
Formalizing Abstract
Mathematics:

Issues and Progress
Lawrence C. Paulson

Computer Laboratory

2

Milestones in Formalized
Mathematics

• Gödel’s incompleteness theorem (Shankar, 1985)

• Quadratic reciprocity (Russinoff, 1992)

• Real analysis, measure theory and probability
(Harrison, 1996; Hurd, 2002)

• Continuous lattices (Bancerek & Rudnicki, 2003)

• Relative consistency of the axiom of choice (2003)

3

Abstract Mathematics

• concerns classes of objects specified by axioms,
not concrete objects like the integers or reals

• objects are typically structures: (G,⋅,1,−1)

• groups, rings, lattices, topological spaces, ...

• concepts are frequently combined and extended

• instances may be concrete (the integers are a ring)
or abstract (the product of two groups is a group)

4

Essentials for Formalization

• Structures are not “theories” (of proof tools)

• Carriers must be sets, not types.

• Structures must be first-class values.

• Syntax should reflect the context: if G is a group,
then (xy)−1 = y−1x−1 refers implicitly to G.

• Inheritance of syntax and theorems should be
automatic.

5

Isabelle Overview

• A generic proof tool supporting (among others)

• higher-order logic with polymorphism

• ZF set theory

• rewriting, classical reasoning, arithmetic

• flexible mixfix syntax with LaTeX output

• User interface: Proof General

!
"

#
=Isa

be
lle

$

%

6

Support for Abstraction

• \<index> arguments in syntax declarations

• extensible records (HOL only)

• locales: portable contexts

• locale instantiation

• choice of typed or untyped formalism

7

\<index> Arguments in
Syntax Declarations

• One function argument may be \<index>

• Even works for infix operators: a ⊗G b

• Good for denoting record fields

• Can declare a default by(structure G)

• Yields a concise syntax for G while allowing
references to other groups.

8

• Can have polymorphic types

• Can be extended with additional fields

• Fields are functions and can have special syntax

Records

Formalizing Abstract Mathematics: Issues and Progress

11 June 2004

LATEX

record ’a monoid =
carrier :: "’a set"
mult :: "[’a, ’a] ⇒ ’a" (infixl "⊗ı" 70)
one :: ’a ("1ı")

constdefs (structure G)
m_inv :: "(’a, ’b) monoid_scheme ⇒ ’a ⇒ ’a" ("invı _" [81] 80)
"inv x ≡ (THE y. y ∈ carrier G & y ⊗ x = 1 & x ⊗ y = 1)"

A group is a monoid all of whose elements are invertible.

locale group = monoid +
assumes inv_ex:

"
∧
x. x ∈ carrier G =⇒ ∃y ∈ carrier G. y ⊗ x = 1 & x ⊗ y = 1"

1

base type for carrier
subscripted operator

subscripted constant

9

Locales: A Lightweight
Module System

• Named contexts including variables (with syntax),
assumptions and theorems

• “G is a group”

• “h is a homomorphism between G and H”

• Multiple inheritance

• One can reason within a locale but also reason
about a locale: it is simply a predicate.

10

A Locale for Monoids

LATEX

record ’a monoid =
carrier :: "’a set"
mult :: "[’a, ’a] ⇒ ’a" (infixl "⊗ı" 70)
one :: ’a ("1ı")

constdefs (structure G)
m_inv :: "(’a, ’b) monoid_scheme ⇒ ’a ⇒ ’a" ("invı _" [81] 80)
"inv x ≡ (THE y. y ∈ carrier G & y ⊗ x = 1 & x ⊗ y = 1)"

locale monoid = struct G +
assumes m_closed [intro, simp]:

" [[x ∈ carrier G; y ∈ carrier G]] =⇒ x ⊗ y ∈ carrier G"
and m_assoc:

" [[x ∈ carrier G; y ∈ carrier G; z ∈ carrier G]]
=⇒ (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and one_closed [intro, simp]: "1 ∈ carrier G"
and l_one [simp]: "x ∈ carrier G =⇒ 1 ⊗ x = x"
and r_one [simp]: "x ∈ carrier G =⇒ x ⊗ 1 = x"

A group is a monoid all of whose elements are invertible.

locale group = monoid +
assumes inv_ex:

"
∧
x. x ∈ carrier G =⇒ ∃y ∈ carrier G. y ⊗ x = 1 & x ⊗ y = 1"

1

Eliminates the need for
subscripts on the operators

Axioms for monoids

11

A Locale for Groups

A group is a monoid whose elements have inverses.

