction rules shown in §4.3. Because llist(A) is defined
as a greatest fixedpoint and uses the variant pairing and injection operators, it
contains non-well-founded elements such as solutions to LCons(a, l) = l .

The next step in the development of lazy lists is to define a coinduction prin-
ciple for proving equalities. This is done by showing that the equality relation
on lazy lists is the greatest fixedpoint of some monotonic operation. The usual
approach [31] is to define some notion of bisimulation for lazy lists, define equiv-
alence to be the greatest bisimulation, and finally to prove that two lazy lists
are equivalent if and only if they are equal. The coinduction rule for equivalence
then yields a coinduction principle for equalities.

A binary relation R on lazy lists is a bisimulation provided R ⊆ R+, where
R+ is the relation

{〈LNil, LNil〉} ∪ {〈LCons(a, l), LCons(a, l ′)〉 . a ∈ A ∧ 〈l , l ′〉 ∈ R}.

A pair of lazy lists are equivalent if they belong to some bisimulation. Equiva-
lence can be coinductively defined as the greatest fixedpoint for the introduction
rules

〈LNil, LNil〉 ∈ lleq(A)

a ∈ A 〈l , l ′〉 ∈ lleq(A)

〈LCons(a, l), LCons(a, l ′)〉 ∈ lleq(A)
(−)

To make this coinductive definition, the theory file includes (after the declaration
of llist(A)) the following lines:

consts lleq :: i=>i
coinductive

domains "lleq(A)" <= "llist(A) * llist(A)"
intrs

LNil "<LNil,LNil> : lleq(A)"
LCons "[| a:A; <l,l’>: lleq(A) |] ==> <LCons(a,l),LCons(a,l’)>: lleq(A)"

type_intrs "llist.intrs"

The domain of lleq(A) is llist(A)×llist(A). The type-checking rules include
the introduction rules for llist(A), whose declaration is discussed below (§6.3).

The package returns the introduction rules and the elimination rule, as usual.
But instead of induction rules, it returns a coinduction rule. The rule is too big

12

to display in the usual notation; its conclusion is x ∈ lleq(A) and its premises
are x ∈ X , X ⊆ llist(A)× llist(A) and

[z ∈ X]z....
z = 〈LNil, LNil〉 ∨ (∃a l l ′ . z = 〈LCons(a, l), LCons(a, l ′)〉 ∧ a ∈ A ∧

〈l , l ′〉 ∈ X ∪ lleq(A))

Thus if x ∈ X , where X is a bisimulation contained in the domain of lleq(A),
then x ∈ lleq(A). It is easy to show that lleq(A) is reflexive: the equality rela-
tion is a bisimulation. And lleq(A) is symmetric: its converse is a bisimulation.
But showing that lleq(A) coincides with the equality relation takes some work.

5.5 The accessible part of a relation

Let ≺ be a binary relation on D ; in short, (≺) ⊆ D×D . The accessible or well-
founded part of ≺, written acc(≺), is essentially that subset of D for which ≺
admits no infinite decreasing chains [2]. Formally, acc(≺) is inductively defined
to be the least set that contains a if it contains all ≺-predecessors of a, for a ∈ D .
Thus we need an introduction rule of the form

∀y . y ≺ a → y ∈ acc(≺)

a ∈ acc(≺)

Paulin-Mohring treats this example in Coq [22], but it causes difficulties for other
systems. Its premise is not acceptable to the inductive definition package of the
Cambridge hol system [5]. It is also unacceptable to the Isabelle package (recall
§3.1), but fortunately can be transformed into the acceptable form t ∈ M (R).

The powerset operator is monotonic, and t ∈ P(R) is equivalent to t ⊆ R.
This in turn is equivalent to ∀y ∈ t . y ∈ R. To express ∀y . y ≺ a → y ∈ acc(≺)
we need only find a term t such that y ∈ t if and only if y ≺ a. A suitable t is
the inverse image of {a} under ≺.

The definition below follows this approach. Here r is ≺ and field(r) refers
to D , the domain of acc(r). (The field of a relation is the union of its domain
and range.) Finally r−“{a} denotes the inverse image of {a} under r . We supply
the theorem Pow mono, which asserts that P is monotonic.

consts acc :: i=>i
inductive

domains "acc(r)" <= "field(r)"
intrs

vimage "[| r-‘‘{a}: Pow(acc(r)); a: field(r) |] ==> a: acc(r)"
monos "[Pow_mono]"

The Isabelle theory proceeds to prove facts about acc(≺). For instance, ≺ is
well-founded if and only if its field is contained in acc(≺).

