Formalizing Abstract
Mathematics:
Issues and Progress

Lawrence C. Paulson
2% UNIVERSITY OF

lllll ﬁxmx

&Y CAMBRIDGE

Computer Laboratory

Milestones in Formalized
Mathematics

* Godel’s incompleteness theorem (Shankar, 1985)
* (Quadratic reciprocity (Russinoff, 1992)

* Real analysis, measure theory and probability
(Harrison, 1996; Hurd, 2002)

e Continuous lattices (Bancerek & Rudnicki, 2003)

* Relative consistency of the axiom of choice (2003)

Abstract Mathematics

concerns classes of objects specified by axioms,
not concrete objects like the integers or reals

objects are typically structures: G, 1,7h
* groups, rings, lattices, topological spaces, ...
concepts are frequently combined and extended

instances may be concrete (the integers are a ring)
or abstract (the product of two groups is a group)

Essentials for Formalization

e Structures are not “theories” (of proof tools)
* (Carriers must be sets, not types.
* Structures must be first-class values.

* Syntax should reflect the context: if G is a group,

then (xy)_1 = y_lx_l refers implicitly to G.

* Inheritance of syntax and theorems should be
automatic.

Isabelle Overview

A generic proof tool supporting (among others)
* higher-order logic with polymorphism

e ZF set theory

rewriting, classical reasoning, arithmetic
flexible mixfix syntax with LaTeX output

User interface: Proof General

Support for Abstraction

\<index> arguments in syntax declarations
extensible records (HOL only)

locales: portable contexts

locale instantiation

choice of typed or untyped formalism

\<index> Arguments in
Syntax Declarations

One function argument may be \<index>

Even works for infix operators: a ® b

Good for denoting record fields
Can declare a default by (structure G)

Yields a concise syntax for Gwhile allowing
references to other groups.

Records

* Can have polymorphic types
* (Can be extended with additional fields
* Fields are functions and can have special syntax

base type for carrier

. subscripted operator
record ’a monoid = p p

carrier :: "’a set”
mult oo "[’a, ’al = ’a" (infixl "®1" 70)
one o %a ("11")

\ subscripted constant

8

Locales: A Lightweight
Module System

* Named contexts including variables (with syntax),
assumptions and theorems

* “Gis a group”
* “his a homomorphism between G and H”

* Multiple inheritance

¢ One can reason within a locale but also reason
about a locale: it is simply a predicate.

A Locale for Monoids

Eliminates the need for
subscripts on the operators

L
J
-~
Rad

locale monoid = struct G +
assumes m_closed [intro, simp]:

"|x € carnjer G; y € carrier G| = x ® y’ € carrier G"

and m_assoc: :
"[x € carcier\G; y € carrier G; z € cfji'i;.f'ier G]
— x Q@ PR O =x0 y 2"

and one_closed [ihtroy simp]: "1 € car{ier G"

and 1_onew[simp] N!'xX\E\carrier G — 1 ® x = x"

and r_one<[simpl: "xNe\carrier G — x ® 1 =

Axioms for monoids

I0

A Locale for Groups

A group is a monoid whose elements have inverses.

locale group = monoid +
assumes inv_ex:

"Ax. x € carrier G = dy € carrier G. y @ x =1 &x ® y = 1"

Reasoning in locale gr oup makes implicit the
assumption that Gis a group.

We can use the syntax defined in the locale.

II

A Proof In Locale gr oup

The default group is G

lemma (in group) 1_cancel [simp/:
assumes [simp]: "x € carriey/ G" "y &€ carrier G" "z € carrier G"
shows "(x @ vy =x ® z) =Ay = z)"
proof
assume eq: "'x y =x ® z"
hence "(inv x ® x) ® y = (inv x ® x) ® z"
by (simp only: m_assoc inv_closed prems)

thus "y = z" by simp \
next
assume eq: "y = z" Theorem of the

then show "x ® y = x ® z" by\simp group locale
qed
Axiom of the monoid locale

12

Defining the Direct Product

® The carrier is the Cartesian product of G and H.

* The operator and unit are the pairwise
combination of those of G and H.

"G xXx H = (carrier = carrier G X carrier H,
mult = (A(g, h) (g’, h’). (g ®; g’, h ®y; h’)),
one = (1, 1) |)"

Subscripting identifies the group

I3

The Product of Two Groups
is a Group

lemma DirProd_monoid:
includes monoid G + monoid H
shows "monoid (G
proof -
from prems
show 7thesis by (unfold m
qed

def DirProd_def, auto)

Two instances of a locale:
one each for G and H

lemma DirProd_group:
includes group G + group H
shows "group (G xx H)"
by ...
Locales express the

premises and conclusion

14

The Set of Homomorphisms

"hom G H =
{h. h € carrier G — carrier H &
(Vx € carrier G. Vy € carrier G. h (x ®; y) = h x ®; h y)}"

Two trivial consequences

lemma hom_mult:
"[h € hom G H; x € carrier G; y € carrier G] = h (x ®; y) =h x ®; h y"

by (simp add: hom_def)

lemma hom_closed:
"[h € hom G H; x € carrier G] = h x € carrier H"

by (auto simp add: hom_def funcset_mem)

15

A Locale for
Homomorphism Proofs

G and H are groups

h is a homo-
morphism
locale group_hom = group G + grou + var h +

assumes homh: "h & hom G H"
notes hom_mult [simp] = hom_mult [OF homh]
and hom_close imp] = hom_closed [OF homh]

installing two simplification rules

16

A Proot: Homomorphisms
Preserve Inverses

Facts about / and about groups G and H
are implicitly present.

lemma (in group_hom) hom_inv [simp]:
assumes [simp]: "x € carrier G" shows "h (inv x) = invy (h x)"
proof -
have "h x ®, h (inv x) = 1,"
by (simp add: hom_mult [symmetric] del: hom_mult)
also have "... = h x ®, invy (h x)"
by simp
finally have "h x ®; h (inv x) = h x ®y invy (h x)" .
thus 7thesis by (simp del: inv add: is_group)
qed

7

More Formalized Algebra

Groups of permutations and automorphisms
Cosets, normal subgroups, Lagrange’s theorem
The first Sylow theorem (Kammiiller, 1999)
Quotient groups, the first isomorphism theorem

Beginnings of ring theory

18

Related Work: Mizar

structures with multiple inheritance
adjectives for constraining structures

coercions by widening and by proved closure
properties

Substantial formal developments
* commutative algebra

* Compendium of Continuous Lattices

19

Related Work: Others

* Pioneering attempts: E. Gunter (1989); Yu (1990)
* Recent experiments by Arthan (2004)
* Massive development by Kobayashi et al. (2004)
* Jordan-Holder theorem
* Chinese remainder theorem for rings

* Modules: exact sequences, tensor products

20

Conclusions

* Without notational support, users can still do
much by pure stamina (Kobayashi).

* Excellent support for abstraction can be hard-
wired into an assertion language (Mizar).

* The elements of formal abstract mathematics are
records, subscripting (with infixes and defaults)
and locales (contexts formalized as predicates).

21