Reasoning in locale group makes implicit the
assumption that G is a group.

We can use the syntax defined in the locale.

LATEX

record ’a monoid =
carrier :: "’a set"
mult :: "[’a, ’a] ⇒ ’a" (infixl "⊗ı" 70)
one :: ’a ("1ı")

constdefs (structure G)
m_inv :: "(’a, ’b) monoid_scheme ⇒ ’a ⇒ ’a" ("invı _" [81] 80)
"inv x ≡ (THE y. y ∈ carrier G & y ⊗ x = 1 & x ⊗ y = 1)"

locale monoid = struct G +
assumes m_closed [intro, simp]:

" [[x ∈ carrier G; y ∈ carrier G]] =⇒ x ⊗ y ∈ carrier G"
and m_assoc:

" [[x ∈ carrier G; y ∈ carrier G; z ∈ carrier G]]
=⇒ (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and one_closed [intro, simp]: "1 ∈ carrier G"
and l_one [simp]: "x ∈ carrier G =⇒ 1 ⊗ x = x"
and r_one [simp]: "x ∈ carrier G =⇒ x ⊗ 1 = x"

A group is a monoid all of whose elements are invertible.

locale group = monoid +
assumes inv_ex:

"
∧
x. x ∈ carrier G =⇒ ∃y ∈ carrier G. y ⊗ x = 1 & x ⊗ y = 1"

1

12

A Proof In Locale group

LATEX

record ’a monoid =
carrier :: "’a set"
mult :: "[’a, ’a] ⇒ ’a" (infixl "⊗ı" 70)
one :: ’a ("1ı")

constdefs (structure G)
m_inv :: "(’a, ’b) monoid_scheme ⇒ ’a ⇒ ’a" ("invı _" [81] 80)
"inv x ≡ (THE y. y ∈ carrier G & y ⊗ x = 1 & x ⊗ y = 1)"

locale monoid = struct G +
assumes m_closed [intro, simp]:

" [[x ∈ carrier G; y ∈ carrier G]] =⇒ x ⊗ y ∈ carrier G"
and m_assoc:

" [[x ∈ carrier G; y ∈ carrier G; z ∈ carrier G]]
=⇒ (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and one_closed [intro, simp]: "1 ∈ carrier G"
and l_one [simp]: "x ∈ carrier G =⇒ 1 ⊗ x = x"
and r_one [simp]: "x ∈ carrier G =⇒ x ⊗ 1 = x"

A group is a monoid all of whose elements are invertible.

locale group = monoid +
assumes inv_ex:

"
∧
x. x ∈ carrier G =⇒ ∃y ∈ carrier G. y ⊗ x = 1 & x ⊗ y = 1"

1

lemma (in group) l_cancel [simp]:
assumes [simp]: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
shows "(x ⊗ y = x ⊗ z) = (y = z)"

proof
assume eq: "x ⊗ y = x ⊗ z"
hence "(inv x ⊗ x) ⊗ y = (inv x ⊗ x) ⊗ z"

by (simp only: m_assoc inv_closed prems)
thus "y = z" by simp

next
assume eq: "y = z"
then show "x ⊗ y = x ⊗ z" by simp

qed

lemma (in group) inv_mult_group:
" [[x ∈ carrier G; y ∈ carrier G]] =⇒ inv (x ⊗ y) = inv y ⊗ inv x"

proof -
assume G: "x ∈ carrier G" "y ∈ carrier G"
then have "inv (x ⊗ y) ⊗ (x ⊗ y) = (inv y ⊗ inv x) ⊗ (x ⊗ y)"

by (simp add: m_assoc l_inv) (simp add: m_assoc [symmetric] l_inv)
with G show ?thesis by (simp_all del: inv add: inv_closed)

qed

locale subgroup = var H + struct G +
assumes subset: "H ⊆ carrier G"

2

The default group is G

Axiom of the monoid locale

Theorem of the
group locale

13

Defining the Direct Product

• The carrier is the Cartesian product of G and H.