13

As mentioned in §4.1, a premise of the form t ∈ M (R) gives rise to an unusual
induction hypothesis. Let us examine the induction rule, acc.induct:

x ∈ acc(r)

[
r−“{a}∈ P({z ∈ acc(r) . P(z)})

a ∈ field(r)

]
a....

P(a)

P(x)

The strange induction hypothesis is equivalent to ∀y . 〈y , a〉 ∈ r → y ∈ acc(r) ∧
P(y). Therefore the rule expresses well-founded induction on the accessible part
of ≺.

The use of inverse image is not essential. The Isabelle package can accept
introduction rules with arbitrary premises of the form ∀~y . P(~y) → f (~y) ∈ R.
The premise can be expressed equivalently as

{z ∈ D . P(~y) ∧ z = f (~y)} ∈ P(R)

provided f (~y) ∈ D for all ~y such that P(~y). The following section demonstrates
another use of the premise t ∈ M (R), where M = list.

5.6 The primitive recursive functions

The primitive recursive functions are traditionally defined inductively, as a subset
of the functions over the natural numbers. One difficulty is that functions of all
arities are taken together, but this is easily circumvented by regarding them as
functions on lists. Another difficulty, the notion of composition, is less easily
circumvented.

Here is a more precise definition. Letting ~x abbreviate x0, . . . , xn−1, we can
write lists such as [~x], [y + 1, ~x], etc. A function is primitive recursive if it
belongs to the least set of functions in list(nat)→ nat containing

• The successor function SC, such that SC[y , ~x] = y + 1.

• All constant functions CONST(k), such that CONST(k)[~x] = k .

• All projection functions PROJ(i), such that PROJ(i)[~x] = xi if 0 ≤ i < n.

• All compositions COMP(g , [f0, . . . , fm−1]), where g and f0, . . . , fm−1 are
primitive recursive, such that

COMP(g , [f0, . . . , fm−1])[~x] = g [f0[~x], . . . , fm−1[~x]].

• All recursions PREC(f , g), where f and g are primitive recursive, such that

PREC(f , g)[0, ~x] = f [~x]

PREC(f , g)[y + 1, ~x] = g [PREC(f , g)[y , ~x], y , ~x].

14

Primrec = List +
consts

primrec :: i
SC :: i
...

defs
SC_def "SC == lam l:list(nat).list_case(0, %x xs.succ(x), l)"
...

inductive
domains "primrec" <= "list(nat)->nat"
intrs

SC "SC : primrec"
CONST "k: nat ==> CONST(k) : primrec"
PROJ "i: nat ==> PROJ(i) : primrec"
COMP "[| g: primrec; fs: list(primrec) |] ==> COMP(g,fs): primrec"
PREC "[| f: primrec; g: primrec |] ==> PREC(f,g): primrec"

monos "[list_mono]"
con_defs "[SC_def,CONST_def,PROJ_def,COMP_def,PREC_def]"
type_intrs "nat_typechecks @ list.intrs @

[lam_type, list_case_type, drop_type, map_type,
apply_type, rec_type]"

end

Figure 1: Inductive definition of the primitive recursive functions

Composition is awkward because it combines not two functions, as is usual, but
m+1 functions. In her proof that Ackermann’s function is not primitive recursive,
Nora Szasz was unable to formalize this definition directly [35]. So she general-
ized primitive recursion to tuple-valued functions. This modified the inductive
definition such that each operation on primitive recursive functions combined just
two functions.

Szasz was using alf, but Coq and hol would also have problems accepting
this definition. Isabelle’s package accepts it easily since [f0, . . . , fm−1] is a list of
primitive recursive functions and list is monotonic. There are five introduction
rules, one for each of the five forms of primitive recursive function. Let us examine
the one for COMP:

g ∈ primrec fs ∈ list(primrec)

COMP(g , fs) ∈ primrec

The induction rule for primrec has one case for each introduction rule. Due to
the use of list as a monotone operator, the composition case has an unusual
induction hypothesis:

[g ∈ primrec fs ∈ list({z ∈ primrec . P(z)})]fs,g....
P(COMP(g , fs))

The hypothesis states that fs is a list of primitive recursive functions, each satis-

15

fying the induction formula. Proving the COMP case typically requires structural
induction on lists, yielding two subcases: either fs = Nil or else fs = Cons(f , fs ′),
where f ∈ primrec, P(f), and fs ′ is another list of primitive recursive functions
satisfying P .

