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Milestones in Formalized
Mathematics

* Godel’s incompleteness theorem (Shankar, 1985)
* (Quadratic reciprocity (Russinoff, 1992)

* Real analysis, measure theory and probability
(Harrison, 1996; Hurd, 2002)

e Continuous lattices (Bancerek & Rudnicki, 2003)

* Relative consistency of the axiom of choice (2003)



Abstract Mathematics

concerns classes of objects specified by axioms,
not concrete objects like the integers or reals

objects are typically structures: G, 1,7h
* groups, rings, lattices, topological spaces, ...
concepts are frequently combined and extended

instances may be concrete (the integers are a ring)
or abstract (the product of two groups is a group)



Essentials for Formalization

e Structures are not “theories” (of proof tools)
* (Carriers must be sets, not types.
* Structures must be first-class values.

* Syntax should reflect the context: if G is a group,

then (xy)_1 = y_lx_l refers implicitly to G.

* Inheritance of syntax and theorems should be
automatic.



Isabelle Overview

A generic proof tool supporting (among others)
* higher-order logic with polymorphism

e ZF set theory

rewriting, classical reasoning, arithmetic
flexible mixfix syntax with LaTeX output

User interface: Proof General



Support for Abstraction

\<index> arguments in syntax declarations
extensible records (HOL only)

locales: portable contexts

locale instantiation

choice of typed or untyped formalism



\<index> Arguments in
Syntax Declarations

One function argument may be \<index>

Even works for infix operators: a ® b

Good for denoting record fields
Can declare a default by (structure G)

Yields a concise syntax for Gwhile allowing
references to other groups.



Records

* Can have polymorphic types
* (Can be extended with additional fields
* Fields are functions and can have special syntax

base type for carrier

. subscripted operator
record ’a monoid = p p

carrier :: "’a set”
mult oo "[’a, ’al = ’a" (infixl "®1" 70)
one o %a ("11")

\ subscripted constant
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Locales: A Lightweight
Module System

* Named contexts including variables (with syntax),
assumptions and theorems

* “Gis a group”
* “his a homomorphism between G and H”

* Multiple inheritance

¢ One can reason within a locale but also reason
about a locale: it is simply a predicate.



A Locale for Monoids

Eliminates the need for
subscripts on the operators

L
J
-~
Rad

locale monoid = struct G +
assumes m_closed [intro, simp]:

"|x € carnjer G; y € carrier G| = x ® y’ € carrier G"

and m_assoc: :
"[x € carcier\G; y € carrier G; z € cfji'i;.f'ier G]
— x Q@ PR O =x0 y 2"

and one_closed [ihtroy simp]: "1 € car{ier G"

and 1_onew[simp] N!'xX\E\carrier G — 1 ® x = x"

and r_one<[simpl: "xNe\carrier G — x ® 1 =

Axioms for monoids
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A Locale for Groups

A group is a monoid whose elements have inverses.

locale group = monoid +
assumes inv_ex:

"Ax. x € carrier G = dy € carrier G. y @ x =1 &x ® y = 1"

Reasoning in locale gr oup makes implicit the
assumption that Gis a group.

We can use the syntax defined in the locale.
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A Proof In Locale gr oup

The default group is G

lemma (in group) 1_cancel [simp/:
assumes [simp]: "x € carriey/ G" "y &€ carrier G" "z € carrier G"
shows "(x @ vy =x ® z) =Ay = z)"
proof
assume eq: "'x  y =x ® z"
hence "(inv x ® x) ® y = (inv x ® x) ® z"
by (simp only: m_assoc inv_closed prems)

thus "y = z" by simp \
next
assume eq: "y = z" Theorem of the

then show "x ® y = x ® z" by\simp group locale
qed
Axiom of the monoid locale
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Defining the Direct Product

® The carrier is the Cartesian product of G and H.

* The operator and unit are the pairwise
combination of those of G and H.

"G xXx H = (carrier = carrier G X carrier H,
mult = (A(g, h) (g’, h’). (g ®; g’, h ®y; h’)),
one = (1, 1) |)"

Subscripting identifies the group
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The Product of Two Groups
is a Group

lemma DirProd_monoid:
includes monoid G + monoid H
shows "monoid (G
proof -
from prems
show 7thesis by (unfold m
qed

def DirProd_def, auto)

Two instances of a locale:
one each for G and H

lemma DirProd_group:
includes group G + group H
shows "group (G xx H)"
by ...
Locales express the

premises and conclusion
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The Set of Homomorphisms

"hom G H =
{h. h € carrier G — carrier H &
(Vx € carrier G. Vy € carrier G. h (x ®; y) = h x ®; h y)}"

Two trivial consequences

lemma hom_mult:
"[h € hom G H; x € carrier G; y € carrier G] = h (x ®; y) =h x ®; h y"

by (simp add: hom_def)

lemma hom_closed:
"[h € hom G H; x € carrier G] = h x € carrier H"

by (auto simp add: hom_def funcset_mem)
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A Locale for
Homomorphism Proofs

G and H are groups

h is a homo-
morphism
locale group_hom = group G + grou + var h +

assumes homh: "h & hom G H"
notes hom_mult [simp] = hom_mult [OF homh]
and hom_close imp] = hom_closed [OF homh]

installing two simplification rules
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A Proot: Homomorphisms
Preserve Inverses

Facts about / and about groups G and H
are implicitly present.

lemma (in group_hom) hom_inv [simp]:
assumes [simp]: "x € carrier G" shows "h (inv x) = invy (h x)"
proof -
have "h x ®, h (inv x) = 1,"
by (simp add: hom_mult [symmetric] del: hom_mult)
also have "... = h x ®, invy (h x)"
by simp
finally have "h x ®; h (inv x) = h x ®y invy (h x)" .
thus 7thesis by (simp del: inv add: is_group)
qed
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More Formalized Algebra

Groups of permutations and automorphisms
Cosets, normal subgroups, Lagrange’s theorem
The first Sylow theorem (Kammiiller, 1999)
Quotient groups, the first isomorphism theorem

Beginnings of ring theory
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Related Work: Mizar

structures with multiple inheritance
adjectives for constraining structures

coercions by widening and by proved closure
properties

Substantial formal developments
* commutative algebra

* Compendium of Continuous Lattices
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Related Work: Others

* Pioneering attempts: E. Gunter (1989); Yu (1990)
* Recent experiments by Arthan (2004)
* Massive development by Kobayashi et al. (2004)
* Jordan-Holder theorem
* Chinese remainder theorem for rings

* Modules: exact sequences, tensor products
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Conclusions

* Without notational support, users can still do
much by pure stamina (Kobayashi).

* Excellent support for abstraction can be hard-
wired into an assertion language (Mizar).

* The elements of formal abstract mathematics are
records, subscripting (with infixes and defaults)
and locales (contexts formalized as predicates).
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