
A Generic Tableau Prover
and Its Integration with Isabelle

Lawrence C. Paulson

Computer Laboratory

University of Cambridge

1



Overview of Isabelle

• a generic interactive prover for FOL, set theory, HOL, . . .

• Prolog influence: resolution of generalized Horn clauses

Existing classical reasoner (Fast tac )

• tableau methods

• generic: accepts supplied rules

• runs on Isabelle’s Prolog engine (trivial integration)

2



Objectives for the New Tactic

• Genericity: no restriction to predicate logic

• Power: quantifier duplication, transitivity reasoning . . .

• Speed: perhaps 10–20 seconds for interactive use

• Compatibility with Isabelle’s existing tools (Fast tac )

3



Why Write a New Tableau Prover?

Q. Why not rewrite with A ⊆ B ⇐⇒ ∀x (x ∈ A → x ∈ B)?

A. Destroys legibility

A. Not always possible: inductive definitions

Q. Why not just call Otter, SETHEO or LeanTaP?

A. We need higher-order syntax

4



Typical Generic Tableau Rules

type α type γ/β type δ/α

t ∈ A ∩B

t ∈ A
t ∈ B

A ⊆ B

¬(?x ∈ A) | ?x ∈ B

¬(A ⊆ B)

s ∈ A
¬(s ∈ B)

Complications from genericity:

• overloading store some type info

• variable instantiation heuristic limits

• recursive rules ad-hoc checks

5



Prover Architecture

Free-variable tableau with iterative deepening (leanTaP)

Term data structure: no types; variables as pointers

Basic heuristics

• discrimination nets

• search-space pruning

• delayed use of unsafe rules (γ-rules)

• suppressing needless duplication

6



Integration I: Translating Isabelle Rules

• multiple goal formulas via negation

• dual Skolemization ⇒ standard Skolemization

• simplification of higher-order conclusions (η-contraction)

• limitations on function variables

• type translation for overloading

7



Integration II: Translating Tableau Proofs

Isabelle checks the proof—often the slowest phase

• direct correspondence from proof steps to Isabelle tactics

• failure might be caused by

– breakdown of the correspondence

– type complications

• recomputation of unifiers

• fancy tricks not possible (e.g. liberalized δ-rule)

8



Results & Limitations

Good performance on first-order benchmarks e.g. Pelletier’s

Mostly compatible with fast_tac ; can be 10 times faster

• and proves more theorems

• but slower for some ‘obvious’ problems

Set theory challenge:

(∀x, y ∈ S x ⊆ y) → ∃z S ⊆ {z}

9



Conclusions

• the first tableau prover with higher-order syntax?

• the first tableau prover for ZF, HOL, inductive definitions, . . . ?

• has almost replaced fast_tac

• a good example of integration in daily use

10