Figure 1 presents the theory file. Theory Primrec defines the constants SC,
CONST, etc. These are not constructors of a new datatype, but functions over lists
of numbers. Their definitions, most of which are omitted, consist of routine list
programming. In Isabelle/zf, the primitive recursive functions are defined as a
subset of the function set list(nat)→ nat.

The Isabelle theory goes on to formalize Ackermann’s function and prove that
it is not primitive recursive, using the induction rule primrec.induct. The proof
follows Szasz’s excellent account.

6 Datatypes and codatatypes

A (co)datatype definition is a (co)inductive definition with automatically defined
constructors and a case analysis operator. The package proves that the case
operator inverts the constructors and can prove freeness theorems involving any
pair of constructors.

6.1 Constructors and their domain

A (co)inductive definition selects a subset of an existing set; a (co)datatype defini-
tion creates a new set. The package reduces the latter to the former. Isabelle/zf
supplies sets having strong closure properties to serve as domains for (co)inductive
definitions.

Isabelle/zf defines the Cartesian product A × B , containing ordered pairs
〈a, b〉; it also defines the disjoint sum A+B , containing injections Inl(a) ≡ 〈0, a〉
and Inr(b) ≡ 〈1, b〉. For use below, define the m-tuple 〈x1, . . . , xm〉 to be the
empty set ∅ if m = 0, simply x1 if m = 1 and 〈x1, 〈x2, . . . , xm〉〉 if m ≥ 2.

A datatype constructor Con(x1, . . . , xm) is defined to be h(〈x1, . . . , xm〉), where
h is composed of Inl and Inr. In a mutually recursive definition, all constructors
for the set Ri have the outer form hin , where hin is the injection described in §3.3.
Further nested injections ensure that the constructors for Ri are pairwise distinct.

Isabelle/zf defines the set univ(A), which contains A and furthermore con-
tains 〈a, b〉, Inl(a) and Inr(b) for a, b ∈ univ(A). In a typical datatype defini-
tion with set parameters A1, . . . , Ak , a suitable domain for all the recursive sets
is univ(A1 ∪ · · · ∪ Ak). This solves the problem for datatypes [27, §4.2].

The standard pairs and injections can only yield well-founded constructions.
This eases the (manual!) definition of recursive functions over datatypes. But
they are unsuitable for codatatypes, which typically contain non-well-founded
objects.

16

To support codatatypes, Isabelle/zf defines a variant notion of ordered pair,
written 〈a; b〉. It also defines the corresponding variant notion of Cartesian prod-
uct A⊗B , variant injections QInl(a) and QInr(b) and variant disjoint sum A⊕B .
Finally it defines the set quniv(A), which contains A and furthermore contains
〈a; b〉, QInl(a) and QInr(b) for a, b ∈ quniv(A). In a typical codatatype defini-
tion with set parameters A1, . . . , Ak , a suitable domain is quniv(A1 ∪ · · · ∪Ak).
Details are published elsewhere [26].

6.2 The case analysis operator

The (co)datatype package automatically defines a case analysis operator, called
R case. A mutually recursive definition still has only one operator, whose name
combines those of the recursive sets: it is called R1 ... Rn case. The case
operator is analogous to those for products and sums.

Datatype definitions employ standard products and sums, whose operators
are split and case and satisfy the equations

split(f , 〈x , y〉) = f (x , y)

case(f , g , Inl(x)) = f (x)

case(f , g , Inr(y)) = g(y)

Suppose the datatype has k constructors Con1, . . . , Conk . Then its case operator
takes k + 1 arguments and satisfies an equation for each constructor:

R case(f1, . . . , fk , Coni(~x)) = fi(~x), i = 1, . . . , k

The case operator’s definition takes advantage of Isabelle’s representation of syn-
tax in the typed λ-calculus; it could readily be adapted to a theorem prover for
higher-order logic. If f and g have meta-type i ⇒ i then so do split(f) and
case(f , g). This works because split and case operate on their last argument.
They are easily combined to make complex case analysis operators. For example,
case(f , case(g , h)) performs case analysis for A + (B + C); let us verify one of
the three equations:

case(f , case(g , h), Inr(Inl(b))) = case(g , h, Inl(b)) = g(b)

Codatatype definitions are treated in precisely the same way. They express
case operators using those for the variant products and sums, namely qsplit

and qcase.

