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Lecture Overview

• Motivation for the Reflection Theorem

• Proving the Theorem in Isabelle

• Applying the Reflection Theorem
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Why Do Proofs By Machine?

• Claim: too many been done already!
– Gödel’s incompleteness theorem (Shankar)

– thousands of Mizar proofs

• Reply: many types of reasoning are hard to

formalize.
– Algebraic structures (e.g. group theory)

– Meta-level reasoning (e.g. about own proof)
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Idea of the Reflection Theorem

f has the same
meaning in M as in Ma,
for arbitrarily large a
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The Reflection Theorem

Define the class

where is a monotonic and
continuous family of sets.

For each formula 
there are arbitrarily large ordinals a  such
that f holds in M iff f holds in Ma
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Why is it Hard to Formalize?

• “f holds in M” is not definable in ZF!
– Because M is a proper class

– Tarski: the nondefinability of truth

•  f could take any number of arguments

• There is a different proof for each f
– Reflection is a meta-theorem

– … and not a theorem scheme
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Must Define Truth Syntactically

The relativization of f to M



8

Lecture Overview

• Motivation for the Reflection Theorem

• Proving the Theorem in Isabelle

• Applying the Reflection Theorem
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Isabelle/ZF

• Same code base as Isabelle/HOL

• Higher-order metalogic, ideal for
– Theorem schemes

– Classes

– Class functions

• Develops set theory from the Zermelo-
Fraenkel axioms to transfinite cardinals
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Proving the Reflection Theorem
in Isabelle/ZF

• Use a clean proof from Mostowski, 1969
– closed unbounded classes of ordinals

– normal functions (continuous, increasing)

• One lemma for each logical connective

• Isabelle automatically uses the lemmas to
prove instances of the theorem
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Closed/Unbounded Classes

• Closed means closed under unions (limits)
of ordinals

• If M, N are C.U. then so is M « N

• The fixedpoints of a continuous, increasing
function form a C.U. class

• E.g. the many solutions of
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Essence of Proof

• “Skolemize” each $ quantifier, obtaining a
normal function, F
– The fixedpoints of F give the desired class of

ordinals

• For f Ÿ y simply intersect the classes

• Negation and atomic cases are trivial
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Lecture Overview

• Motivation for the Reflection Theorem

• Proving the Theorem in Isabelle

• Applying the Reflection Theorem
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The Axiom of Choice and the
Generalized Continuum Hypothesis

• Gödel (1940) proved them consistent with
set theory

– A deep and important theorem

– Addressed Hilbert’s First Problem

• Modern treatments (in ZF) require the

Reflection theorem
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Sketch of Gödel’s Proof

• Define the constructible universe, L
– La+1 adds subsets that can be defined from

existing elements (in La) by a formula

– L contains only sets that must exist

• Show that L satisfies the ZF axioms
– Comprehension uses Reflection Theorem:
   f holds in L iff f holds in some La

• Show that L satisfies AC and GCH
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Showing That L “Thinks” All Sets
are Constructible

• Amounts to showing that the construction of
L is idempotent

• Relies on the concept of absoluteness:
–  f is absolute if it’s preserved in all models

– Not absolute: powersets, function spaces,
transfinite cardinals

• Requires analysing L’s definition down to
the last detail
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Applying Reflection to L
• Define a ZF datatype of FOL formulas

• Define a vocabulary for Reflection
– No function symbols; purely relational!

– All concepts from the empty set to “constructible”

– Repeat for the formula datatype

• For each instance of Comprehension, prove an
instance of Reflection (automatically)

• Giant terms describe the classes of ordinals
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Finish the Consistency Proof?

• Gödel, 1940: if a contradiction from AC and
GCH could be derived, it could be
transformed into a contradiction from the
axioms of set theory alone.

• Theorem statement lies outside the
language of set theory!

• It is an even better example of meta-
theoretic reasoning.