• The operator and unit are the pairwise
combination of those of G and H.

Subscripting identifies the group

lemma (in group) inv_mult_group:
" [[x ∈ carrier G; y ∈ carrier G]] =⇒ inv (x ⊗ y) = inv y ⊗ inv x"

proof -
assume G: "x ∈ carrier G" "y ∈ carrier G"
then have "inv (x ⊗ y) ⊗ (x ⊗ y) = (inv y ⊗ inv x) ⊗ (x ⊗ y)"

by (simp add: m_assoc l_inv) (simp add: m_assoc [symmetric] l_inv)
with G show ?thesis by (simp_all del: inv add: inv_closed)

qed

locale subgroup = var H + struct G +
assumes subset: "H ⊆ carrier G"

and m_closed [intro, simp]: " [[x ∈ H; y ∈ H]] =⇒ x ⊗ y ∈ H"
and one_closed [simp]: "1 ∈ H"
and m_inv_closed [intro,simp]: "x ∈ H =⇒ inv x ∈ H"

constdefs
DirProd :: "_ ⇒ _ ⇒ (’a × ’b) monoid" (infixr "××" 80)
"G ×× H ≡ (|carrier = carrier G × carrier H,

mult = (λ(g, h) (g’, h’). (g ⊗G g’, h ⊗H h’)),
one = (1G, 1H) |)"

3

14

The Product of Two Groups
is a Grouplocale subgroup = var H + struct G +

assumes subset: "H ⊆ carrier G"
and m_closed [intro, simp]: " [[x ∈ H; y ∈ H]] =⇒ x ⊗ y ∈ H"
and one_closed [simp]: "1 ∈ H"
and m_inv_closed [intro,simp]: "x ∈ H =⇒ inv x ∈ H"

constdefs
DirProd :: "_ ⇒ _ ⇒ (’a × ’b) monoid" (infixr "××" 80)
"G ×× H ≡ (|carrier = carrier G × carrier H,

mult = (λ(g, h) (g’, h’). (g ⊗G g’, h ⊗H h’)),
one = (1G, 1H) |)"

lemma DirProd_group:
includes group G + group H
shows "group (G ×× H)"
by ...

constdefs
hom :: "_ ⇒ _ ⇒ (’a ⇒ ’b) set"
"hom G H ≡
{h. h ∈ carrier G → carrier H &
(∀x ∈ carrier G. ∀y ∈ carrier G. h (x ⊗G y) = h x ⊗H h y)}"

locale group_hom = group G + group H + var h +

3

lemma DirProd_monoid:
includes monoid G + monoid H
shows "monoid (G ×× H)"

proof -
from prems
show ?thesis by (unfold monoid_def DirProd_def, auto)

qed

lemma DirProd_group:
includes group G + group H
shows "group (G ×× H)"
by ...

constdefs
hom :: "_ ⇒ _ ⇒ (’a ⇒ ’b) set"
"hom G H ≡
{h. h ∈ carrier G → carrier H &
(∀x ∈ carrier G. ∀y ∈ carrier G. h (x ⊗G y) = h x ⊗H h y)}"

4

Two instances of a locale:
one each for G and H

Locales express the
premises and conclusion

15

The Set of Homomorphisms

lemma DirProd_monoid:
includes monoid G + monoid H
shows "monoid (G ×× H)"

proof -
from prems
show ?thesis by (unfold monoid_def DirProd_def, auto)

qed

lemma DirProd_group:
includes group G + group H
shows "group (G ×× H)"
by ...

constdefs
hom :: "_ ⇒ _ ⇒ (’a ⇒ ’b) set"
"hom G H ≡
{h. h ∈ carrier G → carrier H &
(∀x ∈ carrier G. ∀y ∈ carrier G. h (x ⊗G y) = h x ⊗H h y)}"

4
lemma hom_mult:
" [[h ∈ hom G H; x ∈ carrier G; y ∈ carrier G]] =⇒ h (x ⊗G y) = h x ⊗H h y"
by (simp add: hom_def)

lemma hom_closed:
" [[h ∈ hom G H; x ∈ carrier G]] =⇒ h x ∈ carrier H"
by (auto simp add: hom_def funcset_mem)

x

locale group_hom = group G + group H + var h +
assumes homh: "h ∈ hom G H"
notes hom_mult [simp] = hom_mult [OF homh]

and hom_closed [simp] = hom_closed [OF homh]

The argument of contents is the collection of all integers [(y, x)] such that (x,y) belongs to the equivalence class for z. This
collection will turn out to be a singleton.