To see how constructors and the case analysis operator are defined, let us
examine some examples. Further details are available elsewhere [27].

17

6.3 Example: lists and lazy lists

Here is a declaration of the datatype of lists, as it might appear in a theory file:

consts list :: i=>i
datatype "list(A)" = Nil | Cons ("a:A", "l: list(A)")

And here is a declaration of the codatatype of lazy lists:

consts llist :: i=>i
codatatype "llist(A)" = LNil | LCons ("a: A", "l: llist(A)")

Each form of list has two constructors, one for the empty list and one for
adding an element to a list. Each takes a parameter, defining the set of lists over
a given set A. Each is automatically given the appropriate domain: univ(A) for
list(A) and quniv(A) for llist(A). The default can be overridden.

Now list(A) is a datatype and enjoys the usual induction rule. But llist(A)
is a codatatype and has no induction rule. Instead it has the coinduction rule
shown in §4.3. Since variant pairs and injections are monotonic and need not
have greater rank than their components, fixedpoint operators can create cyclic
constructions. For example, the definition

lconst(a) ≡ lfp(univ(a), λl . LCons(a, l))

yields lconst(a) = LCons(a, lconst(a)).

6.4 Example: a four-constructor datatype

A bigger datatype will illustrate some efficiency refinements. It has four con-
structors Con0, . . . , Con3, with the corresponding arities.

consts data :: [i,i] => i
datatype "data(A,B)" = Con0

| Con1 ("a: A")
| Con2 ("a: A", "b: B")
| Con3 ("a: A", "b: B", "d: data(A,B)")

Because this datatype has two set parameters, A and B , the package automat-
ically supplies univ(A ∪ B) as its domain. The structural induction rule has
four minor premises, one per constructor, and only the last has an induction
hypothesis. (Details are left to the reader.)

The constructors are defined by the equations

Con0 ≡ Inl(Inl(∅))
Con1(a) ≡ Inl(Inr(a))

Con2(a, b) ≡ Inr(Inl(〈a, b〉))
Con3(a, b, c) ≡ Inr(Inr(〈a, b, c〉)).

18

The case analysis operator is

data case(f0, f1, f2, f3) ≡ case(case(λu . f0, f1),
case(split(f2), split(λv . split(f3(v)))))

This may look cryptic, but the case equations are trivial to verify.
In the constructor definitions, the injections are balanced. A more naive

approach is to define Con3(a, b, c) as Inr(Inr(Inr(〈a, b, c〉))); instead, each con-
structor has two injections. The difference here is small. But the zf examples
include a 60-element enumeration type, where each constructor has 5 or 6 injec-
tions. The naive approach would require 1 to 59 injections; the definitions would
be quadratic in size. It is like the advantage of binary notation over unary.

The result structure contains the case operator and constructor definitions as
the theorem list con_defs. It contains the case equations, such as

data case(f0, f1, f2, f3, Con3(a, b, c)) = f3(a, b, c),

as the theorem list case_eqns. There is one equation per constructor.

6.5 Proving freeness theorems

There are two kinds of freeness theorems:

• injectiveness theorems, such as

Con2(a, b) = Con2(a ′, b ′)↔ a = a ′ ∧ b = b ′

• distinctness theorems, such as

Con1(a) 6= Con2(a ′, b ′)

Since the number of such theorems is quadratic in the number of constructors,
the package does not attempt to prove them all. Instead it returns tools for
proving desired theorems — either manually or during simplification or classical
reasoning.

The theorem list free_iffs enables the simplifier to perform freeness reason-
ing. This works by incremental unfolding of constructors that appear in equa-
tions. The theorem list contains logical equivalences such as

Con0 = c ↔ c = Inl(Inl(∅))
Con1(a) = c ↔ c = Inl(Inr(a))

...

Inl(a) = Inl(b) ↔ a = b

Inl(a) = Inr(b) ↔ False

〈a, b〉 = 〈a ′, b ′〉 ↔ a = a ′ ∧ b = b ′

19

For example, these rewrite Con1(a) = Con1(b) to a = b in four steps.
The theorem list free_SEs enables the classical reasoner to perform simi-

lar replacements. It consists of elimination rules to replace Con0 = c by c =
Inl(Inl(∅)) and so forth, in the assumptions.

Such incremental unfolding combines freeness reasoning with other proof
steps. It has the unfortunate side-effect of unfolding definitions of constructors
in contexts such as ∃x .Con1(a) = x , where they should be left alone. Calling the
Isabelle tactic fold tac con defs restores the defined constants.

7 Related work

The use of least fixedpoints to express inductive definitions seems obvious. Why,
then, has this technique so seldom been implemented?

Most automated logics can only express inductive definitions by asserting ax-
ioms. Little would be left of Boyer and Moore’s logic [4] if their shell principle
were removed. With alf the situation is more complex; earlier versions of Martin-
Löf’s type theory could (using wellordering types) express datatype definitions,
but the version underlying alf requires new rules for each definition [7]. With
Coq the situation is subtler still; its underlying Calculus of Constructions can ex-
press inductive definitions [14], but cannot quite handle datatype definitions [22].
It seems that researchers tried hard to circumvent these problems before finally
extending the Calculus with rule schemes for strictly positive operators. Re-
cently Giménez has extended the Calculus of Constructions with inductive and
coinductive types [11], with mechanized support in Coq.

Higher-order logic can express inductive definitions through quantification
over unary predicates. The following formula expresses that i belongs to the
least set containing 0 and closed under succ:

∀P . P(0) ∧ (∀x . P(x)→ P(succ(x)))→ P(i)

This technique can be used to prove the Knaster-Tarski theorem, which (in its
general form) is little used in the Cambridge hol system. Melham [15] describes
the development. The natural numbers are defined as shown above, but lists are
defined as functions over the natural numbers. Unlabelled trees are defined using
Gödel numbering; a labelled tree consists of an unlabelled tree paired with a list
of labels. Melham’s datatype package expresses the user’s datatypes in terms of
labelled trees. It has been highly successful, but a fixedpoint approach might
have yielded greater power with less effort.

Elsa Gunter [12] reports an ongoing project to generalize the Cambridge hol
system with mutual recursion and infinitely-branching trees. She retains many
features of Melham’s approach.

Melham’s inductive definition package [5] also uses quantification over pred-
icates. But instead of formalizing the notion of monotone function, it requires

20

definitions to consist of finitary rules, a syntactic form that excludes many mono-
tone inductive definitions.

pvs [21] is another proof assistant based on higher-order logic. It supports
both inductive definitions and datatypes, apparently by asserting axioms. Data-
types may not be iterated in general, but may use recursion over the built-in
list type.

The earliest use of least fixedpoints is probably Robin Milner’s. Brian Mona-
han extended this package considerably [19], as did I in unpublished work.3 lcf
is a first-order logic of domain theory; the relevant fixedpoint theorem is not
Knaster-Tarski but concerns fixedpoints of continuous functions over domains.
lcf is too weak to express recursive predicates. The Isabelle package might be
the first to be based on the Knaster-Tarski theorem.

8 Conclusions and future work

Higher-order logic and set theory are both powerful enough to express inductive
definitions. A growing number of theorem provers implement one of these [9, 33].
The easiest sort of inductive definition package to write is one that asserts new
axioms, not one that makes definitions and proves theorems about them. But
asserting axioms could introduce unsoundness.

The fixedpoint approach makes it fairly easy to implement a package for
(co)inductive definitions that does not assert axioms. It is efficient: it processes
most definitions in seconds and even a 60-constructor datatype requires only a
few minutes. It is also simple: The first working version took under a week to
code, consisting of under 1100 lines (35K bytes) of Standard ml.

In set theory, care is needed to ensure that the inductive definition yields a
set (rather than a proper class). This problem is inherent to set theory, whether
or not the Knaster-Tarski theorem is employed. We must exhibit a bounding
set (called a domain above). For inductive definitions, this is often trivial. For
datatype definitions, I have had to formalize much set theory. To justify infinitely-
branching datatype definitions, I have had to develop a theory of cardinal arith-
metic [30], such as the theorem that if κ is an infinite cardinal and |X (α)| ≤ κ
for all α < κ then |⋃α<κ X (α)| ≤ κ. The need for such efforts is not a drawback
of the fixedpoint approach, for the alternative is to take such definitions on faith.