− [(x,y)] = [(y, x)]

5

lemma hom_mult:
" [[h ∈ hom G H; x ∈ carrier G; y ∈ carrier G]] =⇒ h (x ⊗G y) = h x ⊗H h y"
by (simp add: hom_def)

lemma hom_closed:
" [[h ∈ hom G H; x ∈ carrier G]] =⇒ h x ∈ carrier H"
by (auto simp add: hom_def funcset_mem)

x

locale group_hom = group G + group H + var h +
assumes homh: "h ∈ hom G H"
notes hom_mult [simp] = hom_mult [OF homh]

and hom_closed [simp] = hom_closed [OF homh]

The argument of contents is the collection of all integers [(y, x)] such that (x,y) belongs to the equivalence class for z. This
collection will turn out to be a singleton.

− [(x,y)] = [(y, x)]

5

Two trivial consequences

16

A Locale for
Homomorphism Proofs

locale group_hom = group G + group H + var h +
assumes homh: "h ∈ hom G H"
notes hom_mult [simp] = hom_mult [OF homh]

and hom_closed [simp] = hom_closed [OF homh]

The argument of contents is the collection of all integers [(y, x)] such that (x,y) belongs to the equivalence class for z. This
collection will turn out to be a singleton.

− [(x,y)] = [(y, x)]
lemma minus:
"- Abs_Integ(intrel“{(x,y)}) = Abs_Integ(intrel “ {(y,x)})"

proof -
have "congruent intrel (λ(x,y). {Abs_Integ (intrel“{(y,x)})})"

by (simp add: congruent_def)
thus ?thesis

by (simp add: minus_int_def UN_equiv_class [OF equiv_intrel])
qed

5

G and H are groups
h is a homo-
morphism

installing two simplification rules

17

A Proof: Homomorphisms
Preserve Inverseslemma hom_mult:

" [[h ∈ hom G H; x ∈ carrier G; y ∈ carrier G]] =⇒ h (x ⊗G y) = h x ⊗H h y"
by (simp add: hom_def)

lemma hom_closed:
" [[h ∈ hom G H; x ∈ carrier G]] =⇒ h x ∈ carrier H"
by (auto simp add: hom_def funcset_mem)

lemma (in group_hom) hom_inv [simp]:
assumes [simp]: "x ∈ carrier G" shows "h (inv x) = inv H (h x)"

proof -
have "h x ⊗H h (inv x) = 1H"

by (simp add: hom_mult [symmetric] del: hom_mult)
also have "... = h x ⊗H inv H (h x)"

by simp
finally have "h x ⊗H h (inv x) = h x ⊗H inv H (h x)" .
thus ?thesis by (simp del: inv add: is_group)

qed

5

Facts about h and about groups G and H
are implicitly present.

18

More Formalized Algebra

• Groups of permutations and automorphisms

• Cosets, normal subgroups, Lagrange’s theorem

• The first Sylow theorem (Kammüller, 1999)

• Quotient groups, the first isomorphism theorem

• Beginnings of ring theory

19

Related Work: Mizar
• structures with multiple inheritance

• adjectives for constraining structures

• coercions by widening and by proved closure
properties

• Substantial formal developments

• commutative algebra

• Compendium of Continuous Lattices

20

Related Work: Others

• Pioneering attempts: E. Gunter (1989); Yu (1990)

• Recent experiments by Arthan (2004)

• Massive development by Kobayashi et al. (2004)

• Jordan-Hölder theorem

• Chinese remainder theorem for rings

• Modules: exact sequences, tensor products

21

Conclusions

• Without notational support, users can still do
much by pure stamina (Kobayashi).

• Excellent support for abstraction can be hard-
wired into an assertion language (Mizar).

• The elements of formal abstract mathematics are
records, subscripting (with infixes and defaults)
and locales (contexts formalized as predicates).