Care is also needed to ensure that the greatest fixedpoint really yields a coin-
ductive definition. In set theory, standard pairs admit only well-founded construc-
tions. Aczel’s anti-foundation axiom [3] could be used to get non-well-founded
objects, but it does not seem easy to mechanize. Isabelle/zf instead uses a vari-
ant notion of ordered pairing, which can be generalized to a variant notion of

3The datatype package described in my lcf book [23] does not make definitions, but merely
asserts axioms.

21

function. Elsewhere I have proved that this simple approach works (yielding
final coalgebras) for a broad class of definitions [26].

Several large studies make heavy use of inductive definitions. Lötzbeyer and
Sandner have formalized two chapters of a semantics book [37], proving the equiv-
alence between the operational and denotational semantics of a simple imperative
language. A single theory file contains three datatype definitions (of arithmetic
expressions, boolean expressions and commands) and three inductive definitions
(the corresponding operational rules). Using different techniques, Nipkow [20]
and Rasmussen [32] have both proved the Church-Rosser theorem; inductive def-
initions specify several reduction relations on λ-terms. Recently, I have applied
inductive definitions to the analysis of cryptographic protocols [29].

To demonstrate coinductive definitions, Frost [10] has proved the consistency
of the dynamic and static semantics for a small functional language. The example
is due to Milner and Tofte [18]. It concerns an extended correspondence relation,
which is defined coinductively. A codatatype definition specifies values and value
environments in mutual recursion. Non-well-founded values represent recursive
functions. Value environments are variant functions from variables into values.
This one key definition uses most of the package’s novel features.

The approach is not restricted to set theory. It should be suitable for any logic
that has some notion of set and the Knaster-Tarski theorem. I have ported the
(co)inductive definition package from Isabelle/zf to Isabelle/hol (higher-order
logic). Völker [36] is investigating how to port the (co)datatype package. hol
represents sets by unary predicates; defining the corresponding types may cause
complications.

References

[1] Abramsky, S., The lazy lambda calculus, In Research Topics in Functional Programming,
D. A. Turner, Ed. Addison-Wesley, 1977, pp. 65–116

[2] Aczel, P., An introduction to inductive definitions, In Handbook of Mathematical Logic,
J. Barwise, Ed. North-Holland, 1977, pp. 739–782

[3] Aczel, P., Non-Well-Founded Sets, CSLI, 1988

[4] Boyer, R. S., Moore, J. S., A Computational Logic, Academic Press, 1979

[5] Camilleri, J., Melham, T. F., Reasoning with inductively defined relations in the HOL
theorem prover, Tech. Rep. 265, Comp. Lab., Univ. Cambridge, Aug. 1992

[6] Davey, B. A., Priestley, H. A., Introduction to Lattices and Order, Cambridge Univ. Press,
1990

[7] Dybjer, P., Inductive sets and families in Martin-Löf’s type theory and their set-theoretic
semantics, In Logical Frameworks, G. Huet G. Plotkin, Eds. Cambridge Univ. Press, 1991,
pp. 280–306

[8] Dybjer, P., Nordström, B., Smith, J., Eds., Types for Proofs and Programs: International
Workshop TYPES ’94, LNCS 996. Springer, 1995

22

[9] Farmer, W. M., Guttman, J. D., Thayer, F. J., IMPS: An interactive mathematical proof
system, J. Auto. Reas. 11, 2 (1993), 213–248

[10] Frost, J., A case study of co-induction in Isabelle, Tech. Rep. 359, Comp. Lab., Univ.
Cambridge, Feb. 1995

[11] Giménez, E., Codifying guarded definitions with recursive schemes, In Dybjer et al. [8],
pp. 39–59

[12] Gunter, E. L., A broader class of trees for recursive type definitions for HOL, In Higher
Order Logic Theorem Proving and Its Applications: HUG ’93 (Published 1994), J. Joyce
C. Seger, Eds., LNCS 780, Springer, pp. 141–154

[13] Hennessy, M., The Semantics of Programming Languages: An Elementary Introduction
Using Structural Operational Semantics, Wiley, 1990

[14] Huet, G., Induction principles formalized in the Calculus of Constructions, In Pro-
gramming of Future Generation Computers (1988), K. Fuchi M. Nivat, Eds., Elsevier,
pp. 205–216

[15] Melham, T. F., Automating recursive type definitions in higher order logic, In Current
Trends in Hardware Verification and Automated Theorem Proving, G. Birtwistle P. A.
Subrahmanyam, Eds. Springer, 1989, pp. 341–386

[16] Milner, R., How to derive inductions in LCF, note, Dept. Comp. Sci., Univ. Edinburgh,
1980

[17] Milner, R., Communication and Concurrency, Prentice-Hall, 1989

[18] Milner, R., Tofte, M., Co-induction in relational semantics, Theoretical Comput. Sci. 87
(1991), 209–220

[19] Monahan, B. Q., Data Type Proofs using Edinburgh LCF, PhD thesis, University of
Edinburgh, 1984

[20] Nipkow, T., More Church-Rosser proofs (in Isabelle/HOL), In Automated Deduction —
CADE-13 International Conference (1996), M. McRobbie J. K. Slaney, Eds., LNAI 1104,
Springer, pp. 733–747

[21] Owre, S., Shankar, N., Rushby, J. M., The PVS specification language, Computer Science
Laboratory, SRI International, Menlo Park, CA, Apr. 1993, Beta release

[22] Paulin-Mohring, C., Inductive definitions in the system Coq: Rules and properties, In
Typed Lambda Calculi and Applications (1993), M. Bezem J. Groote, Eds., LNCS 664,
Springer, pp. 328–345

[23] Paulson, L. C., Logic and Computation: Interactive proof with Cambridge LCF, Cambridge
Univ. Press, 1987

[24] Paulson, L. C., Set theory for verification: I. From foundations to functions, J. Auto.
Reas. 11, 3 (1993), 353–389

[25] Paulson, L. C., Isabelle: A Generic Theorem Prover, Springer, 1994, LNCS 828

[26] Paulson, L. C., A concrete final coalgebra theorem for ZF set theory, In Dybjer et al. [8],
pp. 120–139

[27] Paulson, L. C., Set theory for verification: II. Induction and recursion, J. Auto. Reas. 15,
2 (1995), 167–215

[28] Paulson, L. C., Mechanizing coinduction and corecursion in higher-order logic, J. Logic
and Comput. 7, 2 (Mar. 1997), 175–204

23

[29] Paulson, L. C., Tool support for logics of programs, In Mathematical Methods in Program
Development: Summer School Marktoberdorf 1996, M. Broy, Ed., NATO ASI Series F.
Springer, Published 1997, pp. 461–498

[30] Paulson, L. C., Gra̧bczewski, K., Mechanizing set theory: Cardinal arithmetic and the
axiom of choice, J. Auto. Reas. 17, 3 (Dec. 1996), 291–323

[31] Pitts, A. M., A co-induction principle for recursively defined domains, Theoretical Comput.
Sci. 124 (1994), 195–219

[32] Rasmussen, O., The Church-Rosser theorem in Isabelle: A proof porting experiment,
Tech. Rep. 364, Computer Laboratory, University of Cambridge, May 1995

[33] Saaltink, M., Kromodimoeljo, S., Pase, B., Craigen, D., Meisels, I., An EVES data
abstraction example, In FME ’93: Industrial-Strength Formal Methods (1993), J. C. P.
Woodcock P. G. Larsen, Eds., LNCS 670, Springer, pp. 578–596

[34] Slind, K., Function definition in higher-order logic, In Theorem Proving in Higher Order
Logics: TPHOLs ’96 (1996), J. von Wright, J. Grundy, J. Harrison, Eds., LNCS 1125

[35] Szasz, N., A machine checked proof that Ackermann’s function is not primitive recursive,
In Logical Environments, G. Huet G. Plotkin, Eds. Cambridge Univ. Press, 1993, pp. 317–
338

[36] Völker, N., On the representation of datatypes in Isabelle/HOL, In Proceedings of the
First Isabelle Users Workshop (Sept. 1995), L. C. Paulson, Ed., Technical Report 379,
Comp. Lab., Univ. Cambridge, pp. 206–218

[37] Winskel, G., The Formal Semantics of Programming Languages, MIT Press, 1993

24

